WO2020013223A1 - マルテンサイト系ステンレス鋼帯およびその製造方法 - Google Patents

マルテンサイト系ステンレス鋼帯およびその製造方法 Download PDF

Info

Publication number
WO2020013223A1
WO2020013223A1 PCT/JP2019/027329 JP2019027329W WO2020013223A1 WO 2020013223 A1 WO2020013223 A1 WO 2020013223A1 JP 2019027329 W JP2019027329 W JP 2019027329W WO 2020013223 A1 WO2020013223 A1 WO 2020013223A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel strip
martensitic stainless
stainless steel
quenching
temperature
Prior art date
Application number
PCT/JP2019/027329
Other languages
English (en)
French (fr)
Inventor
弘好 藤原
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201980045831.1A priority Critical patent/CN112384637A/zh
Priority to EP19833731.3A priority patent/EP3822380B1/en
Priority to JP2020530225A priority patent/JP7318648B2/ja
Priority to US17/258,445 priority patent/US11814697B2/en
Publication of WO2020013223A1 publication Critical patent/WO2020013223A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a martensitic stainless steel strip and a method for producing the same.
  • Martensitic stainless steel strip has excellent corrosion resistance, hardness, and fatigue properties, and is used in a wide range of applications such as blades, spring materials, valve materials, and cover materials that are subjected to repeated stress.
  • a martensitic stainless steel strip having a sufficiently high fatigue strength is required for a spring material or a valve material application in order to suppress fatigue fracture due to repeated stress.
  • Patent Document 2 discloses that a martensitic stainless steel having a compressive residual stress on the plate surface and a solid-solution nitrogen-concentrated layer on the surface of the plate in order to improve the corrosion resistance and fatigue characteristics of the flapper valve element. Is described.
  • Patent Document 2 in an atmosphere containing 20% or more of nitrogen and 10% or less (including 0%) of oxygen (percentage is% by volume), after heating to a temperature equal to or higher than the temperature at which austenite is transformed into a single phase, it also describes that rapid cooling can adjust the residual stress on the surface of the martensitic stainless steel to a compressive stress.
  • Patent Document 1 is an invention capable of improving the fatigue limit of a steel strip, the fatigue limit may be insufficient depending on the use environment, and there is room for further improvement.
  • Patent Document 2 there is a possibility that adjustment of the residual stress alone may be insufficient to obtain excellent fatigue strength.
  • the invention described in Patent Document 2 is an invention in which the compressive residual stress by the nitrogen-enriched layer formed on the plate surface is specified, but the nitrogen-enriched layer is uniformly formed on the edge portion and the outer peripheral portion of the valve shape. And it is difficult to obtain a desired residual stress.
  • an object of the present invention is to provide a martensitic stainless steel strip and a method for producing the same, which have better fatigue strength than conventional products.
  • one embodiment of the present invention is a martensitic stainless steel strip having a martensite structure and a thickness of 1 mm or less,
  • the compressive residual stress on the surface of the steel strip is 50 MPa or more;
  • the martensitic stainless steel strip is characterized in that the area ratio of carbides present in the metal structure of the steel strip is 0.5% or more and 8.0% or less.
  • the compressive residual stress in the direction perpendicular to the rolling direction is larger than the compressive residual stress in the rolling direction by 50 MPa or more.
  • the area ratio of the carbide having a circle equivalent diameter of 0.10 ⁇ m or more is 100%, the area ratio of the carbide having a circle equivalent diameter of 0.10 ⁇ m to 0.50 ⁇ m is 45% or more.
  • Another aspect of the present invention is an unwinding step of unwinding a martensitic stainless steel strip having a thickness of 1 mm or less, A quenching step of passing the steel strip through a quenching furnace in a non-oxidizing gas atmosphere, heating and then cooling; Performing a tempering step of passing the quenched steel strip through a tempering furnace in a non-oxidizing gas atmosphere to temper the steel strip,
  • the quenching furnace at the time of the quenching step has at least a temperature raising part and a holding part, and the temperature raising part is 0.7 T (° C.) or more and T (° C.) when a predetermined quenching temperature is T (° C.).
  • a method for producing a martensitic stainless steel strip characterized by performing a polishing step of polishing the surface of the steel strip after the tempering step by machining.
  • TS / TH is larger than 1 and larger than 5. small.
  • FIG. 9 is a graph showing the results of measuring residual stress in inventive example 1 and comparative example 12. It is a scanning electron microscope photograph which shows the cross section of the example of this invention.
  • the present invention is not limited to the embodiments described here, and can be appropriately combined or improved without departing from the technical idea of the present invention.
  • the present invention is applicable to those having a martensitic stainless steel composition.
  • the composition range is not limited, for example, the component composition of the steel strip of the present invention includes C: 0.3 to 1.2% and Cr: 10.0 to 18.0% by mass%. Is preferred.
  • composition of the steel strip of the present invention is as follows: C: 0.3 to 1.2% (more preferably 0.3 to 1.0%, more preferably 0.3 to 0.8%), Si: 1 % Or less, Mn: 2% or less, Mo: 3.0% or less (more preferably 2.5% or less, still more preferably 2.0% or less), Ni: 1.0% or less (including 0%), Cr: 10.0 to 18.0% (more preferably 11.0% to 16.0%, further preferably 12.0% to 15.0%), Fe and martensitic stainless steel as an unavoidable impurity It is preferable that
  • the martensitic stainless steel strip of the present embodiment has a compressive residual stress of 50 MPa or more on the surface of the steel strip.
  • a compressive residual stress of 50 MPa or more on the surface of the steel strip.
  • properties such as fatigue strength tend to decrease.However, when compressive residual stress is applied, micro-cracks formed during hot rolling etc. Since growth can be suppressed, improvement in fatigue strength can be expected.
  • the compressive residual stress is less than 50 MPa, the form of the residual stress may be tensile depending on the conditions of quenching and tempering, which is not preferable.
  • the lower limit of the preferable compressive residual stress is 80 MPa, and the lower limit of the more preferable compressive residual stress is 100 MPa.
  • the upper limit of the compressive residual stress in the present embodiment is not particularly defined, it may be set to 800 MPa because there is a possibility that the production cost may increase due to the adjustment to the excessive compressive residual stress. Preferably it is 700 MPa or less, more preferably 600 MPa or less.
  • the residual compressive stress may be evaluated in any direction on the surface of the steel strip, but may be evaluated in the rolling direction (longitudinal direction of the steel strip) and may be 50 MPa or more.
  • the compressive residual stress in the direction perpendicular to the rolling direction on the surface of the steel strip is preferably higher than the compressive residual stress in the rolling direction by 50 MPa or more.
  • the compressive residual stress in the direction perpendicular to the rolling direction is preferably higher than the rolling direction by 80 MPa or more.
  • the residual stress on the surface of the steel strip in the present embodiment can be measured by, for example, an X-ray diffraction method (XRD).
  • XRD X-ray diffraction method
  • the residual stress is measured using the sin 2 ⁇ method.
  • the direction perpendicular to the rolling direction is a direction perpendicular to the rolling direction, and corresponds to the width direction when the length direction is the rolling direction in a long steel strip.
  • the area ratio of carbides present in the metal structure is 0.5% or more and 8.0% or less. This makes it possible to obtain a high-strength steel strip by suppressing crack propagation.
  • the area ratio of the carbide may be evaluated for carbides having a circle equivalent diameter of 0.10 ⁇ m or more. This is because carbides having a size of less than 0.10 ⁇ m are too small in size, making evaluation difficult, and do not significantly affect the properties of the steel strip.
  • the size of the carbide is preferably not more than 5.0 ⁇ m in circle equivalent diameter. More preferably, it is 3.0 ⁇ m or less.
  • the area ratio of carbide is excessively small, crystal grains may be coarsened by overheating, so that the area ratio of carbide is preferably 0.5% or more.
  • the more preferable area ratio of carbide is 1.0% or more, and the more preferable area ratio of carbide is 1.5% or more.
  • the area ratio of the carbide in this embodiment is obtained by observing the surface or cross section of the steel strip at a magnification of 5000 times using a scanning line electron microscope (SEM) and confirming it in a visual field of 25 ⁇ m ⁇ 19 ⁇ m (475 ⁇ m 2 ). , And the area ratio was calculated.
  • the steel strip of the present embodiment has an equivalent circle diameter of 0.10 ⁇ m to 0.50 ⁇ m (0.10 ⁇ m to 0.50 ⁇ m) when the area ratio of carbides having a circle equivalent diameter of 0.10 ⁇ m or more is set to 100%. Is preferably 45% or more.
  • the steel strip of the present embodiment has a large amount of carbide having a small equivalent circle diameter. Advantages such as hardly causing fatigue fracture as a starting point can be exhibited. Preferably it is 50% or more.
  • the area ratio of the carbide having a circle equivalent diameter of 0.10 ⁇ m to 0.50 ⁇ m is less than 45%, the carbide having a large circle equivalent diameter increases, so that the heat treatment hardness becomes insufficient or the carbide is used as a starting point. Fatigue failure tends to occur.
  • the steel strip of the present embodiment can be applied to a martensitic stainless steel strip having a thickness of 1 mm or less.
  • the lower limit of the sheet thickness is not particularly required to be set, but for example, as a steel sheet manufactured by rolling, if the sheet thickness is too thin, it is difficult to manufacture, so it can be set to about 0.01 mm.
  • a more preferred lower limit of the plate thickness is 0.05 mm, and a still more preferred lower limit of the plate thickness is 0.1 mm.
  • the present invention is characterized in that an unwinding step, a quenching step, and a tempering step are performed, and after the tempering step, a polishing step of polishing the surface of the steel strip is performed.
  • the quenching furnace used in the quenching step is characterized by comprising at least a heating section and a holding section. Further, a temperature lowering section may be provided after the holding section.
  • the above-described unwinding step, quenching step, and tempering step may be performed continuously, and other steps such as a preheating step may be added as long as the effects of the present invention are not impaired.
  • FIG. 1 shows an example of an apparatus layout according to the present embodiment.
  • a manufacturing method according to an embodiment of the present invention will be described.
  • a steel strip wound in a coil shape is mounted on an unwinding machine 1, and after unwinding a rolled steel strip 2 from the unwinding machine 1.
  • the sheet is heated by passing it through a heating furnace (quenching furnace) 3 in a non-oxidizing gas atmosphere, and then the steel strip is cooled (quenching step).
  • the quenching furnace 3 used in the present embodiment is provided with a heating unit 3A and a holding unit 3B.
