WO2016157760A1 - 缶用鋼板およびその製造方法 - Google Patents

缶用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2016157760A1
WO2016157760A1 PCT/JP2016/001410 JP2016001410W WO2016157760A1 WO 2016157760 A1 WO2016157760 A1 WO 2016157760A1 JP 2016001410 W JP2016001410 W JP 2016001410W WO 2016157760 A1 WO2016157760 A1 WO 2016157760A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel plate
steel sheet
grain size
crystal grain
Prior art date
Application number
PCT/JP2016/001410
Other languages
English (en)
French (fr)
Inventor
雄介 木俣
船川 義正
直行 ▲高▼田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201680017343.6A priority Critical patent/CN107406944B/zh
Priority to JP2017509236A priority patent/JP6137436B2/ja
Publication of WO2016157760A1 publication Critical patent/WO2016157760A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a steel plate for cans and a method for producing the same, and more particularly to a steel plate for cans having excellent workability and rough skin resistance and a method for producing the same.
  • Patent Document 1 and Patent Document 2 propose a steel sheet in which Ti or Nb is added to an ultra-low carbon steel, yield strength (YP) is lowered, and workability is improved.
  • the steel plate which made small the surface roughness after a process is proposed by using the low carbon steel whose crystal grain is a fine grain.
  • the ultra-low carbon steel in which Ti or Nb is added and solid solution C is completely precipitated and fixed has coarse crystal grains and is excellent.
  • the low carbon steel obtained by patent document 3 has a problem that a crystal grain is fine and yield strength (YP) is high, and it is inferior to workability by the crack at the time of can molding.
  • YP yield strength
  • An object of the present invention is to solve the above-described problems and provide a steel plate for cans that has both workability and rough skin resistance and a method for producing the same.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems and to develop a steel sheet for cans that has both workability and rough skin resistance.
  • a reduction in yield strength (YP) due to coarsening of the crystal grain size is effective for improving workability. Further, it is effective to reduce the crystal grain size in order to improve the rough skin resistance.
  • the crystal grain size that affects the yield strength (YP) is the crystal grain size in the entire region of the steel sheet, whereas the crystal grain size that affects the rough skin resistance is a crystal near the surface layer of the steel sheet.
  • the present inventors have found that it is possible to control the distribution of crystal grain size in the plate thickness direction by controlling the equivalent dislocation density of the surface layer of the original steel plate before annealing (steel plate before annealing). It was.
  • FIG. 1 shows the relationship between the equivalent dislocation density of the steel sheet surface layer before recrystallization by annealing, the surface layer average crystal grain size and the total thickness average crystal grain size of the steel sheet after annealing.
  • the measurement of the equivalent dislocation density of the steel sheet surface layer was performed according to the method described later.
  • the surface average grain size of the steel sheet after annealing in the figure, simply referred to as the surface average grain size
  • the total thickness average grain size of the steel sheet after annealing in the figure, simply referred to as the total thickness average grain size
  • the steel plate for cans which is annealed at 600 ° C. or more and 900 ° C. or less with respect to a steel plate having an equivalent dislocation density ⁇ of 1.0 ⁇ 10 15 m ⁇ 2 or more from the surface of the steel plate before annealing to 50 ⁇ m in the depth direction. Manufacturing method.
  • the equivalent transition density ⁇ is calculated from 14.4 ⁇ 2 / b 2 ( ⁇ represents a non-uniform strain of the steel sheet, and b is 2.5 ⁇ 10 ⁇ 10 m).
  • the steel plate for cans according to the present invention is mass%, C: 0.010% or more and 0.050% or less, Si: 0.03% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.02% or less, Al: 0.01% or more and 0.10% or less, N: 0.004% or less, with the balance being composed of Fe and unavoidable impurities, from the steel sheet surface
  • the average crystal grain size in the structure up to a depth of 50 ⁇ m is 10 ⁇ m or less, and the total thickness average crystal grain size is 10 ⁇ m or more.
  • the steel plate for cans of the present invention will be described.
  • Si 0.03% or less> Even if Si is not intentionally contained, it is an element that remains in the steel as an impurity component and degrades the corrosion resistance and plating adhesion of the steel sheet.
  • the Si content is 0. 0.03% or less.
  • the Si content is 0.02% or less.
  • Mn prevents hot cracking of the slab by precipitating S in the steel as MnS.
  • MnS precipitating S in the steel
  • Mn is a solid solution strengthening element, and the workability at the time of drawing is reduced by increasing the yield strength, so the upper limit of the Mn content is 0.3%.
  • P is a solid solution strengthening element, and decreases the workability at the time of drawing by increasing the yield strength. Moreover, it is an element which reduces the adhesiveness of Ni plating, P content shall be 0.02% or less.
  • S is preferably as small as possible from the viewpoint of preventing hot cracking of the slab, and the S content is 0.02% or less.
  • Al 0.01% or more and 0.10% or less>
  • Al When Al is contained in an amount of 0.01% or more, it combines with N in the steel to form AlN, and by reducing the solid solution N, an increase in yield strength (YP) due to aging of the steel sheet is suppressed.
  • the Al content exceeds 0.10%, inclusions such as alumina are likely to occur, and the defect occurrence rate after processing increases. Therefore, it is 0.10% or less. Therefore, the Al content is set to 0.01% or more and 0.10% or less.
  • the Al content is preferably 0.02% or more.
  • Al content 0.08% or less is preferable and 0.06% or less is more preferable.
  • N forms a nitride with Al or B and tends to be harmless, but the N content is preferably as low as possible, and is 0.004% or less. Preferably, the N content is 0.003% or less.
  • the balance other than the above components is Fe and inevitable impurities.
  • B is not an essential component, but can be contained in the following range as required.
