WO2020013604A1 - 전기화학 커패시터 및 이의 제조 방법 - Google Patents

전기화학 커패시터 및 이의 제조 방법 Download PDF

Info

Publication number
WO2020013604A1
WO2020013604A1 PCT/KR2019/008498 KR2019008498W WO2020013604A1 WO 2020013604 A1 WO2020013604 A1 WO 2020013604A1 KR 2019008498 W KR2019008498 W KR 2019008498W WO 2020013604 A1 WO2020013604 A1 WO 2020013604A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
electrode
electrode assemblies
lead wire
Prior art date
Application number
PCT/KR2019/008498
Other languages
English (en)
French (fr)
Inventor
김원곤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980006707.4A priority Critical patent/CN111566769B/zh
Priority to JP2020524215A priority patent/JP7049566B2/ja
Priority to EP19833204.1A priority patent/EP3703089B1/en
Priority to US16/761,292 priority patent/US11217399B2/en
Publication of WO2020013604A1 publication Critical patent/WO2020013604A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrochemical capacitor and a method for manufacturing the same, and more particularly, to an electrochemical capacitor and a method for manufacturing the same, which can increase the life time so that degradation (degradation) is less likely to occur.
  • An electrochemical capacitor is one of the main devices for storing energy, and is also referred to by various other terms such as a super capacitor, an ultra capacitor, and an electric double layer capacitor.
  • Electrochemical capacitors are gradually expanding their fields of application due to characteristics such as high power, high capacity, and long life.
  • the application field is gradually expanding to industrial equipment, UPS (Uninterruptible Power Supply), electric vehicles, smart grid and the like.
  • UPS Uninterruptible Power Supply
  • an electrochemical capacitor is a separator which is positioned between the positive electrode and the negative electrode, and the positive electrode and the negative electrode which is formed in the form of an active material layer coated on the surface of the current collector, and electrically insulates the positive electrode and the negative electrode,
  • An electrolyte solution impregnated with the electrode and the separator to supply ions and enable conduction of ions, and a case accommodating an anode, a cathode, a separator, and an electrolyte therein may be provided.
  • Such an electrochemical capacitor may be typically manufactured by winding or stacking a plurality of electrodes and separators in a cylindrical form to form an electrode assembly, and then storing the formed electrode assembly in a case and injecting an electrolyte solution therein to seal the electrode assembly. .
  • Electrochemical capacitors are evaluated for their long time use compared to other energy storage devices. However, even with such an electrochemical capacitor, there may be a problem that the performance is degraded as the use continues.
  • the electrode assembly is often formed in a rolled form such as a roll, that is, a wound form.
  • a rolled form such as a roll
  • performance may be degraded and life may be shortened.
  • an object of the present invention is to provide an electrochemical capacitor and a method of manufacturing the same, which are designed to solve the above problems and to increase the heat dissipation to prevent the internal temperature from rising. .
  • the positive electrode is configured in the form of a wound sheet and coated with an active material layer on both sides, the sheet form wound so as to face the positive electrode and the active material layer on both sides
  • a plurality of electrode assemblies each having a coated cathode and a separator interposed between the anode and the cathode; And a cathode lead wire electrically connected to the anode of each of the plurality of electrode assemblies, and a cathode lead wire electrically connected to the cathode of each of the plurality of electrode assemblies.
  • the plurality of electrode assemblies may be stacked in one direction and may be formed such that winding numbers of the positive electrode, the negative electrode, and the separator are different between adjacent electrode assemblies.
  • the plurality of electrode assemblies have a first winding number of the positive electrode, the negative electrode, and the separator of an electrode assembly positioned in an odd layer, and the positive electrode, the negative electrode and the separator of an electrode assembly positioned in an even layer.
  • the number of turns of may be the second number of turns.
  • the plurality of electrode assemblies may be wound such that a winding number difference between the first winding number and the second winding number is a reference winding number set corresponding to a thickness of the positive electrode, the negative electrode, and the separator.
  • the positive electrode lead wire is connected to the positive electrode such that the first distance from the point electrically connected to the positive electrode to the core portion of the positive electrode is less than the first minimum distance from the distal end of the positive electrode to the core portion wound with the minimum number of turns. Can be electrically connected.
  • the negative electrode lead wire is connected to the negative electrode such that the second distance from the point electrically connected to the negative electrode to the core portion of the negative electrode is less than the second minimum distance from the distal end of the negative electrode to the core portion wound with the minimum number of turns. Can be electrically connected.
  • the electrochemical capacitor may accommodate the plurality of electrode assemblies therein, and a step may be formed to correspond to the appearance of the plurality of electrode assemblies having different winding numbers.
  • Electrochemical capacitor manufacturing method for achieving the above object is provided with a cathode formed in the form of a sheet, a cathode facing the anode and formed in a sheet form and a separator interposed between the anode and the cathode, respectively Disposing a plurality of electrode assemblies; Electrically connecting an anode lead wire to an anode of each of the plurality of electrode assemblies, and electrically connecting a cathode lead wire to an anode of each of the plurality of electrode assemblies; Winding up from the core part of the plurality of electrode assemblies; and accommodating the plurality of electrode assemblies in a housing.
  • the disposing may include disposing the positive electrode, the negative electrode and the separator such that winding numbers of the positive electrode, the negative electrode and the separator of the adjacent electrode assembly are different.
  • the step of electrically connecting the first minimum distance from the distal end of the positive electrode to the core portion in which the first distance from the point at which the positive electrode lead is electrically connected to the positive electrode to the core portion of the positive electrode is wound with the minimum number of turns. Electrically connecting the positive lead to the positive electrode so that the distance is less than a distance.
  • the step of electrically connecting a second minimum from the distal end of the negative electrode to the core portion where the second distance from the point at which the negative electrode lead is electrically connected to the negative electrode to the core portion of the negative electrode is wound with the minimum number of turns. And electrically connecting the cathode lead wire to the cathode to be less than a distance.
  • the performance of the electrochemical capacitor can be further improved.
  • deterioration of various components such as the positive electrode, the negative electrode and the separator included in the electrochemical capacitor can be prevented or minimized.
  • a wound type electrochemical capacitor configured in a form in which a cathode, a cathode, and a separator are rolled up, by increasing the surface area of the electrochemical capacitor to improve heat dissipation, the phenomenon of overheating of the electrochemical capacitor can be prevented.
  • the performance of the electrochemical capacitor can be kept stable for a long time and the life can be increased.
  • FIG. 1 is a perspective view schematically showing an electrochemical capacitor according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view schematically showing the components of an electrochemical capacitor according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing a cross section of each of a plurality of electrode assemblies that are components of an electrochemical capacitor according to an embodiment of the present invention.
  • FIG 4 is a view showing a shape before the positive electrode is wound on the plurality of electrode assembly which is a component of the electrochemical capacitor according to an embodiment of the present invention.
  • FIG. 5 is a view showing a shape before a cathode of a plurality of electrode assemblies that are components of an electrochemical capacitor according to an embodiment of the present invention is wound up.
  • FIG. 6 is a flowchart illustrating a method of manufacturing an electrochemical capacitor according to an embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing an electrochemical capacitor according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view schematically showing the components of an electrochemical capacitor according to an embodiment of the present invention.
  • the electrochemical capacitor according to the present invention includes a plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e, a positive lead wire 120, a negative lead wire 130, and a housing 140. It includes.
  • Each of the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e includes a positive electrode 111, a negative electrode 112, and a separator 113.
  • the anode 111 may have a sheet shape, that is, a plate shape having a wide surface.
  • the sheet-shaped anode 111 may be configured in a wound form. That is, as shown in the drawing, the anode 111 may be rolled in one direction and formed in a roll shape.
  • the cathode 111 may be coated with an active material layer on its surface.
  • the positive electrode 111 may include a current collector and an active material layer.
  • the current collector may be made of an electrically conductive material such as a metal, and serve as a movement path of electric charge, and may be configured in a sheet form.
  • the active material layer may be formed on the surface of the current collector in the form of such a sheet, particularly on both surfaces.
  • Such an active material layer may include an active material such as activated carbon, a conductive material, a binder, and the like.
  • the cathode 112 may function as an electrode plate having a polarity opposite to that of the anode 111.
  • the cathode 112 may be configured in the form of a wound sheet.
  • the negative electrode 112 may include a current collector and an active material layer coated on a surface thereof.
  • the cathode 112 may be configured to face the anode 111. That is, the cathode 112 may be configured to face the anode 111 from the core part to the distal end by being wound together in a state where the anode 111 and the surface overlap each other to face each other.
  • the core portion means the center side end portion in the longitudinal direction when the positive electrode 111 and the negative electrode 112 are wound.
  • the distal end means an outer side end portion in the longitudinal direction when the positive electrode 111 and the negative electrode 112 are wound. In such a configuration, since the positive electrode 111 and the negative electrode 112 are wound together, both surfaces may face each other except the innermost part and the outermost part.
  • the anode 111 may face the cathode 112 on both the inner side and the outer side except for a part of the innermost layer such as the innermost layer.
  • the cathode 112 may face the anode 111 on both the inner side and the outer side thereof, except for the outermost layer located at the outermost side.
  • the cathode 112 may be located outside the anode 111. That is, when the anode 111 and the cathode 112 are wound while overlapping each other, it can be said that the cathode 112 is rolled outward from the anode 111.
  • the core portion of the cathode 112 may be located outside the core portion of the anode 111.
  • the inner end of the anode 111 may be located closer to the central axis of the cylinder than the inner end of the cathode 112.
  • the separator 113 may be interposed between the positive electrode 111 and the negative electrode 112.
  • the separator 113 may prevent direct contact between the positive electrode 111 and the negative electrode 112 to prevent a short circuit and allow ions to move between them.
  • the separator 113 like the positive electrode 111 and the negative electrode 112 is configured in a thin flat sheet form, it can be wound together with them between the positive electrode 111 and the negative electrode 112.
  • the present invention is not limited to the specific components with respect to the positive electrode 111, the negative electrode 112, and the separator 113. That is, in the present invention, as the constituents of the anode 111, the cathode 112 and the separator 113, various kinds of electrodes and separator materials known at the time of filing the present invention may be employed.
  • the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e may be stacked in one direction. More specifically, the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e may be stacked such that their centers are located on the same line as shown in FIG. 2. That is, the core parts of the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e may be stacked in the same line.
  • FIG 3 is a cross-sectional view illustrating a cross section of each of the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e which are components of an electrochemical capacitor according to an exemplary embodiment of the present invention.
  • the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e have the same positive electrode 111, negative electrode 112, and separator 113, respectively.
  • the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e may be formed such that winding numbers of the positive electrode 111, the negative electrode 112, and the separator 113 differ between adjacent electrode assemblies.
  • the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e may include the anode 111, the cathode 112, and the separator 113 of the electrode assemblies 110a, 110c, and 110e positioned in odd layers.
  • the winding number of may be the first winding number
  • the winding number of the positive electrode 111, the negative electrode 112, and the separator 113 of the electrode assemblies 110b and 110d positioned in the even layer may be the second winding number.
  • the first winding number and the second winding number may be different.
  • the electrode assemblies 110a, 110c, and 110e positioned in the odd layer may be wound with the first winding number, which is the same number of windings, respectively, so that the distances from the core portion to the outermost angle may be the same.
  • the electrode assemblies 110b and 110d positioned in the even layer may be wound with the same number of winding turns, respectively, so that the distances from the core portion to the outermost angle may be the same.
  • the electrode assemblies 110a, 110c, and 110e located in the odd layer and the electrode assemblies 110b and 110d located in the even layer may be wound with different winding water, and thus the distance from the core to the outermost part may be different.
  • the winding number difference between the first winding number and the second winding number may be a reference winding number set corresponding to the thickness of the positive electrode 111, the negative electrode 112, and the separator 113.
  • the distance from the core portion to the outermost angle may be the same as the thickness of the anode 111, the cathode 112, and the separator 113.
  • the distance from the core portion to the outermost angle may be equal to the thickness of the anode 111, the cathode 112, and the separator 113 overlapped n times. That is, the distance from the core portion of the electrode assembly to the outermost angle may be proportional to the winding number and thickness of the anode 111, the cathode 112, and the separator 113.
  • the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e may be positioned in odd layers so that the surface area is increased by a step of a predetermined length or more between adjacent electrode assemblies. ) Is wound into the first winding number and the electrode assemblies 110b and 110d positioned in the even layer may be wound into the second winding number which is reduced by the reference winding number than the first winding number.
  • the reference winding number is the distance from the core portion of the electrode assembly (110a, 110c, 110e) in the odd layer to the outermost and from the core portion of the electrode assembly (110b, 110d) in the even layer
  • the difference between the distances may be the number of turns set to correspond to the previously designed difference.
  • the distance from the core part of the electrode assembly once wound to the outermost part is 0.1 mm
  • the distance from the core part of the electrode assemblies 110a, 110c, 110e to the outermost part and the even layer located in the odd layer is 1.0 mm
  • the reference number of turns may be set to 10 times the number of windings whose predesigned difference corresponds to 1.0 mm. have.
  • the winding number difference between the first winding number and the second winding number may be 10 times of the standard winding number.
  • the electrode assemblies 110a, 110c, and 110e located in the odd layer are positioned in the odd layer in an unfolded length before being wound so that the electrode assembly 110b, 110d located in the even layer is picked up by a reference winding number.
  • the length of the electrode assemblies 110a, 110c, and 110e may be longer than that of the reference winding water.
  • a step may occur between the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e to increase the outermost surface area.
  • the heat dissipation amount may increase as the outermost surface area of the electrode assembly increases. That is, the heat may be emitted not only at the side surfaces of the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e, but also at portions exposed to the outside such as top and bottom surfaces. Therefore, according to the configuration of the present application, the plurality of electrode assemblies (110a, 110b, 110c, 110d and 110e) because the surface area that heat exchange with the outside increases, the heat generation performance can be improved.
  • the height at which the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e are connected is H.
  • the outer surface of the A assembly to which the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e is connected is a B assembly (cylinder) in which only the odd-layer electrode assemblies 110a, 110c and 110e are connected to H height under predetermined conditions. It may be larger than the surface area of).
  • the B assembly may have a cylindrical shape including five odd layer electrode assemblies 110a, 110c, and 110e.
  • the predetermined condition means a condition in which the heights H of the A assembly and the B assembly are smaller than "n x (R1 + R2)" and larger than "0". Since the predetermined condition with respect to the height H can be calculated by a formula for obtaining the outer surface of the cylinder, detailed description for obtaining the predetermined condition will be omitted.
  • the electrochemical capacitor of the present application is a general cylindrical capacitor that is wider, while the amount of the positive electrode 111, the negative electrode 112 and the separator 113 included is less than the amount of the positive electrode, negative electrode and separator included in the general cylindrical capacitor It can be made larger.
  • the electrochemical capacitor of the present application may be formed to have the maximum surface area by using the anode 111, the cathode 112, and the separator 113 included therein. Therefore, the electrochemical capacitor of the present application has the advantage that the heat dissipation efficiency can be improved compared to the general cylindrical capacitor, so that the performance can be stably maintained for a long time and the life can be increased.
  • FIG. 4 is a view illustrating a shape before the anode 111 provided in the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e, which is a component of the electrochemical capacitor, is wound.
  • the anode lead wire 120 may be electrically connected to the anode 111 of each of the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e.
  • the anode lead wire 120 may be electrically connected to the anode 111 at a position separated by a first distance L1 from the core portion C of the anode 111. That is, the point P at which the anode lead line 120 is connected to the anode 111 may be separated from the core portion C of the anode 111 by a first distance L1.
  • the first distance L1 may be less than the first minimum distance L2 from the distal end portion T1 of the cathode 111 wound to the minimum winding number to the core portion C.
  • the anode lead wire 120 may electrically connect the anodes 111 of the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e that are electrically separated from each other.
  • the anode lead wire 120 has a vertical direction between the core portion C and the distal end portion T1 of the anode 111, in which a point P electrically connected to each anode 111 is wound with the minimum number of turns. Can be arranged.
  • the anode lead wire 120 may be electrically connected to the anode 111 of each of the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e, and may be formed of a conductive material to charge and discharge the electrochemical capacitor. have.
  • the present invention is not limited to a specific component with respect to the anode lead wire 120. That is, in the present invention, as the constituents of the anode lead wire 120, various kinds of lead wire materials known at the time of filing the present invention may be employed.
  • FIG. 5 is a view showing a shape before the cathode 112 of the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e, which is a component of the electrochemical capacitor, is wound.
  • the cathode lead wire 130 may be electrically connected to the cathode 112 of each of the electrode assemblies 110a, 110b, 110c, 110d and 110e.
  • the negative lead 130 may be electrically connected to the negative electrode 112 at a position separated by a second distance L3 from the core portion C of the negative electrode 112. That is, the point N where the negative lead 130 is connected to the negative electrode 112 may be separated from the core portion C of the negative electrode 112 by a second distance L3.
  • the second distance L3 may be less than the second minimum distance L4 from the distal end portion T2 of the cathode 112 wound to the minimum winding number from the core portion C to the core portion C.
  • the cathode lead wire 130 may electrically connect the cathode 112 of each of the plurality of electrically separated electrode assemblies 110a, 110b, 110c, 110d, and 110e.
  • the cathode lead wire 130 is perpendicular to the core portion C and the distal end portion T2 of the cathode 112 in which the point N electrically connected to each cathode 112 is wound with the minimum number of turns. Can be arranged.
  • the negative electrode lead 130 may be spaced apart from the electrically connected with the positive electrode lead 120 may be electrically connected to the negative electrode 112 of each of the plurality of electrode assemblies (110a, 110b, 110c, 110d and 110e). .
  • the negative electrode lead 130 may be electrically connected to the negative electrode 112 of each of the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e, and may be formed of a conductive material to charge and discharge the electrochemical capacitor. have.
  • the present invention is not limited to a specific component with respect to the negative electrode lead wire 130. That is, in the present invention, as the constituents of the cathode lead wire 130, various kinds of lead wire materials known at the time of filing the present invention may be employed.
  • the housing 140 has an empty space therein to accommodate the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e including the anode 111, the cathode 112, and the separator 113. have.
  • the housing 140 may further accommodate the anode lead wire 120 and the cathode lead wire 130 in an empty space therein. In this case, only a part of the anode lead wire 120 and the cathode lead wire 130 may be accommodated in the housing 140, and a portion of the cathode lead wire 120 and the cathode lead wire 130 may be exposed to the outside of the housing 140.
  • the housing 140 may accommodate only a part of the positive electrode lead 120 electrically connected to the positive electrode 111 of each of the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e, and the negative electrode lead wire Of the 130, only a portion of the plurality of electrode assemblies 110a, 110b, 110c, 110d, and 110e electrically connected to the cathode 112 may be accommodated.
  • the housing 140 may further accommodate the electrolyte.
  • the electrolyte solution may include an electrolyte and an organic solvent as a salt component.
  • the electrolyte includes at least one anion such as Br-, BF4-, PF6-, TFSI- as an anion and spiro- (1,1 ')-bipyrrolidinium and piperidine-1-spiro as a cation.
  • anion such as Br-, BF4-, PF6-, TFSI- as an anion
  • spiro- (1,1 ')-bipyrrolidinium and piperidine-1-spiro as a cation -1'-pyrrolidinium, spiro- (1,1 ')-bipiperidinium, dialkylpyrrolidinium, dialkylimidazolium, dialkylpyridinium, tetra-alkylammonium, dialkylpiperidinium It may be one containing at least one cation having a quaternary ammonium structure, such as tetra-alkylphosphonium.
  • organic solvent used in the electrolyte for example, propylene carbonate (PC), diethyl carbonate, ethylene carbonate (EC), sulfolane, acetonitrile, dimethoxyethane and tetrahydrofuran, and ethyl methyl carbonate ( EMC) and one or more selected from the group consisting of.
  • PC propylene carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the present invention is not limited to specific components of the electrolyte, and various electrolytes known at the time of filing the present invention may be employed as the electrolyte in the capacitor of the present invention.
  • the housing 140 may be made of a metal material or a polymer material, and may be sealed to prevent leakage of the electrolyte.
  • the housing 140 may have a stepped shape corresponding to the outer shapes of the plurality of electrode assemblies having different winding numbers. Therefore, the outer surface of the housing 140 may increase. According to this configuration, the housing 140 quickly discharges heat generated from the plurality of electrode assemblies 110a, 110b, 110c, 110d and 110e provided in the inner empty space, thereby preventing the internal temperature from rising. Can be.
  • FIG. 6 is a flowchart illustrating a method of manufacturing an electrochemical capacitor according to an embodiment of the present invention.
  • a method of manufacturing an electrochemical capacitor according to an embodiment of the present invention includes a plurality of electrodes including a cathode formed in the form of a sheet, a cathode facing the anode, and a separator interposed between the anode and the cathode.
  • the disposing step S100 may include disposing the positive electrode, the negative electrode, and the separator so that the number of windings of the positive electrode, the negative electrode, and the separator of the adjacent electrode assembly are different.
  • the disposing step (S100) may be a step of stacking and arranging an anode, a cathode, and a separator provided in the electrode assembly in the order of the cathode, the separator, and the anode.
  • the disposing step S100 may include disposing a plurality of electrode assemblies in a state before being wound so that the sheet length from the core portion to the distal end of the electrode assembly in the state before being wound is different between adjacent electrode assemblies. have.
  • a plurality of electrode assemblies may be disposed such that the sheet length of the electrode assembly positioned in the odd layer is longer than the sheet length of the electrode assembly positioned in the even layer in the placing step S100.
  • the disposing step (S100) may include disposing a plurality of electrode assemblies such that cores of the plurality of electrode assemblies are positioned at the same point in the vertical direction.
  • the step of electrically connecting (S200) may be a step of electrically connecting the anode lead wires with the anodes of each of the plurality of electrode assemblies arranged, and electrically connecting the cathode lead wires with the cathodes of each of the plurality of electrode assemblies arranged.
  • the step of electrically connecting (S200) is a first distance from the end of the positive electrode to the core portion, the first distance from the point where the positive electrode lead is electrically connected to the positive electrode to the core portion of the positive electrode is wound with the minimum number of turns Electrically connecting the positive lead to the positive electrode to be less than the minimum distance.
  • the step of electrically connecting (S200) is a second minimum distance from the distal end of the negative electrode to the core portion, the second distance from the point that the negative electrode lead is electrically connected to the negative electrode to the core portion of the negative electrode is wound with the minimum number of windings
  • the method may further include electrically connecting the cathode lead line to the cathode to be less than.
  • the winding step (S300) may be a step of winding the plurality of electrode assemblies arranged from the core portion.
  • the number of windings of each of the electrode assemblies may be different according to the sheet lengths of the plurality of electrode assemblies. That is, the shorter the sheet length of the electrode assembly, the smaller the number of turns. Accordingly, the plurality of wound electrode assemblies may have a stepped outermost surface, thereby increasing the surface area of the cylindrical electrode assembly.
  • the accommodating step S400 may include accommodating a plurality of wound electrode assemblies in a housing. More specifically, the storing step (S400) is to accommodate the plurality of electrode assemblies having a step formed in the outermost in the cylindrical housing, and press the housing from the outside to the inside to reduce the step like the outermost of the plurality of electrode assemblies Forming.
  • the storing step S400 may further include a step of injecting an electrolyte into the housing and sealing the electrolyte so that the electrolyte does not flow out.

Abstract

본 발명에 따른 전기화학 커패시터는, 권취된 시트 형태로 구성되고 양면에 활물질층이 코팅된 양극, 상기 양극에 대면되도록 권취된 시트 형태로 구성되고 양면에 활물질층이 코팅된 음극 및 상기 양극과 상기 음극 사이에 개재되어 권취된 세퍼레이터를 각각 구비하는 복수의 전극 조립체; 상기 복수의 전극 조립체 각각의 양극과 전기적으로 연결되는 양극 리드선 및 상기 복수의 전극 조립체 각각의 음극과 전기적으로 연결되는 음극 리드선을 포함한다.

Description

전기화학 커패시터 및 이의 제조 방법
본 출원은 2018년 07월 10일자로 출원된 한국 특허 출원번호 제10-2018-0080098호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 전기화학 커패시터 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 열화(degradation)가 잘 일어나지 않도록 하여 수명이 증가될 수 있는 전기화학 커패시터 및 이의 제조 방법에 관한 것이다.
전기화학 커패시터는, 에너지를 저장하는 주요한 하나의 장치로서, 슈퍼 커패시터(Super Capacitor), 울트라 커패시터(Ultracapacitor), 전기이중층 커패시터(Electric Double Layer Capacitor) 등 여러 가지 다른 다양한 용어로 불리기도 한다.
전기화학 커패시터는, 고출력, 고용량, 장수명 등의 특성으로 인해 그 응용 분야가 점차 확대되고 있다. 특히, 최근에는 소형 전자기기는 물론이고, 산업기기, UPS(무정전 전원장치), 전기자동차, 스마트그리드 등으로 그 응용분야를 점차 넓혀 가고 있다.
일반적으로, 전기화학 커패시터는, 집전체의 표면에 활물질층이 코팅된 형태로 구성된 양극과 음극, 그리고 양극과 음극 사이에 위치하여 양극과 음극을 전기적으로 절연시키면서 이온의 이동을 가능하게 하는 세퍼레이터, 전극과 세퍼레이터에 함침되어 이온을 공급하고 이온의 전도를 가능하게 하는 전해액, 그리고 내부에 양극과 음극, 세퍼레이터 및 전해액을 수용하는 케이스를 구비할 수 있다.
이러한 전기화학 커패시터는, 대표적으로 다수의 전극과 세퍼레이터를 원통 형태로 권취하거나 적층하여 전극 조립체를 형성한 후, 형성된 전극 조립체를 케이스에 수납하고 여기에 전해액을 주입하여 밀봉하는 방식으로 제조될 수 있다.
전기화학 커패시터는, 다른 에너지 저장 장치에 비해, 오랜 시간 사용이 가능하다는 평가를 받고 있다. 하지만, 이러한 전기화학 커패시터라 하더라도, 사용이 계속됨에 따라 성능이 저하되는 문제점이 발생할 수 있다.
특히, 전기화학 커패시터에서 전극 조립체는 롤과 같이 말려진 형태, 즉 권취형으로 형성되는 경우가 많다. 그런데, 이처럼 전극 조립체가 권취형으로 형성된 전기화학 커패시터의 경우, 충방전 사이클이 반복되면서 발생하는 열로 인해 고온에 노출되면 성능이 저하되고 수명이 단축되는 문제점이 발생할 수 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 방열량을 늘려 내부 온도가 상승되는 현상을 방지함으로써, 수명이 증가될 수 있는 전기화학 커패시터 및 이의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 전기화학 커패시터는, 권취된 시트 형태로 구성되고 양면에 활물질층이 코팅된 양극, 상기 양극에 대면되도록 권취된 시트 형태로 구성되고 양면에 활물질층이 코팅된 음극 및 상기 양극과 상기 음극 사이에 개재되어 권취된 세퍼레이터를 각각 구비하는 복수의 전극 조립체; 상기 복수의 전극 조립체 각각의 양극과 전기적으로 연결되는 양극 리드선 및 상기 복수의 전극 조립체 각각의 음극과 전기적으로 연결되는 음극 리드선을 포함한다.
바람직하게, 상기 복수의 전극 조립체는 일방향으로 적층되고, 상기 양극, 상기 음극 및 상기 세퍼레이터의 권취수가 인접한 전극 조립체 간에 상이하도록 형성될 수 있다.
바람직하게, 상기 복수의 전극 조립체는 홀수층에 위치하는 전극 조립체의 상기 양극, 상기 음극 및 상기 세퍼레이터의 권취수가 제1 권취수이고, 짝수층에 위치하는 전극 조립체의 상기 양극, 상기 음극 및 상기 세퍼레이터의 권취수가 제2 권취수일 수 있다.
바람직하게, 상기 복수의 전극 조립체는 상기 제1 권취수와 상기 제2 권취수 간에 권취수 차이가 상기 양극, 상기 음극 및 상기 세퍼레이터의 두께에 대응하여 설정된 기준 권취수가 되도록 권취될 수 있다.
바람직하게, 상기 양극 리드선은 상기 양극에 전기적으로 연결된 지점으로부터 상기 양극의 코어부까지의 제1 거리가 최소 권취수로 권취되는 양극의 말단부로부터 코어부까지의 제1 최소 거리 미만이 되도록 상기 양극에 전기적으로 연결될 수 있다.
바람직하게, 상기 음극 리드선은 상기 음극에 전기적으로 연결된 지점으로부터 상기 음극의 코어부까지의 제2 거리가 최소 권취수로 권취되는 음극의 말단부로부터 코어부까지의 제2 최소 거리 미만이 되도록 상기 음극에 전기적으로 연결될 수 있다.
바람직하게, 상기 전기화학 커패시터는 상기 복수의 전극 조립체를 내부에 수용하고, 권취수가 상이한 복수의 전극 조립체의 외형에 대응하여 단차가 형성될 수 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 전기화학 커패시터의 제조 방법은 시트 형태로 구성된 양극, 상기 양극에 대면되며 시트 형태로 구성된 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 각각 구비하는 복수의 전극 조립체를 배치하는 단계; 양극 리드선을 상기 복수의 전극 조립체 각각의 양극과 전기적으로 연결시키고, 음극 리드선을 상기 복수의 전극 조립체 각각의 음극과 전기적으로 연결시키는 단계; 상기 복수의 전극 조립체의 코어부부터 권취하는 단계 및 상기 복수의 전극 조립체를 하우징에 수납하는 단계를 포함한다.
바람직하게, 상기 배치하는 단계는 인접한 전극 조립체의 상기 양극, 상기 음극 및 상기 세퍼레이터 각각의 권취수가 상이하도록 상기 양극, 상기 음극 및 상기 세퍼레이터를 배치하는 단계를 포함할 수 있다.
바람직하게, 상기 전기적으로 연결시키는 단계는 상기 양극 리드선이 상기 양극에 전기적으로 연결된 지점으로부터 상기 양극의 코어부까지의 제1 거리가 최소 권취수로 권취되는 양극의 말단부로부터 코어부까지의 제1 최소 거리 미만이 되도록 상기 양극 리드선을 상기 양극에 전기적으로 연결시키는 단계를 포함할 수 있다.
바람직하게, 상기 전기적으로 연결시키는 단계는 상기 음극 리드선이 상기 음극에 전기적으로 연결된 지점으로부터 상기 음극의 코어부까지의 제2 거리가 최소 권취수로 권취되는 음극의 말단부로부터 코어부까지의 제2 최소 거리 미만이 되도록 상기 음극 리드선을 상기 음극에 전기적으로 연결시키는 단계를 포함할 수 있다.
본 발명의 일 측면에 의하면, 전기화학 커패시터의 성능이 보다 향상될 수 있다.
특히, 본 발명의 일 측면에 의하면, 전기화학 커패시터에 포함된 양극, 음극 및 세퍼레이터와 같은 여러 구성요소의 열화가 방지되거나 최소화될 수 있다. 특히, 본 발명에 의하면, 양극, 음극 및 세퍼레이터가 말려진 형태로 구성된 권취형 전기화학 커패시터에 있어서, 전기화학 커패시터의 표면적을 증가시켜 방열량을 향상시킴으로써, 전기화학 커패시터가 과열되는 현상을 방지할 수 있다.
그러므로, 본 발명의 이러한 측면들에 의하면, 전기화학 커패시터의 성능이 오랜 시간 동안 안정적으로 유지되고 수명이 증가할 수 있다.
이외에도 본 발명은 다른 다양한 효과를 가질 수 있으며, 이러한 본 발명의 다른 효과들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 알 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안 된다.
도 1은, 본 발명의 일 실시예에 따른 전기화학 커패시터를 개략적으로 나타내는 사시도이다.
도 2는, 본 발명의 일 실시예에 따른 전기화학 커패시터의 구성 요소를 개략적으로 나타내는 분해 사시도이다.
도 3은, 본 발명의 일 실시예에 따른 전기화학 커패시터의 구성 요소인 복수의 전극 조립체 각각의 단면을 나타내는 단면도이다.
도 4는 본 발명의 일 실시예에 따른 전기화학 커패시터의 구성 요소인 복수의 전극 조립체에 구비된 양극이 권취되기 전 형상을 나타내는 도면이다.
도 5는 본 발명의 일 실시예에 따른 전기화학 커패시터의 구성 요소인 복수의 전극 조립체에 구비된 음극이 권취되기 전 형상을 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 전기화학 커패시터의 제조 방법을 나타내는 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은, 본 발명의 일 실시예에 따른 전기화학 커패시터를 개략적으로 나타내는 사시도이고, 도 2는, 본 발명의 일 실시예에 따른 전기화학 커패시터의 구성 요소를 개략적으로 나타내는 분해 사시도이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 전기화학 커패시터는, 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e), 양극 리드선(120), 음극 리드선(130) 및 하우징(140)을 포함한다.
상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)는 각각 양극(111), 음극(112) 및 세퍼레이터(113)를 구비한다.
상기 양극(111)은, 시트 형태, 즉 넓은 표면을 갖는 판상으로 구성될 수 있다. 그리고, 이러한 시트 형태의 양극(111)은 권취된 형태로 구성될 수 있다. 즉, 양극(111)은, 도면에 도시된 바와 같이, 한 방향으로 말려져 롤(Roll) 형태로 형성될 수 있다.
상기 양극(111)은, 표면에 활물질층이 코팅될 수 있다. 보다 구체적으로, 양극(111)은, 집전체 및 활물질층을 구비할 수 있다. 여기서, 집전체는, 금속과 같은 전기 전도성 재질로 구성되어, 전하의 이동 통로 역할을 하며, 시트 형태로 구성될 수 있다. 그리고, 활물질층은, 이러한 시트 형태의 집전체의 표면, 특히 양면 모두에 형성될 수 있다. 이러한 활물질층은, 활성탄과 같은 활물질, 그리고, 도전성 재료와 결합제 등을 포함할 수 있다.
상기 음극(112)은, 상기 양극(111)과 반대 극성을 갖는 전극판으로 기능할 수 있다. 상기 음극(112)은, 권취된 시트 형태로 구성될 수 있다. 또한, 상기 음극(112)은, 집전체 및 그 표면에 코팅된 활물질층을 구비할 수 있다.
상기 음극(112)은, 양극(111)과 대면되도록 구성될 수 있다. 즉, 상기 음극(112)은, 양극(111)과 표면이 서로 마주보도록 겹쳐진 상태에서 함께 권취됨으로써, 코어부에서 말단부에 이르기까지 양극(111)과 대면되도록 구성될 수 있다. 여기서, 코어부란 양극(111) 및 음극(112)이 권취될 때, 길이 방향으로 중심 측 단부를 의미한다. 그리고, 말단부란 양극(111) 및 음극(112)이 권취될 때, 길이 방향으로 외부 측 단부를 의미한다. 이와 같은 구성에서, 양극(111)과 음극(112)은, 함께 권취되기 때문에, 가장 안쪽에 위치한 부분과 가장 바깥쪽에 위치한 부분을 제외하고는, 양면이 서로 대면될 수 있다. 즉, 양극(111)은, 가장 안쪽에 위치한 최내층 등 일부를 제외하고는 내측면과 외측면 모두 음극(112)과 대면될 수 있다. 그리고, 음극(112)은, 가장 바깥쪽에 위치한 최외층 등을 제외하고는 내측면과 외측면 모두 양극(111)과 대면될 수 있다.
상기 음극(112)은, 상기 양극(111)의 외측에 위치할 수 있다. 즉, 양극(111)과 음극(112)이 서로 겹쳐진 채로 권취될 때, 음극(112)은 양극(111)보다 바깥쪽에서 말려진다고 할 수 있다. 상기 음극(112)의 코어부는, 양극(111)의 코어부보다 외측에 위치할 수 있다. 예를 들어, 전기화학 커패시터가 원통형으로 구성된다고 할 때, 양극(111)의 내측 단부는 음극(112)의 내측 단부보다 원통의 중심축에 가깝게 위치할 수 있다.
상기 세퍼레이터(113)는, 양극(111)과 음극(112) 사이에 개재될 수 있다. 상기 세퍼레이터(113)는, 양극(111)과 음극(112)의 직접적인 접촉을 막아 단락을 방지하고, 이들 사이에서 이온이 이동되도록 할 수 있다. 이를 위해, 상기 세퍼레이터(113)는, 양극(111) 및 음극(112)과 마찬가지로 얇고 평평한 시트 형태로 구성되어, 양극(111)과 음극(112) 사이에서 이들과 함께 권취될 수 있다.
본 발명은, 상기 양극(111), 상기 음극(112) 및 상기 세퍼레이터(113)에 대하여, 특정 성분으로 한정되지 않는다. 즉, 본 발명에서, 상기 양극(111), 상기 음극(112) 및 상기 세퍼레이터(113)의 구성성분으로는, 본 발명의 출원 시점에 공지된 다양한 종류의 전극 및 세퍼레이터 재질이 채용될 수 있다.
이러한, 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)는 일방향으로 적층될 수 있다. 보다 구체적으로, 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)는 도 2에 도시된 바와 같이, 각각의 중심이 동일 선상에 위치하도록 적층될 수 있다. 즉, 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)의 코어부가 동일 선상에 위치하도록 적층될 수 있다.
이하, 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 간의 차이에 대해 설명하도록 한다.
도 3은 본 발명의 일 실시예에 따른 전기화학 커패시터의 구성 요소인 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 단면을 나타내는 단면도이다.
도 3을 더 참조하면, 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)는 각각 양극(111), 음극(112) 및 세퍼레이터(113)를 동일하게 구비한다. 다만, 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)는 양극(111), 음극(112) 및 세퍼레이터(113)의 권취수가 인접한 전극 조립체 간에 상이하도록 형성될 수 있다.
보다 구체적으로, 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)는 홀수층에 위치하는 전극 조립체(110a, 110c, 110e)의 양극(111), 음극(112) 및 세퍼레이터(113)의 권취수가 제1 권취수이고, 짝수층에 위치하는 전극 조립체(110b, 110d)의 양극(111), 음극(112) 및 세퍼레이터(113)의 권취수가 제2 권취수일 수 있다. 여기서, 제1 권취수와 제2 권취수는 상이할 수 있다.
즉, 홀수층에 위치하는 전극 조립체(110a, 110c, 110e)는 각각 동일한 권취수인 제1 권취수로 권취되어 코어부로부터 최외각까지의 거리가 상호 동일할 수 있다.
또한, 짝수층에 위치하는 전극 조립체(110b, 110d)는 각각 동일한 권취수인 제2 권취수로 권취되어 코어부로부터 최외각까지의 거리가 상호 동일할 수 있다.
그러나, 홀수층에 위치하는 전극 조립체(110a, 110c, 110e)와 짝수층에 위치하는 전극 조립체(110b, 110d)는 서로 다른 권취수로 권취되어 코어부로부터 최외각까지의 거리가 상이할 수 있다.
이때, 제1 권취수와 제2 권취수 간에 권취수 차이는 양극(111), 음극(112) 및 세퍼레이터(113)의 두께에 대응하여 설정된 기준 권취수일 수 있다.
보다 구체적으로, 전극 조립체가 1회 권취되는 경우, 코어부로부터 최외각까지의 거리는 양극(111), 음극(112) 및 세퍼레이터(113)의 두께와 동일할 수 있다. 나아가, 전극 조립체가 n회 권취되는 경우, 코어부로부터 최외각까지의 거리는 n회 겹쳐진 양극(111), 음극(112) 및 세퍼레이터(113)의 두께와 동일할 수 있다. 즉, 전극 조립체의 코어부로부터 최외각까지의 거리는 양극(111), 음극(112) 및 세퍼레이터(113)의 권취수 및 두께에 비례할 수 있다.
이를 이용하여, 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)는 인접한 전극 조립체 간에 일정 길이 이상의 단차가 발생하여 표면적이 증가되도록, 홀수층에 위치하는 전극 조립체(110a, 110c, 110e)는 제1 권취수로 권취되고 짝수층에 위치하는 전극 조립체(110b, 110d)는 제1 권취수보다 기준 권취수만큼 감소된 제2 권취수로 귄취될 수 있다.
이때, 기준 권취수는 홀수층에 위치하는 전극 조립체(110a, 110c, 110e)의 코어부로부터 최외각까지의 거리와 짝수층에 위치하는 전극 조립체(110b, 110d)의 코어부로부터 최외각까지의 거리 간의 차이가 미리 설계된 차이에 해당하도록 설정된 권취수일 수 있다.
예를 들어, 1회 권취된 전극 조립체의 코어부로부터 최외각까지의 거리가 0.1mm이고, 홀수층에 위치하는 전극 조립체(110a, 110c, 110e)의 코어부로부터 최외각까지의 거리와 짝수층에 위치하는 전극 조립체(110b, 110d)의 코어부로부터 최외각까지의 거리 간의 미리 설계된 차이가 1.0mm인 경우, 기준 권취수는 미리 설계된 차이가 1.0mm에 해당하는 권취수인 10회로 설정될 수 있다.
이에 따라, 제1 권취수와 제2 권취수 간에 권취수 차이는 기준 권취수 10회일 수 있다. 이를 위하여, 홀수층에 위치하는 전극 조립체(110a, 110c, 110e)는 짝수층에 위치하는 전극 조립체(110b, 110d)보다 기준 권취수만큼 더 귄취되기 위하여, 권취되기 전 펼쳐진 길이가 홀수층에 위치하는 전극 조립체(110a, 110c, 110e)보다 기준 권취수에 해당하는 길이만큼 더 길게 형성될 수 있다.
따라서, 도 2에 도시된 바와 같이, 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 사이에는 단차가 발생하여 최외각의 표면적이 증가할 수 있다. 전극 조립체의 최외각의 표면적(겉넓이)가 증가할수록 방열량이 증가될 수 있다. 즉, 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)의 옆면뿐만 아니라, 윗면 및 아랫면 등 외부로 노출된 부분에서도 열이 방출될 수 있다. 따라서, 본원의 구성에 의하면, 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)는 외부와의 열교환이 발생하는 표면적이 증가하기 때문에, 발열 성능이 향상될 수 있다.
이하에서는, 본원의 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)가 연결된 조립체와 일반적인 원기둥 형상의 조립체 간의 표면적의 크기를 비교 설명한다.
예컨대, 도 2의 실시예에서, 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)가 연결된 높이를 H 라고 가정한다. 이 경우, 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)가 연결된 A 조립체의 겉넓이는 소정의 조건하에서 홀수층 전극 조립체(110a, 110c 및 110e)만이 H 높이로 연결된 B 조립체(원기둥)의 겉넓이보다 클 수 있다. 이 경우, B 조립체는 본원의 홀수층 전극 조립체(110a, 110c 및 110e)이 5개 포함된 원기둥 형상일 수 있다.
여기서, A 조립체 및 B 조립체에 포함된 복수의 전극 조립체의 개수가 n개이고, A 조립체의 홀수층 전극 조립체 및 B 조립체의 반지름이 R1이고, A 조립체의 짝수층 전극 조립체의 반지름이 R2이라고 가정한다. 이 경우, 상기 소정의 조건이란, A 조립체 및 B 조립체의 높이 H가 "n×(R1+R2)"보다 작고 "0"보다 클 조건을 의미한다. 높이 H에 대한 소정의 조건은, 원기둥의 겉넓이를 구하는 수식에 의해 산출될 수 있으므로, 소정의 조건을 구하는 자세한 내용에 대해서는 생략한다.
따라서, 본원의 전기화학적 커패시터는 포함되는 양극(111), 음극(112) 및 세퍼레이터(113)의 양이 일반적인 원통형 커패시터에 포함되는 양극, 음극 및 세퍼레이터의 양보다 적으면서, 겉넓이는 일반적인 원통형 커패시터보다 크게 형성될 수 있다.
즉, 본원의 전기화학적 커패시터는 포함되는 양극(111), 음극(112) 및 세퍼레이터(113)를 이용하여 최대 표면적을 갖도록 형성될 수 있다. 따라서, 본원의 전기화학적 커패시터는 일반적인 원통형 커패시터에 비해 방열 효율이 향상될 수 있으므로, 성능이 오랜 시간 동안 안정적으로 유지되고, 수명이 증가될 수 있는 장점이 있다.
도 4는 본 발명의 일 실시예에 따른 전기화학 커패시터의 구성 요소인 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)에 구비된 양극(111)이 권취되기 전 형상을 나타내는 도면이다.
도 4를 더 참조하면, 상기 양극 리드선(120)은 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 양극(111)과 전기적으로 연결될 수 있다.
이때, 상기 양극 리드선(120)은 양극(111)의 코어부(C)로부터 제1 거리(L1)만큼 떨어진 위치에서 양극(111)에 전기적으로 연결될 수 있다. 즉, 양극 리드선(120)이 양극(111)과 연결된 지점(P)는 양극(111)의 코어부(C)로부터 제1 거리(L1)만큼 떨어질 수 있다. 그리고, 제1 거리(L1)는 최소 권취수로 권취되는 양극(111)의 말단부(T1)로부터 코어부(C)까지의 제1 최소 거리(L2) 미만일 수 있다.
즉, 상기 양극 리드선(120)은 전기적으로 분리된 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 양극(111)을 전기적으로 연결시킬 수 있다. 또한, 상기 양극 리드선(120)은 각각의 양극(111)과 전기적으로 연결된 지점(P)이 최소 권취수로 권취되는 양극(111)의 말단부(T1)와 코어부(C) 사이에 수직 방향으로 배열될 수 있다.
한편, 상기 양극 리드선(120)은 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 양극(111)과 전기적으로 연결되고, 전기화학 커패시터를 충방전시키기 위해 전도성 물질로 형성될 수 있다. 바람직하게, 본 발명은, 상기 양극 리드선(120)에 대하여, 특정 성분으로 한정되지 않는다. 즉, 본 발명에서, 상기 양극 리드선(120)의 구성성분으로는, 본 발명의 출원 시점에 공지된 다양한 종류의 리드선 재질이 채용될 수 있다.
도 5는 본 발명의 일 실시예에 따른 전기화학 커패시터의 구성 요소인 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)에 구비된 음극(112)이 권취되기 전 형상을 나타내는 도면이다.
도 5를 더 참조하면, 상기 음극 리드선(130)은 상기 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 음극(112)과 전기적으로 연결될 수 있다.
이때, 상기 음극 리드선(130)은 음극(112)의 코어부(C)로부터 제2 거리(L3)만큼 떨어진 위치에서 음극(112)에 전기적으로 연결될 수 있다. 즉, 음극 리드선(130)이 음극(112)과 연결된 지점(N)은 음극(112)의 코어부(C)로부터 제2 거리(L3)만큼 떨어질 수 있다. 그리고, 제2 거리(L3)는 최소 권취수로 권취되는 음극(112)의 말단부(T2)로부터 코어부(C)까지의 제2 최소 거리(L4) 미만일 수 있다.
즉, 상기 음극 리드선(130)은 전기적으로 분리된 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 음극(112)을 전기적으로 연결시킬 수 있다. 또한, 상기 음극 리드선(130)은 각각의 음극(112)과 전기적으로 연결된 지점(N)이 최소 권취수로 권취되는 음극(112)의 말단부(T2)와 코어부(C) 사이에 수직 방향으로 배열될 수 있다.
한편, 상기 음극 리드선(130)은 상기 양극 리드선(120)과 전기적으로 연결되지 않도록 이격되어 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 음극(112)과 전기적으로 연결될 수 있다.
한편, 상기 음극 리드선(130)은 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 음극(112)과 전기적으로 연결되고, 전기화학 커패시터를 충방전시키기 위해 전도성 물질로 형성될 수 있다. 바람직하게, 본 발명은, 상기 음극 리드선(130)에 대하여, 특정 성분으로 한정되지 않는다. 즉, 본 발명에서, 상기 음극 리드선(130)의 구성성분으로는, 본 발명의 출원 시점에 공지된 다양한 종류의 리드선 재질이 채용될 수 있다.
상기 하우징(140)은 내부에 빈 공간을 구비하여, 양극(111), 음극(112) 및 세퍼레이터(113)를 구비하는 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)를 수용할 수 있다.
또한, 상기 하우징(140)은 내부의 빈 공간에 양극 리드선(120) 및 음극 리드선(130)을 더 수용할 수 있다. 이때, 양극 리드선(120) 및 음극 리드선(130)은 일부만이 상기 하우징(140)에 수용되고, 나머지 일부는 상기 하우징(140)의 외부로 노출될 수 있다. 보다 구체적으로, 상기 하우징(140)은 양극 리드선(120) 중에서 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 양극(111)과 전기적으로 연결된 일부만을 수용할 수 있고, 음극 리드선(130) 중에서 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e) 각각의 음극(112)과 전기적으로 연결된 일부만을 수용할 수 있다.
또한, 상기 하우징(140)은 전해액을 더 수용할 수 있다. 여기서, 상기 전해액은, 염 성분으로서 전해질과 유기 용매를 포함할 수 있다.
상기 전해질은 음이온으로 Br-, BF4-, PF6-, TFSI-로 등과 같은 음이온 1종 이상과, 양이온으로 스파이로-(1,1')-바이피롤리디늄, 피페리딘-1-스파이로-1'-피롤리디늄, 스파이로-(1,1')-바이피페리디늄, 디알킬피롤리디늄, 디알킬이미다졸륨, 디알킬피리디늄, 테트라-알킬암모늄, 디알킬피페리디늄, 테트라-알킬포스포늄 등과 같은 4급 암모늄 구조를 가진 양이온 1종 이상을 포함하는 것일 수 있다. 상기 전해질로는 리튬을 포함하지 않는 비리튬계 염이 사용될 수 있다.
또한, 상기 전해액에 사용되는 유기 용매로는 예를 들어, 프로필렌카보네이트(PC), 디에틸카보네이트, 에틸렌카보네이트(EC), 술포란, 아세토니트릴, 디메톡시에탄 및 테트라하이드로푸란, 및 에틸메틸카보네이트(EMC)로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
다만, 본 발명은 이러한 전해액의 특정 성분으로 한정되지 않으며, 본 발명의 출원 시점에 공지된 다양한 전해액이 본 발명의 커패시터에서 전해액으로 채용될 수 있다.
이러한, 상기 하우징(140)은, 금속 재질 혹은 폴리머 재질로 구성될 수 있으며, 전해액이 새지 않도록 밀봉될 수 있다.
상기 하우징(140)은 도 1에 도시된 바와 같이, 상기 권취수가 상이한 복수의 전극 조립체의 외형이 대응하여 단차가 형성될 수 있다. 따라서, 상기 하우징(140)은 최외각의 표면적이 증가할 수 있다. 이러한 구성에 따라, 상기 하우징(140)은 내부 빈 공간에 구비된 복수의 전극 조립체(110a, 110b, 110c, 110d 및 110e)로부터 발생되는 열을 빠르게 배출함으로써, 내부 온도가 상승하는 현상을 방지할 수 있다.
이하, 본 발명의 일 실시예에 따른 전기화학 커패시터의 제조 방법에 대해 설명하도록한다.
도 6은 본 발명의 일 실시예에 따른 전기화학 커패시터의 제조 방법을 나타내는 순서도이다.
도 6을 참조하면, 본 발명의 일 실시예에 따른 전기화학 커패시터의 제조 방법은 시트 형태로 구성된 양극, 양극에 대면되며 시트 형태로 구성된 음극 및 양극과 음극 사이에 개재된 세퍼레이터를 각각 구비하는 복수의 전극 조립체를 배치하는 단계(S100), 양극 리드선을 복수의 전극 조립체 각각의 양극과 전기적으로 연결시키고, 음극 리드선을 복수의 전극 조립체 각각의 음극과 전기적으로 연결시키는 단계(S200), 복수의 전극 조립체의 코어부부터 권취하는 단계(S300) 및 상기 복수의 전극 조립체를 하우징에 수납하는 단계(S400)를 포함할 수 있다.
상기 배치하는 단계(S100)는 인접한 전극 조립체의 양극, 음극 및 세퍼레이터 각각의 권취수가 상이하도록 양극, 음극 및 세퍼레이터를 배치하는 단계를 포함할 수 있다.
보다 구체적으로, 상기 배치하는 단계(S100)는 전극 조립체에 구비되는 양극, 음극 및 세퍼레이터를 음극, 세퍼레이터, 양극 순으로 적층하여 배치하는 단계일 수 있다.
이후, 상기 배치하는 단계(S100)는 권취되기 전 상태의 전극 조립체의 코어부로부터 말단부까지의 시트 길이가 인접한 전극 조립체 간에 상이하도록 권취되기 전 상태의 복수의 전극 조립체를 배치하는 단계를 포함할 수 있다.
예를 들어, 상기 배치하는 단계(S100)에서 홀수층에 위치하는 전극 조립체의 시트 길이가 짝수층에 위치하는 전극 조립체의 시트 길이보다 길도록 복수의 전극 조립체가 배치될 수 있다.
또한, 상기 배치하는 단계(S100)는 복수의 전극 조립체의 코어부가 수직 방향으로 동일한 지점에 위치하도록 복수의 전극 조립체를 배치하는 단계를 포함할 수 있다.
이후, 상기 전기적으로 연결시키는 단계(S200)는 양극 리드선을 배치된 복수의 전극 조립체 각각의 양극과 전기적으로 연결시키고, 음극 리드선을 배치된 복수의 전극 조립체 각각의 음극과 전기적으로 연결시키는 단계일 수 있다.
보다 구체적으로, 상기 전기적으로 연결시키는 단계(S200)는 양극 리드선이 양극에 전기적으로 연결된 지점으로부터 양극의 코어부까지의 제1 거리가 최소 권취수로 권취되는 양극의 말단부로부터 코어부까지의 제1 최소 거리 미만이 되도록 양극 리드선을 양극에 전기적으로 연결시키는 단계를 포함할 수 있다.
또한, 상기 전기적으로 연결시키는 단계(S200)는 음극 리드선이 음극에 전기적으로 연결된 지점으로부터 음극의 코어부까지의 제2 거리가 최소 권취수로 권취되는 음극의 말단부로부터 코어부까지의 제2 최소 거리 미만이 되도록 음극 리드선을 음극에 전기적으로 연결시키는 단계를 더 포함할 수 있다.
상기 권취하는 단계(S300)는 배치된 복수의 전극 조립체를 코어부부터 권취하는 단계일 수 있다. 이때, 복수의 전극 조립체의 시트 길이에 따라 전극 조립체 각각의 권취수가 상이할 수 있다. 즉, 전극 조립체의 시트 길이가 짧을수록 권취수가 적을 수 있다. 이에 따라, 권취된 복수의 전극 조립체는 최외곽에 단차가 형성되어 원통 형상의 종래 전극 조립체보다 표면적이 증가할 수 있다.
상기 수납하는 단계(S400)는 권취된 복수의 전극 조립체를 하우징에 수납하는 단계일 수 있다. 보다 구체적으로, 상기 수납하는 단계(S400)는 최외곽에 단차가 형성된 복수의 전극 조립체를 원통 형상의 하우징에 수납하고, 하우징을 외측에서 내측으로 가압하여 복수의 전극 조립체의 최외곽과 같이 단차를 형성시키는 단계를 포함할 수 있다.
이후, 상기 수납하는 단계(S400)는 하우징 내부에 전해액을 투입하고, 전해액이 외부로 유출되지 않도록 밀봉하는 단계를 더 포함할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
(부호의 설명)
110a, 110b, 110c, 110d 및 110e: 전극 조립체
111: 양극
112: 음극
113: 세퍼레이터
120: 양극 리드선
130: 음극 리드선
140: 하우징

Claims (10)

  1. 권취된 시트 형태로 구성되고 양면에 활물질층이 코팅된 양극, 상기 양극에 대면되도록 권취된 시트 형태로 구성되고 양면에 활물질층이 코팅된 음극 및 상기 양극과 상기 음극 사이에 개재되어 권취된 세퍼레이터를 각각 구비하는 복수의 전극 조립체;
    상기 복수의 전극 조립체 각각의 양극과 전기적으로 연결되는 양극 리드선 및
    상기 복수의 전극 조립체 각각의 음극과 전기적으로 연결되는 음극 리드선을 포함하고,
    상기 복수의 전극 조립체는,
    일방향으로 적층되고, 상기 양극, 상기 음극 및 상기 세퍼레이터의 권취수가 인접한 전극 조립체 간에 상이하도록 형성된 전기화학 커패시터.
  2. 제1항에 있어서,
    상기 복수의 전극 조립체는,
    홀수층에 위치하는 전극 조립체의 상기 양극, 상기 음극 및 상기 세퍼레이터의 권취수가 제1 권취수이고, 짝수층에 위치하는 전극 조립체의 상기 양극, 상기 음극 및 상기 세퍼레이터의 권취수가 제2 권취수인 전기화학 커패시터.
  3. 제2항에 있어서,
    상기 복수의 전극 조립체는,
    상기 제1 권취수와 상기 제2 권취수 간에 권취수 차이가 상기 양극, 상기 음극 및 상기 세퍼레이터의 두께에 대응하여 설정된 기준 권취수가 되도록 권취되는 전기화학 커패시터.
  4. 제1항에 있어서,
    상기 양극 리드선은,
    상기 양극에 전기적으로 연결된 지점으로부터 상기 양극의 코어부까지의 제1 거리가 최소 권취수로 권취되는 양극의 말단부로부터 코어부까지의 제1 최소 거리 미만이 되도록 상기 양극에 전기적으로 연결되는 전기화학 커패시터.
  5. 제1항에 있어서,
    상기 음극 리드선은,
    상기 음극에 전기적으로 연결된 지점으로부터 상기 음극의 코어부까지의 제2 거리가 최소 권취수로 권취되는 음극의 말단부로부터 코어부까지의 제2 최소 거리 미만이 되도록 상기 음극에 전기적으로 연결되는 전기화학 커패시터.
  6. 제1항에 있어서,
    상기 복수의 전극 조립체를 내부에 수용하고, 권취수가 상이한 복수의 전극 조립체의 외형에 대응하여 단차가 형성된 하우징을 더 포함하는 전기화학 커패시터.
  7. 시트 형태로 구성된 양극, 상기 양극에 대면되며 시트 형태로 구성된 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 각각 구비하는 복수의 전극 조립체를 배치하는 단계;
    양극 리드선을 상기 복수의 전극 조립체 각각의 양극과 전기적으로 연결시키고, 음극 리드선을 상기 복수의 전극 조립체 각각의 음극과 전기적으로 연결시키는 단계;
    상기 복수의 전극 조립체의 코어부부터 권취하는 단계 및
    상기 복수의 전극 조립체를 하우징에 수납하는 단계를 포함하는 전기화학 커패시터의 제조 방법.
  8. 제7항에 있어서,
    상기 배치하는 단계는,
    인접한 전극 조립체의 상기 양극, 상기 음극 및 상기 세퍼레이터 각각의 권취수가 상이하도록 상기 양극, 상기 음극 및 상기 세퍼레이터를 배치하는 단계를 포함하는 전기화학 커패시터의 제조 방법.
  9. 제7항에 있어서,
    상기 전기적으로 연결시키는 단계는,
    상기 양극 리드선이 상기 양극에 전기적으로 연결된 지점으로부터 상기 양극의 코어부까지의 제1 거리가 최소 권취수로 권취되는 양극의 말단부로부터 코어부까지의 제1 최소 거리 미만이 되도록 상기 양극 리드선을 상기 양극에 전기적으로 연결시키는 단계를 포함하는 전기화학 커패시터의 제조 방법.
  10. 제7항에 있어서,
    상기 전기적으로 연결시키는 단계는,
    상기 음극 리드선이 상기 음극에 전기적으로 연결된 지점으로부터 상기 음극의 코어부까지의 제2 거리가 최소 권취수로 권취되는 음극의 말단부로부터 코어부까지의 제2 최소 거리 미만이 되도록 상기 음극 리드선을 상기 음극에 전기적으로 연결시키는 단계를 포함하는 전기화학 커패시터의 제조 방법.
PCT/KR2019/008498 2018-07-10 2019-07-10 전기화학 커패시터 및 이의 제조 방법 WO2020013604A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980006707.4A CN111566769B (zh) 2018-07-10 2019-07-10 电化学电容器及其制造方法
JP2020524215A JP7049566B2 (ja) 2018-07-10 2019-07-10 電気化学キャパシタ及びその製造方法
EP19833204.1A EP3703089B1 (en) 2018-07-10 2019-07-10 Electrochemical capacitor and method of manufacturing the same
US16/761,292 US11217399B2 (en) 2018-07-10 2019-07-10 Electrochemical capacitor and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180080098A KR102301720B1 (ko) 2018-07-10 2018-07-10 전기화학 커패시터 및 이의 제조 방법
KR10-2018-0080098 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020013604A1 true WO2020013604A1 (ko) 2020-01-16

Family

ID=69143149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008498 WO2020013604A1 (ko) 2018-07-10 2019-07-10 전기화학 커패시터 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US11217399B2 (ko)
EP (1) EP3703089B1 (ko)
JP (1) JP7049566B2 (ko)
KR (1) KR102301720B1 (ko)
CN (1) CN111566769B (ko)
WO (1) WO2020013604A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3916878A4 (en) * 2020-03-31 2022-05-11 Ningde Amperex Technology Ltd. CELL, BATTERY AND ELECTRONIC DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163053B1 (ko) * 2010-04-06 2012-07-05 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
KR20130085572A (ko) * 2011-12-22 2013-07-30 삼성전기주식회사 캐패시터 및 캐패시터 제조방법
KR20130132230A (ko) * 2012-05-25 2013-12-04 주식회사 엘지화학 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
KR101387424B1 (ko) * 2012-11-22 2014-04-25 주식회사 엘지화학 전폭의 길이가 동일하고 전장의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
JP2015082640A (ja) * 2013-10-24 2015-04-27 トヨタ自動車株式会社 巻回型コンデンサの製造方法
KR20180080098A (ko) 2017-01-03 2018-07-11 삼성전자주식회사 전자 장치 및 그 동작 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126321A (ja) * 1997-06-27 1999-01-29 Elna Co Ltd 電気二重層コンデンサ
KR20000075011A (ko) 1999-05-27 2000-12-15 권호택 전기이중층 캐패시터 소자의 적층구조
SE515883C2 (sv) 2000-01-14 2001-10-22 Abb Ab Kraftkondensator, kondensatorbatteri samt användning av en eller flera kraftkondensatorer
JP2004179621A (ja) 2002-11-11 2004-06-24 Fujitsu Media Device Kk アルミ電解コンデンサ
TW200419606A (en) * 2003-03-24 2004-10-01 Luxon Energy Devices Corp Supercapacitor and a module of the same
JP2005353722A (ja) * 2004-06-09 2005-12-22 Honda Motor Co Ltd 電気二重層キャパシタ
JP4683044B2 (ja) * 2007-12-28 2011-05-11 Tdk株式会社 巻回型電気化学デバイス、及び巻回型電気化学デバイスの製造方法
FR2927727B1 (fr) * 2008-02-19 2017-11-17 Batscap Sa Ensemble de stockage d'energie electrique multibobines.
JP5526488B2 (ja) 2008-03-26 2014-06-18 Tdk株式会社 電気化学デバイス
US8390986B2 (en) 2010-03-24 2013-03-05 Samhwa Capacitor Co., Ltd. Super capacitor for high power
KR101118188B1 (ko) 2010-03-24 2012-03-16 삼화콘덴서공업주식회사 고전력 슈퍼 커패시터
KR20140044019A (ko) 2012-10-04 2014-04-14 현대모비스 주식회사 진동 및 충격 성능 개선용 커패시터 거치대 및 이를 이용한 obc용 하우징 어셈블리
KR101385732B1 (ko) 2012-11-22 2014-04-17 주식회사 엘지화학 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR101550044B1 (ko) 2013-07-16 2015-09-04 삼화전기주식회사 박판, 박판 제조방법 및 이를 이용한 금속 커패시터
CN203377340U (zh) * 2013-08-16 2014-01-01 东莞新能源科技有限公司 电芯
US9466429B1 (en) 2014-02-07 2016-10-11 Cornell Dubilier Marketing, Inc. Configurable multi-capacitor assembly
JP2016100578A (ja) 2014-11-26 2016-05-30 日本ケミコン株式会社 コンデンサおよびその製造方法
KR102002315B1 (ko) 2015-08-17 2019-10-01 주식회사 엘지화학 용량과 크기가 상이한 단위셀들로 구성된 비정형 전극조립체 및 이를 포함하는 전지셀
CN108022757A (zh) 2016-10-28 2018-05-11 钰邦电子(无锡)有限公司 具有非等宽导电箔片的电容器封装结构及其卷绕式组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163053B1 (ko) * 2010-04-06 2012-07-05 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
KR20130085572A (ko) * 2011-12-22 2013-07-30 삼성전기주식회사 캐패시터 및 캐패시터 제조방법
KR20130132230A (ko) * 2012-05-25 2013-12-04 주식회사 엘지화학 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
KR101387424B1 (ko) * 2012-11-22 2014-04-25 주식회사 엘지화학 전폭의 길이가 동일하고 전장의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
JP2015082640A (ja) * 2013-10-24 2015-04-27 トヨタ自動車株式会社 巻回型コンデンサの製造方法
KR20180080098A (ko) 2017-01-03 2018-07-11 삼성전자주식회사 전자 장치 및 그 동작 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3703089A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3916878A4 (en) * 2020-03-31 2022-05-11 Ningde Amperex Technology Ltd. CELL, BATTERY AND ELECTRONIC DEVICE

Also Published As

Publication number Publication date
CN111566769B (zh) 2022-04-08
US20210151261A1 (en) 2021-05-20
KR102301720B1 (ko) 2021-09-10
EP3703089B1 (en) 2023-11-22
US11217399B2 (en) 2022-01-04
CN111566769A (zh) 2020-08-21
EP3703089A1 (en) 2020-09-02
EP3703089A4 (en) 2021-04-21
JP2021501994A (ja) 2021-01-21
KR20200006403A (ko) 2020-01-20
JP7049566B2 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2018174451A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019074198A1 (ko) 이차 전지
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2021033943A1 (ko) 이차 전지
WO2020256281A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2014137017A1 (ko) 라운드 코너를 포함하는 전극조립체
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2019031702A1 (ko) 배터리 셀 프레임 및 이를 포함하는 배터리 모듈
WO2021118020A1 (ko) 이차전지 및 이를 포함하는 디바이스
WO2021038545A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2020246696A1 (ko) 이차 전지 제조 장치 및 방법
WO2020013604A1 (ko) 전기화학 커패시터 및 이의 제조 방법
WO2018038448A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2020171376A1 (ko) 단위셀 및 그 제조방법
WO2018026117A1 (ko) 이차 전지
WO2020213855A1 (ko) 이차 전지 제조 장치 및 방법
WO2023085850A1 (ko) 전지 조립체 제조방법, 전지 조립체 및 이를 포함하는 이차 전지
WO2017213377A1 (ko) 전기화학 커패시터
WO2019160334A1 (ko) 이차 전지 및 이를 포함하는 배터리 팩
WO2018216891A1 (ko) 이차 전지
WO2010002161A2 (ko) 보조전극을 갖는 쿼지 바이폴라 전기화학셀
WO2021033942A1 (ko) 이차 전지
WO2020246716A1 (ko) 이차전지
WO2021085807A1 (ko) 이차 전지 및 그 제조 방법
WO2020218794A1 (ko) 전극조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524215

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019833204

Country of ref document: EP

Effective date: 20200525

NENP Non-entry into the national phase

Ref country code: DE