  • the quenching furnace 3 of FIG. 1 is provided with a temperature lowering section 3C following the holding section 3B.
  • This temperature lowering section 3C is not essential, but is preferably provided.
  • a heating section in which the set heating temperature is set lower than the quenching temperature is provided in front of the holding section that holds the passed steel strip at a predetermined quenching temperature.
  • the set heating temperature on the outlet side of the steel strip is set higher than the set heating temperature on the inlet side of the steel strip when the steel strip is passed through the heating section.
  • the lower limit of the preferable set heating temperature of the temperature raising section is 0.8 T (° C.).
  • T the set heating temperature of the heating section
  • the steel strip cannot be heated to a desired temperature in a desired time, and the properties may be deteriorated.
  • T the set heating temperature of the heating section
  • the steel strip is rapidly heated, and the possibility of shape defects increases.
  • the time required for the steel strip to pass through the quenching furnace in FIG.
  • the present embodiment is also characterized in that the stay time of the steel strip in the furnace in the heating section is equal to or longer than the stay time of the steel strip in the holding section in the furnace. As a result, rapid progress of heating of the steel strip can be suppressed, and the occurrence of shape defects can be further suppressed. If the stay time of the steel strip in the furnace in the heating section is longer than the stay time of the steel strip in the holding section, the stay time of the steel strip in the holding section in the furnace is insufficient, and the steel strip is hardened as desired. Temperature may not be reached, and desired properties may not be obtained after quenching, or it may take time to reach a desired quenching temperature, and productivity may be reduced.
  • TS / TH is preferably greater than 1 and less than 5. Further, it is preferably larger than 1.3, and more preferably smaller than 4.
  • the heating temperature set in the holding section in the present embodiment is preferably 850 to 1200 ° C. If the temperature is lower than 850 ° C., the solid solution of the carbide tends to be insufficient. On the other hand, when the temperature is higher than 1200 ° C., the amount of the solid solution of the carbide increases, and the hardness during tempering tends to decrease.
  • the lower limit of the temperature of the holding section is more preferably 900 ° C, and further preferably 930 ° C.
  • the upper limit of the temperature of the holding portion is more preferably 1150 ° C, and further preferably 1120 ° C.
  • nitrogen, argon, a mixed gas of hydrogen and the like can be selected, but it is preferable to select argon which is less likely to react with the martensitic stainless steel strip.
  • a temperature lowering unit that is set at a temperature lower than the set heating temperature of the holding unit and controls the temperature of the steel strip may be provided.
  • the set heating temperature of the temperature lowering section is preferably 0.85 T (° C.) or more and less than T (° C.) with respect to the set heating temperature T (° C.) of the holding section, and is 0.95 T (° C.) or less. Is preferred. It is preferable that the stay time (required time) of the steel strip in the furnace in the cooling section is 10 to 30% of the time M1 required for the steel strip to pass through the quenching furnace.
  • a preheating step may be provided between the unwinding step and the quenching step.
  • an existing heating device can be applied, but it is preferable to use an induction heating device that enables rapid temperature rise of the steel strip.
  • the preheating temperature in the preheating step is preferably set to 600 ° C. or higher in order to make the preheating effective.
  • the temperature is preferably set to less than 800 ° C. in order to more reliably suppress deformation due to a rapid temperature rise.
  • the steel strip heated in the quenching furnace is rapidly cooled and quenched.
  • a quenching method there is a method using a salt bath, molten metal, oil, water, a polymer aqueous solution, or a saline solution.
  • the method of spraying water is the simplest method, and can form a thin oxide film on the surface of the steel strip. This thin oxide film is hard, and can suppress generation of flaws on the surface of the steel strip when passing through a water-cooled platen 5 described later. Therefore, it is preferable to use a method of spraying water as one means for rapidly cooling the steel strip 2 used in the present invention.
  • the steel strip is tempered in a tempering furnace 6 in a non-oxidizing gas atmosphere to adjust the steel strip to a desired hardness.
  • the temperature of the tempering furnace can be set to a desired temperature depending on the application. For example, when higher hardness characteristics are required, the temperature can be set to 200 to 300 ° C. In order to improve the formability such as press working, the temperature may be set at 300 ° C. to 400 ° C. If the passing speed in the tempering step is excessively high, the temperature may not reach the above-mentioned temperature range. Therefore, the time required for the steel strip to pass through the tempering furnace is set to M2 [min], and the thickness of the steel strip is set to When t [mm], M2 / t is preferably set to be 5 to 9.
  • polishing step of polishing the surface of the steel strip after the tempering step using the polishing apparatus 7 is performed.
  • this polishing step it is possible to stably apply compressive residual stress to the surface of the steel strip while removing the scale of the surface layer of the steel strip.
  • the stress distribution changes when annealing is performed after final rolling or when quenching and tempering is performed. As a result, a tensile residual stress may be applied to the surface layer of the steel strip.
  • buffing When applying buffing, it is possible to apply buffing using existing chemical fibers such as cotton or polyester or hemp fibers as the material of the buffing, and to increase the polishing power and maintain the polishing power such as alumina and silica.
  • the buff may be impregnated with or sprayed with an abrasive. This polishing step may be performed continuously on the steel strip after tempering, or the steel strip after tempering may be wound once and then unwound again on another line to perform only the polishing step. After the polishing step, winding by the winder 8 can provide a martensitic stainless steel strip having a desired fatigue strength.
  • Example 1 a martensitic stainless steel strip having a width of about 300 mm and a thickness of 0.2 mm was prepared.
  • the composition is shown in Table 1.
  • the prepared steel strip is wound in a coil shape, set in the unwinding machine 1, unwound the steel strip from the unwinding machine, and pass the unwound steel strip through a quenching furnace in an argon gas atmosphere. Planned.
  • the quenching furnace includes a heating unit 3A, a holding unit 3B, and a cooling unit 3C, and sets the heating temperature of the heating unit 3A at a temperature equal to or lower than the temperature of the holding unit and within a range of 800 ° C. or more and less than 1040 ° C.
  • the heating temperature was set so as to gradually increase, the temperature of the holding section 3B was set to 1040 ° C. to 1100 ° C., and the temperature of the temperature lowering section 3C was set to 950 ° C. or more and less than 1040 ° C.
  • the time required for the steel strip to pass through the quenching furnace (time from entering the heating section 3A of the quenching furnace 3 to exiting the cooling section 3C) is M1 [min], and the thickness of the steel strip is t [mm].
  • the passing speeds of the steel strips were adjusted so that M1 / t at the time of the above was approximately 6.
  • the steel strip after tempering was mechanically polished by buffing, and the steel strip was wound by a winder to produce a martensitic stainless steel strip of the present invention.
  • the time M1 required for the steel strip to pass through the quenching furnace is defined as 100%
  • the required time of the heating section is 50%
  • the required time of the holding section is 50%.
  • the adjustment was performed so that the required time of the cooling section was 34% and the required time of the cooling section was 16%.
  • the heating during the quenching step was entirely performed by the holding section, the set heating temperature was 1040 ° C to 1100 ° C, and the tempering temperature was 320 to 370 ° C. Was.
  • FIG. 3 shows a cross-sectional photograph of Example 1 of the present invention observed at a magnification of 5000 times using a scanning line electron microscope (SEM). Table 2 shows the results of observation and measurement of carbides.
  • “carbide area ratio (%) (total carbide)” in Table 2 indicates the ratio of the area of carbide having an equivalent circle diameter of 0.1 ⁇ m or more to the area of the observation visual field (475 ⁇ m 2 ), “Ratio (%) (0.1 ⁇ m to 0.5 ⁇ m)” refers to the ratio of the area of carbide having an equivalent circle diameter of 0.1 ⁇ m to 0.5 ⁇ m in the area of the observation visual field (475 ⁇ m 2 ). Further, “the ratio of carbides having a circle equivalent diameter of 0.1 to 0.5 ⁇ m” means the value of the carbide area ratio (%) (equivalent circle diameter of 0.1 to 0.5 ⁇ m) as the carbide area ratio (%) (Carbide). In both the inventive example 1 and the comparative example 11, in the above-mentioned observation visual field, no carbide having an equivalent circle diameter exceeding 5.0 ⁇ m was observed.
  • Example 1 of the present invention had less carbides than the steel strip of Comparative Example 11, and the formed carbides of Example 1 of the present invention were equivalent to circle diameters of 0.1 to 0. It was confirmed that the carbide ratio of 0.5 ⁇ m was large. Subsequently, Vickers hardness, tensile strength, and fatigue limit of Invention Example 1 and Comparative Example 11 were measured. The Vickers hardness was an average value of three points according to the method specified in JIS-Z2244, and the load was 5 kg. The tensile strength was measured according to the method specified in JIS-Z2241, and the test piece used was a JIS No. 13B test piece.
  • the stress at which the breakage probability becomes 50% at the time of rotation is defined as the fatigue limit.
  • Table 3 shows the results. From the results in Table 3, it was confirmed that the sample of the present invention exhibited higher values of hardness and tensile strength than the sample of Comparative Example 11, and also had an excellent fatigue limit. This shows that the steel strip of the present invention has excellent fatigue strength. Therefore, it is suitable for product applications requiring high fatigue strength.
  • Example 2 Subsequently, the change in residual stress depending on the presence or absence of the polishing step was investigated.
  • the residual stress of the surface layer of the steel strip of Example 1 of the present invention produced in Example 1 was compared with the residual stress of the surface layer of the steel strip of Comparative Example 12 in which the polishing step was not performed and the other conditions were the same as those of the example of the present invention. Measured and compared.
  • the residual stress was measured by using an X-ray stress measuring device (sin 2 ⁇ method) on the cut sample.
  • FIG. 2 shows the measurement results.
  • the negative value ( ⁇ ) shows the compressive residual stress
  • the positive value (+) shows the tensile residual stress.
  • Comparative Example 12 is provided with a slight tensile residual stress
  • Example 1 of the present invention is provided with a large compressive residual stress, which is suitable for applications requiring higher fatigue strength. It was confirmed that the invention was suitable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