  • B like Al, binds to N in steel to form BN, and reduces the amount of solid solution N, thereby suppressing an increase in yield strength (YP) due to aging. Moreover, it has the effect
  • the B content is preferably 0.0003% or more and 0.0030% or less.
  • the B content is more preferably 0.0005% or more. Further, the B content is more preferably 0.0020% or less.
  • a ferrite is included as a main phase.
  • the main phase means that ferrite is contained in an area ratio of 90% or more, preferably 95% or more in area ratio, more preferably 98% or more in area ratio, and 100% in area ratio. There may be. Examples of the balance other than ferrite include bainite, pearlite, and martensite.
  • the average crystal grain size in the structure from the steel sheet surface to a depth of 50 ⁇ m is 10 ⁇ m or less>
  • the average crystal grain size in the structure from the steel sheet surface to a depth of 50 ⁇ m exceeds 10 ⁇ m, desired skin roughness resistance cannot be obtained. Therefore, in the steel plate for cans of the present invention, the average crystal grain size in the structure from the steel plate surface to a depth of 50 ⁇ m is set to 10 ⁇ m or less.
  • the average crystal grain size is obtained by measuring the average crystal grain size from the steel sheet surface to a depth of 50 ⁇ m by a cutting method based on JIS G0551.
  • the average crystal grain size is measured by measuring the ferrite average crystal grain size from the steel plate surface to a depth of 50 ⁇ m by a cutting method based on JIS G0551. It is obtained by doing.
  • the average crystal grain size in the structure from the steel sheet surface to a depth of 50 ⁇ m can be adjusted by controlling the equivalent dislocation density from the steel sheet surface before recrystallization by annealing to a depth of 50 ⁇ m.
  • ⁇ Total thickness average crystal grain size is 10 ⁇ m or more>
  • desired workability cannot be obtained when the average crystal grain size (hereinafter referred to as the total thickness average crystal grain size) of the steel sheet is less than 10 ⁇ m. Therefore, in the steel plate for cans of the present invention, the total thickness average crystal grain size is 10 ⁇ m or more.
  • the total thickness average crystal grain size is preferably 15 ⁇ m or more.
  • the upper limit of the total thickness average crystal grain size is not particularly limited, but is preferably 40 ⁇ m or less in order to prevent extreme softening.
  • the total thickness average crystal grain size is obtained by measuring the average crystal grain size of the total thickness of the steel sheet by a cutting method based on JIS G0551.
  • the total thickness average crystal grain size is determined by measuring the ferrite average crystal grain size of the full thickness of the steel plate by a cutting method based on JIS G0551. It is obtained. Further, the total thickness average crystal grain size can be adjusted by changing the annealing temperature and steel plate components.
  • plating film When a plating film is applied to the steel plate for cans of the present invention, Sn plating, Ni plating, Cr plating, or the like may be applied as the surface treatment of the steel plate. Furthermore, chemical conversion treatment may be performed, or an organic film such as a laminate may be formed.
  • the plate thickness is preferably set to 0.1 mm or more and 0.6 mm or less. More preferably, the plate thickness is 0.1 mm or more and 0.4 mm or less. In the present invention, the desired plate thickness can be adjusted by changing the cold rolling rate.
  • the manufacturing method of the steel plate for cans of this invention is demonstrated.
  • the slab having the above-described component composition is heated at a heating temperature of 1000 ° C. to 1300 ° C. and hot-rolled at a finish rolling temperature of 800 ° C. to 1000 ° C., 500
  • the equivalent dislocation density ⁇ up to 50 ⁇ m in the depth direction from the surface of the steel sheet after annealing, pickling, cold rolling and before annealing at a temperature of ⁇ 700 ° C. is 1.0 ⁇ 10 15 m ⁇ 2 or more.
  • the steel sheet is annealed at 600 ° C. or higher and 900 ° C. or lower.
  • the method for melting the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Moreover, after melting, it is preferable to use a slab (steel material) by a continuous casting method because of problems such as segregation. good.
  • the obtained slab is subjected to hot rolling after rough rolling or directly into a hot finish rolling mill.
  • Slab heating temperature shall be 1000 degreeC or more from a viewpoint of ensuring the finishing rolling temperature mentioned later.
  • slab heating temperature exceeds 1300 ° C., a large amount of nitride is generated, causing unrecrystallized grains to remain after annealing, and yield strength is increased. Therefore, slab heating temperature shall be 1300 degrees C or less.
  • finish rolling temperature 800 ° C to 1000 ° C>
  • finish rolling temperature 800 ° C. or higher and 1000 ° C. or lower.
  • finish rolling temperature 800 ° C. or higher.
  • finish rolling temperature shall be 1000 degrees C or less.
  • winding temperature shall be 500 degreeC or more.
  • the coiling temperature exceeds 700 ° C., the scale of the surface layer grows and tends to cause surface defects. For this reason, winding temperature shall be 700 degrees C or less.
  • the equivalent dislocation density from the surface of the steel sheet before annealing to 50 ⁇ m in the depth direction is 1.0 ⁇ 10 15 m ⁇ 2 or more.
  • the equivalent dislocation density from the surface of the steel plate before annealing to 50 ⁇ m in the depth direction is 1.0 ⁇ 10 15 m ⁇ 2 or more.
  • the crystal grain of the steel plate surface layer after annealing can be made fine. More preferably, it is 1.0 ⁇ 10 16 m ⁇ 2 or more.
  • the upper limit of the equivalent dislocation density is not particularly limited, but is preferably 1.0 ⁇ 10 18 m ⁇ 2 or less from the viewpoint of preventing surface peeling.
  • the method for setting the equivalent dislocation density from the surface of the steel sheet before annealing to 50 ⁇ m in the depth direction to 1.0 ⁇ 10 15 m ⁇ 2 or more is not particularly specified. However, it is difficult to obtain an equivalent dislocation density of 1.0 ⁇ 10 15 m ⁇ 2 or more in the surface layer of the steel sheet in the range of the cold rolling reduction ratio of about 50 to 95% that is normally performed when manufacturing a cold rolled steel sheet. .
  • Examples of a method of setting the equivalent dislocation density from the surface of the steel sheet before annealing to 50 ⁇ m in the depth direction to 1.0 ⁇ 10 15 m ⁇ 2 or more include shot blasting or high strength on a cold-rolled steel sheet after cold rolling.
  • a method of applying a strain imparting process with a brush can be mentioned. Further, as another method for setting the equivalent dislocation density to 1.0 ⁇ 10 15 m ⁇ 2 or more, a cold rolling steel sheet after the cold rolling final stage or after cold rolling is applied at a low pressure ratio by a high roughness roll. The method of performing additional rolling is mentioned.
  • the high roughness roll for example, a roll having a roll roughness Ra of 2.0 to 10.0 ⁇ m can be used.
  • the additional rolling at the low pressure reduction rate can be performed, for example, at a reduction rate of 0.1 to 10%.
  • the equivalent dislocation density can be measured by the following method. A 10 mm ⁇ 10 mm test piece is sampled from each steel plate before annealing, polished from the back surface of the test piece to a plate thickness of 50 ⁇ m, and then the polishing strain layer on the back surface layer is removed with hydrofluoric acid. An X-ray diffraction experiment is performed using this test piece, and the half width of the peak of the (110), (211), (220) crystal plane of the steel sheet is obtained. Using this half width, the non-uniform strain ⁇ of the test piece is obtained by the Williamson-Hall method.
  • the annealing may be performed by a method using either a continuous annealing furnace or a box annealing furnace. If the annealing temperature is less than 600 ° C., unrecrystallized grains may remain. On the other hand, when annealing is performed in a high temperature range exceeding 900 ° C., abnormal coarse particles are generated, and the surface appearance is impaired. Therefore, annealing temperature shall be 600 degreeC or more and 900 degrees C or less.
  • temper rolling is preferably about 0.5% to 1.5%.
  • the steel sheet for cans of the present invention described above has low yield strength and excellent workability, and also has excellent resistance to rough skin.
  • the steel plate for cans of the present invention can be applied, for example, for a two-piece can.
  • the molten steel having the component composition shown in Table 1 was made into a slab by continuous casting after vacuum degassing treatment.
  • the slab was heated at 1250 ° C., and after the scale was removed, it was roughly rolled to a plate thickness of 40 mm.
  • the steel sheet surface layer was cooled with a scale removing device, and then finish-rolled to a thickness of 3.2 mm and wound around a coil at a predetermined temperature.
  • the wound steel sheet was pickled and cold-rolled.
  • another part of the sample was subjected to shot blasting (shot condition: steel shot (average particle size 0.5 mm) was sprayed at a pressure of 0.5 MPa for 300 seconds).
  • shot blasting shot condition: steel shot (average particle size 0.5 mm) was sprayed at a pressure of 0.5 MPa for 300 seconds).
  • shot blasting shot condition: steel shot (average particle size 0.5 mm) was sprayed at a pressure of 0.5 MPa for 300 seconds.
  • shot blasting shot condition: steel shot (average particle size 0.5 mm) was sprayed at a pressure of 0.5 MPa for 300 seconds.
  • shot blasting shot condition: steel shot (average particle size 0.5
  • the above-mentioned equivalent transition density was measured according to the method described above.
  • the obtained steel sheet was subjected to mechanical property evaluation and crystal grain size measurement.
  • Table 2 also shows the surface roughness Ra ( ⁇ m) of the steel sheet obtained.
  • yield strength (YP), tensile strength (TS) and elongation (El) were evaluated by a tensile test.
  • Tensile properties were measured according to the test method described in JIS Z2241, after being processed into a No. 5 test piece described in JIS Z2201.
  • the crystal grain size the ferrite average crystal grain size was measured by a cutting method based on JIS G0551.
  • a 100 mm diameter circular blank is sampled from the steel sheet, formed into a 14 mm diameter cylindrical shape by five-stage multistage drawing, and then the surface roughness of the can body using a stylus type roughness measuring instrument.
  • Ra was measured, and processability (formability) and rough skin resistance were evaluated.
  • the evaluation of workability was performed by drawing 200 pieces, and the case where no defects such as cracks and wrinkles occurred was evaluated as ⁇ , and the case where the defects were generated was evaluated as ⁇ .
  • the evaluation of the rough skin resistance was evaluated as ⁇ when the surface roughness Ra of the can body portion was less than 0.5 ⁇ m, ⁇ when 0.5 ⁇ m or more and 0.7 ⁇ m or less, and ⁇ when 0.7 ⁇ m or more.
  • Table 2 shows the manufacturing conditions and evaluation results.
  • the example of the present invention was excellent in both workability and rough skin resistance, and had performance suitable as a steel plate for cans.
  • at least one of workability and rough skin resistance was inferior.
  • samples A3, A4, B3, C3, and D3 were inferior in skin roughness resistance because the average crystal grain size in the structure from the steel sheet surface to a depth of 50 ⁇ m exceeded 10 ⁇ m.
  • the sample E3 since the average crystal grain size in the structure from the steel sheet surface to the depth of 50 ⁇ m exceeds 10 ⁇ m and the total thickness average crystal grain size is less than 10 ⁇ m, the sample E3 has both workability and rough skin resistance. It was inferior.
  • Sample F1 was inferior in workability because the C content of the steel used exceeded 0.050 mass%.
  • Sample G1 has inferior surface roughness resistance because the C content of the steel used was less than 0.010% by mass and the average crystal grain size in the structure from the steel sheet surface to a depth of 50 ⁇ m exceeded 10 ⁇ m. It was. Sample H1 was inferior in workability because the Mn content of the steel used exceeded 0.3% by mass and the total thickness average crystal grain size was less than 10 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 降伏強度が低く加工性に優れ、更に耐肌荒れ性に優れた缶用鋼板およびその製造方法を提供する。 缶用鋼板は、質量%で、C:0.010%以上0.050%以下、Si:0.03%以下、Mn:0.3%以下、P:0.02%以下、S:0.02%以下、Al:0.01%以上0.10%以下、N:0.004%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼板表面から深さ50μmまでの組織における平均結晶粒径が10μm以下、全厚平均結晶粒径が10μm以上である。

Description

缶用鋼板およびその製造方法
 本発明は缶用鋼板およびその製造方法に関し、特に、加工性、耐肌荒れ性に優れた缶用鋼板およびその製造方法に関するものである。
 深絞り缶、DRD(Drawn and Redrawn)缶、DI(Drawn and Ironed)缶などの2ピース缶に用いられる冷延鋼板には、いくつかの特性が要求されている。具体的には、(1)加工時に割れ等の欠陥が発生せず、プレス加工性(以下、単に加工性とも記す。)に優れていること、(2)プレス加工後の鋼板表面の肌荒れが小さく、仕上がり外観が良好であることが要求されている。
 このうち、(1)の加工性に関しては、鋼板の降伏強度(YP)の低下、伸び(El)やr値の上昇が有効である。また、(2)に関しては、鋼板組織の結晶粒径を小さくすることで加工後の鋼板表面の耐肌荒れ性を向上させることがよく知られている。このような要求に対し、例えば特許文献1や特許文献2では極低炭素鋼にTiやNbを添加し、降伏強度(YP)を低くし、加工性を向上させた鋼板が提案されている。また、特許文献3では、結晶粒が細粒である低炭素鋼を用いることで、加工後の表面粗さを小さくした鋼板が提案されている。
特許第3548314号公報 特開2009-155692号公報 特開平10-30152号公報
 しかしながら、特許文献1や特許文献2に記載されている技術のように、TiやNbを添加し、固溶Cを完全に析出固定させた極低炭素鋼は、結晶粒が粗大であり、優れた加工性を有するが、プレス加工後に肌荒れが発生し、耐肌荒れ性に劣るという問題がある。また、特許文献3で得られる低炭素鋼は、結晶粒が細粒で降伏強度(YP)が高く、缶成形時の割れにより加工性に劣るという問題がある。このように、加工性に対しては結晶粒径の粗大化が有効であり、耐肌荒れ性に対しては結晶粒径の細粒化が有効となり、従来、双方を満足することは困難であった。
 本発明の目的は、上記の課題を解決し、加工性と耐肌荒れ性を両立した缶用鋼板およびその製造方法を提供するものである。
 本発明者らは、上述した問題を解決し、加工性と耐肌荒れ性を両立した缶用鋼板を開発すべく鋭意研究を重ねた。前述の通り、加工性の向上には結晶粒径の粗大化による降伏強度(YP)の低下が有効である。また、耐肌荒れ性の向上には結晶粒径の細粒化が有効である。この特徴は一見相反するが、降伏強度(YP)に影響する結晶粒径は鋼板の全領域の結晶粒径であるのに対し、耐肌荒れ性に影響する結晶粒径は鋼板の表層付近の結晶粒径であることに着目した。そこで本発明者らは、焼鈍による再結晶前の鋼板原板(焼鈍前の鋼板)表層の相当転位密度を制御することによって結晶粒径の板厚方向分布を制御することが可能であることを見出した。
 図1は、焼鈍による再結晶前の鋼板原板表層の相当転位密度と、焼鈍後の鋼板の表層平均結晶粒径および全厚平均結晶粒径の関係を示す。鋼板原板表層の相当転位密度の測定は後述する方法に従った。図1に示すように、鋼板原板表層の相当転位密度が増加するに従い、焼鈍後の鋼板の表層平均結晶粒径(図中、単に表層平均結晶粒径と記す。)は顕著に低下するのに対し、焼鈍後の鋼板の全厚平均結晶粒径(図中、単に全厚平均結晶粒径と記す。)はほとんど変化しない。従って、鋼板原板表層の相当転位密度を増加させることにより、降伏強度(YP)が低く加工性に優れ、耐肌荒れ性にも優れる鋼板を得ることが可能となる。
 本発明は、このような知見に基づきなされたものであり、その要旨は次のとおりである。
[1]質量%で、C:0.010%以上0.050%以下、Si:0.03%以下、Mn:0.3%以下、P:0.02%以下、S:0.02%以下、Al:0.01%以上0.10%以下、N:0.004%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
 鋼板表面から深さ50μmまでの組織における平均結晶粒径が10μm以下、全厚平均結晶粒径が10μm以上である缶用鋼板。
[2]前記成分組成として、更に、質量%で、B:0.0003%以上0.0030%以下を含有する前記[1]に記載の缶用鋼板。
[3]鋼板表面にめっき皮膜が形成された前記[1]または[2]に記載の缶用鋼板。
[4]板厚が0.1mm以上0.6mm以下である前記[1]~[3]のいずれか1つに記載の缶用鋼板。
[5]前記[1]~[4]のいずれか1つに記載の缶用鋼板の製造方法であり、
鋼スラブを加熱温度:1000℃以上1300℃以下で加熱し、800℃以上1000℃以下の仕上げ圧延温度で熱間圧延し、500℃以上700℃以下の温度で巻取り、酸洗、冷間圧延後、焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度ρが1.0×1015-2以上である鋼板に対して600℃以上900℃以下の焼鈍を行う缶用鋼板の製造方法。
 ここで、前記相当転移密度ρは、14.4ε/bから算出される(εは鋼板の不均一歪を表し、bは2.5×10-10mである。)。
 本発明によれば、降伏強度(YP)が低く加工性に優れ、更に耐肌荒れ性に優れた缶用鋼板を提供することが可能となる。
焼鈍による再結晶前の鋼板原板表層の相当転移密度と焼鈍後の鋼板の平均結晶粒径(焼鈍後の鋼板の全厚平均結晶粒径および表層平均結晶粒径)との関係を示すグラフである。
 本発明に係る缶用鋼板は、質量%で、C:0.010%以上0.050%以下、Si:0.03%以下、Mn:0.3%以下、P:0.02%以下、S:0.02%以下、Al:0.01%以上0.10%以下、N:0.004%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼板表面から深さ50μmまでの組織における平均結晶粒径が10μm以下、全厚平均結晶粒径が10μm以上である。以下、本発明の缶用鋼板について説明する。
 [成分組成]
 まず、本発明に係る缶用鋼板の成分組成について説明する。なお、以下において成分量の%表示は、特にことわらない限り質量%を意味する。
 <C:0.010%以上0.050%以下>
 Cは0.010%未満となるとフェライト結晶粒の粗大化を招くため、C含有量の下限は0.010%とする。また、C含有量が0.050%を超えると降伏強度が上昇し、絞り成形時の加工性が低下するため、C含有量の上限は0.050%とする。よって、C含有量を0.010%以上0.050%以下とする。好ましくは、C含有量は0.015%以上とする。好ましくは、C含有量は0.040%以下とする。
 <Si:0.03%以下>
 Siは、意図的に含有しない場合にも、不純物成分として鋼中に残留し鋼板の耐食性およびめっきの密着性を劣化させる元素であり、良好な耐食性を確保するためには、Si含有量は0.03%以下とする。好ましくは、Si含有量は0.02%以下とする。
 <Mn:0.3%以下>
 Mnは、鋼中SをMnSとして析出させることによってスラブの熱間割れを防止する。Sを析出固定するために、Mnを0.1%以上含有することが望ましい。また、Mnは固溶強化元素であり、降伏強度の上昇により絞り成形時の加工性を低下させるため、Mn含有量の上限は0.3%とする。
 <P:0.02%以下>
 Pは固溶強化元素であり、降伏強度の上昇により絞り成形時の加工性を低下させる。また、Niめっきの密着性を低下させる元素であり、P含有量は0.02%以下とする。
 <S:0.02%以下>
 Sは、スラブの熱間割れ防止の観点から極力少ないほうが好ましく、S含有量は0.02%以下とする。
 <Al:0.01%以上0.10%以下>
 Alは、0.01%以上含有することで鋼中のNと結合してAlNを形成し、固溶Nを低減することで鋼板の時効による降伏強度(YP)の上昇を抑制する。一方、Al含有量が0.10%を超えるとアルミナ等の介在物が生じやすくなり、加工後の欠陥発生率が増加する。そのため、0.10%以下とする。したがって、Al含有量を0.01%以上0.10%以下とする。Al含有量としては0.02%以上が好ましい。また、Al含有量としては0.08%以下が好ましく、0.06%以下がより好ましい。
 <N:0.004%以下>
 Nは、AlやBと窒化物を形成し、無害化される傾向にあるが、N含有量は可能な限り少ないほうが好ましく、0.004%以下とする。好ましくは、N含有量は0.003%以下とする。
 以上の成分以外の残部は、Fe及び不可避的不純物である。また、本発明においては、Bは必須成分ではないが、必要に応じて以下の範囲で含有することができる。
 <B:0.0003%以上0.0030%以下>
 Bは、Alと同様に鋼中のNと結合してBNを形成し、固溶N量を低減することで時効による降伏強度(YP)の上昇を抑制する。また、鋼中のNを、AlNとなる前にBNとして析出させることにより、巻取り後の熱延鋼板の幅方向、長手方向の組織の均一性を高める作用を有している。従って、必要に応じて、Bを含有するようにする。しかしながら、B含有量が0.0003%未満では上記作用を発揮させにくくなる場合がある。また、B含有量が0.0030%を超えると、上記作用が飽和したり、固溶Bが増加して深絞り性の劣化を招いたりする場合がある。よって、B含有量は、0.0003%以上0.0030%以下とすることが好ましい。B含有量としては0.0005%以上がより好ましい。また、B含有量としては0.0020%以下がより好ましい。
 [組織]
 本発明の缶用鋼板の組織は、特に限定されないが、フェライトを主相として含むことが好ましい。前記主相とは、フェライトを、面積率で90%以上含むことを意味し、面積率で95%以上含むことが好ましく、面積率で98%以上含むことがより好ましく、面積率で100%であってもよい。フェライト以外の残部としては、ベイナイト、パーライト、マルテンサイトが挙げられる。
 <鋼板表面から深さ50μmまでの組織における平均結晶粒径が10μm以下>
 鋼板表層の結晶粒径が大きいほど、耐肌荒れ性に劣る。特に、本発明の缶用鋼板では、鋼板表面から深さ50μmまでの組織における平均結晶粒径が10μmを超えると、所望の耐肌荒れ性を得られない。そのため、本発明の缶用鋼板では、鋼板表面から深さ50μmまでの組織における平均結晶粒径を10μm以下とする。
 ここで、上記の平均結晶粒径は、JIS G0551に基づく切断法により鋼板表面から深さ50μmまでの平均結晶粒径を測定することで得られるものである。なお、本発明の缶用鋼板の組織が、フェライトを主相とする場合、上記の平均結晶粒径は、JIS G0551に基づく切断法により鋼板表面から深さ50μmまでのフェライト平均結晶粒径を測定することで得られるものである。また、鋼板表面から深さ50μmまでの組織における平均結晶粒径は、焼鈍による再結晶前の鋼板表面から深さ50μmまでの相当転位密度を制御することによって調整することができる。
 <全厚平均結晶粒径が10μm以上>
 鋼板全厚の結晶粒径が小さいほど、降伏強度(YP)が高く、加工性に劣る。特に、本発明の缶用鋼板では、鋼板全厚の平均結晶粒径(以下、全厚平均結晶粒径と記す。)が10μm未満であると、所望の加工性を得られない。そのため、本発明の缶用鋼板では、全厚平均結晶粒径を10μm以上とする。全厚平均結晶粒径としては、15μm以上が好ましい。また、全厚平均結晶粒径の上限値は、特に限定されないが、極端な軟質化を防ぐため、40μm以下であることが好ましい。
 ここで、全厚平均結晶粒径は、JIS G0551に基づく切断法により鋼板全厚の平均結晶粒径を測定することで得られるものである。なお、本発明の缶用鋼板の組織が、フェライトを主相とする場合、前記全厚平均結晶粒径は、JIS G0551に基づく切断法により鋼板全厚のフェライト平均結晶粒径を測定することで得られるものである。また、全厚平均結晶粒径は焼鈍温度や鋼板成分を変化させることによって調整することができる。
 [プレス加工後の表面粗さRaが0.7μm以下]
 プレス加工後の鋼板の表面粗さRaが小さいほど、耐肌荒れ性に優れる。特に、本発明の缶用鋼板では、プレス加工後の表面粗さRaが0.7μm以下であると、耐肌荒れ性を優れたものにすることができる。そのため、本発明の缶用鋼板では、プレス加工後の表面粗さRaを0.7μm以下とすることが好ましい。ここで、表面粗さRaは、算術平均粗さRaであり、JIS B0601:’01に基づいて、触針式粗さ測定器を用いて測定することができる。また、プレス加工後の表面粗さRaは焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度を変化させることによって調整することができる。
 [めっき皮膜]
 本発明の缶用鋼板にめっき皮膜を施す場合、鋼板の表面処理としてSnめっき、Niめっき、Crめっき等を施してもよい。さらに化成処理を施してもよいし、ラミネート等の有機皮膜を形成してもよい。
 <板厚が0.1mm以上0.6mm以下>
 本発明の缶用鋼板は、板厚が0.1mm以上0.6mm以下である場合、加工性と耐肌荒れ性の双方を向上させるという効果が顕著に得られる。そのため、板厚を0.1mm以上0.6mm以下とすることが好ましい。より好ましくは、板厚は、0.1mm以上0.4mm以下である。本発明では、所望の板厚は、冷間圧延率を変化させることにより調整することができる。
 [製造方法]
 続いて、本発明の缶用鋼板の製造方法について説明する。本発明の缶用鋼板の製造方法では、前述した成分組成からなるスラブを、加熱温度:1000℃以上1300℃以下で加熱し、800℃以上1000℃以下の仕上げ圧延温度で熱間圧延し、500℃以上700℃以下の温度で巻取り、酸洗、冷間圧延後、焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度ρが1.0×1015-2以上である鋼板に対して600℃以上900℃以下の焼鈍を行う。
 <1000℃以上1300℃以下の温度でスラブ加熱>
 本発明において、鋼素材の溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、溶製後、偏析等の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましいが、造塊-分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしても良い。得られたスラブを、粗圧延した後又は直接熱間仕上げ圧延機に装入し、熱間圧延を行う。スラブ加熱温度は後述の仕上げ圧延温度確保の観点から1000℃以上とする。スラブ加熱温度が1300℃を超えると、窒化物が多量に発生し、焼鈍後未再結晶粒の残存を招き、降伏強度が上昇する。そのため、スラブ加熱温度は1300℃以下とする。
 <800℃以上1000℃以下の仕上げ圧延温度で熱間圧延>
 熱間圧延では、必要に応じて粗圧延を行った後、仕上げ圧延温度800℃以上1000℃以下で仕上げ圧延を行う。仕上げ圧延温度が800℃を下回ると、鋼板原板の組織が不均一になり、加工性や表面外観が劣化する。そのため、仕上げ圧延温度は800℃以上とする。また、1000℃を超えて圧延するとスケール疵などの原因となり表面外観を損ねる。そのため、仕上げ圧延温度は1000℃以下とする。
 <500℃以上700℃以下の温度で巻取り>
 巻取り温度が500℃を下回ると、析出物の成長速度が小さくなり、微細析出物量が増加することで降伏強度(YP)が上昇する。このため、巻取り温度は500℃以上とする。また、巻取り温度が700℃を超えると表層のスケールが成長して表面欠陥の原因となりやすい。このため、巻取り温度は700℃以下とする。
 <焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度を1.0×1015-2以上に制御>
 巻取り後、酸洗、冷間圧延、洗浄をしてから、焼鈍を行うが、焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度を1.0×1015-2以上とすることで、焼鈍後の鋼板表層の結晶粒を微細とすることができる。より好ましくは1.0×1016-2以上とする。また、前記相当転位密度の上限値は、特に限定されないが、表面剥離の防止の観点から、1.0×1018-2以下であることが好ましい。
 焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度を1.0×1015-2以上とする方法は特に規定されるものではない。しかし、冷延鋼板を製造する際に通常行われている50~95%程度の冷延圧下率の範囲では鋼板表層に1.0×1015-2以上の相当転位密度を得ることは難しい。焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度を1.0×1015-2以上とする方法としては、例えば冷間圧延後の冷延鋼板にショットブラスト処理又は高強度ブラシによるひずみ付与処理を施す方法が挙げられる。また、前記相当転位密度を1.0×1015-2以上とする別の方法としては、冷間圧延最終段または冷間圧延後の冷延鋼板に、高粗度ロールによる低圧下率での追加圧延を施す方法が挙げられる。前記高粗度ロールとしては、例えば、ロール粗さRaが2.0~10.0μmのロールを用いることができる。また、前記低圧下率での追加圧延は、例えば、圧下率0.1~10%で行うことができる。
 〔相当転位密度〕
 相当転位密度は以下の方法によって測定することができる。焼鈍前の各々の鋼板から、10mm×10mmの試験片を採取し、試験片の裏面から板厚50μmとなるまで研磨を行った後、フッ酸にて裏面表層の研磨歪層を除去する。この試験片を用いてX線回折実験を行い、鋼板の(110)、(211)、(220)結晶面のピークの半値幅を求める。この半値幅を用いてWilliamson-Hall法により試験片の不均一歪εを求める。この不均一歪εを、非特許文献1(中島ら「X線回折を利用した転位密度の評価法」、CAMP-ISIJ、Vol.17、2004、p.396)中に記載の式:ρ=14.4ε/bに代入し、相当転位密度ρを求める。なお、bは、バーガースベクトルの大きさ(m)であり、bの値は2.5×10-10mである。
 <600℃以上900℃以下の温度で焼鈍>
 焼鈍は、連続焼鈍炉、箱焼鈍炉のいずれを用いた方法で行われても良い。焼鈍温度が600℃未満では、未再結晶粒が残存する恐れがある。一方、900℃を超える高温域で焼鈍を行うと、異常粗大粒が発生し、表面外観を損なう。そのため、焼鈍温度は600℃以上900℃以下とする。
<めっき処理>
 焼鈍後、めっき処理を行ってもよい。めっき処理を行う場合、鋼板の表面処理としてSnめっき、Niめっき、Crめっき等を施してもよい。さらに化成処理を施してもよいし、ラミネート等の有機皮膜を形成してもよい。また、めっき処理後、表面粗度の調整などのため調質圧延を行うことが好ましい。この際、調質圧延の圧延率(伸長率)は、0.5%~1.5%程度とすることが好ましい。
 以上、説明した本発明の缶用鋼板は、降伏強度が低く加工性に優れると共に、耐肌荒れ性に優れる。本発明の缶用鋼板は、例えば2ピース缶用として適用することができる。
 以下、本発明の実施例について説明する。
 まず、表1に示す成分組成からなる溶鋼を、真空脱ガス処理後、連続鋳造によりスラブとした。次いで上記スラブを1250℃で加熱し、スケール除去後、板厚40mmまで粗圧延した。次いで、スケール除去装置で鋼板表層を冷却した後、3.2mm厚まで仕上げ圧延し、所定の温度でコイルに巻き取った。
 次いで、巻取り後の鋼板を酸洗し、冷間圧延した。前記冷間圧延後、一部のサンプルは、相当転移密度を調整するために、ロール粗さRa=2.1~7.4μmのロールを用いて追加圧延を施し、0.4mm厚(冷間圧延率:87%)とした。追加圧延は圧延率5%で実施した。また、前記冷間圧延後、別の一部のサンプルについては、ショットブラスト処理(ショット条件:スチールショット(平均粒径0.5mm)を圧力0.5MPaで300秒吹きつけ)を施した。なお、全てのサンプルは最終板厚が0.4mmとなるように前段での冷間圧延率を調整した。冷延板は前処理として脱脂、酸洗した後、連続焼鈍ラインで焼鈍し、伸長率1.0%の調質圧延を行った。
 上記の相当転移密度は、前述の方法に従って測定した。得られた鋼板については機械特性評価、結晶粒径測定を行った。表2に得られた鋼板の表面粗さRa(μm)を併せて示した。
 機械特性評価では、引張試験により、降伏強度(YP)、引張強度(TS)および伸び(El)を評価した。引張特性は、JIS Z2201記載の5号試験片に加工した後、JIS Z2241記載の試験方法に従って行った。結晶粒径はJIS G0551に基づく切断法によりフェライト平均結晶粒径を測定した。
 更に、鋼板から100mm径の円形ブランクを採取して、これを5段階の多段絞り成型で14mm径の円筒状に成型した後、触針式粗さ測定器を用いて缶胴部の表面粗さRaを測定し、加工性(成形性)と耐肌荒れ性の評価を行った。加工性の評価は200個の絞り成型を行い、割れや疵など不良の発生しなかったものを○、発生したものを×とした。耐肌荒れ性の評価は缶胴部の表面粗さRaが0.5μm未満を◎、0.5μm以上0.7μm以下を○、0.7μm超えを×とした。
 上記の製造条件及び評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 本発明例は加工性と耐肌荒れ性の双方に優れ、缶用鋼板として適した性能を有していた。一方、比較例では加工性、耐肌荒れ性の少なくとも一方が劣っていた。具体的には、試料A3、A4、B3、C3、D3は、鋼板表面から深さ50μmまでの組織における平均結晶粒径が10μmを超えていたため、耐肌荒れ性に劣っていた。
 また、試料E3は、鋼板表面から深さ50μmまでの組織における平均結晶粒径が10μmを超えており、かつ全厚平均結晶粒径が10μm未満であったため、加工性と耐肌荒れ性の双方に劣っていた。
 試料F1は、用いた鋼のC含有量が0.050質量%を超えていたため、加工性に劣っていた。
 また、試料G1は、用いた鋼のC含有量が0.010質量%未満であり、かつ鋼板表面から深さ50μmまでの組織における平均結晶粒径が10μmを超えていたため、耐肌荒れ性に劣っていた。試料H1は、用いた鋼のMn含有量が0.3質量%を超えており、かつ全厚平均結晶粒径が10μm未満であったため、加工性に劣っていた。

Claims (5)

  1.  質量%で、C:0.010%以上0.050%以下、Si:0.03%以下、Mn:0.3%以下、P:0.02%以下、S:0.02%以下、Al:0.01%以上0.10%以下、N:0.004%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
     鋼板表面から深さ50μmまでの組織における平均結晶粒径が10μm以下、全厚平均結晶粒径が10μm以上である缶用鋼板。
  2.  前記成分組成として、更に、質量%で、B:0.0003%以上0.0030%以下を含有する請求項1に記載の缶用鋼板。
  3.  鋼板表面にめっき皮膜が形成された請求項1または2に記載の缶用鋼板。
  4.  板厚が0.1mm以上0.6mm以下である請求項1~3のいずれか1項に記載の缶用鋼板。
  5.  請求項1~4のいずれか1項に記載の缶用鋼板の製造方法であり、
    鋼スラブを加熱温度:1000℃以上1300℃以下で加熱し、800℃以上1000℃以下の仕上げ圧延温度で熱間圧延し、500℃以上700℃以下の温度で巻取り、酸洗、冷間圧延後、焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度ρが1.0×1015-2以上である鋼板に対して600℃以上900℃以下の焼鈍を行う缶用鋼板の製造方法。
     ここで、前記相当転移密度ρは、14.4ε/bから算出される(εは鋼板の不均一歪を表し、bは2.5×10-10mである。)。
PCT/JP2016/001410 2015-03-27 2016-03-14 缶用鋼板およびその製造方法 WO2016157760A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680017343.6A CN107406944B (zh) 2015-03-27 2016-03-14 罐用钢板及其制造方法
JP2017509236A JP6137436B2 (ja) 2015-03-27 2016-03-14 缶用鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015066385 2015-03-27
JP2015-066385 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016157760A1 true WO2016157760A1 (ja) 2016-10-06

Family

ID=57004188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001410 WO2016157760A1 (ja) 2015-03-27 2016-03-14 缶用鋼板およびその製造方法

Country Status (3)

Country Link
JP (1) JP6137436B2 (ja)
CN (1) CN107406944B (ja)
WO (1) WO2016157760A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157878A1 (ja) * 2015-03-31 2016-10-06 Jfeスチール株式会社 缶用鋼板及び缶用鋼板の製造方法
WO2020105406A1 (ja) * 2018-11-21 2020-05-28 Jfeスチール株式会社 缶用鋼板およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267242A (ja) * 1989-04-07 1990-11-01 Nippon Steel Corp 加工性、肌荒れ性及びイヤリング性に優れた低炭素アルミニウムキルド冷延鋼板及びその製造方法
JPH09310150A (ja) * 1996-05-22 1997-12-02 Kawasaki Steel Corp 加工性、ノンイヤリング性および耐肌荒れ性に優れる缶用鋼板ならびにその製造方法
JPH1017993A (ja) * 1996-07-03 1998-01-20 Nippon Steel Corp フランジ割れのない複層組織di缶用鋼板およびその製造方法
JP2007254811A (ja) * 2006-03-23 2007-10-04 Jfe Steel Kk 化成処理用鋼板及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262242B2 (ja) * 2008-03-31 2013-08-14 Jfeスチール株式会社 製缶用鋼板の製造方法
JP5712479B2 (ja) * 2009-10-29 2015-05-07 Jfeスチール株式会社 耐肌荒れ性に優れた缶用鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267242A (ja) * 1989-04-07 1990-11-01 Nippon Steel Corp 加工性、肌荒れ性及びイヤリング性に優れた低炭素アルミニウムキルド冷延鋼板及びその製造方法
JPH09310150A (ja) * 1996-05-22 1997-12-02 Kawasaki Steel Corp 加工性、ノンイヤリング性および耐肌荒れ性に優れる缶用鋼板ならびにその製造方法
JPH1017993A (ja) * 1996-07-03 1998-01-20 Nippon Steel Corp フランジ割れのない複層組織di缶用鋼板およびその製造方法
JP2007254811A (ja) * 2006-03-23 2007-10-04 Jfe Steel Kk 化成処理用鋼板及びその製造方法

Also Published As

Publication number Publication date
JP6137436B2 (ja) 2017-05-31
JPWO2016157760A1 (ja) 2017-07-06
CN107406944B (zh) 2019-05-10
CN107406944A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
EP2554699B1 (en) Steel sheet with high tensile strength and superior ductility and method for producing same
JP5549307B2 (ja) 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法
JP6428986B1 (ja) 絞り缶用冷延鋼板、及びその製造方法
US10294542B2 (en) Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet
KR101941067B1 (ko) 스테인리스 냉연 강판용 소재
KR101994914B1 (ko) 캔용 강판 및 캔용 강판의 제조 방법
WO2016031234A1 (ja) 缶用鋼板及びその製造方法
JP6699310B2 (ja) 絞り缶用冷延鋼板及びその製造方法
JP6137436B2 (ja) 缶用鋼板およびその製造方法
JP2007009272A (ja) 異方性の小さい鋼板およびその製造方法
CN109440004B (zh) 罐用钢板及其制造方法
JP5365181B2 (ja) 鋼板及びその製造方法
US11186900B2 (en) High-strength cold rolled steel sheet and method for manufacturing the same
JPH08176735A (ja) 缶用鋼板とその製造方法
JP5874771B2 (ja) 加工性と耐肌荒れ性に優れた缶用鋼板およびその製造方法
JP2007177293A (ja) 超高強度鋼板およびその製造方法
JP6210177B2 (ja) 缶用鋼板およびその製造方法
JP2007239035A (ja) 耐ひずみ時効性および耐肌荒れ性に優れ、面内異方性の小さい冷延鋼板およびその製造方法
JPH1081919A (ja) ノンイヤリング性および耐肌荒れ性に優れる2ピース缶用鋼板の製造方法
EP2431490B1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
JP4760455B2 (ja) 平均r値が高く、面内異方性の小さい冷延鋼板およびその製造方法
JP2007211337A (ja) 耐ひずみ時効性に優れ、面内異方性の小さい冷延鋼板およびその製造方法
JP2007009271A (ja) 異方性の小さい鋼板およびその製造方法
WO2019203251A1 (ja) 熱延鋼板
JP2002167645A (ja) 焼付け硬化型冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771654

Country of ref document: EP

Kind code of ref document: A1