WO2020015285A1 - 空调机组的压力控制方法、系统、计算机设备和存储介质 - Google Patents

空调机组的压力控制方法、系统、计算机设备和存储介质 Download PDF

Info

Publication number
WO2020015285A1
WO2020015285A1 PCT/CN2018/120759 CN2018120759W WO2020015285A1 WO 2020015285 A1 WO2020015285 A1 WO 2020015285A1 CN 2018120759 W CN2018120759 W CN 2018120759W WO 2020015285 A1 WO2020015285 A1 WO 2020015285A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning unit
air
internal
pressure
intermediate pressure
Prior art date
Application number
PCT/CN2018/120759
Other languages
English (en)
French (fr)
Inventor
苏玉海
熊建国
张仕强
焦华超
武连发
高晗
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020015285A1 publication Critical patent/WO2020015285A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure

Definitions

  • the present application relates to the technical field of air conditioning, and in particular, to a pressure control method, system, computer equipment, and storage medium of an air conditioning unit.
  • multi-unit air-conditioning units have become more and more popular with users due to their free combination arrangement, excellent load efficiency, and flexible and convenient installation, and their market capacity has continued to increase.
  • the internal and external units are installed on different floors.
  • the floor span of the multi-unit air-conditioning units is too large, it will affect the air-conditioning units. Performance.
  • the present application discloses a method and system for realizing pressure control by adjusting internal parameters of an air-conditioning unit, thereby ensuring that the internal and external units of the air-conditioning unit have sufficient power to promote refrigerant circulation when performing ultra-conventional high drop connections.
  • a pressure control method for an air conditioning unit includes:
  • the system operation mode includes a cooling operation mode and a heating operation mode
  • the opening degree of the electronic expansion valve of the air conditioning unit is adjusted to control the intermediate pressure of the air conditioning unit.
  • a pressure control system for an air conditioning unit wherein the system includes:
  • Operation mode judgment module configured to determine a system operation mode in which the air-conditioning unit is currently operating, the system operation mode includes a cooling operation mode and a heating operation mode;
  • System parameter acquisition module configured to acquire multiple system parameters of the air-conditioning unit according to a system operating mode in which the air-conditioning unit is currently running;
  • Intermediate pressure determination module configured to determine an intermediate pressure of the air conditioning unit according to the plurality of system parameters
  • Intermediate pressure control module set to adjust the opening degree of the electronic expansion valve of the air-conditioning unit according to the intermediate pressure of the air-conditioning unit to control the intermediate pressure of the air-conditioning unit.
  • the pressure control method and system of the air-conditioning unit described above determine the intermediate pressure of the air-conditioning unit; further, adjust the opening degree of the electronic expansion valve of the air-conditioning unit according to the intermediate pressure of the air-conditioning unit To control the intermediate pressure of the air-conditioning unit.
  • the pressure control method and system of the air-conditioning unit can ensure that the internal and external units of the air-conditioning unit have sufficient power to promote refrigerant circulation when performing ultra-conventional high drop connections.
  • FIG. 1 is a schematic flowchart of a pressure control method for an air conditioning unit in some embodiments
  • FIG. 3 is a flowchart of intermediate pressure determination in a heating operation mode in some embodiments.
  • FIG. 5 is a structural block diagram of a pressure control system of an air conditioning unit in some embodiments.
  • a pressure control method for an air-conditioning unit is provided.
  • the method is taken as an example for description, and includes the following steps:
  • Step S201 Determine a system operation mode in which the air-conditioning unit is currently operating, and the system operation mode includes a cooling operation mode and a heating operation mode.
  • Determining the current system operation mode of the air-conditioning unit includes determining whether the system operation mode of the air-conditioning unit is in a cooling operation mode or a heating operation mode.
  • Step S202 Acquire a plurality of system parameters of the air-conditioning unit according to a current system operating mode of the air-conditioning unit.
  • obtaining the system parameters of the air-conditioning unit includes obtaining the opening degree of the electronic expansion valve of the internal unit, the suction pressure of the compressor, and the compressor exhaust Air pressure, as well as the compressor exhaust temperature or the internal machine outlet pipe temperature and internal machine inlet pipe temperature.
  • the outlet temperature of the internal unit indicates the temperature of the air outlet of the internal unit of the air conditioner.
  • the inlet temperature of the internal unit indicates the temperature of the air inlet of the internal unit of the air conditioner.
  • the compressor discharge temperature indicates the temperature at which the compressor of the air conditioner discharges the refrigerant.
  • the opening degree of the electronic expansion valve (EEV) of the internal and external machine, the EEV opening degree of the internal and external machine has a great influence on the compressor discharge pressure, the gas cooler outlet pressure, and the compressor discharge temperature.
  • the compressor suction pressure indicates the pressure of the refrigerant in the exhaust pipe at the air inlet of the compressor.
  • Compressor exhaust pressure indicates the pressure of the refrigerant in the exhaust pipe at the compressor outlet.
  • the temperature of the internal pipe of the air-conditioning unit when the system operation mode currently running by the air-conditioning unit is in a heating operation mode, the temperature of the internal pipe of the air-conditioning unit, the temperature of the compressor exhaust, the pressure of the compressor suction, and the compressor are obtained. Exhaust pressure.
  • Step S203 Determine an intermediate pressure of the air-conditioning unit according to the multiple system parameters.
  • the intermediate pressure refers to the pressure of the refrigerant in the pipeline from the external EEV to the internal EEV.
  • step S203 is described in detail, including the following steps:
  • step S2031 the superheat degree of the internal unit of the air-conditioning unit is obtained according to the temperature of the internal unit outlet pipe and the internal unit inlet pipe temperature.
  • the internal machine superheat degree the internal machine outlet pipe temperature-the internal machine inlet pipe temperature
  • the internal machine superheat degree ensures that no liquid refrigerant returns to the compressor and prevents the compressor from being hit by liquid.
  • Step S2033 Obtain the exhaust superheat of the air conditioning unit according to the compressor exhaust temperature and the compressor exhaust pressure.
  • the exhaust superheat degree the compressor exhaust temperature-the compressor exhaust pressure.
  • the exhaust superheat degree can prevent the gas discharged from the high-pressure cavity compressor from liquefying in the high-pressure cavity, and avoid the solid refrigerant from being diluted.
  • Step S2035 Determine the intermediate pressure of the air-conditioning unit according to the opening degree of the internal electronic expansion valve, the compressor suction pressure, and the exhaust superheat degree.
  • the intermediate pressure of the air-conditioning unit is determined according to the superheat degree of the internal unit, the suction pressure of the compressor, and the superheat degree of the exhaust gas.
  • the opening degree of the internal electronic expansion valve is smaller than a preset value of the opening degree of the internal electronic expansion valve Or the internal machine superheat degree is less than the internal machine superheat degree preset value, and at the same time, the compressor suction pressure is less than the compressor suction pressure preset value and the exhaust superheat degree is greater than the exhaust
  • the preset superheat degree determines that the intermediate pressure of the air conditioning unit is too small.
  • the preset value of the opening degree of the internal electronic expansion valve can be set according to the actual operation of the air conditioning unit, and can be set to add one to the target value of the opening degree of the internal electronic expansion valve. Offset value.
  • the preset value of the opening degree of the internal electronic expansion valve the target value of the opening degree of the internal electronic expansion valve -1.
  • the opening degree of the internal electronic expansion valve is greater than a preset value of the opening degree of the internal electronic expansion valve or the internal heating degree is greater than The internal machine superheat degree preset value, and at the same time the compressor suction pressure is greater than the compressor suction pressure preset value and the exhaust superheat degree is less than the exhaust superheat degree preset value, it is determined The intermediate pressure of the air-conditioning unit is too large.
  • step S203 is described in detail, including the following steps:
  • step S2032 the supercooling degree of the internal unit of the air conditioning unit is obtained according to the discharge pressure of the compressor and the temperature of the outlet pipe of the internal unit.
  • the supercooling degree of the internal unit the exhaust pressure of the compressor-the temperature of the outlet pipe of the internal unit.
  • the supercooling degree of the internal unit is a parameter representing the refrigerant flow rate of the internal unit of the air conditioner.
  • Step S2034 Obtain the exhaust superheat of the air conditioning unit according to the compressor exhaust temperature and the compressor exhaust pressure.
  • Exhaust superheat Compressor exhaust temperature-Compressor exhaust pressure. Exhaust superheat can prevent the gas discharged from the high-pressure cavity compressor from liquefying in the high-pressure cavity and avoid dilution of solid refrigerant.
  • step S2036 the intermediate pressure of the air-conditioning unit is determined according to the supercooling degree of the internal unit, the suction pressure of the compressor, and the superheating degree of the exhaust gas.
  • the preset value of the subcooling degree of the internal unit may be set according to the actual operating condition of the air conditioning unit, and may be set to add an offset value based on the target value of the subcooling degree of the internal unit.
  • the preset value of the subcooling degree of the internal unit the target value of the subcooling degree of the internal unit -5.
  • the system operation mode in which the air-conditioning unit is currently operating is in a heating operation mode, if the internal unit subcooling degree is greater than the internal unit subcooling degree preset value, and at the same time the compressor suction pressure is greater than If the compressor suction pressure preset value and the exhaust superheat degree are smaller than the exhaust superheat degree preset value, it is determined that the intermediate pressure of the air conditioning unit is too small.
  • Step S204 Adjust the opening degree of the electronic expansion valve of the air conditioning unit according to the intermediate pressure of the air conditioning unit, and control the intermediate pressure of the air conditioning unit.
  • the opening degree of the internal electronic expansion valve is smaller than a preset value of the opening degree of the internal electronic expansion valve
  • the internal machine superheat degree is less than the internal machine superheat degree preset value
  • the compressor suction pressure is less than the compressor suction pressure preset value
  • the exhaust superheat degree is greater than the exhaust The superheat degree is preset.
  • the opening degree of the external unit EEV is adjusted to increase the opening degree of the external unit EEV, thereby increasing the intermediate pressure of the air conditioning unit and promoting the refrigerant circulation at the internal unit of the air conditioner.
  • Amount of change in the opening degree of the external unit EEV A * (exhaust superheat degree-preset value of exhaust superheat degree)
  • A represents the coefficient of the air conditioner external unit, as shown in Table 1. This coefficient will select different values according to the difference range of the compressor suction pressure and the preset value of the compressor suction pressure.
  • the opening degree of the internal electronic expansion valve is greater than the opening degree of the internal electronic expansion valve
  • the set value or the superheat degree of the internal machine is greater than the preset value of the superheat degree of the internal machine, and at the same time, the compressor suction pressure is greater than the compressor suction pressure preset value, and the exhaust superheat degree is smaller than the preset value.
  • the exhaust superheat degree is preset.
  • the opening degree of the external unit EEV is adjusted to make the opening degree of the external unit EEV smaller, thereby reducing the intermediate pressure of the air conditioning unit and controlling the circulation amount of the refrigerant within a reasonable range.
  • Amount of change in the opening degree of the external unit EEV A * (exhaust superheat degree-preset value of exhaust superheat degree)
  • A represents the coefficient of the air conditioner external unit, as shown in Table 1. This coefficient will select different values according to the difference range of the compressor suction pressure and the preset value of the compressor suction pressure.
  • the internal unit subcooling degree is less than the internal unit subcooling degree preset value
  • the compressor suction pressure is less than the compressor suction pressure preset value
  • the exhaust superheat degree is greater than the exhaust superheat degree preset value.
  • the internal machine EEV opening degree is adjusted to make the internal The EEV opening degree of the air conditioner becomes smaller, thereby reducing the intermediate pressure of the air conditioning unit, and promoting the refrigerant circulation in the air conditioner.
  • the adjustment formula of the opening degree of the internal unit EEV is as follows:
  • Amount of change in the opening degree of the internal unit EEV A * (exhaust superheat degree-exhaust superheat preset value)
  • A represents the coefficient of the internal unit of the air conditioner, as shown in Table 1. This coefficient will select different values according to the difference range of the compressor suction pressure and the preset value of the compressor suction pressure.
  • the internal unit subcooling degree is greater than the internal unit subcooling degree preset value
  • the compressor suction pressure is greater than the compressor suction pressure preset value
  • the exhaust superheat degree is less than the exhaust superheat degree preset value.
  • the internal machine EEV opening degree is adjusted to make the internal The EEV opening of the unit becomes larger, thereby increasing the intermediate pressure of the air-conditioning unit and controlling the circulation amount of the refrigerant within a reasonable range.
  • a pressure control system for an air conditioning unit is provided.
  • the system shown includes an operating mode determination module 401, a system parameter acquisition module 402, an intermediate pressure determination module 403, and an intermediate pressure control module 404.
  • the operating mode determining module 401 is configured to determine a system operating mode in which the air-conditioning unit is currently operating, and the system operating mode includes a cooling operating mode and a heating operating mode.
  • the system parameter obtaining module 402 is configured to obtain a plurality of system parameters of the air conditioning unit according to a system operating mode in which the air conditioning unit is currently running.
  • the intermediate pressure determining module 403 is configured to determine the intermediate pressure of the air conditioning unit according to the multiple system parameters.
  • the intermediate pressure control module 404 is configured to adjust the opening degree of the electronic expansion valve of the air conditioning unit according to the intermediate pressure of the air conditioning unit to control the intermediate pressure of the air conditioning unit.
  • the system parameter acquisition module 402 is specifically configured to obtain the internal machine outlet temperature, internal machine inlet temperature, compressor exhaust temperature, and compressor of the air conditioning unit when the air conditioning unit is in a cooling operation mode. Suction pressure and compressor discharge pressure. Alternatively, the compressor exhaust temperature of the air-conditioning unit, the opening degree of the internal electronic expansion valve, the compressor suction pressure, and the compressor exhaust pressure are obtained. When the air-conditioning unit is in a heating operation mode, the temperature of the internal pipe outlet of the air-conditioning unit, the compressor exhaust temperature, the compressor suction pressure, and the compressor exhaust pressure are obtained.
  • the intermediate pressure determination module 403 is specifically configured to obtain the internal unit overheating of the air-conditioning unit according to the internal unit outlet pipe temperature and the internal unit inlet pipe temperature when the air-conditioning unit is in a cooling operation mode.
  • An exhaust superheat degree of the air conditioning unit is obtained according to the compressor exhaust temperature and the compressor exhaust pressure.
  • the intermediate pressure of the air conditioning unit is determined according to the opening degree of the internal electronic expansion valve, the compressor suction pressure, and the exhaust superheat degree.
  • the intermediate pressure of the air-conditioning unit is determined according to the superheat degree of the internal unit, the suction pressure of the compressor, and the superheat degree of the exhaust gas.
  • the intermediate pressure determining module 403 is specifically configured to obtain the internal pressure of the air-conditioning unit according to the compressor exhaust pressure and the temperature of the outlet pipe of the internal machine when the air-conditioning unit is in a heating operation mode.
  • the machine is too cold.
  • An exhaust superheat degree of the air conditioning unit is obtained according to the compressor exhaust temperature and the compressor exhaust pressure.
  • the intermediate pressure of the air-conditioning unit is determined according to the supercooling degree of the internal unit, the suction pressure of the compressor, and the superheating degree of the exhaust gas.
  • the intermediate pressure determination module 403 is specifically configured to: when the air-conditioning unit is in a cooling operation mode, the air pressure of the internal electronic expansion valve, the compressor suction pressure, and the exhaust gas The degree of superheat determines the intermediate pressure of the air-conditioning unit.
  • determining the intermediate pressure of the air-conditioning unit according to the superheat degree of the internal unit, the suction pressure of the compressor, and the superheat degree of the exhaust gas includes: if the opening degree of the internal electronic expansion valve is smaller than the internal unit The preset value of the opening degree of the electronic expansion valve or the superheat degree of the internal machine is smaller than the preset value of the superheat degree of the internal machine, and at the same time, the compressor suction pressure is less than the compressor suction pressure preset value and the compressor suction pressure If the exhaust superheat degree is greater than the preset exhaust superheat degree, it is determined that the intermediate pressure of the air conditioning unit is too small.
  • the opening degree of the electronic expansion valve of the internal machine is greater than a preset value of the opening degree of the electronic expansion valve of the internal machine or the internal heating degree is greater than a predetermined value of the internal machine superheating degree, and at the same time the compressor suction pressure If it is greater than the preset value of the compressor suction pressure and the exhaust superheat degree is less than the preset value of the exhaust superheat degree, it is determined that the intermediate pressure of the air conditioning unit is too large.
  • the intermediate pressure determining module 403 is specifically configured to, when the air-conditioning unit is in a heating operation mode, the Heat, determining the intermediate pressure of the air-conditioning unit, further comprising: if the supercooling degree of the internal unit is less than a preset value of the supercooling degree of the internal unit, and at the same time, the compressor suction pressure is less than the compressor suction If the preset pressure value and the exhaust superheat degree are greater than the exhaust superheat degree preset value, it is determined that the intermediate pressure of the air conditioning unit is too large.
  • the internal machine subcooling degree is greater than the internal machine subcooling degree preset value, and at the same time the compressor suction pressure is greater than the compressor suction pressure preset value and the exhaust superheat degree is less than the The preset value of the exhaust superheat degree determines that the intermediate pressure of the air conditioning unit is too small.
  • the intermediate pressure control module 404 is specifically configured to adjust the opening degree of the external electronic expansion valve when the intermediate pressure of the air conditioning unit is too small when the system operating mode in which the air conditioning unit is currently operating is in a cooling operation mode. To increase the opening degree of the external electronic expansion valve and increase the intermediate pressure. When the intermediate pressure of the air-conditioning unit is too large, the opening degree of the external electronic expansion valve is adjusted so that the opening degree of the external electronic expansion valve becomes smaller, and the intermediate pressure is reduced.
  • the intermediate pressure control module 404 is specifically configured to adjust the internal electronic expansion valve when the intermediate pressure of the air conditioning unit is too high when the system operating mode in which the air conditioning unit is currently operating is in a heating operation mode.
  • the opening degree makes the opening degree of the internal electronic expansion valve smaller, and reduces the intermediate pressure.
  • the opening degree of the internal electronic expansion valve is adjusted to increase the opening degree of the internal electronic expansion valve and increase the intermediate pressure.
  • Each module in the pressure control system of the above air-conditioning unit may be realized in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the hardware form or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor calls and performs the operations corresponding to the above modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调机组的压力控制方法和系统,所述压力控制方法包括:判断所述空调机组当前运行的系统运行模式,所述系统运行模式包括制冷运行模式以及制热运行模式;根据所述空调机组当前运行的系统运行模式,获取所述空调机组的多个系统参数;根据所述多个系统参数判定所述空调机组的中间压力;根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,控制所述空调机组的中间压力。上述压力控制方法和系统能够确保所述空调机组的内外机进行超常规高落差连接时有足够的动力促进冷媒循环。

Description

空调机组的压力控制方法、系统、计算机设备和存储介质
相关申请
本申请要求2018年07月17日申请的,申请号为201810783906.3,名称为“空调机组的压力控制方法、系统、计算机设备和存储介质”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空调技术领域,特别是涉及空调机组的压力控制方法、系统、计算机设备和存储介质。
背景技术
近年来,多联式空调机组以其自由的组合布置、优良的负荷效率、安装灵活便捷等优点,越来越受到用户的欢迎,其市场容量也持续上升。但是,多联式空调机组在工程安装过程中,经常会面临内外机分别安装在不同楼层的情况,当多联式空调机组的内、外机所安装的楼层跨度过大时,会影响空调机组的性能。
发明内容
基于此,本申请公开一种通过调节空调机组的内部参数,从而实现其压力控制的方法和系统,从而确保空调机组的内外机进行超常规高落差连接时有足够的动力促进冷媒循环。
一种空调机组的压力控制方法,所述方法包括:
判断所述空调机组当前运行的系统运行模式,所述系统运行模式包括制冷运行模式以及制热运行模式;
根据所述空调机组当前运行的系统运行模式,获取所述空调机组的多个系统参数;
根据所述多个系统参数判定所述空调机组的中间压力;
根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,控制所述空调机组的中间压力。
一种空调机组的压力控制系统,其中,所述系统包括:
运行模式判断模块:设置为判断所述空调机组当前运行的系统运行模式,所述系统运 行模式包括制冷运行模式以及制热运行模式;
系统参数获取模块:设置为根据所述空调机组当前运行的系统运行模式,获取所述空调机组的多个系统参数;
中间压力判定模块:设置为根据所述多个系统参数判定所述空调机组的中间压力;
中间压力控制模块:设置为根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,控制所述空调机组的中间压力。
上述空调机组的压力控制方法和系统,针对空调机组的不同运行模式,通过判定所述空调机组的中间压力;进一步,根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,从而控制所述空调机组的中间压力。所述空调机组的压力控制方法和系统,能够确保所述空调机组的内外机进行超常规高落差连接时有足够的动力促进冷媒循环。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为一些实施例中空调机组的压力控制方法的流程示意图;
图2为一些实施例中制冷运行模式下的中间压力判定流程图;
图3为一些实施例中制热运行模式下的中间压力判定流程图;
图4为一些实施例中空调机组的压力控制方法的判定流程图;
图5为一些实施例中空调机组的压力控制系统的结构框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图对本申请进行说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请的一个实施例中,如图1所示,提供了一种空调机组的压力控制方法,以该方法为例进行说明,包括以下步骤:
步骤S201,判断所述空调机组当前运行的系统运行模式,所述系统运行模式包括制冷运行模式以及制热运行模式。
其中,由于空调机组在不同模式运行时,冷媒的循环方向及方式不同。因此,需要根据获取的不同的系统运行模式,以便于后续对所述空调机组采用不同的控制方式。判断所 述空调机组当前运行的系统运行模式包括:判断所述空调机组的系统运行模式处于制冷运行模式还是制热运行模式。
步骤S202,根据所述空调机组当前运行的系统运行模式,获取所述空调机组的多个系统参数。
由于对不同的系统模式控制方式不同,因此所用到的系统参数也不相同。
其中一个实施例中,当所述空调机组当前运行的系统运行模式处于制冷运行模式时,获取所述空调机组的系统参数包括获取内机电子膨胀阀开度、压缩机吸气压力、压缩机排气压力,以及获取压缩机排气温度或者同时获取内机出管温度和内机入管温度。
其中,内机出管温度,表示空调内机的出风口温度。内机入管温度,表示空调内机的进风口温度。压缩机排气温度,表示空调的压缩机排出冷媒的温度。内外机电子膨胀阀开度(Electric Expansion Value,EEV),所述内外机EEV开度对压缩机排气压力、气体冷却器出口压力和压缩机排气温度有很大影响。压缩机吸气压力,表示压缩机进风口处排气管内冷媒的压力。压缩机排气压力,表示压缩机出风口处排气管内冷媒的压力。
其中一个实施例中,当所述空调机组当前运行的系统运行模式处于制热运行模式时,获取所述空调机组的内机出管温度、压缩机排气温度、压缩机吸气压力和压缩机排气压力。
步骤S203,根据所述多个系统参数判定所述空调机组的中间压力。
其中,中间压力指的是,从外机EEV到内机EEV之间管路中的冷媒的压力。
进一步,由于不同的系统参数取值的不同,与冷媒流动状体存在对应关系。因此,可以根据系统参数,对冷媒流动状态进行判断。其中一个实施例中,当所述空调机组处于制冷运行模式时,如图2所述,对步骤S203进行详细说明,包括以下步骤:
步骤S2031,根据所述内机出管温度以及所述内机入管温度,得到所述空调机组的内机过热度。
其中,内机过热度=内机出管温度-内机入管温度,内机过热度确保了没有液态冷媒回到压缩机,避免压缩机遭到液击。
步骤S2033,根据所述压缩机排气温度以及所述压缩机排气压力,得到所述空调机组的排气过热度。
其中,排气过热度=压缩机排气温度-压缩机排气压力,排气过热度能够防止高压腔压缩机排出的气体在高压腔内液化,避免固态冷媒被稀释。
步骤S2035,根据所述内机电子膨胀阀开度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力。或者,根据所述内机过热度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力。
其中一个实施例中,如图4所示,当所述空调机组的系统运行模式处于制冷运行模式时,如果所述内机电子膨胀阀开度小于所述内机电子膨胀阀开度预设值或所述内机过热度小于所述内机过热度预设值,并且同时所述压缩机吸气压力小于所述压缩机吸气压力预设值以及所述排气过热度大于所述排气过热度预设值,则判定所述空调机组的中间压力过小。
其中,所述内机电子膨胀阀开度预设值可以根据所述空调机组的实际运行情况进行设定,可以设定为在所述内机电子膨胀阀开度的目标值的基础上增加一个偏移值。例如:内机电子膨胀阀开度预设值=内机电子膨胀阀开度的目标值-1。同样地,内机过热度预设值可以设定为:内机过热度预设值=内机过热度的目标值-1。压缩机吸气压力预设值可以设定为:压缩机吸气压力预设值=压缩机吸气压力的目标值-3。排气过热度预设值可以设定为:排气过热度预设值=排气过热度的目标值+15。
其中,当同时满足上述三个条件时,则判定所述空调机组的中间压力过小,循环动力不足以推动空调内机的冷媒流动到空调外机。
进一步,当所述空调机组当前运行的系统运行模式处于制冷运行模式时,如果所述内机电子膨胀阀开度大于所述内机电子膨胀阀开度预设值或所述内机过热度大于所述内机过热度预设值,并且同时所述压缩机吸气压力大于所述压缩机吸气压力预设值以及所述排气过热度小于所述排气过热度预设值,则判定所述空调机组的中间压力过大。
其中,当同时满足上述三个条件时,则判定所述空调机组的中间压力过大,循环动力使得空调外机的冷媒量过多。
其中一个实施例中,当所述空调机组处于制热运行模式时,如图3所述,对步骤S203进行详细说明,包括以下步骤:
步骤S2032,根据所述压缩机排气压力以及所述内机出管温度,得到所述空调机组的内机过冷度。
其中,内机过冷度=压缩机排气压力-内机出管温度,内机过冷度是表示空调内机冷媒流量的参数。
步骤S2034,根据所述压缩机排气温度以及所述压缩机排气压力,得到所述空调机组的排气过热度。
排气过热度=压缩机排气温度-压缩机排气压力,排气过热度能够防止高压腔压缩机排出的气体在高压腔内液化,避免固态冷媒被稀释。
步骤S2036,根据所述内机过冷度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力。
其中一个实施例中,如图4所示,当所述空调机组当前运行的系统运行模式处于制热运行模式时,如果所述内机过冷度小于所述内机过冷度预设值,并且同时所述压缩机吸气压力小于所述压缩机吸气压力预设值,所述排气过热度大于所述排气过热度预设值,则判定所述空调机组的中间压力过大。
其中,所述内机过冷度预设值可以根据所述空调机组的实际运行情况进行设定,可以设定为在所述内机过冷度的目标值的基础上增加一个偏移值。例如:内机过冷度预设值=内机过冷度的目标值-5。同样地,压缩机吸气压力预设值可以设定为:压缩机吸气压力预设值=压缩机吸气压力的目标值+5。排气过热度预设值可以设定为:排气过热度预设值=排气过热度的目标值+10。
其中,当同时满足上述三个条件时,则判定所述空调机组的中间压力过大,循环动力不足以推动空调内机的冷媒流动到空调外机。
进一步,当所述空调机组当前运行的系统运行模式处于制热运行模式时,如果所述内机过冷度大于所述内机过冷度预设值,并且同时所述压缩机吸气压力大于所述压缩机吸气压力预设值以及所述排气过热度小于所述排气过热度预设值,则判定所述空调机组的中间压力过小。
其中,当同时满足上述三个条件时,则判定所述空调机组的中间压力过小,内机的冷媒量回流较快。
步骤S204,根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,控制所述空调机组的中间压力。
其中一个实施例中,如图4所示,当所述空调机组的系统运行模式处于制冷运行模式时,且所述内机电子膨胀阀开度小于所述内机电子膨胀阀开度预设值或所述内机过热度小于所述内机过热度预设值,并且同时所述压缩机吸气压力小于所述压缩机吸气压力预设值,所述排气过热度大于所述排气过热度预设值,此时,调节外机EEV开度,使外机EEV开度变大,从而提高所述空调机组的中间压力,促进空调内机处的冷媒循环。
其中,外机EEV开度的调节公式如下:
外机EEV开度的变化量=A*(排气过热度-排气过热度预设值)
其中,A表示空调外机的系数,如表1所示,该系数会根据压缩机吸气压力与压缩机吸气压力预设值的差值范围,从而选取不同的值。
表1
|压缩机吸气压力-压缩机吸气压力预设值| 空调外机的系数A
[0,3] 0
(3,8] 5
>8 10
其中一个实施例中,如图4所示,当所述空调机组当前运行的系统运行模式处于制冷运行模式时,如果所述内机电子膨胀阀开度大于所述内机电子膨胀阀开度预设值或所述内机过热度大于所述内机过热度预设值,并且同时所述压缩机吸气压力大于所述压缩机吸气压力预设值,所述排气过热度小于所述排气过热度预设值,此时,调节外机EEV开度,使外机EEV开度变小,从而降低所述空调机组的中间压力,控制冷媒的循环量在合理范围之内。
其中,外机EEV开度的调节公式如下:
外机EEV开度的变化量=A*(排气过热度-排气过热度预设值)
其中,A表示空调外机的系数,如表1所示,该系数会根据压缩机吸气压力与压缩机吸气压力预设值的差值范围,从而选取不同的值。
其中一个实施例中,如图4所示,当所述空调机组当前运行的系统运行模式处于制热运行模式时,如果所述内机过冷度小于所述内机过冷度预设值,并且同时所述压缩机吸气压力小于所述压缩机吸气压力预设值,所述排气过热度大于所述排气过热度预设值,此时,调节内机EEV开度,使内机EEV开度变小,从而降低所述空调机组的中间压力,促进空调内机处的冷媒循环。
其中,内机EEV开度的调节公式如下:
内机EEV开度的变化量=A*(排气过热度-排气过热度预设值)
其中,A表示空调内机的系数,如表1所示,该系数会根据压缩机吸气压力与压缩机吸气压力预设值的差值范围,从而选取不同的值。
其中一个实施例中,如图4所示,当所述空调机组当前运行的系统运行模式处于制热运行模式时,如果所述内机过冷度大于所述内机过冷度预设值,并且同时所述压缩机吸气压力大于所述压缩机吸气压力预设值,所述排气过热度小于所述排气过热度预设值,此时,调节内机EEV开度,使内机EEV开度变大,从而提高所述空调机组的中间压力,控制冷媒的循环量在合理范围之内。
在一个实施例中,如图5示,提供了一种空调机组的压力控制系统。所示系统包括运 行模式判断模块401、系统参数获取模块402、中间压力判定模块403和中间压力控制模块404。以该系统为例进行说明,包括:
运行模式判断模块401:设置为判断所述空调机组当前运行的系统运行模式,所述系统运行模式包括制冷运行模式以及制热运行模式。
系统参数获取模块402:设置为根据所述空调机组当前运行的系统运行模式,获取所述空调机组的多个系统参数。
中间压力判定模块403:设置为根据所述多个系统参数判定所述空调机组的中间压力。
中间压力控制模块404:设置为根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,控制所述空调机组的中间压力。
其中一个实施例中,系统参数获取模块402具体设置为当所述空调机组处于制冷运行模式时,获取所述空调机组的内机出管温度、内机入管温度、压缩机排气温度、压缩机吸气压力和压缩机排气压力。或者,获取所述空调机组的压缩机排气温度、内机电子膨胀阀开度、压缩机吸气压力和压缩机排气压力。当所述空调机组处于制热运行模式时,获取所述空调机组的内机出管温度、压缩机排气温度、压缩机吸气压力和压缩机排气压力。
其中一个实施例中,中间压力判定模块403具体设置为当所述空调机组处于制冷运行模式时,根据所述内机出管温度以及内机入管温度,得到所述空调机组的内机过热度。根据所述压缩机排气温度以及所述压缩机排气压力,得到所述空调机组的排气过热度。根据所述内机电子膨胀阀开度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力。或者,根据所述内机过热度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力。
其中一个实施例中,中间压力判定模块403具体设置为当所述空调机组处于制热运行模式时,根据所述压缩机排气压力以及所述内机出管温度,得到所述空调机组的内机过冷度。根据所述压缩机排气温度以及所述压缩机排气压力,得到所述空调机组的排气过热度。根据所述内机过冷度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力。
其中一个实施例中,中间压力判定模块403具体设置为当所述空调机组处于制冷运行模式时,所述根据所述内机电子膨胀阀开度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力。或者,根据所述内机过热度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力,包括:如果所述内机电子膨胀阀开度小于所述内机电子膨胀阀开度预设值或所述内机过热度小于所述内机过热度预设值,并且同时所述压缩机吸气压力小于所述压缩机吸气压力预设值以及所述排气过热度大于所述排气 过热度预设值,则判定所述空调机组的中间压力过小。如果所述内机电子膨胀阀开度大于所述内机电子膨胀阀开度预设值或所述内机过热度大于所述内机过热度预设值,并且同时所述压缩机吸气压力大于所述压缩机吸气压力预设值以及所述排气过热度小于所述排气过热度预设值,则判定所述空调机组的中间压力过大。
其中一个实施例中,中间压力判定模块403具体设置为当所述空调机组处于制热运行模式时,所述根据所述内机过冷度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力,还包括:如果所述内机过冷度小于所述内机过冷度预设值,并且同时所述压缩机吸气压力小于所述压缩机吸气压力预设值以及所述排气过热度大于所述排气过热度预设值,则判定所述空调机组的中间压力过大。如果所述内机过冷度大于所述内机过冷度预设值,并且同时所述压缩机吸气压力大于所述压缩机吸气压力预设值以及所述排气过热度小于所述排气过热度预设值,则判定所述空调机组的中间压力过小。
其中一个实施例中,中间压力控制模块404具体设置为当所述空调机组当前运行的系统运行模式处于制冷运行模式时,当所述空调机组的中间压力过小时,调节外机电子膨胀阀开度,使所述外机电子膨胀阀开度变大,提高所述中间压力。当所述空调机组的中间压力过大时,调节外机电子膨胀阀开度,使所述外机电子膨胀阀开度变小,降低所述中间压力。
其中一个实施例中,中间压力控制模块404具体设置为当所述空调机组当前运行的系统运行模式处于制热运行模式时,当所述空调机组的中间压力过大时,调节内机电子膨胀阀开度,使所述内机电子膨胀阀开度变小,降低所述中间压力。当所述空调机组的中间压力过小时,调节内机电子膨胀阀开度,使所述内机电子膨胀阀开度变大,提高所述中间压力。
关于空调机组的压力控制系统的具体限定可以参见上文中对于空调机组的压力控制方法的限定,在此不再赘述。上述空调机组的压力控制系统中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说, 在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都处于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种空调机组的压力控制方法,其特征在于,所述方法包括:
    判断所述空调机组当前运行的系统运行模式,所述系统运行模式包括制冷运行模式以及制热运行模式;
    根据所述空调机组当前运行的系统运行模式,获取所述空调机组的多个系统参数;
    根据所述多个系统参数判定所述空调机组的中间压力;
    根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,控制所述空调机组的中间压力。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述空调机组当前运行的系统运行模式,获取所述空调机组的多个系统参数,包括:
    当所述空调机组当前运行的系统运行模式处于制冷运行模式时,获取所述空调机组的内机出管温度、内机入管温度、压缩机排气温度、压缩机吸气压力和压缩机排气压力;
    或者,获取所述空调机组的压缩机排气温度、内机电子膨胀阀开度、压缩机吸气压力和压缩机排气压力。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述多个系统参数判定所述空调机组的中间压力,包括:
    根据所述内机出管温度以及所述内机入管温度,得到所述空调机组的内机过热度;
    根据所述压缩机排气温度以及所述压缩机排气压力,得到所述空调机组的排气过热度;
    根据所述内机电子膨胀阀开度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力;或者,根据所述内机过热度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述内机电子膨胀阀开度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力;或者,根据所述内机过热度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力,包括:
    如果所述内机电子膨胀阀开度小于所述内机电子膨胀阀开度预设值或所述内机过热度小于所述内机过热度预设值,并且同时所述压缩机吸气压力小于所述压缩机吸气压力预设值以及所述排气过热度大于所述排气过热度预设值,则判定所述空调机组的中间压力过小;
    如果所述内机电子膨胀阀开度大于所述内机电子膨胀阀开度预设值或所述内机过热度大于所述内机过热度预设值,并且同时所述压缩机吸气压力大于所述压缩机吸气压力预设值以及所述排气过热度小于所述排气过热度预设值,则判定所述空调机组的中间压力过大。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,控制所述空调机组的中间压力,包括:
    当所述空调机组的中间压力过小时,调节外机电子膨胀阀开度,使所述外机电子膨胀阀开度变大,提高所述空调机组的中间压力;
    当所述空调机组的中间压力过大时,调节外机电子膨胀阀开度,使所述外机电子膨胀阀开度变小,降低所述空调机组的中间压力。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述空调机组当前运行的系统运行模式,获取所述空调机组的多个系统参数,还包括:
    当所述空调机组当前运行的系统运行模式处于制热运行模式时,获取所述空调机组的内机出管温度、压缩机排气温度、压缩机吸气压力和压缩机排气压力。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述多个系统参数判定所述空调机组的中间压力,还包括:
    根据所述压缩机排气压力以及所述内机出管温度,得到所述空调机组的内机过冷度;
    根据所述压缩机排气温度以及所述压缩机排气压力,得到所述空调机组的排气过热度;
    根据所述内机过冷度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力。
  8. 根据权利要求6所述的方法,其特征在于,所述根据所述内机过冷度、所述压缩机吸气压力以及所述排气过热度,判定所述空调机组的中间压力,还包括:
    如果所述内机过冷度小于所述内机过冷度预设值,并且同时所述压缩机吸气压力小于所述压缩机吸气压力预设值以及所述排气过热度大于所述排气过热度预设值,则判定所述空调机组的中间压力过大;
    如果所述内机过冷度大于所述内机过冷度预设值,并且同时所述压缩机吸气压力大于所述压缩机吸气压力预设值以及所述排气过热度小于所述排气过热度预设值,则判定所述空调机组的中间压力过小。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,从而控制所述空调机组的中间压力,还包括:
    当所述空调机组的中间压力过大时,调节内机电子膨胀阀开度,使所述内机电子膨胀阀开度变小,降低所述中间压力;
    当所述空调机组的中间压力过小时,调节内机电子膨胀阀开度,使所述内机电子膨胀阀开度变大,提高所述中间压力。
  10. 一种空调机组的压力控制系统,其特征在于,所述系统包括:
    运行模式判断模块:设置为判断所述空调机组当前运行的系统运行模式,所述系统运行模式包括制冷运行模式以及制热运行模式;
    系统参数获取模块:设置为根据所述空调机组当前运行的系统运行模式,获取所述空调机组的多个系统参数;
    中间压力判定模块:设置为根据所述多个系统参数判定所述空调机组的中间压力;
    中间压力控制模块:设置为根据所述空调机组的中间压力,调节所述空调机组的电子膨胀阀开度,控制所述空调机组的中间压力。
PCT/CN2018/120759 2018-07-17 2018-12-13 空调机组的压力控制方法、系统、计算机设备和存储介质 WO2020015285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810783906.3 2018-07-17
CN201810783906.3A CN108870689B (zh) 2018-07-17 2018-07-17 空调机组的压力控制方法及系统

Publications (1)

Publication Number Publication Date
WO2020015285A1 true WO2020015285A1 (zh) 2020-01-23

Family

ID=64302764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120759 WO2020015285A1 (zh) 2018-07-17 2018-12-13 空调机组的压力控制方法、系统、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN108870689B (zh)
WO (1) WO2020015285A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870689B (zh) * 2018-07-17 2020-01-07 珠海格力电器股份有限公司 空调机组的压力控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987903A (en) * 1998-11-05 1999-11-23 Daimlerchrysler Corporation Method and device to detect the charge level in air conditioning systems
CN102635926A (zh) * 2012-04-26 2012-08-15 青岛海尔空调电子有限公司 空调系统和用于空调系统的压力调整方法
JP2014126323A (ja) * 2012-12-27 2014-07-07 Daikin Ind Ltd 冷凍装置
CN104833041A (zh) * 2014-02-12 2015-08-12 海尔集团公司 一种多联空调管路平衡方法及多联空调
JP2016125724A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 蓄熱式空気調和機
CN106871343A (zh) * 2017-02-04 2017-06-20 青岛海尔空调器有限总公司 一种空调的控制方法、装置及空调
CN108870689A (zh) * 2018-07-17 2018-11-23 珠海格力电器股份有限公司 空调机组的压力控制方法、系统、计算机设备和存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703070B2 (ja) * 1989-09-27 1998-01-26 株式会社日立製作所 マルチ冷凍サイクル
JP5055965B2 (ja) * 2006-11-13 2012-10-24 ダイキン工業株式会社 空気調和装置
WO2013111177A1 (ja) * 2012-01-24 2013-08-01 三菱電機株式会社 空気調和装置
JP2014190554A (ja) * 2013-03-26 2014-10-06 Fujitsu General Ltd 空気調和機
JP5535359B2 (ja) * 2013-03-27 2014-07-02 三菱電機株式会社 空気調和機
WO2015140870A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
CN104566839B (zh) * 2015-02-02 2017-08-01 珠海格力电器股份有限公司 空调系统喷气增焓的控制方法
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987903A (en) * 1998-11-05 1999-11-23 Daimlerchrysler Corporation Method and device to detect the charge level in air conditioning systems
CN102635926A (zh) * 2012-04-26 2012-08-15 青岛海尔空调电子有限公司 空调系统和用于空调系统的压力调整方法
JP2014126323A (ja) * 2012-12-27 2014-07-07 Daikin Ind Ltd 冷凍装置
CN104833041A (zh) * 2014-02-12 2015-08-12 海尔集团公司 一种多联空调管路平衡方法及多联空调
JP2016125724A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 蓄熱式空気調和機
CN106871343A (zh) * 2017-02-04 2017-06-20 青岛海尔空调器有限总公司 一种空调的控制方法、装置及空调
CN108870689A (zh) * 2018-07-17 2018-11-23 珠海格力电器股份有限公司 空调机组的压力控制方法、系统、计算机设备和存储介质

Also Published As

Publication number Publication date
CN108870689A (zh) 2018-11-23
CN108870689B (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
CN104457072B (zh) 电子膨胀阀控制方法、装置及制冷/制热系统
CN110715466A (zh) 一种多联式空调系统及其控制方法
CN105371545A (zh) 空调器及其制冷系统的制冷剂循环量调节方法
WO2017005036A1 (zh) 多联机系统的冷媒分流控制方法和装置
WO2021063088A1 (zh) 变频器的冷却系统、方法及空调设备
EP3467390B1 (en) Multi-split system and method for controlling heating throttling element thereof
CN108870633B (zh) 空调系统的控制方法和装置
CN109631236A (zh) 多联式空调器及其除霜方法
CN107238180B (zh) 风冷冷水机组的风量控制方法及系统
CN104006445A (zh) 多联式空调器及其控制方法
CN107178944B (zh) 一种防止空调器排气过热度过小的方法及空调器控制系统
JP2014190554A (ja) 空気調和機
JP7150148B2 (ja) 室外ユニット、冷凍サイクル装置および冷凍機
CN111928419A (zh) 多联机空调机组的控制方法及系统
EP3199889A1 (en) Air conditioner
JP6422590B2 (ja) 熱源システム
WO2020015285A1 (zh) 空调机组的压力控制方法、系统、计算机设备和存储介质
JP5927670B2 (ja) 空気調和装置
WO2024120251A1 (zh) 充电系统的冷却系统及其控制方法
JP2008190757A (ja) 冷凍装置
CN107477926B (zh) 空调系统、空调系统的控制装置和方法
JP2017150689A (ja) 空気調和装置
CN113007861B (zh) 吸气侧压力确定方法、模块、控制方法、装置和系统
CN111780370B (zh) 一种空调器及电子膨胀阀的控制方法
CN111156615B (zh) 基于双级压缩机系统的控制器散热系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926750

Country of ref document: EP

Kind code of ref document: A1