さらなる高疲労強度化を達成することができる、マルテンサイト系ステンレス鋼帯を提供する。 マルテンサイト組織を有する厚さ1mm以下のマルテンサイト系ステンレス鋼帯であって、前記鋼帯の表面における圧縮残留応力は50MPa以上であり、前記鋼帯の金属組織中に存在する炭化物の面積率は、0.5%以上8.0%以下であることを特徴とする、マルテンサイト系ステンレス鋼帯。前記鋼帯の表面における圧縮残留応力は、圧延直角方向における圧縮残留応力が圧延方向における圧縮残留応力よりも50MPa以上大きいことが好ましい。

Description

マルテンサイト系ステンレス鋼帯およびその製造方法
 本発明は、マルテンサイト系ステンレス鋼帯およびその製造方法に関するものである。
 マルテンサイト系ステンレス鋼帯は耐食性や硬度、疲労特性に優れており、例えば刃物や、繰り返し応力の作用するばね材、バルブ材、カバー材等の幅広い用途に使用されている。特にばね材やバルブ材用途には、繰り返し応力による疲労破壊を抑制するために、十分に高い疲労強度を備えるマルテンサイト系ステンレス鋼帯が要求されている。
 上述したようなマルテンサイト系ステンレス鋼帯の疲労強度を向上させるために、従来様々な提案がなされている。例えば引用文献1には、従来よりも疲労限界を向上させた、ばね用鋼帯を得るために、重量%で、C:0.35~0.45%、Si:0.10~0.50%、Mn:0.10~0.50%、Cr:10~15%、Mo:1.0~1.5%、P:0.05%以下、S:0.005%以下、O:0.002%以下、N:0.02%以下、Al:0.005%以下、Ti:0.01%以下、残部実質的にFeよりなることを特徴とする耐久性の良好なばね用鋼帯について記載されている。
 また特許文献2には、フラッパ弁体の耐食性と疲労特性を向上させるために、板表面に圧縮残留応力を有し、また板表層部に固溶窒素濃化層を有するマルテンサイト系ステンレス鋼からなるフラッパ弁体について記載されている。ここで特許文献2では、20%以上の窒素および10%以下(0%の場合を含む)の酸素を含む雰囲気(百分比は容積%である)で、オーステナイト単相に変態する温度以上に加熱後に急冷すると、マルテンサイト系ステンレス鋼の表面の残留応力を圧縮応力に調整できることについても記載されている。
特開平4-48050号公報 特開平10-274161号公報
 近年空調機用の圧縮機は高圧縮化が進んでおり、圧縮機に使用されるバルブにも、高圧化に対応するために疲労強度特性の向上が要求されている。特許文献1の発明は鋼帯の疲労限界を向上させることが出来る発明であるが、使用環境によっては疲労限界が不十分な場合があり、更なる改良の余地が残されている。また特許文献2に記載の発明も、残留応力の調整のみでは、優れた疲労強度を得るためには不十分となる可能性がある。また、特許文献2に記載の発明は、板表面に形成された窒素濃化層による圧縮残留応力を規定した発明であるが、窒素濃化層はバルブ形状のエッジ部及び外周部に均一に形成させることが困難であり、所望の残留応力が得られない可能性がある。さらに、材料の厚みによって窒素濃化層の形成範囲も異なるため、板厚が変動するたびにガス量やガスの組成を変更しなければならず、生産性の低下が懸念される。よって本発明の目的は、従来品よりも疲労強度に優れる、マルテンサイト系ステンレス鋼帯およびその製造方法を提供することである。
 本発明は上述した課題に鑑みてなされたものである。
 すなわち本発明の一態様は、マルテンサイト組織を有する厚さ1mm以下のマルテンサイト系ステンレス鋼帯であって、
 前記鋼帯の表面における圧縮残留応力が50MPa以上であり、
 前記鋼帯の金属組織中に存在する炭化物の面積率は、0.5%以上8.0%以下であることを特徴とする、マルテンサイト系ステンレス鋼帯である。
 好ましくは、前記鋼帯の表面における圧縮残留応力は、圧延直角方向における圧縮残留応力が圧延方向における圧縮残留応力よりも50MPa以上大きい。
 好ましくは、前記炭化物のうち円相当径0.10μm以上の炭化物の面積率を100%としたとき、円相当径0.10μm~0.50μmの炭化物の面積率が45%以上である。
 本発明の他の一態様は、厚さ1mm以下のマルテンサイト系ステンレス鋼帯を巻出す巻出し工程と、
 鋼帯を非酸化性ガス雰囲気の焼入れ炉に通板して加熱し、次いで冷却する焼入れ工程と、
 焼入れ後の鋼帯を、非酸化性ガス雰囲気の焼戻し炉に通板して焼戻しする焼戻し工程と、を行い、
 前記焼入れ工程時の焼入れ炉は、少なくとも昇温部と保持部とを有し、前記昇温部は、所定の焼入れ温度をT(℃)とした場合、0.7T(℃)以上T(℃)未満の温度範囲内に設定され、かつ前記昇温部に鋼帯が通板される際の鋼帯の入側の設定加熱温度よりも鋼帯の出側の設定加熱温度が高く設定され、前記保持部は焼入れ温度T(℃)に設定され、前記昇温部における鋼帯の炉内滞在時間は、前記保持部における鋼帯の炉内滞在時間以上であり、
 前記焼戻し工程を終えた鋼帯の表面を機械加工により研磨する研磨工程を行うことを特徴とする、マルテンサイト系ステンレス鋼帯の製造方法である。
 好ましくは、前記焼入れ工程において、前記昇温部における鋼帯の炉内滞在時間をTS、前記保持部における鋼帯の炉内滞在時間をTHとした場合、TS/THが1より大きく、5より小さい。
 本発明によれば、従来品よりも疲労強度に優れる、マルテンサイト系ステンレス鋼帯を得ることができる。
本発明の製造方法に用いる装置の一例を示す図である。 本発明例1と比較例12との残留応力測定結果を示すグラフである。 本発明例の断面を示す走査線電子顕微鏡写真である。
 以下、本発明を詳細に説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。本発明はマルテンサイト系ステンレス鋼の組成を有するものに適用できる。組成範囲を限定するものではないが、例えば、本発明の鋼帯の成分組成は、質量%で、C:0.3~1.2%、Cr:10.0~18.0%を含むことが好ましい。さらに本発明の鋼帯の成分組成は、C:0.3~1.2%(より好ましくは0.3~1.0%、さらに好ましくは0.3~0.8%)、Si:1%以下、Mn:2%以下、Mo:3.0%以下(より好ましくは2.5%以下、さらに好ましくは2.0%以下)、Ni:1.0%以下(0%を含む)、Cr:10.0~18.0%(より好ましくは11.0%~16.0%、さらに好ましくは12.0%~15.0%)、Feおよび不可避的不純物であるマルテンサイト系ステンレス鋼であることが好ましい。
 本実施形態のマルテンサイト系ステンレス鋼帯は、鋼帯の表面における圧縮残留応力が50MPa以上である。一般的に鋼帯の表面に引張残留応力が存在すると、疲労強度等の特性は低下する傾向にあるが、圧縮残留応力が付与されていると、熱間圧延時等に形成された微小亀裂の成長を抑制することができるため、疲労強度の向上が期待できる。圧縮残留応力が50MPa未満の場合、焼入れ焼戻しの条件によっては残留応力の形態が引張となる可能性があるため、好ましくない。好ましい圧縮残留応力の下限は80MPaであり、より好ましい圧縮残留応力の下限は100MPaである。本実施形態での圧縮残留応力の上限は特に規定しないが、過大な圧縮残留応力に調整するために製造コストが増大する可能性があるため、800MPaと設定することができる。好ましくは700MPa以下、より好ましくは600MPa以下である。なお、この圧縮残留応力は鋼帯の表面のどの方向で評価しても良いが、圧延方向(鋼帯の長手方向)で評価し、50MPa以上であれば良い。
 本実施形態においてはさらに、鋼帯の表面における圧延直角方向の圧縮残留応力が、圧延方向の圧縮残留応力よりも50MPa以上高いことが好ましい。一般的に冷間圧延材は、介在物が圧延方向に連鎖状に分布しやすく、その影響により圧延直角方向の強度は、圧延方向の強度よりも低下する傾向にある。この圧延直角方向における強度低下を抑制するために、圧延直角方向の圧縮残留応力を、圧延方向よりも高めに調整することが有効である。より好ましくは、圧延直角方向の圧縮残留応力は、圧延方向よりも80MPa以上高くなっていることが好ましい。ここで本実施形態における鋼帯表面の残留応力は、例えばX線回折法(XRD)により測定することが可能である。本実施形態では、sinΨ法を用いて残留応力を測定している。なお、圧延直角方向とは圧延方向に対して垂直な方向であり、長尺の鋼帯において、長さ方向が圧延方向であるときの幅方向に相当する。
 本実施形態の鋼帯は、金属組織中に存在する炭化物の面積率が0.5%以上8.0%以下である。これにより、クラック進展を抑制させて高強度な鋼帯を得ることが可能である。なお、炭化物の面積率は、円相当径が0.10μm以上の炭化物で評価すれば良い。0.10μm未満の炭化物はサイズが小さすぎるため、評価が困難となるし、鋼帯の特性に大きな影響を与えないためである。また、過大なサイズの炭化物は疲労破壊の起点となる可能性があるため、炭化物のサイズは円相当径で5.0μm以下であることが好ましい。さらに好ましくは、3.0μm以下である。また、炭化物の面積率が過度に小さいと、過加熱による結晶粒粗大化を促進させる可能性があるため、炭化物の面積率は0.5%以上であることが好ましい。より好ましい炭化物の面積率は1.0%以上で、さらに好ましい炭化物の面積率は1.5%以上である。なお本実施形態における炭化物の面積率は、走査線電子顕微鏡(SEM)を用いて鋼帯の表面または断面を5000倍の倍率で観察し、25μm×19μm(475μm)の視野で確認できる炭化物から、面積率を算出したものである。
 本実施形態の鋼帯は、炭化物のうち円相当径0.10μm以上の炭化物の面積率を100%としたとき、円相当径0.10μm~0.50μm(0.10μm以上0.50μm以下)の炭化物の面積率が45%以上であることが好ましい。この数値範囲内に炭化物を調整することで、本実施形態の鋼帯は円相当径が小さい炭化物が多くなるため、円相当径が大きい炭化物を多く含む従来の鋼帯と比較して、炭化物を起点とする疲労破壊を起こしにくいといったメリットを発揮することができる。好ましくは50%以上である。なお、円相当径が0.10μm~0.50μmの炭化物の面積率が45%未満である場合、円相当径が大きい炭化物が多くなるため、熱処理硬さが不足したり、炭化物を起点とする疲労破壊が発生する傾向にある。
 本実施形態の鋼帯は、板厚が1mm以下のマルテンサイト系ステンレス鋼帯に適用できる。薄くなるほど焼入れ時の加熱による形状不良が発生しやすくなる傾向にあるため、板厚が0.5mm以下のマルテンサイト系ステンレス鋼帯に適用することが好ましい。尚、板厚の下限は、特に設定する必要はないが、例えば圧延にて製造される鋼板としては板厚が薄すぎると製造上困難であるため、0.01mm程度と設定することができる。より好ましい板厚の下限は0.05mmであり、さらに好ましい板厚の下限は0.1mmである。
 続いて、本発明の製造方法について説明する。本発明は、巻出し工程、焼入れ工程、焼戻し工程を行い、焼戻し工程の後に、鋼帯の表面を研磨する、研磨工程を行うことを特徴とする。焼入れ工程で用いる焼入れ炉は、少なくとも昇温部と保持部とからなることを特徴とする。また、保持部の後に降温部を設けても良い。また上述した巻出し工程、焼入れ工程、焼戻し工程は連続して行っても良く、本発明の効果を損なわない程度であれば、例えば予熱工程といった他工程を追加することもできる。図1に本実施形態の装置レイアウト例を示す。以下、本発明の実施形態の製造方法について説明する。
 (巻出し工程、焼入れ工程)
 まず本発明は、焼入れ焼戻しを連続で行うために、コイル状に巻かれている鋼帯が巻出し機1に装着されており、巻出し機1より圧延済みの鋼帯2を巻出した後(巻出し工程)、非酸化性ガス雰囲気の加熱炉(焼入れ炉)3に通板して加熱し、次いで鋼帯を冷却する(焼入れ工程)。本実施形態で用いる焼入れ炉3は、図1に示すように昇温部3Aと、保持部3Bとが設置されている。尚、図1の焼入れ炉3は、保持部3Bに続いて降温部3Cも設けられている。この降温部3Cは必須ではないが、設けられていることが好ましい。本実施形態では、通板されてきた鋼帯を所定の焼入れ温度に保持する保持部の前に、設定加熱温度を焼入れ温度より低く設定した昇温部を設けている。尚、昇温部は、昇温部に鋼帯が通板される際の鋼帯の入側の設定加熱温度よりも鋼帯の出側の設定加熱温度が高く設定されている。具体的には本実施形態の焼入れ工程は、所定の焼入れ温度をT(℃)とした場合、0.7T(℃)以上T(℃)未満の温度範囲内で、かつ昇温部に鋼帯が通板される際の鋼帯の入側の設定加熱温度よりも鋼帯の出側の設定加熱温度が高く設定された昇温部を有し、次いで焼入れ温度T(℃)に設定された保持部を有する。上記の条件で焼入れ工程の加熱を行うことで、鋼帯の通板速度を低下させることなく急速な加熱による形状不良を抑制し、さらに炭化物サイズの抑制や炭化物面積率の低減といった効果を得ることができる。昇温部の好ましい設定加熱温度の下限は、0.8T(℃)である。昇温部の設定加熱温度が0.7T(℃)未満の場合、鋼帯が所望の時間で所望の温度まで上昇できず、特性が低下する可能性がある。昇温部の設定加熱温度がT(℃)以上の場合、鋼帯が急速に加熱されて、形状不良の発生する可能性が高まる。ここで本実施形態において鋼帯が焼入れ炉の通過に要する時間(図1において、焼入れ炉3を通過する時間(昇温部3Aに入って、降温部3Cを出るまでの時間))をM1[min]、鋼帯の板厚をt[mm]としたときに、M1/tを4~8に調整することが好ましい。上記のM1/tは例えば板厚が0.3mmのとき、焼入れ炉の通過に要する時間を1.2~2.4minで通過するように調整すればよい。この数値に調整することで、本発明の形状抑制効果を確実に得ることが可能である。ここで昇温部の設定加熱温度は、例えば、急激な温度変化を防ぐために、昇温部の鋼帯の入側から鋼帯の出側まで段階的に設定加熱温度が上がるように設定しても良い。
