JP2009068081A - 極軟質高炭素熱延鋼板 - Google Patents
極軟質高炭素熱延鋼板 Download PDFInfo
- Publication number
- JP2009068081A JP2009068081A JP2007238848A JP2007238848A JP2009068081A JP 2009068081 A JP2009068081 A JP 2009068081A JP 2007238848 A JP2007238848 A JP 2007238848A JP 2007238848 A JP2007238848 A JP 2007238848A JP 2009068081 A JP2009068081 A JP 2009068081A
- Authority
- JP
- Japan
- Prior art keywords
- less
- ferrite
- carbide
- steel sheet
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 63
- 239000010959 steel Substances 0.000 title claims abstract description 63
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 27
- 238000000137 annealing Methods 0.000 claims abstract description 50
- 238000001816 cooling Methods 0.000 claims abstract description 48
- 238000005098 hot rolling Methods 0.000 claims abstract description 35
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 150000001247 metal acetylides Chemical class 0.000 abstract description 21
- 239000000203 mixture Substances 0.000 abstract description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 74
- 238000005096 rolling process Methods 0.000 description 45
- 238000000034 method Methods 0.000 description 22
- 229910000677 High-carbon steel Inorganic materials 0.000 description 18
- 230000009467 reduction Effects 0.000 description 18
- 230000009466 transformation Effects 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 229910001566 austenite Inorganic materials 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- 229910001562 pearlite Inorganic materials 0.000 description 7
- 229910001563 bainite Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 238000004080 punching Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000010273 cold forging Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 102220062469 rs786203185 Human genes 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
【解決手段】C:0.2〜0.7 %、Si:0.01〜1.0%、Mn:0.1〜1.0%、P:0.03%以下、S:0.035%以下、Al:0.08%以下、N:0.01%以下を含有し、残部が鉄および不可避的不純物からなる高炭素熱延鋼板であり、熱間圧延後は、炭化物平均粒径が50nm以下の球状炭化物を有し、アスペクト比が5以上の炭化物の割合が15%以下である。さらに、熱間圧延後の転位密度が1×1015m-2以上であり、かつ、球状化焼鈍、冷却後の転位密度が1×1014m-2以上である。
【選択図】なし
Description
特許文献1に記載の技術は、高炭素鋼帯をAc1点以上のフェライト−オーステナイトの二相域で焼鈍し、粗大な球状化セメンタイトとしているが、このような粗大セメンタイトは、加工の際にボイド発生の起点となるとともに溶解速度が遅いため焼入れ性を劣化させることは明らかである。また、焼鈍後の硬度についても、S35C材でHv 132〜141(HRB 72〜75)であり、必ずしも軟質とは言えない。
特許文献2、3記載の技術では、フェライト組織が初析フェライトからなるため、フェライト中に炭化物を実質的に含まないために軟らかく延性に優れているが、伸びフランジ性は必ずしも良好ではない。それは、打抜き加工時に、打抜き端面の近傍で初析フェライトの部分で変形するため、初析フェライトと球状化炭化物を含むフェライトでは変形量が大きく異なる。その結果、これら変形量が大きく異なる粒の粒界付近に応力が集中し、ボイドが発生する。これがクラックに成長するため、結果的には伸びフランジ性を劣化させると考えられる。
また、最近では従来にもまして、生産性向上の観点から加工レベルに対する要求が厳しくなっている。そのため、高炭素鋼板の穴広げ加工についても、加工度の増加等により、打抜き端面の割れが発生しやすくなっており、高炭素鋼板にも高い伸びフランジ性が要求されている。
特許文献4は、Cを0.2〜0.7質量%含有する鋼を、仕上温度(Ar3変態点−20℃)以上で熱間圧延した後、冷却速度120℃/秒超かつ冷却停止温度650℃以下で冷却を行い、次いで巻取温度600℃以下で巻取り、酸洗後、焼鈍温度640℃以上Ac1変態点以下で焼鈍する技術である。金属組織については、炭化物平均粒径を0.1μm以上1.2μm未満、炭化物を含まないフェライト粒体積率を10%以下に制御することを特徴としている。
[1]質量%で、C:0.2〜0.7 %、Si:0.01〜1.0%、Mn:0.1〜1.0%、P:0.03%以下、S:0.035%以下、Al:0.08%以下、N:0.01%以下を含有し、残部が鉄および不可避的不純物からなり、熱間圧延後は、炭化物平均粒径が50nm以下の球状炭化物を有し、アスペクト比が5以上の炭化物の割合が15%以下であり、さらに、熱間圧延後の転位密度が1×1015m-2以上であり、かつ、球状化焼鈍、冷却後の転位密度が1×1014m-2以上であることを特徴とする極軟質高炭素熱延鋼板。
[2]前記[1]において、さらに、質量%で、B:0.0010〜0.0050%、Cr:0.005〜0.30%の一種または二種を含有することを特徴とする極軟質高炭素熱延鋼板。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
そして、本発明では、焼鈍前の熱延鋼板組織を制御することにより、焼鈍後に炭化物が等軸かつ均一分散し、フェライト粒の均一粗大化を達成する。その結果、極めて軟質でかつ延性および伸びフランジ性に優れた高炭素熱延鋼板が得られ、加工工程の簡略化、および低コスト化が可能となる。
まず、本発明における鋼の化学成分の限定理由について説明する。
(1)C:0.2〜0.7%
Cは、炭素鋼において最も基本になる合金元素である。その含有量によって、焼入れ後の硬さおよび焼鈍状態での炭化物量が大きく変動する。C含有量が0.2%未満の鋼では、熱延後の組織において初析フェライトの生成が顕著となり、焼鈍後に安定した粗大フェライト粒組織が得られず、混粒組織となり安定した軟質化が図れない。また、自動車用部品等に適用する上で十分な焼入れ硬さが得られない。一方、C含有量が0.7%を超えると炭化物体積率が高く、炭化物同士の接触が多くなり、延性および伸びフランジ性が大幅に低下する。また、熱間圧延後の靭性が低下して鋼帯の製造性、ハンドリング性が悪くなる。したがって、焼入れ後の硬さと延性および伸びフランジ性を兼ね備えた鋼板を提供する観点から、C含有量は0.2%以上0.7%以下とする。
Siは、焼入れ性を向上させる元素である。Si含有量が0.01%未満では焼入れ後の硬さが不足する。一方、Si含有量が1.0%を超えると固溶強化により、フェライトが硬化し、延性が低下する。さらに炭化物を黒鉛化し、焼入れ性を阻害する傾向がある。したがって、焼入れ後の硬さと延性を兼ね備えた鋼板を提供する観点から、Si含有量は0.01%以上1.0%以下、好ましくは0.1%以上0.8%以下とする。
Mnは、Siと同様に焼入れ性を向上させる元素である。また、SをMnSとして固定し、スラブの熱間割れを防止する重要な元素である。Mn含有量が0.1%未満では、これらの効果が十分に得られず、また焼入れ性は大幅に低下する。一方、Mn含有量が1.0%を超えると固溶強化により、フェライトが硬化し、延性の低下を招く。したがって、焼入れ後の硬さと延性を兼ね備えた鋼板を提供する観点から、Mn含有量は0.1%以上1.0%以下、好ましくは0.3%以上0.8%以下とする。
Pは粒界に偏析し、延性や靭性を劣化させるため、P含有量は0.03%以下、好ましくは0.02%以下とする。
Sは、MnとMnSを形成し、延性および伸びフランジ性、焼入れ後の靭性を劣化させるため、低減しなければならない元素であり、少ない方が好ましい。しかし、S含有量が0.035%までは許容できるため、S含有量は0.035%以下、好ましくは0.010%以下とする。
Alは過剰に添加するとAlNが多量に析出し、焼入れ性を低下させるため、Al含有量は0.08%以下とし、好ましくは0.06%以下する。
Nは過剰に含有している場合は延性の低下をもたらすため、N含有量は0.01%以下とする。
Bは、熱間圧延後の冷却中の初析フェライトの生成を抑制し、焼鈍後に均一な粗大フェライト粒を生成する重要な元素である。しかし、B含有量が0.0010%未満では、十分な効果が得られない場合がある。一方、0.0050%を超えると、効果が飽和するとともに、熱間圧延の負荷が高くなり操業性が低下する場合がある。従って、添加する場合、B含有量は0.0010%以上0.0050%以下とする。
Crは、Bと同様に、熱間圧延後の冷却中の初析フェライトの生成を抑制し、焼鈍後に均一な粗大フェライト粒を生成する重要な元素である。しかし、Cr含有量が0.005%未満では、十分な効果が得られない場合がある。一方、0.30%を超えると初析フェライト生成の抑制効果が飽和するとともに、コスト増となる。従って、添加する場合、Cr含有量は0.005%以上0.30%以下とする。好ましくは0.05%以上0.30%以下とする。
微細な球状炭化物は、硬度を支配する重要な因子であり、焼鈍後にフェライト粒を粗大化させ、軟質化に寄与する。一方で、球状炭化物の炭化物平均粒径が50nm超えの場合は、後述する転位密度が球状化焼鈍時に保持されずに回復してしまい、フェライト粒の粗大化は起こらない。
なお、熱間圧延後に、炭化物平均粒径が50nm以下の球状炭化物を存在させるためには、高炭素鋼の組織は、熱間圧延時の圧下率や冷却速度などによって決まるため、後述するように、最終2パスの圧下率をそれぞれ12%以上で、かつ、(Ar3−10)℃以上(Ar3+90)℃以下の温度域で仕上圧延を行うことが好ましい。このような製造条件で圧延された鋼の組織は、下部ベイナイト組織となり、微細な炭化物が析出する歪みを多く含んだ組織となる。そして、炭化物は圧延ままの状態ですでに球状で存在し、かつ、粒径が50nm以下という微細な炭化物で存在することになる。
なお、上記炭化物平均粒径が50nm以下の球状炭化物は、サンプルを薄膜にして透過旗電子顕微鏡(TEM)で観察することで確認できる。1万倍程度のTEM写真において、観察される炭化物の粒径が50nm以下であればよい。この条件を満足しないものは、後述するアスペクト比が5以上になっている場合が多い。
炭化物形態は、延性および伸びフランジ性に大きく影響する。炭化物の形態すなわちアスペクト比が5以上になると、わずかな加工でボイドが生成するため、加工の初期にクラックとなり延性および伸びフランジ性が低下する。しかし、その割合が15%以下であれば影響は小さい。従って、アスペクト比が5以上の炭化物割合は15%以下に制御する。好ましくは10%以下、より好ましくは5%以下とする。なお、炭化物のアスペクト比は、製造条件、特に、仕上圧延入り側温度により制御することができる。仕上げ圧延入り側の温度が満足されない場合は、パーライト組織を呈することになり、素地自体が硬くなり加工性が著しく劣化する場合がある。
なお、本発明において、炭化物のアスペクト比とは炭化物の長径と短径の比とする。
球状化焼鈍時に軟質化するには、フェライト粒径が粗大化する必要がある。フェライト粒が短時間で粗大化するには、成長の駆動力が十分に確保されていることが必要であり、すなわち、微細炭化物のピンニングが外れフェライト粒が粒成長しはじめたときの転位密度が十分に高いと、成長の駆動力が確保されていることになり、フェライト粒は一気に粗大化する。フェライト粒が粗大化するのに必要な転位密度は、熱延後の試料で1×1015m-2以上である。また、球状化焼鈍時における回復を前述の微細に析出した球状炭化物が抑制することで、短い球状化処理時間でフェライト粒が粗大化でき、工業的に球状化処理時間の短縮を達成することができる。この場合、球状化焼鈍、冷却後の転位密度が1×1014m-2以上が得られていれば、フェライト粒は粗大化し、材料は軟質化する。
上記を考慮し、本発明では、熱間圧延後の転移密度および球状化焼鈍、冷却後の転位密度を制御することとする。
なお、前述のように、粗大なフェライト粒を有する鋼板は、仕上圧延時の圧下率と温度を制御することで得られる。具体的には、後述するように、最終パスを12%以上の圧下率で、かつ、(Ar3−10)℃以上の仕上げ温度で仕上げ圧延を行うことで、旧オーステナイト粒内にせん断帯が多数導入され、変態駆動力が増大する。この結果、転移密度は本発明範囲内に制御され、フェライト粒が均一に粗大化する。
本発明の極軟質高炭素熱延鋼板は、上記化学成分範囲に調整された鋼を、粗圧延し、所望の条件で仕上圧延し、次いで、所望の冷却条件で冷却し、巻取り、酸洗後、箱型焼鈍法により所望の球状化焼鈍を行うことにより得られる。これらについて以下に詳細に説明する。
仕上圧延入り側温度を1100℃以下とすることで、旧オーステナイト粒径が微細となり、仕上圧延後のベイナイトラスの微細化と同時にラス中の炭化物のアスペクト比が小さくなり、焼鈍後にアスペクト比が5以上の炭化物割合が15%以下となる。これにより、加工時のボイド生成が抑制され、優れた延性および伸びフランジ性が得られる。しかし、仕上圧延入り側温度が1100℃を超える場合、十分な効果が得られない。以上の理由から、仕上圧延入り側温度は1100℃以下とし、炭化物のアスペクト比低減の観点から、1050℃以下が好ましく、より好ましくは1000℃以下である。
最終パス圧下率を12%以上とすることで、旧オーステナイト粒内にせん断帯が多数導入され、変態の核生成サイトが増大する。このため、ベイナイトを構成するラス状フェライト粒が微細となり、球状化焼鈍時に高い粒界エネルギーを駆動力として、粒径が粗大なフェライト組織が得られることになる。一方、最終パス圧下率が12%未満では、ラス状フェライト粒が粗大となるため、粒成長駆動力が不足し、焼鈍後に粒径が粗大なフェライト組織が得られず、安定した軟質化が図れない。以上の理由から、最終パス圧下率は12%以上とし、均一粗大化の観点から、好ましくは15%以上、さらに好ましくは18%以上とする。一方、最終パスの圧下率が40%以上では圧延負荷が増大するため、最終パス圧下率の上限は40%未満とすることが好ましい。鋼を熱間圧延する際の仕上温度(最終パスの圧延温度)が(Ar3−10)℃未満では、一部でフェライト変態が進行し、初析フェライト粒が増加するため、球状化焼鈍後に混粒フェライト組織となり、粒径が粗大なフェライト組織が得られず、安定した軟質化が図れない。したがって、仕上温度は(Ar3−10)℃以上とする。仕上げ温度の上限は特に規定しないが、1000℃を超えるような高温の場合、スケール性欠陥が発生し易くなるため、1000℃以下が好ましい。
以上より、最終パスの圧下率は12%以上、仕上温度は(Ar3−10)℃以上とする。
以上より、仕上圧延において、最終2パスの圧下率は好ましくはそれぞれ12%以上、より好ましくは15%以上40%未満、温度域は好ましくは(Ar3−10)℃以上(Ar3+90)℃以下である。
なお、Ar3変態点(℃)は実測により求めることができるが、次の式(1)により算出しても差し支えない。
Ar3=910-310C-80Mn-15Cr-80Mo (1)
ここで、式中の元素記号はそれぞれの元素の含有量(質量%)を表す。
熱間圧延後の1次冷却方法が徐冷であると、オーステナイトの過冷度が小さく初析フェライトが多く生成する。冷却速度が120℃/秒以下の場合、初析フェライトの生成が顕著となり、焼鈍後に炭化物が不均一に分散し、安定した粗大フェライト粒組織が得られず、軟質化が図れない。したがって、熱間圧延後の1次冷却の冷却速度は120℃/秒超とする。好ましくは200℃/秒以上、より好ましくは300℃/秒以上である。なお、冷却速度の上限は特に制限しないが、例えば板厚3.0mmの場合を想定すると、現状の設備上の能力からは700℃/秒である。また、仕上げ圧延から冷却開始までの時間が1.8秒超えでは、粗大化する。したがって、仕上げ圧延から冷却開始までの時間を1.8秒以内とする。なお、炭化物の分散状態をより均一化するためには、仕上げ圧延から冷却開始までの時間は1.5秒以内が好ましく、より好ましくは1.0秒以内である。
熱間圧延後の1次冷却停止温度が600℃超えの場合、熱延変態組織における初析フェライトが多く生成する。そのため、焼鈍後に炭化物が不均一に分散し、安定した粗大フェライト粒組織が得られず、軟質化が図れない。したがって、熱間圧延後にベイナイト組織を安定して得るには、熱間圧延後の1次冷却停止温度を600℃以下とし、好ましくは580℃以下、より好ましくは550℃以下とする。なお、下限温度は特に規定しないが、低温になるほど板形状が劣化するため、300℃以上とすることが好ましい。
高炭素鋼板の場合、1次冷却後に、初析フェライト変態、パーライト変態、ベイナイト変態に伴い、鋼板温度が上昇することがあり、1次冷却停止温度が600℃以下であっても、1次冷却終了から、巻取までに温度が上昇した場合、初析フェライトが生成する。そのため、焼鈍後に炭化物が不均一に分散し、安定した粗大フェライト粒組織が得られず、軟質化が図れない。したがって、2次冷却により、1次冷却終了から巻取までの温度を制御することは重要であり、2次冷却により、1次冷却終了から巻取まで600℃以下の温度で保持することとし、好ましくは580℃以下、より好ましくは550℃以下の温度で保持することとする。なお、この場合の2次冷却はラミナー冷却等により行うことができる。
冷却後の巻取が580℃超えの場合、ベイナイトを構成するラス状フェライト粒がやや粗大となり、焼鈍時の粒成長駆動力が不足し、安定した粗大フェライト粒組織が得られず、軟質化が図れない。一方、冷却後の巻取を580℃以下とすることにより、ラス状フェライト粒が微細となり、焼鈍時に高い粒界エネルギーを駆動力として、安定した粗大フェライト粒組織が得られる。したがって、巻取温度は580℃以下とし、好ましくは650℃以下、より好ましくは530℃以下とする。なお、巻取温度の下限は特に規定しないが、低温になるほど鋼板の形状が劣化するため、200℃以上とすることが好ましい。
巻取後の熱延鋼板は、球状化焼鈍を行う前にスケール除去のため、酸洗を施す。酸洗は常法にしたがって行えばよい。
熱延鋼板を酸洗した後、フェライト粒を十分に粗大化させるとともに炭化物を球状化するために焼鈍を行う。球状化焼鈍は大きく分けて、(1)Ac1直上温度に加熱後徐冷する方法、(2)Ac1直下温度で長時間保持する方法、(3)Ac1直上および直下の温度で加熱・冷却を繰り返す方法がある。このうち、本発明では上記(2)の方法により、フェライト粒の粒成長と炭化物の球状化を同時に指向している。このため、球状化焼鈍は長時間を有することから箱型焼鈍とする。焼鈍温度が680℃未満では、フェライト粒の粗大化および炭化物の球状化がいずれも不十分となり、十分に軟質化せず、また延性および伸びフランジ性が低下する。一方、焼鈍温度がAc1変態点を超える場合、一部がオーステナイト化し、冷却中に再度パーライトを生成するため、やはり延性および伸びフランジ性が低下する。以上より、球状化焼鈍の焼鈍温度は680℃以上Ac1変態点以下とする。粒径が粗大なフェライト組織を安定して得るには、焼鈍(均熱)時間は20時間以上とすることが好ましく、40時間以上とすることがさらに好ましい。なお、Ac1変態点(℃)は実測により求めることができるが、次の式(2)により算出しても差し支えない。
Ac1=754.83−32.25C+23.32Si−17.76Mn+17.13Cr+4.51Mo (2)
ここで、式中の元素記号はそれぞれの元素の含有量(質量%)を表す。
サンプルの板厚断面での光学顕微鏡組織から、JIS G 0552に記載の切断法により測定を行った。
熱延後すなわち球状化焼鈍前のサンプルの板厚両面を腐食・研磨して30μm以下まで減厚し、さらに電解研磨を施すことによって透過型電子顕微鏡にて組織観察が可能な試料を作製し、3万倍の写真より炭化物粒径の測定を行った。なお、平均粒径は、炭化物の長辺と短辺の平均値とした。
サンプルの板厚両面を腐食・研磨して30μm以下まで減厚し、さらに電解研磨を施すことによって透過型電子顕微鏡にて組織観察が可能な試料を作製し、1万倍または3万倍の写真より炭化物の長径と短径の比を測定した。なお、炭化物総数はパーライトも含めて100個以上とし、アスペクト比5以上の炭化物の割合を算出した。
熱延後および860℃×0hrの球状化処理サンプルの板圧片面を1/4厚みまで研削し、鏡面に仕上げた面をX線回折装置で鉄の回折線の半値幅を精度よく測定する。110、211、220の回折線から不均一歪みを算出し次式に従って転位密度ρ(m-2)を求めた。
ρ=14.4ε2/b2
<素材硬度>
サンプルの切断面をバフ研磨仕上げ後、板厚中央部にて荷重500gfの条件下でヴィッカース硬さ(Hv)を5点測定し、平均硬度を求めた。
全伸びは引張試験により測定した。圧延方向に対し、90°方向(C方向)に沿ってJIS5号試験片を採取し、引張速度10mm/minで引張試験を行い、全伸び(突合せ伸び)を測定した。
伸びフランジ性は、穴広げ試験により評価した。サンプルをポンチ径d0=10mm、ダイス径12mm(クリアランス20%)の打抜き工具を用いて打抜き後、穴広げ試験を実施した。穴広げ試験は、円筒平底ポンチ(50mmφ、5R(肩半径5mm))にて押し上げる方法で行い、穴縁に板厚貫通クラックが発生した時点での穴径db(mm)を測定して、次式で定義される穴広げ率λ(%)を求めた。
λ(%) = (db-d0)/d0×100
以上の測定により得られた結果を表3に示す。
鋼板No.17はSiおよびMnの添加量が本発明範囲外の比較例であり、アスペクト比が5以上の炭化物割合が本発明範囲外であり、全伸びおよび伸びフランジ性が劣っている。
Claims (2)
- 質量%で、C:0.2〜0.7 %、Si:0.01〜1.0%、Mn:0.1〜1.0%、P:0.03%以下、S:0.035%以下、Al:0.08%以下、N:0.01%以下を含有し、残部が鉄および不可避的不純物からなり、熱間圧延後は、炭化物平均粒径が50nm以下の球状炭化物を有し、アスペクト比が5以上の炭化物の割合が15%以下であり、さらに、熱間圧延後の転位密度が1×1015m-2以上であり、かつ、球状化焼鈍、冷却後の転位密度が1×1014m-2以上であることを特徴とする極軟質高炭素熱延鋼板。
- さらに、質量%で、B:0.0010〜0.0050%、Cr:0.005〜0.30%の一種または二種を含有することを特徴とする請求項1に記載の極軟質高炭素熱延鋼板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007238848A JP5358914B2 (ja) | 2007-09-14 | 2007-09-14 | 極軟質高炭素熱延鋼板 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007238848A JP5358914B2 (ja) | 2007-09-14 | 2007-09-14 | 極軟質高炭素熱延鋼板 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009068081A true JP2009068081A (ja) | 2009-04-02 |
JP5358914B2 JP5358914B2 (ja) | 2013-12-04 |
Family
ID=40604649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007238848A Active JP5358914B2 (ja) | 2007-09-14 | 2007-09-14 | 極軟質高炭素熱延鋼板 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5358914B2 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255066A (ja) * | 2009-04-28 | 2010-11-11 | Jfe Steel Corp | 高炭素熱延鋼板およびその製造方法 |
JP2010269324A (ja) * | 2009-05-20 | 2010-12-02 | Nakayama Steel Works Ltd | 中高炭素鋼板ならびにその熱間圧延方法および製造設備 |
JP2012172228A (ja) * | 2011-02-23 | 2012-09-10 | Sumitomo Metal Ind Ltd | 熱処理用鋼材 |
JP2013036096A (ja) * | 2011-08-09 | 2013-02-21 | Sanyo Special Steel Co Ltd | 靭性に優れた機械構造用鋼 |
JP2013112890A (ja) * | 2011-11-30 | 2013-06-10 | Nisshin Steel Co Ltd | プレス加工用焼鈍鋼板および製造法並びに耐摩耗性に優れる機械部品 |
WO2015076384A1 (ja) * | 2013-11-22 | 2015-05-28 | 新日鐵住金株式会社 | 高炭素鋼板及びその製造方法 |
WO2015146173A1 (ja) * | 2014-03-28 | 2015-10-01 | Jfeスチール株式会社 | 高炭素熱延鋼板およびその製造方法 |
JP2020029620A (ja) * | 2019-10-30 | 2020-02-27 | 日本製鉄株式会社 | 冷延鋼板の製造方法及び冷延鋼板 |
WO2022239758A1 (ja) * | 2021-05-13 | 2022-11-17 | 日本製鉄株式会社 | ホットスタンプ用鋼板およびホットスタンプ成形体 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007043318A1 (ja) * | 2005-10-05 | 2007-04-19 | Jfe Steel Corporation | 極軟質高炭素熱延鋼板およびその製造方法 |
JP2007291495A (ja) * | 2006-03-28 | 2007-11-08 | Jfe Steel Kk | 極軟質高炭素熱延鋼板およびその製造方法 |
-
2007
- 2007-09-14 JP JP2007238848A patent/JP5358914B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007043318A1 (ja) * | 2005-10-05 | 2007-04-19 | Jfe Steel Corporation | 極軟質高炭素熱延鋼板およびその製造方法 |
JP2007291495A (ja) * | 2006-03-28 | 2007-11-08 | Jfe Steel Kk | 極軟質高炭素熱延鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
JPN6012033372; 財団法人 日本鉄鋼協会: 鉄鋼便覧 第III巻(1)圧延基礎・鋼板 第3版, 19811220, 第368頁〜第370頁, 丸善株式会社 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255066A (ja) * | 2009-04-28 | 2010-11-11 | Jfe Steel Corp | 高炭素熱延鋼板およびその製造方法 |
JP2010269324A (ja) * | 2009-05-20 | 2010-12-02 | Nakayama Steel Works Ltd | 中高炭素鋼板ならびにその熱間圧延方法および製造設備 |
JP2012172228A (ja) * | 2011-02-23 | 2012-09-10 | Sumitomo Metal Ind Ltd | 熱処理用鋼材 |
JP2013036096A (ja) * | 2011-08-09 | 2013-02-21 | Sanyo Special Steel Co Ltd | 靭性に優れた機械構造用鋼 |
JP2013112890A (ja) * | 2011-11-30 | 2013-06-10 | Nisshin Steel Co Ltd | プレス加工用焼鈍鋼板および製造法並びに耐摩耗性に優れる機械部品 |
KR101799712B1 (ko) | 2013-11-22 | 2017-11-20 | 신닛테츠스미킨 카부시키카이샤 | 고탄소 강판 및 그 제조 방법 |
JPWO2015076384A1 (ja) * | 2013-11-22 | 2017-03-16 | 新日鐵住金株式会社 | 高炭素鋼板及びその製造方法 |
WO2015076384A1 (ja) * | 2013-11-22 | 2015-05-28 | 新日鐵住金株式会社 | 高炭素鋼板及びその製造方法 |
US10407748B2 (en) | 2013-11-22 | 2019-09-10 | Nippon Steel Corporation | High-carbon steel sheet and method of manufacturing the same |
WO2015146173A1 (ja) * | 2014-03-28 | 2015-10-01 | Jfeスチール株式会社 | 高炭素熱延鋼板およびその製造方法 |
JP6065120B2 (ja) * | 2014-03-28 | 2017-01-25 | Jfeスチール株式会社 | 高炭素熱延鋼板およびその製造方法 |
JP2020029620A (ja) * | 2019-10-30 | 2020-02-27 | 日本製鉄株式会社 | 冷延鋼板の製造方法及び冷延鋼板 |
WO2022239758A1 (ja) * | 2021-05-13 | 2022-11-17 | 日本製鉄株式会社 | ホットスタンプ用鋼板およびホットスタンプ成形体 |
JP7549277B2 (ja) | 2021-05-13 | 2024-09-11 | 日本製鉄株式会社 | ホットスタンプ用鋼板およびホットスタンプ成形体 |
Also Published As
Publication number | Publication date |
---|---|
JP5358914B2 (ja) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5292698B2 (ja) | 極軟質高炭素熱延鋼板およびその製造方法 | |
JP5050433B2 (ja) | 極軟質高炭素熱延鋼板の製造方法 | |
JP4650006B2 (ja) | 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法 | |
CN107614726B (zh) | 钢板及其制造方法 | |
JP5262012B2 (ja) | 高炭素熱延鋼板およびその製造方法 | |
JP5358914B2 (ja) | 極軟質高炭素熱延鋼板 | |
JP4600196B2 (ja) | 加工性に優れた高炭素冷延鋼板およびその製造方法 | |
JP5640931B2 (ja) | 加工性及び焼入性に優れた中炭素冷延鋼板とその製造方法 | |
CN111406124B (zh) | 高强度冷轧钢板及其制造方法 | |
JP4696853B2 (ja) | 加工性に優れた高炭素冷延鋼板の製造方法および高炭素冷延鋼板 | |
JP3879446B2 (ja) | 伸びフランジ性に優れた高炭素熱延鋼板の製造方法 | |
JP4696753B2 (ja) | 打抜き加工性に優れた高炭素冷延鋼板の製造方法および高炭素冷延鋼板 | |
JP5197076B2 (ja) | 加工性に優れた中・高炭素鋼板およびその製造方法 | |
JP2005097740A (ja) | 高炭素熱延鋼板およびその製造方法 | |
JP3879447B2 (ja) | 伸びフランジ性に優れた高炭素冷延鋼板の製造方法 | |
JP4380469B2 (ja) | 高炭素熱延鋼板およびその製造方法 | |
KR102209555B1 (ko) | 강도 편차가 적은 열연 소둔 강판, 부재 및 이들의 제조방법 | |
JP4622609B2 (ja) | 伸びフランジ性に優れた軟質高加工性高炭素熱延鋼板の製造方法 | |
JP4403925B2 (ja) | 高炭素冷延鋼板およびその製造方法 | |
JP4412094B2 (ja) | 高炭素冷延鋼板およびその製造方法 | |
KR20230095153A (ko) | 가열 및 ??칭-템퍼링 열처리후 냉간 굽힘성이 우수한 열연강판, 강관, 부재 및 그 제조방법 | |
CN117043381A (zh) | 高强度钢板及其制造方法 | |
CN117083408A (zh) | 高强度钢板及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100817 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5358914 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |