WO2020015101A1 - 宽角度应用高反射镜 - Google Patents
宽角度应用高反射镜 Download PDFInfo
- Publication number
- WO2020015101A1 WO2020015101A1 PCT/CN2018/105140 CN2018105140W WO2020015101A1 WO 2020015101 A1 WO2020015101 A1 WO 2020015101A1 CN 2018105140 W CN2018105140 W CN 2018105140W WO 2020015101 A1 WO2020015101 A1 WO 2020015101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- wide
- film layer
- reflection
- angle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/085—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
- G02B5/0858—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/085—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
- G02B5/0875—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising two or more metallic layers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0883—Mirrors with a refractive index gradient
Definitions
- the present invention relates to the field of optical lenses, and in particular, to high-angle mirrors for wide-angle applications.
- Reflector is one of the most widely used devices in the fields of optical communication, imaging, instrumentation and sensing. Such mirrors often use vacuum coating technology to plate one or more layers of material on a specific substrate to increase the reflected light.
- the metal mirror layer needs to be implemented.
- the metal film is a "soft film" in the coating process, and its disadvantages are that it is not abrasion-resistant, has poor environmental reliability and short service life.
- a single-layer or multi-layer hard dielectric film is added as a reinforced protective film (such as a hard dielectric oxide film such as Nb 2 O 5 , Ta 2 O 5 , Al 2 O 3 , SiO 2 ) to improve reliability, it is far from the conventional There is still a big gap in all-dielectric films.
- the present invention discloses some technical improvements, which improves the application angle range of conventional mirrors, while ensuring its good reliability and service life.
- the purpose of the present invention is to provide a wide-angle application high-reflection mirror, which can increase the application angle range of conventional mirrors, while ensuring its good reliability and service life.
- the present invention adopts the following technical solutions:
- the mirrors include a plurality of high-refractive-index film layers and a plurality of low-refractive-index film layers that are alternately stacked.
- the material of the rate film layer is one or a mixture of two or more of SiH, SiOxHy, and SiOxNy.
- the refractive index of each high refractive index film layer in the 800-4000nm band is greater than 3, and the reflection band is at an incident angle of 0. In the range of incident angles up to 60 degrees, the reflectivity is greater than 99%.
- the refractive index of the high-refractive index layer is greater than 3.5 in a wavelength band of 800 to 1100 nm.
- the material of the low refractive index film layer is one or a mixture of two or more of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , and SixNy.
- the film system further includes a metal film layer, which is located at the innermost side of the film system.
- the metal film layer is one of Cr, Ta, Ti, Nb, Ni, Au, Ag, Cu, and Al. Or a mixture of two or more.
- the substrate material is one or a mixture of two or more of silicon material, glass based on silicon dioxide material, plastic, sapphire, silicon carbide, and tempered glass.
- the invention adopts the above technical solution has the following beneficial effects: it realizes a reflection band partially overlapping in the wavelength range of 800 to 4000 nm, and the reflection band is greater than 99% in the incident angle range of 0 to 60 degrees.
- the reflection band has a reflectance greater than 99% in the range of the incident angle from 0 to 80 degrees.
- FIG. 1 is a schematic structural diagram of the present invention
- FIG. 2 is a relationship diagram between a reflectance and a wavelength in Embodiment 1 of the present invention
- FIG. 3 is a relationship diagram between an average reflectance of a reflection band and an incident angle in Embodiment 1 of the present invention
- FIG. 5 is a relationship diagram between the average reflectance of the reflection band and the incident angle in Comparative Example 1 of the present invention.
- FIG. 6 is a relationship diagram between reflectance and wavelength of Comparative Example 2 of the present invention.
- FIG. 7 is a relationship diagram between the average reflectance of the reflection band and the incident angle in Comparative Example 2 of the present invention.
- a wide-angle application high-reflection mirror has a reflection band partially overlapping in a wavelength range of 800-4000 nm.
- the mirror includes a plurality of high-refractive index film layers 1 and a plurality of low-refractive index film layers 2 alternately stacked.
- the material of the high refractive index film layer 1 is one or a mixture of two or more of SiH, SiOxHy, and SiOxNy.
- the refractive index of each high refractive index film layer 2 in the 800-4000nm band is greater than 3.
- the reflection band has a reflectance greater than 99% in the range of incident angles of 0 to 60 degrees.
- the refractive index of the high-refractive index layer 2 in the wavelength band of 800 to 1100 nm is greater than 3.5.
- the material of the low-refractive-index film layer 1 is one or a mixture of two or more of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , and SixNy.
- the film system further includes a metal film layer, which is located at the innermost side of the film system.
- the metal film layer is one or two of Cr, Ta, Ti, Nb, Ni, Au, Ag, Cu, and Al. The above mixture.
- the high-reflection mirror of the present invention further comprises a substrate for supporting a film system.
- the substrate material is one or a mixture of two or more of silicon material, glass based on silicon dioxide material, plastic, sapphire, silicon carbide, and tempered glass.
- a wide-angle application high-reflection mirror with a high reflection band in the range of 850nm-950nm has a structure including a plurality of high-refractive-index film layers 1 and a plurality of low-refractive-index film layers 2 alternately Stacked films.
- the material of the high refractive index film layer is SiH, and the refractive index near 900 nm is 3.6.
- the material of the low refractive index film layer is SiO 2 , and the refractive index near 900 nm is 1.48.
- the base material is ordinary K9 optical glass.
- the reflectivity is greater than 99% in the range of the incident angle of 0 degrees to 80 degrees. And it can meet the reliability requirements of friction resistance, high temperature and humidity resistance of communication and automotive products.
- FIG. 2 is a graph showing the relationship between the reflectance and the wavelength in Example 1.
- the base material is ordinary K9 optical glass.
- the target reflection band of Comparative Example 1 can only meet the application of a reflection angle of about 0 to 85 degrees. Its high reflection band is within the range of 0 ° to 80 °, and the reflectivity is greater than 96%.
- the low reflectivity increases the loss of the optical path and reduces the signal-to-noise ratio of the optical system.
- exposing the gold film material to the air will make the mirror non-moisture-resistant, moisture-resistant, and friction-resistant, which cannot meet the requirements of harsh environments.
- the utility model relates to a wide-angle application high-reflection mirror, which has a high reflection band in the range of 850nm-950nm.
- the structure includes a plurality of high-refractive index film layers and a plurality of low-refractive index film layers alternately stacked.
- the material of the high refractive index film layer is TiO2, and the refractive index near 900 nm is 2.25.
- the material of the low refractive index film layer is SiO 2 , and the refractive index near 900 nm is 1.48.
- the base material is ordinary K9 optical glass.
- Comparative Example 2 can achieve a reflectance of> 99% in the target reflection band, but satisfying the reflectance can only limit the application angle to 0 to about 50 degrees. As the incident angle becomes larger, the overall shape of the film system moves in the short-wave direction. When the range is 50-80 degrees, the reflectance deteriorates significantly.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Optical Elements Other Than Lenses (AREA)
- Optical Filters (AREA)
Abstract
一种宽角度应用高反射镜,具有800-4000nm波长范围部分重叠的反射带,包括多个高折射率膜层和多个低折射率膜层交替堆叠而成的膜系,高折射率膜层的材料为SiH、SiO xH y、SiO xN y中的一种或两种以上的混合物。该高反镜可是实现在入射角度0度到60度的大角度范围内反射率大于99%。
Description
本发明涉及光学镜片领域,尤其涉及宽角度应用高反射镜。
反射镜是目前光学通讯、成像、仪器、传感领域最广泛应用的器件之一。此类反射镜往往由通过真空镀膜技术,在特定基底上镀制一层或多层的材料来实现增加反射光的目的。
常规情况下,反射镜为满足宽角度应用的需求,需要由镀制金属膜层来实现。但是金属膜在镀膜工艺中属于“软膜”,其缺点在于不耐磨擦、环境可靠性差、使用寿命短。即便加上了单层或多层硬介质薄膜作为加强保护膜(例如Nb
2O
5,Ta
2O
5,Al
2O
3,SiO
2等硬介质氧化膜)以改善可靠性,但离常规的全介质薄膜还是有非常大的差距。另一方面,如果用常规的氧化物或氟化物全介质材料,例如TiO
2、Nb
2O
5、Ta
2O
5、SiO
2及它们的混合物,虽然有着优良的环境可靠性及使用寿命,但是其缺点是随着入射角度的增大,其反射带的中心波长往短波偏移明显,无法在很宽的入射角度范围下使用。
针对以上问题,本发明公开了一些技术改进,提高了常规反射镜的应用入射角度范围,同时保证了其良好的可靠性和使用寿命。
发明内容
本发明的目的在于提供一种宽角度应用高反射镜,该高反射镜能够提高常规反射镜的应用入射角度范围,同时保证其良好的可靠性和使用寿命。
为实现上述目的,本发明采用以下技术方案:
宽角度应用高反射镜,具有800-4000nm波长范围部分重叠的反射带,所述反射镜包括多个高折射率膜层和多个低折射率膜层交替堆叠而成的膜系;其中高折射率膜层的材料为SiH、SiOxHy、SiOxNy中的一种或两种以上的混合物,每个高折射率膜层在800-4000nm波段的折射率均大于3,,所述反射带在入射角度0到60度入射角度范围内,反射率均大于99%。
作为优选,所述高折射率层在800到1100nm波段的折射率均大于3.5。
作为优选,所述低折射率膜层的材料为TiO
2、Nb
2O
5、Ta
2O
5、SiO
2、SixNy中的一种或两种以上的混合物。
作为优选,所述膜系还包括金属膜层,金属膜层位于膜系的最内侧,所述金属膜层为Cr、Ta、Ti、Nb、Ni、Au、Ag、Cu、Al中的一种或两种以上的混合物。
其还包括用于承载膜系的基底,基底材料为硅材料、基于二氧化硅材料的玻璃、塑料、蓝宝石、碳化硅、钢化玻璃其中的一种或两种以上的混合物。
本发明采用以上技术方案具有以下有益效果:实现在800至4000nm波长范围部分重叠范围的反射带,所述反射带在入射角度0到60度入射角度范围内,反射率均大于99%。作为优选,所述反射带在入射角度0到80度入射角度范围内,反射率均大于99%。
以下结合附图和具体实施方式对本发明做进一步详细说明:
图1为本发明的一种结构示意图;
图2为本发明实施例1的反射率和波长的关系图;
图3为本发明实施例1的反射带平均反射率和入射角度的关系图;
图4为本发明对比例1的反射率和波长的关系图;
图5为本发明对比例1的反射带平均反射率和入射角度的关系图;
图6为本发明对比例2的反射率和波长的关系图;
图7为本发明对比例2的反射带平均反射率和入射角度的关系图;
下面结合实施例和对比例对发明做进一步的描述。
图1所示,本发明宽角度应用高反射镜,具有800-4000nm波长范围部分重叠的反射带,所述反射镜包括多个高折射率膜层1和多个低折射率膜层2交替堆叠而成的膜系;其中高折射率膜层1的材料为SiH、SiOxHy、SiOxNy中的一种或两种以上的混合物,每个高折射率膜层2在800-4000nm波段的折射率均大于3,所述反射带在入射角度0到60度入射角度 范围内,反射率均大于99%。
所述高折射率层2在800到1100nm波段的折射率均大于3.5。
所述低折射率膜层1的材料为TiO
2、Nb
2O
5、Ta
2O
5、SiO
2、SixNy中的一种或两种以上的混合物。
所述膜系还包括金属膜层,金属膜层位于膜系的最内侧,所述金属膜层为Cr、Ta、Ti、Nb、Ni、Au、Ag、Cu、Al中的一种或两种以上的混合物。
本发明的高反射镜还包括用于承载膜系的基底,基底材料为硅材料、基于二氧化硅材料的玻璃、塑料、蓝宝石、碳化硅、钢化玻璃其中的一种或两种以上的混合物。
实施例1
如图1-3之一所示,一种宽角度应用高反射镜,具有850nm-950nm范围的高反射带,其结构包含多个高折射率膜层1和多个低折射率膜层2交替堆叠而成的膜系。
高折射率膜层的材料为SiH,在900nm附近的折射率为3.6。
低折射率膜层的材料为SiO
2,在900nm附近的折射率为1.48。
基底材料为普通的K9光学玻璃。
本发明高反射带在入射角度0度到80度范围内,反射率均大于99%。并且可以满足通讯类、汽车类产品的耐摩擦、耐高温高湿的可靠性需求。图2为本实施例1的反射率和波长的关系图。
对比例1
一种宽角度应用高反射镜,具有850nm-950nm范围的高反射带,其包含了一层金膜。
基底材料为普通的K9光学玻璃。
将实施例1与对比例1的反射镜进行性能对比:
如图4或图5所示,对比例1在目标反射带只能满足大概0到85度反射角的应用。其高反射带在入射角度0度到80度范围内,反射率均大于96%。
偏低的反射率增大了光路的损耗,降低了光学系统的信噪比。并且,使金膜材料暴露在空气中,会让反射镜不耐潮耐湿、不耐摩擦,无法满足严苛环境的应用。
对比例2
一种宽角度应用高反射镜,具有850nm-950nm范围的高反射带,其结构包含多个高折射率膜层和多个低折射率膜层交替堆叠而成的膜系。
高折射率膜层的材料为TiO2,在900nm附近的折射率为2.25。
低折射率膜层的材料为SiO
2,在900nm附近的折射率为1.48。
基底材料为普通的K9光学玻璃。
将实施例1与对比例2的反射镜进行性能对比:
如图6或图7所示,对比例2在目标反射带反射率可以实现>99%,但满足该反射率只能限制应用角度在0到约50度。随着入射角度的偏大,膜系的整体的形状向短波方向移动,在50-80度范围时,反射率恶化明显。
偏小的入射角度范围限制了其在大视场光学系统的应用,基于该反射镜的系统,无法应用于大角度入射场合。
Claims (6)
- 宽角度应用高反射镜,具有800-4000nm波长范围部分重叠的反射带,所述反射镜包括多个高折射率膜层和多个低折射率膜层交替堆叠而成的膜系;其中高折射率膜层的材料为SiH、SiOxHy、SiOxNy中的一种或两种以上的混合物,每个高折射率膜层在800-4000nm波段的折射率均大于3,所述反射带在入射角度0到60度入射角度范围内,反射率均大于99%。
- 如权利要求1所述的宽角度应用高反射镜,其特征在于:所述高折射率层在800到1100nm波段的折射率均大于3.5。
- 如权利要求1所述的宽角度应用高反射镜,其特征在于:所述低折射率膜层的材料为TiO 2、Nb 2O 5、Ta 2O 5、SiO 2、SixNy中的一种或两种以上的混合物。
- 如权利要求1所述的宽角度应用高反射镜,其特征在于:具有800-4000nm波长范围部分重叠的反射带,所述反射带在在入射角度0到80度入射角度范围内,反射率均大于99%。
- 如权利要求1所述的宽角度应用高反射镜,其特征在于:所述膜系还包括金属膜层,金属膜层位于膜系的最内侧,所述金属膜层为Cr、Ta、Ti、Nb、Ni、Au、Ag、Cu、Al中的一种或两种以上的混合物。
- 如权利要求1所述的宽角度应用高反射镜,其特征在于:其还包括用于承载膜系的基底,基底材料为硅材料、基于二氧化硅材料的玻璃、塑料、蓝宝石、碳化硅、钢化玻璃其中的一种或两种以上的混合物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021525341A JP2022500706A (ja) | 2018-07-18 | 2018-09-12 | 広角アプリケーション高反射ミラー |
KR1020217004611A KR20210042109A (ko) | 2018-07-18 | 2018-09-12 | 광각 적용 고반사 미러 |
US17/259,439 US20210356633A1 (en) | 2018-07-18 | 2018-12-09 | Wide angle application high reflective mirror |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810792202.2 | 2018-07-18 | ||
CN201810792202.2A CN110737036A (zh) | 2018-07-18 | 2018-07-18 | 宽角度应用高反射镜 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020015101A1 true WO2020015101A1 (zh) | 2020-01-23 |
Family
ID=69163602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/105140 WO2020015101A1 (zh) | 2018-07-18 | 2018-09-12 | 宽角度应用高反射镜 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210356633A1 (zh) |
JP (1) | JP2022500706A (zh) |
KR (1) | KR20210042109A (zh) |
CN (1) | CN110737036A (zh) |
WO (1) | WO2020015101A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11688925B2 (en) | 2020-04-10 | 2023-06-27 | Commscope Technologies Llc | Module for a cellular communications monopole |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115201949A (zh) * | 2021-04-12 | 2022-10-18 | 福州高意光学有限公司 | 宽带反射镜 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7583443B2 (en) * | 2005-05-23 | 2009-09-01 | Carl Zeiss Smt Ag | Reflective optical element for ultraviolet radiation, projection optical system and projection exposure system therewith, and method for forming the same |
CN102112897A (zh) * | 2008-07-28 | 2011-06-29 | 日本电气硝子株式会社 | 宽波段反射镜 |
CN104369440A (zh) * | 2014-09-19 | 2015-02-25 | 电子科技大学 | 用于激光器的全介质反射膜及其制备方法 |
CN106324732A (zh) * | 2016-11-16 | 2017-01-11 | 天津津航技术物理研究所 | 一种超宽带激光薄膜反射镜 |
CN106324731A (zh) * | 2016-10-28 | 2017-01-11 | 宜昌南玻显示器件有限公司 | 车载外视镜多功能反射膜及其制备方法 |
JP6302688B2 (ja) * | 2014-02-03 | 2018-03-28 | ジオマテック株式会社 | 高反射膜、高反射膜付き基板及び高反射膜の製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6572975B2 (en) * | 2001-08-24 | 2003-06-03 | General Electric Company | Optically coated article and method for its preparation |
JP2006317603A (ja) * | 2005-05-11 | 2006-11-24 | Central Glass Co Ltd | 表面鏡 |
EP2187245A1 (en) * | 2008-07-07 | 2010-05-19 | Konica Minolta Opto, Inc. | Mirror structure |
TWI684031B (zh) * | 2012-07-16 | 2020-02-01 | 美商唯亞威方案公司 | 光學濾波器及感測器系統 |
CN107255841B (zh) * | 2012-11-30 | 2020-01-03 | Agc株式会社 | 近红外线截止滤波器 |
CN103094390B (zh) * | 2013-01-15 | 2015-04-22 | 河北师范大学 | 一种用于薄膜太阳能电池的碳基光子晶体背反射器及其制备方法 |
JP6527390B2 (ja) * | 2014-06-03 | 2019-06-05 | 積水化学工業株式会社 | 有機エレクトロルミネッセンス表示素子用封止剤 |
CN107251650B (zh) * | 2015-09-24 | 2021-06-01 | 积水化学工业株式会社 | 电子器件用密封剂及电子器件的制造方法 |
CN108463745B (zh) * | 2015-09-29 | 2019-12-06 | 富士胶片株式会社 | 亲水性多层膜及其制造方法和摄像系统 |
US10170509B2 (en) * | 2016-02-12 | 2019-01-01 | Viavi Solutions Inc. | Optical filter array |
JP6956557B2 (ja) * | 2016-12-20 | 2021-11-02 | 共同印刷株式会社 | 光透過性吸湿フィルム及びその製造方法 |
JP6649243B2 (ja) * | 2016-12-27 | 2020-02-19 | 双葉電子工業株式会社 | 乾燥剤組成物、封止構造、及び有機el素子 |
CN107315210B (zh) * | 2017-08-15 | 2019-08-16 | 天津津航技术物理研究所 | 一种全向消偏振介质薄膜激光反射镜及设计方法 |
CN110737040B (zh) * | 2018-07-18 | 2022-03-01 | 福州高意光学有限公司 | 3d识别滤光片 |
CN110737099B (zh) * | 2018-07-18 | 2022-02-11 | 福州高意光学有限公司 | 偏振无关的分束器 |
CN108873135A (zh) * | 2018-08-06 | 2018-11-23 | 信阳舜宇光学有限公司 | 一种近红外窄带滤光片及红外成像系统 |
-
2018
- 2018-07-18 CN CN201810792202.2A patent/CN110737036A/zh active Pending
- 2018-09-12 WO PCT/CN2018/105140 patent/WO2020015101A1/zh active Application Filing
- 2018-09-12 JP JP2021525341A patent/JP2022500706A/ja active Pending
- 2018-09-12 KR KR1020217004611A patent/KR20210042109A/ko not_active Application Discontinuation
- 2018-12-09 US US17/259,439 patent/US20210356633A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7583443B2 (en) * | 2005-05-23 | 2009-09-01 | Carl Zeiss Smt Ag | Reflective optical element for ultraviolet radiation, projection optical system and projection exposure system therewith, and method for forming the same |
CN102112897A (zh) * | 2008-07-28 | 2011-06-29 | 日本电气硝子株式会社 | 宽波段反射镜 |
JP6302688B2 (ja) * | 2014-02-03 | 2018-03-28 | ジオマテック株式会社 | 高反射膜、高反射膜付き基板及び高反射膜の製造方法 |
CN104369440A (zh) * | 2014-09-19 | 2015-02-25 | 电子科技大学 | 用于激光器的全介质反射膜及其制备方法 |
CN106324731A (zh) * | 2016-10-28 | 2017-01-11 | 宜昌南玻显示器件有限公司 | 车载外视镜多功能反射膜及其制备方法 |
CN106324732A (zh) * | 2016-11-16 | 2017-01-11 | 天津津航技术物理研究所 | 一种超宽带激光薄膜反射镜 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11688925B2 (en) | 2020-04-10 | 2023-06-27 | Commscope Technologies Llc | Module for a cellular communications monopole |
US12107320B2 (en) | 2020-04-10 | 2024-10-01 | Commscope Technologies Llc | Module for a cellular communications monopole |
Also Published As
Publication number | Publication date |
---|---|
US20210356633A1 (en) | 2021-11-18 |
KR20210042109A (ko) | 2021-04-16 |
CN110737036A (zh) | 2020-01-31 |
JP2022500706A (ja) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7903339B2 (en) | Narrow band omnidirectional reflectors and their use as structural colors | |
TWI432770B (zh) | 光學系統 | |
JPH05502311A (ja) | 導電性、光減衰反射防止被覆 | |
WO2021036387A1 (zh) | 一种宽角度应用的滤光片 | |
WO2020015101A1 (zh) | 宽角度应用高反射镜 | |
CN108351450B (zh) | 金色调多层涂层和包含所述涂层的反射体 | |
TWI557439B (zh) | 紅外截止濾光片及鏡頭模組 | |
CN105891914A (zh) | 一种具有ag+ar+af 镀膜的视窗保护面板 | |
WO2018110017A1 (ja) | 光学製品 | |
CA3031650C (en) | Optical device having optical and mechanical properties | |
WO2020103206A1 (zh) | 一种偏振无关的滤光片 | |
JP2013205805A (ja) | 光学部材 | |
WO2020015102A1 (zh) | 偏振无关的分束器 | |
JP3373182B2 (ja) | 多層膜光フィルタ | |
JP2004264438A (ja) | 反射鏡及びそれを用いた光学機器 | |
JP2001074903A (ja) | 反射防止膜及び光学素子 | |
JP7276800B2 (ja) | 反射防止膜及びこれを有する光学部品 | |
JP2835535B2 (ja) | 光学部品の反射防止膜 | |
TWM594536U (zh) | 等效虛設層抗反射鍍膜 | |
JP2002277606A (ja) | 反射防止膜及び光学素子 | |
JP2002107505A (ja) | 反射防止膜 | |
CN115201949A (zh) | 宽带反射镜 | |
JPH1039105A (ja) | 反射防止膜 | |
CN221199978U (zh) | 一种红光增透减反膜系 | |
JP3741692B2 (ja) | 反射防止膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18926643 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021525341 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18926643 Country of ref document: EP Kind code of ref document: A1 |