 本実施形態での昇温部における鋼帯の炉内滞在時間は、前記保持部における鋼帯の炉内滞在時間以上であることも特徴である。これにより鋼帯の加熱が急速に進行することを抑制できるため、形状不良の発生をさらに抑制することが可能である。この昇温部における鋼帯の炉内滞在時間が保持部における鋼帯の炉内滞在時間よりも長過ぎる場合は、保持部における鋼帯の炉内滞在時間が不足し、鋼帯が所望の焼入れ温度に達せず、焼入れ後に所望の特性が得られない可能性や、所望の焼入れ温度に達するまでに時間をかけることになり、生産性が低下する可能性がある。昇温部における鋼帯の炉内滞在時間が保持部における鋼帯の炉内滞在時間よりも短い場合は、保持部が長くなりすぎることで鋼帯の過加熱に起因する形状不良を引き起こす可能性がある。従って、昇温部における鋼帯の炉内滞在時間をTS、保持部における鋼帯の炉内滞在時間をTHとした場合、TS/THが1より大きく、5より小さいことが好ましい。さらに、1.3より大きいことが好ましく、4より小さいことが好ましい。
 本実施形態での保持部における設定加熱温度は、850~1200℃であることが好ましい。850℃未満の場合、炭化物の固溶が不十分となる傾向にある。対して1200℃超の場合、炭化物の固溶量が大きくなり、焼戻し時の硬さが低下する傾向にある。保持部の温度の下限は900℃がより好ましく、930℃がさらに好ましい。保持部の温度の上限は1150℃がより好ましく、1120℃がさらに好ましい。また非酸化性ガスの種類は、窒素、アルゴン、水素混合ガス等を選択することが出来るが、よりマルテンサイト系ステンレス鋼帯と反応が起こり難いアルゴンを選択することが好ましい。
 本実施形態では保持部の後に、保持部の設定加熱温度より低い温度に設定され、鋼帯の降温を制御する降温部を設けてもよい。この降温部を設けることで、保持部を出て、直ぐに冷却されるよりも、冷却前の鋼帯温度をある程度低下させた後に冷却することができ、冷却工程の装置に与えるダメージを抑える効果などが期待できる。この降温部の設定加熱温度は、保持部の設定加熱温度T(℃)に対して0.85T(℃)以上T(℃)未満であることが好ましく、さらに0.95T(℃)以下であることが好ましい。この降温部における鋼帯の炉内滞在時間(所要時間)は鋼帯が焼入れ炉の通過に要する時間M1の10~30%であることが好ましい。
 本実施形態の焼入れ炉は、2基以上の複数の焼入れ炉で構成することもできる。その際1基毎にそれぞれ熱源を有する昇温部、保持部、降温部を設定してもよく(炉間は不連続)、1基に昇温部、1基に保持部と降温部とを設定してもよい。好ましくは、省スペースかつ炉間で温度変化が起きない1基の焼入れ炉にて上述した昇温部、保持部を設ける。また、本実施形態の焼入れ炉の熱源は、ガスバーナーや、電気ヒーター等を使用することができる。
 本発明はさらに生産効率を向上させるために、巻出し工程と焼入れ工程との間に予熱工程を設けてもよい。予熱工程(図示せず)では既存の加熱装置を適用することができるが、鋼帯の急速昇温を可能とする誘導加熱装置を使用することが好ましい。
 また予熱工程時の予熱温度は、予熱を有効なものにするために、600℃以上に設定することが好ましい。一方で急激な昇温による変形をより確実に抑制するために、800℃未満に設定することが好ましい。
 続いて焼入れ炉にて加熱した鋼帯を急冷して焼入れを行う。急冷の方法としては、ソルトバス、溶融金属、油、水、ポリマー水溶液、食塩水を用いる方法がある。このうち水を噴射する方法は最も簡便な方法であると共に、鋼帯の表面に薄い酸化被膜を形成させることができる。この薄い酸化被膜は硬質であり、後述する水冷定盤5を通板する際に、鋼帯の表面の疵の発生を抑制できる。そのため、本発明で用いる鋼帯2を急冷する一手段として水を噴射する方法を用いるのが好ましい。
 また、焼入れ工程の急冷は、圧縮空気と水を用いた噴霧装置4によって鋼帯2をMs点を超えて350℃以下に冷却する第一冷却工程の後、鋼帯を挟みこむように水冷定盤5で拘束し、形状を矯正しながらMs点以下に冷却する第二冷却工程を行ってマルテンサイト組織とするのが好ましい。冷却を二段階とするのは、第一冷却工程でパーライトノーズを避けつつ、且つ、鋼帯2の焼入れ時に生じる歪を軽減し、次の第二冷却工程でマルテンサイト変態を行わせつつ、鋼帯2の形状を整えることができるためである。 本実施形態で用いる水冷定盤5は水により冷却しつつ、更に、複数個を連続して配置することが好ましい。これは、水冷定盤内で拘束する時間を長くすることができるため、より確実にMs点以下まで冷却することができる。これにより、鋼帯2の変形の防止や矯正をより確実に行うことが期待できる。
 (焼戻し工程)
 焼き入れ工程後、非酸化性ガス雰囲気の焼戻し炉6にて鋼帯を焼戻し、鋼帯を所望の硬さに調整する。この焼戻し炉の温度は用途により所望の温度に設定することが可能である。例えばより高硬度な特性が必要な場合は、200~300℃に設定することができる。またプレス加工等の形状加工性を良くするためには、300℃~400℃に設定することもできる。なお、焼戻し工程における通板速度が過度に速すぎると、上述した温度範囲に到達しない可能性があるため、鋼帯が焼戻し炉の通過に要する時間をM2[min]、鋼帯の板厚をt[mm]としたときに、M2/tを5~9となるように設定することが好ましい。
 (研磨工程)
 続いて、焼戻し工程後の鋼帯の表面を研磨装置7を用いて研磨する、研磨工程を行う。本実施形態ではこの研磨工程により、鋼帯の表層のスケールを除去しつつ、鋼帯の表面に安定して圧縮残留応力を付与することが可能となる。なお、焼入れ前の冷間圧延工程にて、冷間圧延にて鋼帯の表面に圧縮残留応力を付与したとしても、最終圧延後に焼鈍を行ったり、焼入れ焼戻しを行った場合、応力分布が変化して鋼帯表層に引張残留応力が付与される場合がある。焼入れ焼戻し後の鋼帯に再び圧縮残留応力を付与する方法として、ショットピーニングやショットブラストなどの投射材を用いた研磨があるが、鋼帯の幅に均一に処理することが難しく、高コストな傾向にある。そのため本実施形態における研磨工程では、砥石研磨、ベルト研磨、ブラシ研磨、バフ研磨等に代表される機械加工により研磨する研磨工程を適用する。好ましくは、バフ研磨を適用することで、表層のスケールを除去しつつ、鋼帯の表面に大きなダメージを与えることなく、容易に所望の残留応力に調整することが可能である。バフ研磨を適用する場合、バフの材質は綿やポリエステル等の既存の化学繊維や麻繊維を用いたバフを適用することが可能であり、研磨力を上げまた持続させるためにアルミナやシリカ等の研磨材をバフに含浸させたり、噴射させてもよい。なおこの研磨工程は、焼戻し後の鋼帯に連続して行ってもよく、焼戻し後の鋼帯を一旦巻取り、別のラインで再度巻き出して研磨工程のみを行ってもよい。研磨工程後、巻取り機8によって巻取ることにより、所望の疲労強度を有するマルテンサイト系ステンレス鋼帯を得ることができる。
(実施例1)
 まず幅が約300mmであり、厚さが0.2mmであるマルテンサイト系ステンレス鋼帯を用意した。組成を表1に示す。用意した鋼帯はコイル状に巻かれており、それを巻出し機1にセットし、鋼帯を巻出し機より巻き出し、巻き出された鋼帯を、アルゴンガス雰囲気とした焼入れ炉に通板した。焼入れ炉は昇温部3Aと保持部3Bと降温部3Cとから構成され、昇温部3Aの設定加熱温度を保持部の温度以下で、かつ800℃以上1040℃未満の範囲内で、保持部に向かって徐々に設定加熱温度が高くなるように設定し、保持部3Bの温度を1040℃~1100℃に設定し、降温部3Cの温度を950℃以上1040℃未満に設定した。鋼帯が焼入れ炉を通過するのに要する時間(焼入れ炉3の昇温部3Aに入って、降温部3Cを出るまでの時間)をM1[min]、鋼帯の板厚をt[mm]としたときのM1/tが約6になるようにそれぞれ鋼帯の通板速度を調整した。続いて、焼入れ炉の出側に設置された冷却液の噴霧装置4により、鋼帯に純水を噴霧して1次冷却を行い、鋼帯を290℃~350℃まで冷却した後、水冷定盤5で押圧する2次冷却工程を行い、100℃以下まで冷却した。その後、鋼帯をアルゴンガス雰囲気とした焼戻し炉6に、鋼帯が焼戻し炉を通過するのに要する時間をM2[min]、鋼帯の板厚をt[mm]としたときのM2/tが約7になるように通板速度を調整して通板した。焼戻し炉の温度は250℃~300℃に設定して焼戻しを行った。さらに焼戻し後の鋼帯に、バフ研磨による機械研磨を行い、巻取り機によって鋼帯を巻取って本発明例のマルテンサイト系ステンレス鋼帯を作製した。ここで本発明例は鋼帯が焼入れ炉の通過に要する時間M1を100%と規定したとき、昇温部の所要時間(鋼帯の炉内滞在時間)が50%、保持部の所要時間が34%、降温部の所要時間が16%となるように調整した。対して比較例11のマルテンサイト系ステンレス鋼帯は、焼入れ工程時の加熱が全て保持部で構成されており、設定加熱温度は1040℃~1100℃であり、焼戻し温度は320~370℃であった。
Figure JPOXMLDOC01-appb-T000001
 続いて、作製した鋼帯の本発明例1と比較例11との断面を、走査型電子顕微鏡(SEM)を用いて5000倍の倍率で観察し、25μm×19μm(475μm)の視野における炭化物を観察した。走査線電子顕微鏡(SEM)を用いて、5000倍の倍率で観察した本発明例1の断面写真を図3に示す。また、炭化物の観察・測定結果を表2に示す。ここで表2における「炭化物面積率(%)(全炭化物)」とは、観察視野の面積(475μm)における、円相当径が0.1μm以上の炭化物の面積の割合を示し、「炭化物面積率(%)(0.1μm~0.5μm)」とは、観察視野の面積(475μm)における、円相当径が0.1μm~0.5μmの炭化物の面積の割合を示す。また、「円相当径0.1~0.5μmの炭化物割合」とは、炭化物面積率(%)(円相当径0.1~0.5μm)の値を、炭化物面積率(%)(全炭化物)の値で除することで導出した。なお、本発明例1および比較例11ともに、上記の観察視野において、円相当径で5.0μmを超える炭化物は観察されなかった。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明例1の鋼帯は比較例11の鋼帯よりも炭化物が少なく、かつ形成されている炭化物も、本発明例1の方が円相当径0.1~0.5μmの炭化物割合が大きいことを確認できた。続いて、本発明例1と比較例11とのビッカース硬さ、引張強度、および疲労限度を測定した。ビッカース硬度はJIS-Z2244に規定された方法に従い、3点の平均値とし、荷重は5kgとした。また、引張強度はJIS-Z2241に規定された方法に従って行い、試験片はJIS13号B試験片を使用した。疲労限度は、日本機械学会基準JSME S 002-1994に準拠した応力振幅一定(応力比R=-1、繰り返し回数を2×10回)の完全両振り曲げ疲労試験を行い、2×10回時に破断確率が50%となる応力を、疲労限度とした。結果を表3に示す。表3の結果より、本発明例の試料は、比較例11の試料よりも硬さと引張強度とで高い値を示し、疲労限度も優れていることが確認できた。これにより本発明の鋼帯は、疲労強度に優れていることが分かる。このため、高い疲労強度が求められる製品用途に好適である。
Figure JPOXMLDOC01-appb-T000003
(実施例2)
続いて、研磨工程の有無による残留応力の変化を調査した。実施例1で作製した本発明例1の鋼帯表層の残留応力と、研磨工程を行わず、他の条件は本発明例の条件と同等とした比較例12の鋼帯表層の残留応力とを測定・比較した。残留応力の測定方法は、裁断した試料に、X線応力測定装置(sinΨ法)を用いて測定した。測定結果を図2に示す。なお図2では、引張と圧縮の残留応力を分かりやすく記載するため、負の値(-表示)で圧縮残留応力を、正の値(+表示)で引張残留応力を示しているが、本明細書中では圧縮残留応力は負の値ではなく、正の値で記載している。図2に示すように、比較例12はわずかな引張残留応力が付与されていることに対して、本発明例1は大きな圧縮残留応力が付与されており、より高い疲労強度が必要な用途に適した発明であることが確認できた。
1 巻出し機
2 鋼帯
3 焼入れ炉
4 噴霧装置
5 水冷定盤
6 焼戻し炉
7 研磨装置
8 巻取り機

 

Claims (5)

  1.  マルテンサイト組織を有する厚さ1mm以下のマルテンサイト系ステンレス鋼帯であって、
     前記マルテンサイト系ステンレス鋼帯の表面における圧縮残留応力が50MPa以上であり、
     前記マルテンサイト系ステンレス鋼帯の金属組織中に存在する炭化物の面積率は、0.5%以上8.0%以下であることを特徴とする、マルテンサイト系ステンレス鋼帯。
  2.  前記マルテンサイト系ステンレス鋼帯の表面における圧縮残留応力は、圧延直角方向における圧縮残留応力が圧延方向における圧縮残留応力よりも50MPa以上大きいことを特徴とする、請求項1に記載のマルテンサイト系ステンレス鋼帯。
  3.  前記炭化物のうち円相当径0.10μm以上の炭化物の面積率を100%としたとき、円相当径0.10μm~0.50μmの炭化物の面積率が45%以上であることを特徴とする、請求項1または2に記載のマルテンサイト系ステンレス鋼帯。
  4.  厚さ1mm以下のマルテンサイト系ステンレス鋼帯を巻出す巻出し工程と、
     鋼帯を非酸化性ガス雰囲気の焼入れ炉に通板して加熱し、次いで冷却する焼入れ工程と、
     焼入れ工程後の鋼帯を、非酸化性ガス雰囲気の焼戻し炉に通板して焼戻しする焼戻し工程と、を行い、
     前記焼入れ工程時の焼入れ炉は、少なくとも昇温部と保持部とを有し、前記昇温部は、所定の焼入れ温度をT(℃)とした場合、0.7T(℃)以上T(℃)未満の温度範囲内に設定され、かつ前記昇温部に鋼帯が通板される際の鋼帯の入側の設定加熱温度よりも鋼帯の出側の設定加熱温度が高く設定され、前記保持部は焼入れ温度T(℃)に設定され、前記昇温部における鋼帯の炉内滞在時間は、前記保持部における鋼帯の炉内滞在時間以上であり、
     前記焼戻し工程を終えた鋼帯の表面を機械加工により研磨する研磨工程を行うことを特徴とする、マルテンサイト系ステンレス鋼帯の製造方法。
  5.  前記焼入れ工程において、前記昇温部における鋼帯の炉内滞在時間をTS、前記保持部における鋼帯の炉内滞在時間をTHとした場合、TS/THが1より大きく、5より小さいことを特徴とする、請求項4に記載のマルテンサイト系ステンレス鋼帯の製造方法。

     
PCT/JP2019/027329 2018-07-11 2019-07-10 マルテンサイト系ステンレス鋼帯およびその製造方法 WO2020013223A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980045831.1A CN112384637A (zh) 2018-07-11 2019-07-10 马氏体系不锈钢钢带及其制造方法
EP19833731.3A EP3822380B1 (en) 2018-07-11 2019-07-10 Martensitic stainless steel strip and method for producing same
JP2020530225A JP7318648B2 (ja) 2018-07-11 2019-07-10 マルテンサイト系ステンレス鋼帯およびその製造方法
US17/258,445 US11814697B2 (en) 2018-07-11 2019-07-10 Martensitic stainless steel strip and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-131305 2018-07-11
JP2018131305 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020013223A1 true WO2020013223A1 (ja) 2020-01-16

Family

ID=69142059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027329 WO2020013223A1 (ja) 2018-07-11 2019-07-10 マルテンサイト系ステンレス鋼帯およびその製造方法

Country Status (5)

Country Link
US (1) US11814697B2 (ja)
EP (1) EP3822380B1 (ja)
JP (1) JP7318648B2 (ja)
CN (1) CN112384637A (ja)
WO (1) WO2020013223A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098757A4 (en) * 2020-01-27 2023-12-27 Proterial, Ltd. METHOD FOR PRODUCING MARTENSITIC STAINLESS STEEL STRIP AND MARTENSITIC STAINLESS STEEL STRIP

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130455A (ja) * 1984-11-15 1986-06-18 Hitachi Metals Ltd 衝撃疲労強度に優れた弁用焼入帯鋼
JPH0448050A (ja) 1990-06-14 1992-02-18 Daido Steel Co Ltd ばね用鋼帯
JPH10274161A (ja) 1997-03-31 1998-10-13 Nisshin Steel Co Ltd 空調機用圧縮機のフラッパ弁体およびその製法
JP2007224405A (ja) * 2006-02-27 2007-09-06 Jfe Steel Kk 刃物用鋼
JP2008231517A (ja) * 2007-03-20 2008-10-02 Nisshin Steel Co Ltd 刃物用ステンレス鋼材およびその製造法
JP2011106332A (ja) * 2009-11-17 2011-06-02 Fuji Electric Systems Co Ltd タービンブレードおよびその加工方法
JP2012184471A (ja) * 2011-03-04 2012-09-27 Akers Ab 冷間圧延工業の要件を満たす鍛造ロールおよび該ロールの製造方法
JP2015067873A (ja) * 2013-09-30 2015-04-13 日立金属株式会社 マルテンサイト系ステンレス鋼鋼帯の製造方法
JP2018111881A (ja) * 2017-01-12 2018-07-19 日立金属株式会社 マルテンサイト系ステンレス鋼帯の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121218A (ja) 1983-12-01 1985-06-28 Hitachi Metals Ltd 曲げ疲労特性の優れた焼入帯鋼部材
JP2011007093A (ja) 2009-06-25 2011-01-13 Hitachi Ltd タービン動翼
ES2643579T3 (es) 2014-12-09 2017-11-23 Voestalpine Precision Strip Ab Tira de acero inoxidable para válvulas de aleta
CN109890993B (zh) 2016-10-18 2022-01-11 杰富意钢铁株式会社 马氏体系不锈钢板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130455A (ja) * 1984-11-15 1986-06-18 Hitachi Metals Ltd 衝撃疲労強度に優れた弁用焼入帯鋼
JPH0448050A (ja) 1990-06-14 1992-02-18 Daido Steel Co Ltd ばね用鋼帯
JPH10274161A (ja) 1997-03-31 1998-10-13 Nisshin Steel Co Ltd 空調機用圧縮機のフラッパ弁体およびその製法
JP2007224405A (ja) * 2006-02-27 2007-09-06 Jfe Steel Kk 刃物用鋼
JP2008231517A (ja) * 2007-03-20 2008-10-02 Nisshin Steel Co Ltd 刃物用ステンレス鋼材およびその製造法
JP2011106332A (ja) * 2009-11-17 2011-06-02 Fuji Electric Systems Co Ltd タービンブレードおよびその加工方法
JP2012184471A (ja) * 2011-03-04 2012-09-27 Akers Ab 冷間圧延工業の要件を満たす鍛造ロールおよび該ロールの製造方法
JP2015067873A (ja) * 2013-09-30 2015-04-13 日立金属株式会社 マルテンサイト系ステンレス鋼鋼帯の製造方法
JP2018111881A (ja) * 2017-01-12 2018-07-19 日立金属株式会社 マルテンサイト系ステンレス鋼帯の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098757A4 (en) * 2020-01-27 2023-12-27 Proterial, Ltd. METHOD FOR PRODUCING MARTENSITIC STAINLESS STEEL STRIP AND MARTENSITIC STAINLESS STEEL STRIP

Also Published As

Publication number Publication date
EP3822380A1 (en) 2021-05-19
CN112384637A (zh) 2021-02-19
US20210292868A1 (en) 2021-09-23
EP3822380B1 (en) 2023-08-09
JP7318648B2 (ja) 2023-08-01
JPWO2020013223A1 (ja) 2021-07-15
EP3822380A4 (en) 2022-04-13
US11814697B2 (en) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2018151324A1 (ja) 鋼板及びその製造方法
JP2007291495A (ja) 極軟質高炭素熱延鋼板およびその製造方法
JP2008156712A (ja) 高炭素熱延鋼板およびその製造方法
EP2955242B1 (en) Steel sheet for nitriding and production method therefor
JP2009068081A (ja) 極軟質高炭素熱延鋼板
WO2013102982A1 (ja) 焼入れ性に優れる面内異方性の小さい高炭素熱延鋼板およびその製造方法
JP5796781B2 (ja) ばね加工性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね
WO2020013223A1 (ja) マルテンサイト系ステンレス鋼帯およびその製造方法
JP6948565B2 (ja) マルテンサイト系ステンレス鋼帯の製造方法
JPH08302428A (ja) ばね用高強度鋼帯の製造方法
WO2016158562A1 (ja) 疲労特性に優れた熱処理鋼線
JP2009249650A (ja) 高疲労寿命焼入れ・焼戻し鋼管およびその製造方法
US20230075843A1 (en) Method for producing martensitic stainless steel strip, and martensitic stainless steel strip
WO2017169837A1 (ja) 高強度冷延鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JPH10204540A (ja) 高炭素冷延鋼帯の製造方法
JP3266902B2 (ja) 高炭素冷延鋼帯の製造方法
WO2016157760A1 (ja) 缶用鋼板およびその製造方法
JP5130993B2 (ja) 高周波用電磁鋼板
JPH11264049A (ja) 高炭素鋼帯およびその製造方法
JP7445184B2 (ja) 鋼材
JP7255287B2 (ja) 炭素工具鋼鋼帯の製造方法
JP2015193027A (ja) 熱延鋼板の製造方法
JP7472992B2 (ja) 冷延鋼板および冷延鋼板の製造方法
JPH1060540A (ja) 高炭素冷延鋼帯の製造方法
KR20230048710A (ko) 고탄소 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020530225

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE