JP2009068081A - 極軟質高炭素熱延鋼板 - Google Patents

極軟質高炭素熱延鋼板 Download PDF

Info

Publication number
JP2009068081A
JP2009068081A JP2007238848A JP2007238848A JP2009068081A JP 2009068081 A JP2009068081 A JP 2009068081A JP 2007238848 A JP2007238848 A JP 2007238848A JP 2007238848 A JP2007238848 A JP 2007238848A JP 2009068081 A JP2009068081 A JP 2009068081A
Authority
JP
Japan
Prior art keywords
less
ferrite
carbide
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007238848A
Other languages
English (en)
Other versions
JP5358914B2 (ja
Inventor
Takako Yamashita
孝子 山下
Katsumi Yamada
克美 山田
Kazuhiro Seto
一洋 瀬戸
Nobuyuki Nakamura
展之 中村
Hideyuki Kimura
英之 木村
Takeshi Fujita
毅 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007238848A priority Critical patent/JP5358914B2/ja
Publication of JP2009068081A publication Critical patent/JP2009068081A/ja
Application granted granted Critical
Publication of JP5358914B2 publication Critical patent/JP5358914B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

【課題】加工性に優れた極軟質高炭素熱延鋼板を提供する。
【解決手段】C:0.2〜0.7 %、Si:0.01〜1.0%、Mn:0.1〜1.0%、P:0.03%以下、S:0.035%以下、Al:0.08%以下、N:0.01%以下を含有し、残部が鉄および不可避的不純物からなる高炭素熱延鋼板であり、熱間圧延後は、炭化物平均粒径が50nm以下の球状炭化物を有し、アスペクト比が5以上の炭化物の割合が15%以下である。さらに、熱間圧延後の転位密度が1×1015m-2以上であり、かつ、球状化焼鈍、冷却後の転位密度が1×1014m-2以上である。
【選択図】なし

Description

本発明は、極軟質高炭素熱延鋼板、特に加工性に優れた極軟質高炭素熱延鋼板に関する。
工具あるいは自動車部品(ギア、ミッション)等に使用される高炭素鋼板は、打抜き、成形後、焼入れ焼戻し等の熱処理が施される。近年、工具や部品メーカー、即ち高炭素鋼板のユーザでは、低コスト化のため、以前の鋳造材の切削加工や熱間鍛造による部品加工から、鋼板のプレス成形(冷間鍛造を含む)による加工工程の簡略化が検討されている。それにともない、素材としての高炭素鋼板には、複雑形状に成形するために延性が優れること、および打ち抜き後の成形において穴広げ加工(バーリング)性に優れることが要望されている。この穴広げ加工性は、一般に伸びフランジ性で評価されている。そのため、延性と同時に伸びフランジ性の優れた材料が望まれている。また、プレス機および金型の負荷低減の観点からは、軟質であることも強く求められている。
以上のような現状を踏まえて、高炭素鋼板の軟質化については、いくつかの技術が検討されている。例えば、特許文献1には、熱間圧延後、所定の加熱速度でフェライト−オーステナイトの二相域に加熱し、所定の冷却速度で焼鈍処理する高炭素鋼帯の製造方法が提案されている。この技術では、高炭素鋼帯をAc1点以上のフェライト−オーステナイトの二相域で焼鈍し、フェライトマトリクス中に粗大な球状化セメンタイトが均一に分布した組織としている。詳細には、C:0.2〜0.8%、Si:0.03〜0.30%、Mn:0.20〜1.50%、Sol.Al:0.01〜0.10%、N:0.0020〜0.0100%で、かつSol.Al/N:5〜10である高炭素鋼を、熱間圧延、酸洗、脱スケールしたのち、95容量%以上の水素と残部窒素からなる雰囲気炉で、680℃以上の温度範囲で加熱速度Tv(℃/Hr):500×(0.01−N(%)asAlN)〜2000×(0.1−N(%)asAlN)、均熱温度TA(℃):Ac1点〜222×C(%)2−411×C(%)+912、均熱時間:1〜20時間で焼鈍し、冷却速度:100℃/Hr以下の冷却速度で室温まで冷却するというものである。
また、高炭素鋼板の伸びフランジ性の向上についても、いくつかの技術が検討されている。例えば、特許文献2には、冷間圧延を経たプロセスにおいて、伸びフランジ性に優れた中・高炭素鋼板の製造方法が提案されている。この技術は、C:0.1〜0.8質量%を含有する鋼からなり、金属組織が実質的にフェライト+パーライト組織であり、必要に応じて初析フェライト面積率およびパーライトラメラー間隔を規定した熱延鋼板に、15%以上の冷間圧延を施し、次いで、3段階又は2段階焼鈍を施すというものである。
特許文献3には、C:0.1〜0.8質量%を含有する鋼からなり、初析フェライト面積率(%)がC含有量により決まる所定値以上である、初析フェライト+パーライト組織の熱延鋼板に焼鈍を施すに際し、1段目の加熱保持と2段目の加熱保持を連続して行うという技術が開示されている。
しかしながら、これらの技術には、次のような問題がある。
特許文献1に記載の技術は、高炭素鋼帯をAc1点以上のフェライト−オーステナイトの二相域で焼鈍し、粗大な球状化セメンタイトとしているが、このような粗大セメンタイトは、加工の際にボイド発生の起点となるとともに溶解速度が遅いため焼入れ性を劣化させることは明らかである。また、焼鈍後の硬度についても、S35C材でHv 132〜141(HRB 72〜75)であり、必ずしも軟質とは言えない。
特許文献2、3記載の技術では、フェライト組織が初析フェライトからなるため、フェライト中に炭化物を実質的に含まないために軟らかく延性に優れているが、伸びフランジ性は必ずしも良好ではない。それは、打抜き加工時に、打抜き端面の近傍で初析フェライトの部分で変形するため、初析フェライトと球状化炭化物を含むフェライトでは変形量が大きく異なる。その結果、これら変形量が大きく異なる粒の粒界付近に応力が集中し、ボイドが発生する。これがクラックに成長するため、結果的には伸びフランジ性を劣化させると考えられる。
この対策として、球状化焼鈍を強化することにより、全体として軟質化させることが考えられる。しかし、その場合は球状化した炭化物が粗大化し、加工の際にボイド発生の起点となるとともに、加工後の熱処理段階で炭化物が溶解し難くなり、焼入強度の低下につながる。
また、最近では従来にもまして、生産性向上の観点から加工レベルに対する要求が厳しくなっている。そのため、高炭素鋼板の穴広げ加工についても、加工度の増加等により、打抜き端面の割れが発生しやすくなっており、高炭素鋼板にも高い伸びフランジ性が要求されている。
本発明者らは、かかる事情に鑑み、打抜き端面の割れが発生しにくく、伸びフランジ性に優れた高炭素鋼板を提供することを目的として、特許文献4記載の技術を開発した。これらの技術により、伸びフランジ性に優れた高炭素熱延鋼板が製造できるようになった。
特許文献4は、Cを0.2〜0.7質量%含有する鋼を、仕上温度(Ar3変態点−20℃)以上で熱間圧延した後、冷却速度120℃/秒超かつ冷却停止温度650℃以下で冷却を行い、次いで巻取温度600℃以下で巻取り、酸洗後、焼鈍温度640℃以上Ac1変態点以下で焼鈍する技術である。金属組織については、炭化物平均粒径を0.1μm以上1.2μm未満、炭化物を含まないフェライト粒体積率を10%以下に制御することを特徴としている。
特開平9−157758号公報 特開平11−269552号公報 特開平11−269553号公報 特開2003−13145号公報
最近では、駆動系部品の製造コスト低減のため、プレスによる一体成形手法が実用化されている。これにともない、素材である鋼板にはバーリング加工のみならず、張出し、曲げなどの成形モードが複雑に組み合わされた成形がなされており、伸びフランジ性と延性の両特性を同時に要求されるようになってきている。この点を考慮した場合、上記特許文献4の技術では、延性については言及していなかった。
本発明は、かかる事情に鑑み、打抜き端面の割れが発生しにくく、また、プレス成形や冷間鍛造による割れが発生しにくい、すなわち、穴広げ率λが70%以上、延性の評価指標のひとつである全伸びが35%以上を有する加工性に優れた極軟質高炭素熱延鋼板を提供することを目的とする。
本発明は、高炭素鋼板の延性および伸びフランジ性および硬度におよぼす組成やミクロ組織の影響について鋭意研究を進める中でなされた。そして、その結果、鋼板の硬度に大きな影響をおよぼす因子は、組成や炭化物の形状および量のみならず、球状化処理前組織の炭化物平均粒径、形態や転位密度であることを見出した。そして、熱間圧延時の炭化物平均粒径、形態や転位密度をそれぞれ適正な範囲に制御することにより、球状化焼鈍を行ったときにフェライト粒が粗大化し、ビッカ−ス硬度で110以下というフェライト素地そのままの硬さになるほど軟化することがわかった。
本発明は、以上の見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.2〜0.7 %、Si:0.01〜1.0%、Mn:0.1〜1.0%、P:0.03%以下、S:0.035%以下、Al:0.08%以下、N:0.01%以下を含有し、残部が鉄および不可避的不純物からなり、熱間圧延後は、炭化物平均粒径が50nm以下の球状炭化物を有し、アスペクト比が5以上の炭化物の割合が15%以下であり、さらに、熱間圧延後の転位密度が1×1015m-2以上であり、かつ、球状化焼鈍、冷却後の転位密度が1×1014m-2以上であることを特徴とする極軟質高炭素熱延鋼板。
[2]前記[1]において、さらに、質量%で、B:0.0010〜0.0050%、Cr:0.005〜0.30%の一種または二種を含有することを特徴とする極軟質高炭素熱延鋼板。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
本発明によれば、極めて軟質でかつ延性および伸びフランジ性に優れた高炭素熱延鋼板が得られる。
そして、本発明では、焼鈍前の熱延鋼板組織を制御することにより、焼鈍後に炭化物が等軸かつ均一分散し、フェライト粒の均一粗大化を達成する。その結果、極めて軟質でかつ延性および伸びフランジ性に優れた高炭素熱延鋼板が得られ、加工工程の簡略化、および低コスト化が可能となる。
本発明の極軟質高炭素熱延鋼板は、下記に示す成分組成に制御し、熱間圧延後は、炭化物平均粒径が50nm以下の球状炭化物を有し、かつ、アスペクト比が5以上の炭化物の割合が15%以下であることを特徴とする。および、熱間圧延後の転位密度が1×1015m-2以上で、かつ球状化焼鈍、冷却した後の転位密度が1×1014m-2以上であることを特徴とする。これらは本発明において最も重要な要件である。このように成分組成と熱間圧延後の組織(炭化物平均粒径と形態すなわちアスペクト比)および転位密度を満足することにより、加工性に優れた極めて軟質な高炭素熱延鋼板を得ることができる。
以下、本発明を詳細に説明する。
まず、本発明における鋼の化学成分の限定理由について説明する。
(1)C:0.2〜0.7%
Cは、炭素鋼において最も基本になる合金元素である。その含有量によって、焼入れ後の硬さおよび焼鈍状態での炭化物量が大きく変動する。C含有量が0.2%未満の鋼では、熱延後の組織において初析フェライトの生成が顕著となり、焼鈍後に安定した粗大フェライト粒組織が得られず、混粒組織となり安定した軟質化が図れない。また、自動車用部品等に適用する上で十分な焼入れ硬さが得られない。一方、C含有量が0.7%を超えると炭化物体積率が高く、炭化物同士の接触が多くなり、延性および伸びフランジ性が大幅に低下する。また、熱間圧延後の靭性が低下して鋼帯の製造性、ハンドリング性が悪くなる。したがって、焼入れ後の硬さと延性および伸びフランジ性を兼ね備えた鋼板を提供する観点から、C含有量は0.2%以上0.7%以下とする。
(2)Si:0.01〜1.0%
Siは、焼入れ性を向上させる元素である。Si含有量が0.01%未満では焼入れ後の硬さが不足する。一方、Si含有量が1.0%を超えると固溶強化により、フェライトが硬化し、延性が低下する。さらに炭化物を黒鉛化し、焼入れ性を阻害する傾向がある。したがって、焼入れ後の硬さと延性を兼ね備えた鋼板を提供する観点から、Si含有量は0.01%以上1.0%以下、好ましくは0.1%以上0.8%以下とする。
(3)Mn:0.1〜1.0%
Mnは、Siと同様に焼入れ性を向上させる元素である。また、SをMnSとして固定し、スラブの熱間割れを防止する重要な元素である。Mn含有量が0.1%未満では、これらの効果が十分に得られず、また焼入れ性は大幅に低下する。一方、Mn含有量が1.0%を超えると固溶強化により、フェライトが硬化し、延性の低下を招く。したがって、焼入れ後の硬さと延性を兼ね備えた鋼板を提供する観点から、Mn含有量は0.1%以上1.0%以下、好ましくは0.3%以上0.8%以下とする。
(4)P:0.03%以下
Pは粒界に偏析し、延性や靭性を劣化させるため、P含有量は0.03%以下、好ましくは0.02%以下とする。
(5)S:0.035%以下
Sは、MnとMnSを形成し、延性および伸びフランジ性、焼入れ後の靭性を劣化させるため、低減しなければならない元素であり、少ない方が好ましい。しかし、S含有量が0.035%までは許容できるため、S含有量は0.035%以下、好ましくは0.010%以下とする。
(6)Al:0.08%以下
Alは過剰に添加するとAlNが多量に析出し、焼入れ性を低下させるため、Al含有量は0.08%以下とし、好ましくは0.06%以下する。
(7)N:0.01%以下
Nは過剰に含有している場合は延性の低下をもたらすため、N含有量は0.01%以下とする。
以上の必須添加元素で、本発明鋼は目的とする特性が得られるが、上記の必須添加元素に加えて、B、Crの一種または二種を添加してもよい。これらの元素を添加する場合の好ましい範囲は以下の通りであり、B、Crのどちらか一方の添加でもよいが、B、Crの両方を同時に添加することがより好ましい。
(8)B:0.0010〜0.0050%
Bは、熱間圧延後の冷却中の初析フェライトの生成を抑制し、焼鈍後に均一な粗大フェライト粒を生成する重要な元素である。しかし、B含有量が0.0010%未満では、十分な効果が得られない場合がある。一方、0.0050%を超えると、効果が飽和するとともに、熱間圧延の負荷が高くなり操業性が低下する場合がある。従って、添加する場合、B含有量は0.0010%以上0.0050%以下とする。
(9)Cr:0.005〜0.30%
Crは、Bと同様に、熱間圧延後の冷却中の初析フェライトの生成を抑制し、焼鈍後に均一な粗大フェライト粒を生成する重要な元素である。しかし、Cr含有量が0.005%未満では、十分な効果が得られない場合がある。一方、0.30%を超えると初析フェライト生成の抑制効果が飽和するとともに、コスト増となる。従って、添加する場合、Cr含有量は0.005%以上0.30%以下とする。好ましくは0.05%以上0.30%以下とする。
なお、上記以外の残部はFe及び不可避不純物からなる。不可避的不純物として、例えば、Oは非金属介在物を形成し品質に悪影響を及ぼすため、0.003%以下に低減するのが望ましい。また、本発明では、本発明の作用効果を害さない微量元素として、Cu、Ni、W、V、Zr、Sn、Sb、Ti、Nbを0.1%以下の範囲で、Moを0.5%以下の範囲で含有してもよい。
次に、本発明の加工性に優れた極軟質高炭素熱延鋼板の組織について説明する。
(1)熱間圧延後は、炭化物平均粒径が50nm以下の球状炭化物を有する。
微細な球状炭化物は、硬度を支配する重要な因子であり、焼鈍後にフェライト粒を粗大化させ、軟質化に寄与する。一方で、球状炭化物の炭化物平均粒径が50nm超えの場合は、後述する転位密度が球状化焼鈍時に保持されずに回復してしまい、フェライト粒の粗大化は起こらない。
なお、熱間圧延後に、炭化物平均粒径が50nm以下の球状炭化物を存在させるためには、高炭素鋼の組織は、熱間圧延時の圧下率や冷却速度などによって決まるため、後述するように、最終2パスの圧下率をそれぞれ12%以上で、かつ、(Ar3−10)℃以上(Ar3+90)℃以下の温度域で仕上圧延を行うことが好ましい。このような製造条件で圧延された鋼の組織は、下部ベイナイト組織となり、微細な炭化物が析出する歪みを多く含んだ組織となる。そして、炭化物は圧延ままの状態ですでに球状で存在し、かつ、粒径が50nm以下という微細な炭化物で存在することになる。
なお、上記炭化物平均粒径が50nm以下の球状炭化物は、サンプルを薄膜にして透過旗電子顕微鏡(TEM)で観察することで確認できる。1万倍程度のTEM写真において、観察される炭化物の粒径が50nm以下であればよい。この条件を満足しないものは、後述するアスペクト比が5以上になっている場合が多い。
(2)炭化物形態:アスペクト比が5以上の炭化物割合が15%以下
炭化物形態は、延性および伸びフランジ性に大きく影響する。炭化物の形態すなわちアスペクト比が5以上になると、わずかな加工でボイドが生成するため、加工の初期にクラックとなり延性および伸びフランジ性が低下する。しかし、その割合が15%以下であれば影響は小さい。従って、アスペクト比が5以上の炭化物割合は15%以下に制御する。好ましくは10%以下、より好ましくは5%以下とする。なお、炭化物のアスペクト比は、製造条件、特に、仕上圧延入り側温度により制御することができる。仕上げ圧延入り側の温度が満足されない場合は、パーライト組織を呈することになり、素地自体が硬くなり加工性が著しく劣化する場合がある。
なお、本発明において、炭化物のアスペクト比とは炭化物の長径と短径の比とする。
(3)熱間圧延後の転位密度が1×1015m-2以上で、かつ球状化焼鈍、冷却後の転位密度が1×1014m-2以上
球状化焼鈍時に軟質化するには、フェライト粒径が粗大化する必要がある。フェライト粒が短時間で粗大化するには、成長の駆動力が十分に確保されていることが必要であり、すなわち、微細炭化物のピンニングが外れフェライト粒が粒成長しはじめたときの転位密度が十分に高いと、成長の駆動力が確保されていることになり、フェライト粒は一気に粗大化する。フェライト粒が粗大化するのに必要な転位密度は、熱延後の試料で1×1015m-2以上である。また、球状化焼鈍時における回復を前述の微細に析出した球状炭化物が抑制することで、短い球状化処理時間でフェライト粒が粗大化でき、工業的に球状化処理時間の短縮を達成することができる。この場合、球状化焼鈍、冷却後の転位密度が1×1014m-2以上が得られていれば、フェライト粒は粗大化し、材料は軟質化する。
上記を考慮し、本発明では、熱間圧延後の転移密度および球状化焼鈍、冷却後の転位密度を制御することとする。
なお、前述のように、粗大なフェライト粒を有する鋼板は、仕上圧延時の圧下率と温度を制御することで得られる。具体的には、後述するように、最終パスを12%以上の圧下率で、かつ、(Ar3−10)℃以上の仕上げ温度で仕上げ圧延を行うことで、旧オーステナイト粒内にせん断帯が多数導入され、変態駆動力が増大する。この結果、転移密度は本発明範囲内に制御され、フェライト粒が均一に粗大化する。
次に、本発明の加工性に優れた極軟質高炭素熱延鋼板の製造方法について説明する。
本発明の極軟質高炭素熱延鋼板は、上記化学成分範囲に調整された鋼を、粗圧延し、所望の条件で仕上圧延し、次いで、所望の冷却条件で冷却し、巻取り、酸洗後、箱型焼鈍法により所望の球状化焼鈍を行うことにより得られる。これらについて以下に詳細に説明する。
(1)仕上圧延入り側温度
仕上圧延入り側温度を1100℃以下とすることで、旧オーステナイト粒径が微細となり、仕上圧延後のベイナイトラスの微細化と同時にラス中の炭化物のアスペクト比が小さくなり、焼鈍後にアスペクト比が5以上の炭化物割合が15%以下となる。これにより、加工時のボイド生成が抑制され、優れた延性および伸びフランジ性が得られる。しかし、仕上圧延入り側温度が1100℃を超える場合、十分な効果が得られない。以上の理由から、仕上圧延入り側温度は1100℃以下とし、炭化物のアスペクト比低減の観点から、1050℃以下が好ましく、より好ましくは1000℃以下である。
(2)仕上圧延における圧下率および仕上温度(圧延温度)
最終パス圧下率を12%以上とすることで、旧オーステナイト粒内にせん断帯が多数導入され、変態の核生成サイトが増大する。このため、ベイナイトを構成するラス状フェライト粒が微細となり、球状化焼鈍時に高い粒界エネルギーを駆動力として、粒径が粗大なフェライト組織が得られることになる。一方、最終パス圧下率が12%未満では、ラス状フェライト粒が粗大となるため、粒成長駆動力が不足し、焼鈍後に粒径が粗大なフェライト組織が得られず、安定した軟質化が図れない。以上の理由から、最終パス圧下率は12%以上とし、均一粗大化の観点から、好ましくは15%以上、さらに好ましくは18%以上とする。一方、最終パスの圧下率が40%以上では圧延負荷が増大するため、最終パス圧下率の上限は40%未満とすることが好ましい。鋼を熱間圧延する際の仕上温度(最終パスの圧延温度)が(Ar3−10)℃未満では、一部でフェライト変態が進行し、初析フェライト粒が増加するため、球状化焼鈍後に混粒フェライト組織となり、粒径が粗大なフェライト組織が得られず、安定した軟質化が図れない。したがって、仕上温度は(Ar3−10)℃以上とする。仕上げ温度の上限は特に規定しないが、1000℃を超えるような高温の場合、スケール性欠陥が発生し易くなるため、1000℃以下が好ましい。
以上より、最終パスの圧下率は12%以上、仕上温度は(Ar3−10)℃以上とする。
さらに、上記最終パスの圧下率に加え、最終前パスの圧下率も12%以上とすることで、歪累積効果により、旧オーステナイト粒内にせん断帯が多数導入され、変態の核生成サイトが増大する。その結果、粒径が粗大なフェライト組織が得られることになる。一方、最終パスと最終前パス(以下、最終パスと最終前パスとをあわせて最終2パスと称す)の圧下率がそれぞれ12%未満では、粒径が粗大なフェライト組織が得られず、安定した軟質化が図れない。以上の理由から、最終2パスの圧下率はそれぞれ12%以上とすることが好ましく、より均一に粗大化するためには最終2パスの圧下率をそれぞれ15%以上とすることがより好ましい。一方、最終2パスの圧下率がそれぞれ40%以上では、圧延負荷が増大するため、最終2パスの圧下率の上限はそれぞれ40%未満とすることが好ましい。
また、最終2パスの仕上温度を(Ar3−10)℃以上(Ar3+90)℃以下の温度域で行うことにより、歪累積効果が最大となり、粒径が粗大なフェライト組織が得られる。仕上最終2パス圧延温度が(Ar3−20)℃未満では、粒径が粗大なフェライト組織が得られず、より一層の安定した軟質化が図れない。一方、仕上最終2パス圧延温度が(Ar3+90)℃を超えると、粒径が粗大なフェライト組織が得られず、より一層の安定した軟質化が図れない場合がある。以上の理由から、仕上最終2パス圧延の温度域は(Ar3−10)℃以上(Ar3+90)℃以下とすることが好ましい。
以上より、仕上圧延において、最終2パスの圧下率は好ましくはそれぞれ12%以上、より好ましくは15%以上40%未満、温度域は好ましくは(Ar3−10)℃以上(Ar3+90)℃以下である。
なお、Ar3変態点(℃)は実測により求めることができるが、次の式(1)により算出しても差し支えない。
Ar3=910-310C-80Mn-15Cr-80Mo (1)
ここで、式中の元素記号はそれぞれの元素の含有量(質量%)を表す。
(3)1次冷却:仕上げ圧延後1.8秒以内に120℃/秒超えの冷却速度
熱間圧延後の1次冷却方法が徐冷であると、オーステナイトの過冷度が小さく初析フェライトが多く生成する。冷却速度が120℃/秒以下の場合、初析フェライトの生成が顕著となり、焼鈍後に炭化物が不均一に分散し、安定した粗大フェライト粒組織が得られず、軟質化が図れない。したがって、熱間圧延後の1次冷却の冷却速度は120℃/秒超とする。好ましくは200℃/秒以上、より好ましくは300℃/秒以上である。なお、冷却速度の上限は特に制限しないが、例えば板厚3.0mmの場合を想定すると、現状の設備上の能力からは700℃/秒である。また、仕上げ圧延から冷却開始までの時間が1.8秒超えでは、粗大化する。したがって、仕上げ圧延から冷却開始までの時間を1.8秒以内とする。なお、炭化物の分散状態をより均一化するためには、仕上げ圧延から冷却開始までの時間は1.5秒以内が好ましく、より好ましくは1.0秒以内である。
(4)1次冷却停止温度:600℃以下
熱間圧延後の1次冷却停止温度が600℃超えの場合、熱延変態組織における初析フェライトが多く生成する。そのため、焼鈍後に炭化物が不均一に分散し、安定した粗大フェライト粒組織が得られず、軟質化が図れない。したがって、熱間圧延後にベイナイト組織を安定して得るには、熱間圧延後の1次冷却停止温度を600℃以下とし、好ましくは580℃以下、より好ましくは550℃以下とする。なお、下限温度は特に規定しないが、低温になるほど板形状が劣化するため、300℃以上とすることが好ましい。
(5)2次冷却保持温度:600℃以下
高炭素鋼板の場合、1次冷却後に、初析フェライト変態、パーライト変態、ベイナイト変態に伴い、鋼板温度が上昇することがあり、1次冷却停止温度が600℃以下であっても、1次冷却終了から、巻取までに温度が上昇した場合、初析フェライトが生成する。そのため、焼鈍後に炭化物が不均一に分散し、安定した粗大フェライト粒組織が得られず、軟質化が図れない。したがって、2次冷却により、1次冷却終了から巻取までの温度を制御することは重要であり、2次冷却により、1次冷却終了から巻取まで600℃以下の温度で保持することとし、好ましくは580℃以下、より好ましくは550℃以下の温度で保持することとする。なお、この場合の2次冷却はラミナー冷却等により行うことができる。
(6)巻取温度:580℃以下
冷却後の巻取が580℃超えの場合、ベイナイトを構成するラス状フェライト粒がやや粗大となり、焼鈍時の粒成長駆動力が不足し、安定した粗大フェライト粒組織が得られず、軟質化が図れない。一方、冷却後の巻取を580℃以下とすることにより、ラス状フェライト粒が微細となり、焼鈍時に高い粒界エネルギーを駆動力として、安定した粗大フェライト粒組織が得られる。したがって、巻取温度は580℃以下とし、好ましくは650℃以下、より好ましくは530℃以下とする。なお、巻取温度の下限は特に規定しないが、低温になるほど鋼板の形状が劣化するため、200℃以上とすることが好ましい。
(7)酸洗:実施
巻取後の熱延鋼板は、球状化焼鈍を行う前にスケール除去のため、酸洗を施す。酸洗は常法にしたがって行えばよい。
(8)球状化焼鈍:680℃以上Ac1変態点以下の温度で箱型焼鈍
熱延鋼板を酸洗した後、フェライト粒を十分に粗大化させるとともに炭化物を球状化するために焼鈍を行う。球状化焼鈍は大きく分けて、(1)Ac1直上温度に加熱後徐冷する方法、(2)Ac1直下温度で長時間保持する方法、(3)Ac1直上および直下の温度で加熱・冷却を繰り返す方法がある。このうち、本発明では上記(2)の方法により、フェライト粒の粒成長と炭化物の球状化を同時に指向している。このため、球状化焼鈍は長時間を有することから箱型焼鈍とする。焼鈍温度が680℃未満では、フェライト粒の粗大化および炭化物の球状化がいずれも不十分となり、十分に軟質化せず、また延性および伸びフランジ性が低下する。一方、焼鈍温度がAc1変態点を超える場合、一部がオーステナイト化し、冷却中に再度パーライトを生成するため、やはり延性および伸びフランジ性が低下する。以上より、球状化焼鈍の焼鈍温度は680℃以上Ac1変態点以下とする。粒径が粗大なフェライト組織を安定して得るには、焼鈍(均熱)時間は20時間以上とすることが好ましく、40時間以上とすることがさらに好ましい。なお、Ac1変態点(℃)は実測により求めることができるが、次の式(2)により算出しても差し支えない。
Ac1=754.83−32.25C+23.32Si−17.76Mn+17.13Cr+4.51Mo (2)
ここで、式中の元素記号はそれぞれの元素の含有量(質量%)を表す。
以上により本発明の加工性に優れた極軟質高炭素熱延鋼板が得られる。なお、本発明の高炭素鋼の成分調整には、転炉あるいは電気炉のどちらでも使用可能である。このように成分調整された高炭素鋼を、造塊−分塊圧延または連続鋳造により鋼素材である鋼スラブとする。この鋼スラブについて熱間圧延を行うが、その際、スラブ加熱温度は、スケール発生による表面状態の劣化を避けるため1300℃以下とすることが好ましい。また、連続鋳造スラブをそのまま又は温度低下を抑制する目的で保熱しつつ圧延する直送圧延を行ってもよい。さらに、熱間圧延時に粗圧延を省略して仕上げ圧延を行ってもよい。仕上げ温度確保のため、熱間圧延中にバーヒータ等の加熱手段により圧延材の加熱を行ってもよい。また、球状化促進あるいは硬度低減のため、巻取後にコイルを徐冷カバー等の手段で保温してもよい。焼鈍後、必要に応じて調質圧延を行う。この調質圧延については硬度、延性、および伸びフランジ性には影響を及ぼさないことから、その条件に対して特に制限はない。
このようにして得られた高炭素熱延鋼板が、優れた延性および伸びフランジ性とともに極軟質を有する理由は次のように考えられる。硬度は、フェライト平均粒径が大きく影響し、フェライト粒径が均一でかつ、粗大な場合、極軟質となる。また、延性および伸びフランジ性に関しては、フェライト粒の粒度分布が均一でかつ粗大であると同時に、炭化物が等軸で均一に分布することで向上する。以上の点から、成分組成と炭化物の形状(炭化物平均粒径)、形態および/または転位密度分布を規定し、これらを満足することにより、優れた延性および伸びフランジ性とともに極めて軟質な高炭素熱延鋼板を得ることができる。
表1に示す化学成分を有する鋼を連続鋳造し、得られたスラブを1250℃に加熱し、表2に示す条件にて熱間圧延、および焼鈍を行い、板厚3.0mmの熱延鋼板を製造した。
Figure 2009068081
Figure 2009068081
次に、上記により得られた熱延鋼板からサンプルを採取し、フェライト平均粒径、炭化物平均粒径、炭化物アスペクト比、転位密度を測定し、性能評価のため、素材硬度、全伸びおよび穴広げ率を測定した。それぞれの測定方法、および条件は以下の通りである。
<フェライト平均粒径>
サンプルの板厚断面での光学顕微鏡組織から、JIS G 0552に記載の切断法により測定を行った。
<炭化物平均粒径>
熱延後すなわち球状化焼鈍前のサンプルの板厚両面を腐食・研磨して30μm以下まで減厚し、さらに電解研磨を施すことによって透過型電子顕微鏡にて組織観察が可能な試料を作製し、3万倍の写真より炭化物粒径の測定を行った。なお、平均粒径は、炭化物の長辺と短辺の平均値とした。
<炭化物アスペクト比>
サンプルの板厚両面を腐食・研磨して30μm以下まで減厚し、さらに電解研磨を施すことによって透過型電子顕微鏡にて組織観察が可能な試料を作製し、1万倍または3万倍の写真より炭化物の長径と短径の比を測定した。なお、炭化物総数はパーライトも含めて100個以上とし、アスペクト比5以上の炭化物の割合を算出した。
<転位密度>
熱延後および860℃×0hrの球状化処理サンプルの板圧片面を1/4厚みまで研削し、鏡面に仕上げた面をX線回折装置で鉄の回折線の半値幅を精度よく測定する。110、211、220の回折線から不均一歪みを算出し次式に従って転位密度ρ(m-2)を求めた。
ρ=14.4ε2/b2
<素材硬度>
サンプルの切断面をバフ研磨仕上げ後、板厚中央部にて荷重500gfの条件下でヴィッカース硬さ(Hv)を5点測定し、平均硬度を求めた。
<全伸び:EL>
全伸びは引張試験により測定した。圧延方向に対し、90°方向(C方向)に沿ってJIS5号試験片を採取し、引張速度10mm/minで引張試験を行い、全伸び(突合せ伸び)を測定した。
<伸びフランジ性:穴広げ率λ>
伸びフランジ性は、穴広げ試験により評価した。サンプルをポンチ径d0=10mm、ダイス径12mm(クリアランス20%)の打抜き工具を用いて打抜き後、穴広げ試験を実施した。穴広げ試験は、円筒平底ポンチ(50mmφ、5R(肩半径5mm))にて押し上げる方法で行い、穴縁に板厚貫通クラックが発生した時点での穴径db(mm)を測定して、次式で定義される穴広げ率λ(%)を求めた。
λ(%) = (db-d0)/d0×100
以上の測定により得られた結果を表3に示す。
Figure 2009068081
表3において、鋼板No.1〜15は化学成分が本発明範囲であり、熱間圧延後の炭化物平均粒径、アスペクト比が5以上の炭化物割合、熱延まま、および球状化焼鈍、冷却後の転位密度が本発明範囲である組織を有する本発明例である。本発明例では、素材硬度が低く、全伸びが35%以上、穴広げ率λが70%以上の優れた特性を有しているのがわかる。
一方、鋼板No.16、17は化学成分が本発明範囲を外れた比較例である。鋼板No.16は炭素量が低く本発明範囲外のため初期フェライトが生成し、マトリクスの組織が混粒となるほか歪みの蓄積すなわち転位密度の確保が達成されず、結果的にフェライト粒の粗大化が生じず特性が得られない。
鋼板No.17はSiおよびMnの添加量が本発明範囲外の比較例であり、アスペクト比が5以上の炭化物割合が本発明範囲外であり、全伸びおよび伸びフランジ性が劣っている。
表4に示す化学成分を有する鋼を連続鋳造し、得られたスラブを1250℃に加熱し、表5に示す条件にて熱間圧延、および焼鈍を行い、板厚3.0mmの熱延鋼板を製造した。
Figure 2009068081
Figure 2009068081
次に、上記により得られた熱延鋼板からサンプルを採取し、フェライト平均粒径、炭化物平均粒径、炭化物アスペクト比、転位密度を測定し、性能評価のため、素材硬度、全伸びおよび穴広げ率を測定した。それぞれの測定方法、および条件は実施例1と同様である。
以上の測定により得られた結果を表6に示す。
Figure 2009068081
表6において、鋼板No.18〜28は化学成分が本発明範囲であり、熱間圧延後の炭化物平均粒径、アスペクト比が5以上の炭化物割合、熱延ままおよび球状化焼鈍、冷却後の転位密度が本発明範囲である組織を有する本発明例である。本発明例では、素材硬度が低く、全伸びが35%以上、穴広げ率λが70%以上の優れた特性を有しているのがわかる。
一方、鋼板No.29は化学成分が本発明範囲を外れた比較例である。炭素添加量が低く本発明範囲外のため、初析フェライトが生成し転位密度が確保されずに本発明範囲外のため、全伸びおよび伸びフランジ性が劣っている。
本発明の高炭素熱延鋼板を用いることにより、ギアに代表される変速機部品等の複雑な形状の部品を低い荷重で容易に加工することができるため、工具あるいは自動車部品(ギア、ミッション)を中心に、多様な用途での使用が可能となる。

Claims (2)

  1. 質量%で、C:0.2〜0.7 %、Si:0.01〜1.0%、Mn:0.1〜1.0%、P:0.03%以下、S:0.035%以下、Al:0.08%以下、N:0.01%以下を含有し、残部が鉄および不可避的不純物からなり、熱間圧延後は、炭化物平均粒径が50nm以下の球状炭化物を有し、アスペクト比が5以上の炭化物の割合が15%以下であり、さらに、熱間圧延後の転位密度が1×1015m-2以上であり、かつ、球状化焼鈍、冷却後の転位密度が1×1014m-2以上であることを特徴とする極軟質高炭素熱延鋼板。
  2. さらに、質量%で、B:0.0010〜0.0050%、Cr:0.005〜0.30%の一種または二種を含有することを特徴とする請求項1に記載の極軟質高炭素熱延鋼板。
JP2007238848A 2007-09-14 2007-09-14 極軟質高炭素熱延鋼板 Active JP5358914B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238848A JP5358914B2 (ja) 2007-09-14 2007-09-14 極軟質高炭素熱延鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238848A JP5358914B2 (ja) 2007-09-14 2007-09-14 極軟質高炭素熱延鋼板

Publications (2)

Publication Number Publication Date
JP2009068081A true JP2009068081A (ja) 2009-04-02
JP5358914B2 JP5358914B2 (ja) 2013-12-04

Family

ID=40604649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238848A Active JP5358914B2 (ja) 2007-09-14 2007-09-14 極軟質高炭素熱延鋼板

Country Status (1)

Country Link
JP (1) JP5358914B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255066A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 高炭素熱延鋼板およびその製造方法
JP2010269324A (ja) * 2009-05-20 2010-12-02 Nakayama Steel Works Ltd 中高炭素鋼板ならびにその熱間圧延方法および製造設備
JP2012172228A (ja) * 2011-02-23 2012-09-10 Sumitomo Metal Ind Ltd 熱処理用鋼材
JP2013036096A (ja) * 2011-08-09 2013-02-21 Sanyo Special Steel Co Ltd 靭性に優れた機械構造用鋼
JP2013112890A (ja) * 2011-11-30 2013-06-10 Nisshin Steel Co Ltd プレス加工用焼鈍鋼板および製造法並びに耐摩耗性に優れる機械部品
WO2015076384A1 (ja) * 2013-11-22 2015-05-28 新日鐵住金株式会社 高炭素鋼板及びその製造方法
WO2015146173A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP2020029620A (ja) * 2019-10-30 2020-02-27 日本製鉄株式会社 冷延鋼板の製造方法及び冷延鋼板
WO2022239758A1 (ja) * 2021-05-13 2022-11-17 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043318A1 (ja) * 2005-10-05 2007-04-19 Jfe Steel Corporation 極軟質高炭素熱延鋼板およびその製造方法
JP2007291495A (ja) * 2006-03-28 2007-11-08 Jfe Steel Kk 極軟質高炭素熱延鋼板およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043318A1 (ja) * 2005-10-05 2007-04-19 Jfe Steel Corporation 極軟質高炭素熱延鋼板およびその製造方法
JP2007291495A (ja) * 2006-03-28 2007-11-08 Jfe Steel Kk 極軟質高炭素熱延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012033372; 財団法人 日本鉄鋼協会: 鉄鋼便覧 第III巻(1)圧延基礎・鋼板 第3版, 19811220, 第368頁〜第370頁, 丸善株式会社 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255066A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 高炭素熱延鋼板およびその製造方法
JP2010269324A (ja) * 2009-05-20 2010-12-02 Nakayama Steel Works Ltd 中高炭素鋼板ならびにその熱間圧延方法および製造設備
JP2012172228A (ja) * 2011-02-23 2012-09-10 Sumitomo Metal Ind Ltd 熱処理用鋼材
JP2013036096A (ja) * 2011-08-09 2013-02-21 Sanyo Special Steel Co Ltd 靭性に優れた機械構造用鋼
JP2013112890A (ja) * 2011-11-30 2013-06-10 Nisshin Steel Co Ltd プレス加工用焼鈍鋼板および製造法並びに耐摩耗性に優れる機械部品
KR101799712B1 (ko) 2013-11-22 2017-11-20 신닛테츠스미킨 카부시키카이샤 고탄소 강판 및 그 제조 방법
JPWO2015076384A1 (ja) * 2013-11-22 2017-03-16 新日鐵住金株式会社 高炭素鋼板及びその製造方法
WO2015076384A1 (ja) * 2013-11-22 2015-05-28 新日鐵住金株式会社 高炭素鋼板及びその製造方法
US10407748B2 (en) 2013-11-22 2019-09-10 Nippon Steel Corporation High-carbon steel sheet and method of manufacturing the same
WO2015146173A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP6065120B2 (ja) * 2014-03-28 2017-01-25 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP2020029620A (ja) * 2019-10-30 2020-02-27 日本製鉄株式会社 冷延鋼板の製造方法及び冷延鋼板
WO2022239758A1 (ja) * 2021-05-13 2022-11-17 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
JP7549277B2 (ja) 2021-05-13 2024-09-11 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体

Also Published As

Publication number Publication date
JP5358914B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5292698B2 (ja) 極軟質高炭素熱延鋼板およびその製造方法
JP5050433B2 (ja) 極軟質高炭素熱延鋼板の製造方法
JP4650006B2 (ja) 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法
CN107614726B (zh) 钢板及其制造方法
JP5262012B2 (ja) 高炭素熱延鋼板およびその製造方法
JP5358914B2 (ja) 極軟質高炭素熱延鋼板
JP4600196B2 (ja) 加工性に優れた高炭素冷延鋼板およびその製造方法
JP5640931B2 (ja) 加工性及び焼入性に優れた中炭素冷延鋼板とその製造方法
CN111406124B (zh) 高强度冷轧钢板及其制造方法
JP4696853B2 (ja) 加工性に優れた高炭素冷延鋼板の製造方法および高炭素冷延鋼板
JP3879446B2 (ja) 伸びフランジ性に優れた高炭素熱延鋼板の製造方法
JP4696753B2 (ja) 打抜き加工性に優れた高炭素冷延鋼板の製造方法および高炭素冷延鋼板
JP5197076B2 (ja) 加工性に優れた中・高炭素鋼板およびその製造方法
JP2005097740A (ja) 高炭素熱延鋼板およびその製造方法
JP3879447B2 (ja) 伸びフランジ性に優れた高炭素冷延鋼板の製造方法
JP4380469B2 (ja) 高炭素熱延鋼板およびその製造方法
KR102209555B1 (ko) 강도 편차가 적은 열연 소둔 강판, 부재 및 이들의 제조방법
JP4622609B2 (ja) 伸びフランジ性に優れた軟質高加工性高炭素熱延鋼板の製造方法
JP4403925B2 (ja) 高炭素冷延鋼板およびその製造方法
JP4412094B2 (ja) 高炭素冷延鋼板およびその製造方法
KR20230095153A (ko) 가열 및 ??칭-템퍼링 열처리후 냉간 굽힘성이 우수한 열연강판, 강관, 부재 및 그 제조방법
CN117043381A (zh) 高强度钢板及其制造方法
CN117083408A (zh) 高强度钢板及其制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5358914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250