WO2020012798A1 - クレーン - Google Patents

クレーン Download PDF

Info

Publication number
WO2020012798A1
WO2020012798A1 PCT/JP2019/020939 JP2019020939W WO2020012798A1 WO 2020012798 A1 WO2020012798 A1 WO 2020012798A1 JP 2019020939 W JP2019020939 W JP 2019020939W WO 2020012798 A1 WO2020012798 A1 WO 2020012798A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
hook
control device
image display
crane
Prior art date
Application number
PCT/JP2019/020939
Other languages
English (en)
French (fr)
Inventor
和磨 水木
洋幸 林
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Priority to EP19834252.9A priority Critical patent/EP3822222B1/en
Priority to CN201980044808.0A priority patent/CN112384466B/zh
Priority to US16/967,537 priority patent/US11198596B2/en
Publication of WO2020012798A1 publication Critical patent/WO2020012798A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/06Arrangements or use of warning devices
    • B66C15/065Arrangements or use of warning devices electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/42Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes with jibs of adjustable configuration, e.g. foldable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/03Cranes with arms or jibs; Multiple cranes
    • B66C2700/0321Travelling cranes
    • B66C2700/0357Cranes on road or off-road vehicles, on trailers or towed vehicles; Cranes on wheels or crane-trucks
    • B66C2700/0364Cranes on road or off-road vehicles, on trailers or towed vehicles; Cranes on wheels or crane-trucks with a slewing arm
    • B66C2700/0371Cranes on road or off-road vehicles, on trailers or towed vehicles; Cranes on wheels or crane-trucks with a slewing arm on a turntable

Definitions

  • the present invention relates to a crane. More specifically, the present invention relates to a crane capable of grasping the surroundings of a hook or a load suspended on the hook and, at the same time, grasping a braking distance during a stop operation.
  • the crane which is a typical work vehicle, has been known.
  • the crane mainly includes a traveling body and a swing body.
  • the traveling body includes a plurality of wheels and is configured to be able to travel freely.
  • the revolving structure includes a wire rope and a hook in addition to the boom, and is configured to be able to carry a load.
  • Such a crane includes a driving device for operating the boom and a control device for controlling an operation state of the driving device.
  • the filtering control signal is obtained by applying a filter having predetermined characteristics to the basic control signal of the driving device.
  • the notch filter has a characteristic that the attenuation rate increases as the resonance frequency approaches the resonance frequency in an arbitrary range around the resonance frequency.
  • the present invention relates to a crane capable of ascertaining the surroundings of a hook or luggage suspended from the hook and, at the same time, ascertaining a braking distance during a stopping operation.
  • Boom A wire rope hanging from the boom, A hook that moves up and down by winding and unwinding of the wire rope,
  • a driving device for operating the boom A control device for controlling an operation state of the driving device;
  • a camera that shoots downward from the tip of the boom,
  • An image display device that displays an image captured by the camera,
  • the control device applies a filter to a basic control signal of the driving device to create a filtering control signal, controls the driving device based on the filtering control signal, and predicts a braking distance of the boom. To be displayed on the image display device.
  • the control device predicts a position at which the package stops, and displays a sign of the package on the image display device.
  • the control device predicts a swing amount of the package and displays a swing range of the package on the image display device.
  • the control device predicts a position at which the hook stops, and displays a sign of the hook on the image display device.
  • the control device estimates a swing amount of the hook and displays a swing range of the hook on the image display device.
  • the drive apparatus provided for operation
  • the control apparatus which controls the operation state of a drive apparatus
  • the camera which images the lower part from the front-end
  • the image which displays the image which the camera imaged
  • the control device filters the basic control signal of the driving device to create a filtering control signal, controls the driving device based on the filtering control signal, and controls the braking of the boom.
  • the distance is predicted and displayed on the image display.
  • the operator can grasp the surroundings of the hook or the load suspended on the hook by looking at the image display device, and at the same time, grasp the braking distance of the boom. Therefore, it is possible to perform the avoidance operation before the hook or the luggage suspended by the hook collides with a building or the like.
  • the control device predicts the position where the load stops, and displays the sign of the load on the image display device. According to such a crane, it can be easily determined whether or not a collision with a building or the like is made from the displayed luggage sign. Therefore, the avoidance operation can be performed before the luggage collides with the building or the like.
  • the control device predicts the swing amount of the load and displays the swing range of the load on the image display device. According to such a crane, it can be easily determined from the displayed swing range of the luggage whether or not it collides with a building or the like. Therefore, the avoidance operation can be performed before the luggage collides with the building or the like.
  • the control device predicts the position where the hook stops, and displays the sign of the hook on the image display device. According to such a crane, it can be easily determined whether or not the vehicle collides with a building or the like from the displayed hook sign. Therefore, it is possible to perform the avoidance operation before the hook collides with the building or the like.
  • the control device predicts the swing amount of the hook and displays the swing range of the hook on the image display device. According to such a crane, it can be easily determined from the displayed swing range of the hook whether or not it collides with a building or the like. Therefore, it is possible to perform the avoidance operation before the hook collides with the building or the like.
  • the figure which shows a crane The figure which shows the inside of a cabin.
  • movement of a boom The figure which shows the situation in which the boom is turning.
  • the figure which shows the display aspect in case an operator performs the turning stop operation.
  • the crane 1 is mainly composed of the traveling body 2 and the swing body 3.
  • the traveling body 2 includes a pair of left and right front wheels 4 and a rear wheel 5.
  • the traveling body 2 includes an outrigger 6 that stabilizes the load W by performing grounding when carrying the load W.
  • the traveling body 2 makes the revolving body 3 supported on the upper part of the traveling body 2 rotatable by a driving device.
  • the revolving superstructure 3 is provided with a boom 7 so as to protrude forward from a rear portion thereof. Therefore, the boom 7 is pivotable by the driving device (see arrow A).
  • the boom 7 can be extended and contracted by a driving device (see arrow B). Further, the boom 7 can be raised and lowered by a driving device (see arrow C).
  • a wire rope 8 is bridged over the boom 7.
  • a winch 9 around which a wire rope 8 is wound is disposed on the base end side of the boom 7, and a hook 10 is hung by the wire rope 8 on the distal end side of the boom 7.
  • the winch 9 is formed integrally with the driving device, and enables the wire rope 8 to be wound in and out.
  • the revolving superstructure 3 has a cabin 11 on the side of the boom 7. Inside the cabin 11 are provided a later-described turning operation tool 21, a telescopic operation tool 22, an up-and-down operation tool 23, and a winding operation tool 24. Further, an image display device 43 described later is provided.
  • this operation system is an example of a possible configuration, and the present invention is not limited to this.
  • an operator who gets on the crane 1 and performs an operation is referred to as “operator Oa”, and an operator who operates without riding on the crane 1 is referred to as “operator Ob”.
  • the operation system 12 is mainly configured by the control device 20.
  • Various operating tools 21 to 24 are connected to the control device 20.
  • Various valves 25 to 28 are connected to the control device 20.
  • a weight sensor 29 is connected to the control device 20. Note that the weight sensor 29 can detect the weight of the load W. Therefore, the control device 20 can recognize the weight of the load W.
  • the boom 7 is pivotable by the driving device (see the arrow A in FIG. 1).
  • a driving device is defined as a turning hydraulic motor 31.
  • the turning hydraulic motor 31 is appropriately operated by a turning valve 25 which is a direction control valve. That is, the turning hydraulic motor 31 is appropriately operated by the turning valve 25 switching the flow direction of the hydraulic oil.
  • the turning valve 25 is operated based on the operation of the turning operation tool 21 by the operator Oa.
  • the turning angle and the turning speed of the boom 7 are detected by a sensor (not shown). Therefore, the control device 20 can recognize the turning angle and the turning speed of the boom 7.
  • the boom 7 can be extended and contracted by the driving device (see the arrow B in FIG. 1).
  • a driving device is defined as a telescopic hydraulic cylinder 32.
  • the telescopic hydraulic cylinder 32 is appropriately operated by the telescopic valve 26 which is a direction control valve. That is, the telescopic hydraulic cylinder 32 is appropriately operated by the telescopic valve 26 switching the flow direction of the hydraulic oil.
  • the telescopic valve 26 is operated based on the operation of the telescopic operating tool 22 by the operator Oa.
  • the extension length and extension speed of the boom 7 are detected by a sensor (not shown). Therefore, the control device 20 can recognize the extension length and the extension speed of the boom 7.
  • the boom 7 can be raised and lowered by the driving device (see the arrow C in FIG. 1).
  • a drive device is defined as an undulating hydraulic cylinder 33.
  • the up / down hydraulic cylinder 33 is appropriately operated by the up / down valve 27 which is a direction control valve. That is, the undulating hydraulic cylinder 33 is appropriately operated by the undulating valve 27 switching the flow direction of the hydraulic oil.
  • the up / down valve 27 is operated based on the operation of the up / down operation tool 23 by the operator Oa. Further, the undulation angle and the undulation speed of the boom 7 are detected by a sensor (not shown). Therefore, the control device 20 can recognize the hoisting angle and the hoisting speed of the boom 7.
  • the hook 10 can be moved up and down by the driving device (see the arrow D in FIG. 1).
  • a drive device is defined as a winding hydraulic motor 34.
  • the winding hydraulic motor 34 is appropriately operated by the winding valve 28 which is a direction control valve. That is, the winding hydraulic motor 34 is appropriately operated by the winding valve 28 switching the flow direction of the hydraulic oil or adjusting the flow rate of the hydraulic oil.
  • the winding valve 28 is operated based on the operation of the winding operation tool 24 by the operator Oa.
  • the hanging length L of the hook 10 (see FIG. 1) and the elevating speed are detected by sensors (not shown). Therefore, the control device 20 can recognize the suspension length L of the hook 10 and the lifting speed.
  • the operation system 12 includes a camera 41, an information relay device 42, and an image display device 43.
  • the information relay 42 becomes unnecessary when the remote operation terminal 13 is a wired type.
  • the camera 41 captures an image.
  • the camera 41 is attached to the tip of the boom 7 so as to photograph the hook 10 or the load W suspended from the hook 10 from above (see FIG. 1). Note that the camera 41 is connected to the information repeater 42.
  • the information repeater 42 transmits and receives information converted to a radio signal.
  • the information repeater 42 has at least an antenna attached to the distal end of the boom 7 in order to reduce the influence of radio waves due to terrestrial objects and the like.
  • the information repeater 42 is connected to a control device 60 of the remote operation terminal 13 described below, in addition to the control device 20. Therefore, the information relay device 42 can transmit information from the control device 20 to the control device 60. Further, the information relay device 42 can also transmit information from the control device 60 to the control device 20. Further, an image captured by the camera 51 can be transmitted to the control device 20 and the control device 60.
  • the image display 43 displays various images.
  • the image display 43 is mounted on the front side inside the cabin 11 so that the operator Oa can visually recognize it while operating the various operating tools 21 to 24.
  • the image display device 43 is connected to the control device 20. Therefore, the control device 20 can provide information to the operator Oa through the image display device 43.
  • the operation system 12 includes a remote operation terminal 13.
  • the remote operation terminal 13 includes a control device 60.
  • the remote operation terminal 13 includes a transmitter and a receiver (not shown). Note that the remote operation terminal 13 in the present application is an example of a remote operation terminal, and is not limited to this.
  • the remote operation terminal 13 is provided with a turning operation tool 61.
  • the turning operation tool 61 is connected to the control device 60.
  • the control device 60 is connected to the above-described control device 20 via a radio signal. Therefore, when the operator Ob tilts the turning operation tool 61 in an arbitrary direction (see the arrow E in FIG. 4), the turning operation of the boom 7 is performed in the same manner as when the turning operation tool 21 is tilted in any direction. . That is, when the operator Ob tilts the turning operation tool 61 in an arbitrary direction, the turning hydraulic motor 31 is appropriately operated, and the boom 7 turns left or right.
  • the remote operation terminal 13 is provided with a telescopic operation tool 62.
  • the telescopic operation tool 62 is connected to the control device 60.
  • the control device 60 is connected to the above-described control device 20 via a radio signal. Therefore, when the operator Ob tilts the telescopic operating tool 62 in any direction (see the arrow F in FIG. 4), the boom 7 expands and contracts in the same manner as when the telescopic operating tool 22 is tilted in any direction. . That is, when the operator Ob tilts the telescopic operation tool 62 in an arbitrary direction, the telescopic hydraulic cylinder 32 is appropriately operated, and the boom 7 is extended or contracted.
  • the remote operation terminal 13 is provided with an undulating operation tool 63.
  • the up / down operation tool 63 is connected to the control device 60.
  • the control device 60 is connected to the above-described control device 20 via a radio signal. Therefore, when the operator Ob tilts the raising / lowering operation tool 63 in an arbitrary direction (see the arrow G in FIG. 4), the boom 7 is raised / lowered in the same manner as the tilting operation tool 23 described above is tilted in any direction. . That is, when the operator Ob tilts the hoisting operation tool 63 in an arbitrary direction, the hydraulic cylinder 33 for hoisting is appropriately operated, and the boom 7 stands or falls.
  • the remote operation terminal 13 is provided with a winding operation tool 64.
  • the winding operation tool 64 is connected to the control device 60.
  • the control device 60 is connected to the above-described control device 20 via a radio signal. Therefore, when the operator Ob tilts the winding operation tool 64 in any direction (see the arrow H in FIG. 4), the lifting and lowering operation of the hook 10 is performed in the same manner as when the winding operation tool 24 is tilted in any direction. Done. That is, when the operator Ob tilts the winding operation tool 64 in an arbitrary direction, the winding hydraulic motor 34 is appropriately operated, and the hook 10 is raised or lowered.
  • the remote operation terminal 13 is provided with an image display device 65.
  • the image display 65 is connected to the control device 60.
  • the control device 60 is connected to the above-described control device 20 via a radio signal. Therefore, the control device 20 can provide information to the operator Ob through the image display device 65.
  • the image display device 65 is a so-called touch panel, it can be said that the image display device 65 is an input device of the operator Ob. Therefore, the operator Ob can also provide information to the control device 20 through the image display device 65.
  • the image display 65 is mounted on the front of the remote operation terminal 13 so that the operator Ob can visually recognize the various operation tools 61 to 64 while operating them.
  • the remote operation terminal 13 can operate each drive device (31 to 34) through the control device 20.
  • the control device 20 includes a basic control signal generator 20a, a resonance frequency calculator 20b, a filter coefficient calculator 20c, and a filtering control signal generator 20d.
  • the basic control signal creating section 20a creates a basic control signal S that is a speed command for each of the driving devices (31 to 34) (see FIG. 6).
  • the basic control signal creation unit 20a recognizes the operation amounts and operation speeds of the various operating tools 21 to 24 and 61 to 64 by the operator, and creates the basic control signal S for each situation. More specifically, the basic control signal creation unit 20a includes a basic control signal S corresponding to the operation amount and operation speed of the turning operation tools 21 and 61, and a basic control signal S corresponding to the operation amount and operation speed of the telescopic operation tools 22 and 62.
  • a control signal S, a basic control signal S corresponding to the operation amount and operation speed of the hoisting operation tools 23 and 63, and a basic control signal S corresponding to the operation amount and operation speed of the winding operation tools 24 and 64 are created.
  • the resonance frequency calculator 20b calculates the resonance frequency ⁇ which is the frequency of the swing of the load W caused by the operation of each of the driving devices (31 to 34).
  • the resonance frequency calculator 20b recognizes the suspension length L of the hook 10 based on the posture of the boom 7 and the unwinding amount of the wire rope 8, and calculates the resonance frequency ⁇ for each situation. More specifically, the resonance frequency calculation unit 20b calculates the resonance frequency ⁇ based on the following equation using the suspension length L of the hook 10 and the gravitational acceleration g.
  • Filter coefficient calculation section 20c in addition to the center frequency coefficients omega n of the transmission coefficient H of notch filter F to be described later has (s), and calculates the notch width coefficient ⁇ and the notch depth coefficient [delta].
  • Filter coefficient calculation section 20c calculates a center frequency coefficients omega n corresponding around the resonance frequency omega resonance frequency calculator 20b is calculated. Further, the filter coefficient calculation unit 20c calculates a notch width coefficient ⁇ and a notch depth coefficient ⁇ corresponding to each basic control signal S.
  • transfer coefficient H (s) is represented by the following equation using the center frequency coefficients omega n and notch width coefficient ⁇ and the notch depth coefficient [delta].
  • the filtering control signal creating section 20d creates the notch filter F and applies the notch filter F to the basic control signal S to create the filtering control signal Sf (see FIG. 6). Filtering the control signal creation unit 20d, from the filter coefficient calculation section 20c obtains various coefficients ⁇ n ⁇ ⁇ ⁇ ⁇ creating a notch filter F.
  • the filtering control signal creation unit 20d acquires the basic control signal S from the basic control signal creation unit 20a, and applies a notch filter F to the basic control signal S to create a filtering control signal Sf.
  • the filtering control signal creating unit 20d is configured to filter the basic control signal S and the notch filter F according to the operation amount of the turning operation tools 21 and 61, the filtering control signal Sf from the notch filter F, and the operation amount of the expansion and contraction operation tools 22 and 62.
  • control device 20 can control the various valves 25 to 28 based on the filtering control signal Sf. Consequently, each of the driving devices (31 to 34) can be controlled based on the filtering control signal Sf.
  • the notch filter F has a characteristic that the attenuation rate increases as it approaches the resonance frequency ⁇ in an arbitrary range around the resonance frequency ⁇ .
  • An arbitrary range centered on the resonance frequency ⁇ is represented as a notch width Bn, and a difference in the amount of attenuation at the notch width Bn is represented as a notch depth Dn. Therefore, the notch filter F is specified by the resonance frequency ⁇ , the notch width Bn, and the notch depth Dn.
  • the filtering control signal Sf is a speed command transmitted to each of the driving devices (31 to 34).
  • the filtering control signal Sf related to the acceleration of the boom 7 has a feature that the acceleration is gentler than the basic control signal S, and is temporarily decelerated and then accelerated again (part I in FIG. 6). reference).
  • the temporary deceleration is for suppressing the swing of the load W during acceleration.
  • the filtering control signal Sf related to the deceleration of the boom 7 has a characteristic that the deceleration is gentler or almost equal to that of the basic control signal S, and the speed is temporarily increased and then reduced again. (See part J in FIG. 6).
  • the reason why the speed is temporarily increased is to suppress the swing of the load W during deceleration.
  • the control device 20 can calculate the time K from when the operators Oa and Ob perform the stop operation until the speed command becomes zero. Therefore, the control device 20 can predict the braking distance of the boom 7 using the time K, the speed transition, the resonance frequency ⁇ , and the like. However, the braking distance can be predicted by another mathematical method without using the time K.
  • the control device 20 can recognize the position of the remote operation terminal 13. This can be realized when the antenna of the information repeater 42 has a directional characteristic. Further, as described above, the control device 20 can recognize the turning angle, the extension length, and the undulation angle of the boom 7. Therefore, the control device 20 can recognize the position direction of the remote operation terminal 13 with respect to the camera 41. Therefore, the control device 20 can recognize the angle ⁇ (see FIG. 8) between the direction in which the camera 41 is supported by the boom 7 and the position direction of the remote operation terminal 13 with respect to the camera 41.
  • the “supporting direction of the camera 41 by the boom 7” is a direction along a virtual line V1 (see FIG. 8) connecting the turning center M of the boom 7 and the camera 41 when viewed from above.
  • the “position direction of the remote operation terminal 13 with respect to the camera 41” is a direction along a virtual line V2 (see FIG. 8) connecting the camera 41 and the remote operation terminal 13 when viewed from above.
  • the control device 20 is connected to a compass (not shown), and can recognize the compass.
  • the azimuth in the present application is represented by azimuth symbols in FIG.
  • the boom 7 turns in response to the operation of the turning operation tool 21 by the operator Oa or the operation of the turning operation tool 61 by the operator Ob.
  • the camera 41 turns with the boom 7.
  • the target point P of the camera 41 also turns with the boom 7 (see the arrow N in FIG. 7), and the image areas R1 and R2 around the target point P also turn.
  • the image area R1 is displayed on an image display 43 provided inside the cabin 11 (see FIG. 9A).
  • the image region R1 has a rectangular shape inscribed in the shooting range of the camera 41. This is in consideration of the situation around the hook 10 or the luggage W suspended from the hook 10 so as to be widely seen.
  • the image area R2 is displayed on the image display 65 provided on the upper surface of the remote operation terminal 13 (see FIG. 9B).
  • the image region R2 has a circular shape inscribed in the image region R1. This is in consideration of the fact that, even when the image is rotated, no loss (partial loss of the image) does not occur, and that the operator Ob can be made to recognize again that the image is being rotated and displayed. It is.
  • the image is rotated based on the angle ⁇ . The reason for this is that the image becomes the most easily recognizable direction for the operator Ob.
  • the moving direction of the hook 10 or the luggage W suspended from the hook 10 is displayed as an arrow-shaped image T (see FIGS. 9A and 9B).
  • a moving direction can be said to be equal to the direction in which the tip of the boom 7 moves.
  • the length of the image T is appropriately adjusted according to the speed of the moving speed.
  • the color of the image T may be changed in accordance with acceleration / deceleration.
  • the mode such as blinking the image T may be changed in accordance with the acceleration / deceleration.
  • a sign U1 indicating the position and direction of the traveling body 2 is displayed in the image areas R1 and R2. Further, in the image areas R1 and R2, a sign U2 indicating the position and direction of the remote operation terminal 13 is displayed. Then, in the image areas R1 and R2, a sign U3 indicating the direction is displayed.
  • the braking distance of the boom 7 when the operators Oa and Ob perform the turning stop operation is calculated as follows.
  • the braking distance of the boom 7 will be described as ⁇ .
  • the braking distance ⁇ of the boom 7 is represented by the following equation.
  • “ ⁇ ′” is the turning speed of the boom 7 and “T” is the load swing cycle.
  • “Pnf” is a load fluctuation reduction rate
  • “Dcc” is a deceleration limit.
  • the turning speed ⁇ ′ of the boom 7 is detected by a sensor (see FIG. 6).
  • the load fluctuation cycle T, the load fluctuation reduction rate Pnf, and the deceleration limit Dcc will be described later.
  • the load swing period T can be expressed using the resonance frequency ⁇ . Therefore, the load swing period T is represented by the following equation.
  • the load fluctuation reduction rate Pnf is a value determined by a function using the notch width coefficient ⁇ and the notch depth coefficient ⁇ .
  • the deceleration limit Dcc is a limit value for reducing the rotation speed of the turning hydraulic motor 31.
  • the load fluctuation reduction rate Pnf and the deceleration limit Dcc may be set to values determined for each model.
  • the swing amount of the package W is calculated by the following equation.
  • the swing amount (amplitude) of the load W will be described as ⁇ .
  • the hook 10 and the load W are regarded as one rigid body, and the restoring force is F and the weight is M.
  • the restoring force of the hook 10 is F and the weight of the hook 10 is M.
  • the hook 10 and the luggage W may not be regarded as one rigid body but may be calculated as a double pendulum.
  • the braking distance of the boom 7 is displayed in the image areas R1 and R2 (see the X section). More specifically, since the arrow-shaped image T extends in the image regions R1 and R2, the braking distance of the boom 7 is displayed on an extension of the image T (see the X section). Considering that the hook 10 or the load W suspended on the hook 10 is vertically below the tip of the boom 7, the braking distance of the boom 7 is the braking distance of the hook 10 or the load W suspended on the hook 10. It can be said that Note that the value of the braking distance changes continuously in association with the speed transition and the time transition.
  • the present invention can also be applied to the situation where the boom 7 extends and contracts and undulates.
  • the present invention can be applied to a situation where the hook 10 is moved up and down.
  • the camera 41 includes a camera 41 that captures an image of the camera from below, and image display devices 43 and 65 that display images captured by the camera 41. Then, when stopping the operation of the boom 7, the control device 20 creates a filtering control signal Sf by applying a filter F to the basic control signal S of the driving device (31 to 34), and based on the filtering control signal Sf. In addition to controlling the driving device 20, the braking distance of the boom 7 is predicted and displayed on the image displays 43 and 65.
  • the operators Oa and Ob can see the image display devices 43 and 65 to know the surroundings of the hook 10 or the load W suspended on the hook 10, and at the same time, the braking distance of the boom 7. . Therefore, it is possible to perform the avoidance operation before the hook 10 or the load W suspended on the hook 10 collides with a building or the like.
  • the sign Y of the load W may be displayed at such a position.
  • the sign Y is obtained by cutting out an image of the baggage W taken by the camera 41, but is not limited to this. For example, it may be a simple figure such as a circle or a rectangle.
  • the control device 20 predicts the position where the load W stops, and displays the sign Y of the load W on the image display devices 43 and 65. According to the crane 1, it is possible to easily determine whether or not a collision with a building or the like is made from the displayed sign Y of the luggage W. Therefore, the avoidance operation can be performed before the luggage W collides with a building or the like.
  • the swing range Yr has an elliptical shape that is large in the moving direction of the load W (an elliptical shape whose major axis is along the moving direction of the load W), but is not limited thereto.
  • a straight line indicating a range may be used.
  • the control device 20 predicts the swing amount of the load W and displays the swing range Yr of the load W on the image display devices 43 and 65. According to the crane 1, it can be easily determined whether or not a collision with a building or the like is made based on the displayed swing range Yr of the load W. Therefore, the avoidance operation can be performed before the luggage W collides with a building or the like.
  • the sign Z of the hook 10 may be displayed at such a position.
  • the sign Z is obtained by cutting out an image of the hook 10 taken by the camera 41, but is not limited to this. For example, it may be a simple figure such as a circle or a rectangle.
  • the control device 20 predicts the position at which the hook 10 stops, and displays the sign Z of the hook 10 on the image display devices 43 and 65. According to the crane 1, it is possible to easily determine whether or not the vehicle 10 collides with a building or the like from the displayed sign Z of the hook 10. Therefore, it is possible to perform the avoidance operation before the hook 10 collides with a building or the like.
  • the swing range Zr has an elliptical shape that is large in the moving direction of the hook 10 (an elliptical shape whose major axis is along the moving direction of the hook 10), but is not limited thereto.
  • a straight line indicating a range may be used.
  • the control device 20 predicts the swing amount of the hook 10 and displays the swing range Zr of the hook 10 on the image display devices 43 and 65. According to such a crane 1, it can be easily determined from the displayed swing range Zr of the hook 10 whether or not it collides with a building or the like. Therefore, it is possible to perform the avoidance operation before the hook 10 collides with a building or the like.
  • the notch filter F is used as a filter for generating the filtering control signal Sf, but the present invention is not limited to this. That is, any band-stop filter that can attenuate or reduce only a specific frequency range may be used. For example, a band limit filter, a band elimination filter, or the like is used.
  • the present invention can be used for cranes.

Abstract

フック或いはフックに吊り下げられた荷物の周囲状況を把握でき、同時に停止操作時の制動距離を把握できるクレーンを提供することを課題とする。ブーム7の動作に供する駆動装置31~34と、駆動装置31~34の作動状態を制御する制御装置20と、ブーム7の先端部分から下方を撮影するカメラ41と、カメラ41が撮影した画像を表示する画像表示機43・65と、を具備し、ブーム7の動作を停止させる場合、制御装置20は、駆動装置31~34の基本制御信号Sに対してフィルタをかけてフィルタリング制御信号Sfを作成し、フィルタリング制御信号Sfに基づいて駆動装置31~34を制御するとともに、ブーム7の制動距離を予測して画像表示機43・65に表示する、とした。

Description

クレーン
 本発明は、クレーンに関する。詳しくは、フック或いはフックに吊り下げられた荷物の周囲状況を把握でき、同時に停止操作時の制動距離を把握できるクレーンに関する。
従来より、代表的な作業車両であるクレーンが知られている。クレーンは、主に走行体と旋回体で構成されている。走行体は、複数の車輪を備え、走行自在に構成されている。旋回体は、ブームのほかにワイヤロープとフックを備え、荷物を運搬自在に構成されている。このようなクレーンにおいては、ブームの動作に供する駆動装置と、駆動装置の作動状態を制御する制御装置と、を具備している。
 ところで、制御装置がフィルタリング制御信号を作成し、このフィルタリング制御信号に基づいて駆動装置を制御するとしたクレーンが提案されている(特許文献1参照)。ここで、フィルタリング制御信号とは、駆動装置の基本制御信号に対して所定の特徴を有するフィルタをかけたものである。例えば、ノッチフィルタは、共振周波数を中心とする任意の範囲で共振周波数に近づく程に減衰率が高くなった特徴を有している。
 ここで、ブームの旋回動作を止める操作を行い、フック或いはフックに吊り下げられた荷物を停止させる状況について想定する。この場合、オペレータがブームの旋回動作を止める操作を行っても、しばらくの間はブームが減速しつつ旋回動作を続けてしまう。これは、ブームの旋回動作を直ちに止めるのではなく、フィルタリング制御信号に基づいた減速区間を設けることで、荷物の振れを抑えようとしているのである。しかし、ブームの制動距離が長くなると、フック或いはフックに吊り下げられた荷物が建築物等に衝突してしまう可能性が高まることとなる。そのため、フック或いはフックに吊り下げられた荷物の周囲状況を把握でき、同時に停止操作時の制動距離を把握できるクレーンが求められていたのである。
特開2015-151211号公報
 フック或いはフックに吊り下げられた荷物の周囲状況を把握でき、同時に停止操作時の制動距離を把握できるクレーンに関する。
 本発明においては、
 ブームと、
 前記ブームから垂下するワイヤロープと、
 前記ワイヤロープの巻き入れ及び巻き出しによって昇降するフックと、を備え、
 前記フックに荷物を吊り下げた状態で当該荷物を運搬するクレーンにおいて、
 前記ブームの動作に供する駆動装置と、
 前記駆動装置の作動状態を制御する制御装置と、
 前記ブームの先端部分から下方を撮影するカメラと、
 前記カメラが撮影した画像を表示する画像表示機と、を具備し、
 前記ブームの動作を停止させる場合、
 前記制御装置は、前記駆動装置の基本制御信号に対してフィルタをかけてフィルタリング制御信号を作成し、前記フィルタリング制御信号に基づいて前記駆動装置を制御するとともに、前記ブームの制動距離を予測して前記画像表示機に表示する、ものである。
 本発明においては、
 前記制御装置は、前記荷物が停止する位置を予測して当該荷物の標識を前記画像表示機に表示する、ものである。
 本発明においては、
 前記制御装置は、前記荷物の振れ量を予測して当該荷物の振れ範囲を前記画像表示機に表示する、ものである。
 本発明においては、
 前記制御装置は、前記フックが停止する位置を予測して当該フックの標識を前記画像表示機に表示する、ものである。
 本発明においては、
 前記制御装置は、前記フックの振れ量を予測して当該フックの振れ範囲を前記画像表示機に表示する、ものである。
 本発明のクレーンによれば、ブームの動作に供する駆動装置と、駆動装置の作動状態を制御する制御装置と、ブームの先端部分から下方を撮影するカメラと、カメラが撮影した画像を表示する画像表示機と、を具備している。そして、ブームの動作を停止させる場合、制御装置は、駆動装置の基本制御信号に対してフィルタをかけてフィルタリング制御信号を作成し、フィルタリング制御信号に基づいて駆動装置を制御するとともに、ブームの制動距離を予測して画像表示機に表示する。かかるクレーンによれば、オペレータが画像表示機を見ることで、フック或いはフックに吊り下げた荷物の周囲状況を把握でき、同時にブームの制動距離を把握できる。従って、フック或いはフックに吊り下げられた荷物が建築物等に衝突する前に回避操作を行うことが可能となる。
 本発明のクレーンによれば、制御装置は、荷物が停止する位置を予測して荷物の標識を画像表示機に表示する。かかるクレーンによれば、表示された荷物の標識から建築物等に衝突するか否かを容易に判断することができる。従って、荷物が建築物等に衝突する前に回避操作を行うことが可能となる。
 本発明のクレーンによれば、制御装置は、荷物の振れ量を予測して荷物の振れ範囲を画像表示機に表示する。かかるクレーンによれば、表示された荷物の振れ範囲から建築物等に衝突するか否かを容易に判断することができる。従って、荷物が建築物等に衝突する前に回避操作を行うことが可能となる。
 本発明のクレーンによれば、制御装置は、フックが停止する位置を予測してフックの標識を画像表示機に表示する。かかるクレーンによれば、表示されたフックの標識から建築物等に衝突するか否かを容易に判断することができる。従って、フックが建築物等に衝突する前に回避操作を行うことが可能となる。
 本発明のクレーンによれば、制御装置は、フックの振れ量を予測してフックの振れ範囲を画像表示機に表示する。かかるクレーンによれば、表示されたフックの振れ範囲から建築物等に衝突するか否かを容易に判断することができる。従って、フックが建築物等に衝突する前に回避操作を行うことが可能となる。
クレーンを示す図。 キャビンの内部を示す図。 操作システムの構成を示す図。 遠隔操作端末を示す図。 ノッチフィルタの周波数特性を示す図。 基本制御信号とフィルタリング制御信号を示す図。 ブームの旋回動作を示す図。 ブームが旋回している状況を示す図。 ブームが旋回している状況の表示態様を示す図。 オペレータが旋回停止操作を行った場合における表示態様を示す図。 オペレータが旋回停止操作を行った場合における表示態様を示す図。 オペレータが旋回停止操作を行った場合における表示態様を示す図。
 本願に開示する技術的思想は、以下に説明するクレーン1のほか、他のクレーンにも適用できる。
 まず、図1及び図2を用いて、クレーン1について説明する。
 クレーン1は、主に走行体2と旋回体3で構成されている。
 走行体2は、左右一対の前輪4と後輪5を備えている。また、走行体2は、荷物Wの運搬作業を行なう際に接地させて安定を図るアウトリガ6を備えている。なお、走行体2は、駆動装置によって、その上部に支持する旋回体3を旋回自在としている。
 旋回体3は、その後部から前方へ突き出すようにブーム7を備えている。そのため、ブーム7は、駆動装置によって旋回自在となっている(矢印A参照)。また、ブーム7は、駆動装置によって伸縮自在となっている(矢印B参照)。更に、ブーム7は、駆動装置によって起伏自在となっている(矢印C参照)。加えて、ブーム7には、ワイヤロープ8が架け渡されている。ブーム7の基端側には、ワイヤロープ8を巻き付けたウインチ9が配置され、ブーム7の先端側には、ワイヤロープ8によってフック10が垂下されている。ウインチ9は、駆動装置と一体的に構成されており、ワイヤロープ8の巻き入れ及び巻き出しを可能としている。そのため、フック10は、駆動装置によって昇降自在となっている(矢印D参照)。なお、旋回体3は、ブーム7の側方にキャビン11を備えている。キャビン11の内部には、後述する旋回操作具21や伸縮操作具22、起伏操作具23、巻回操作具24が設けられている。また、後述する画像表示機43が設けられている。
 次に、図3及び図4を用いて、操作システム12について説明する。但し、本操作システムは、考え得る構成の一例であり、これに限定するものではない。以下では、クレーン1に乗車して操作を行うオペレータを「オペレータOa」とし、クレーン1に乗車せずに操作を行うオペレータを「オペレータOb」として説明する。
 操作システム12は、主に制御装置20で構成されている。制御装置20には、各種操作具21~24が接続されている。また、制御装置20には、各種バルブ25~28が接続されている。更に、制御装置20には、重量センサ29が接続されている。なお、重量センサ29は、荷物Wの重さを検出できる。そのため、制御装置20は、荷物Wの重さを認識することができる。
 前述したように、ブーム7は、駆動装置によって旋回自在となっている(図1における矢印A参照)。本願においては、かかる駆動装置を旋回用油圧モータ31と定義する。旋回用油圧モータ31は、方向制御弁である旋回用バルブ25によって適宜に稼動される。つまり、旋回用油圧モータ31は、旋回用バルブ25が作動油の流動方向を切り替えることで適宜に稼動される。なお、旋回用バルブ25は、オペレータOaによる旋回操作具21の操作に基づいて稼動される。また、ブーム7の旋回角度や旋回速度は、図示しないセンサによって検出される。そのため、制御装置20は、ブーム7の旋回角度や旋回速度を認識することができる。
 また、前述したように、ブーム7は、駆動装置によって伸縮自在となっている(図1における矢印B参照)。本願においては、かかる駆動装置を伸縮用油圧シリンダ32と定義する。伸縮用油圧シリンダ32は、方向制御弁である伸縮用バルブ26によって適宜に稼動される。つまり、伸縮用油圧シリンダ32は、伸縮用バルブ26が作動油の流動方向を切り替えることで適宜に稼動される。なお、伸縮用バルブ26は、オペレータOaによる伸縮操作具22の操作に基づいて稼動される。また、ブーム7の伸縮長さや伸縮速度は、図示しないセンサによって検出される。そのため、制御装置20は、ブーム7の伸縮長さや伸縮速度を認識することができる。
 更に、前述したように、ブーム7は、駆動装置によって起伏自在となっている(図1における矢印C参照)。本願においては、かかる駆動装置を起伏用油圧シリンダ33と定義する。起伏用油圧シリンダ33は、方向制御弁である起伏用バルブ27によって適宜に稼動される。つまり、起伏用油圧シリンダ33は、起伏用バルブ27が作動油の流動方向を切り替えることで適宜に稼動される。なお、起伏用バルブ27は、オペレータOaによる起伏操作具23の操作に基づいて稼動される。また、ブーム7の起伏角度や起伏速度は、図示しないセンサによって検出される。そのため、制御装置20は、ブーム7の起伏角度や起伏速度を認識することができる。
 加えて、前述したように、フック10は、駆動装置によって昇降自在となっている(図1における矢印D参照)。本願においては、かかる駆動装置を巻回用油圧モータ34と定義する。巻回用油圧モータ34は、方向制御弁である巻回用バルブ28によって適宜に稼動される。つまり、巻回用油圧モータ34は、巻回用バルブ28が作動油の流動方向を切り替えたり作動油の流量を調節したりすることで適宜に稼動される。なお、巻回用バルブ28は、オペレータOaによる巻回操作具24の操作に基づいて稼動される。また、フック10の吊下長さL(図1参照)や昇降速度は、図示しないセンサによって検出される。そのため、制御装置20は、フック10の吊下長さLや昇降速度を認識することができる。
 更に加えて、本操作システム12は、カメラ41と情報中継機42と画像表示機43を有している。但し、情報中継機42は、遠隔操作端末13が有線式の場合に不要となる。
 カメラ41は、画像を撮影するものである。カメラ41は、フック10或いはフック10に吊り下げられた荷物Wを上方から撮影すべく、ブーム7の先端部分に取り付けられている(図1参照)。なお、カメラ41は、情報中継機42に接続されている。
 情報中継機42は、電波信号に変換された情報を送受信するものである。情報中継機42は、地物等による電波への影響を低減すべく、少なくともアンテナがブーム7の先端部分に取り付けられている。なお、情報中継機42は、制御装置20のほか、後述する遠隔操作端末13の制御装置60に接続されている。そのため、情報中継機42は、制御装置20から制御装置60へ情報を伝達することができる。また、情報中継機42は、制御装置60から制御装置20へ情報を伝達することもできる。更に、カメラ51が撮影した画像を制御装置20と制御装置60へ伝達することもできる。
 画像表示機43は、様々な画像を表示するものである。画像表示機43は、オペレータOaが各種操作具21~24を操作しながら視認できるよう、キャビン11の内部における前方側に取り付けられている。なお、画像表示機43は、制御装置20に接続されている。そのため、制御装置20は、画像表示機43を通じ、オペレータOaへ情報を提供することができる。
 更に加えて、本操作システム12は、遠隔操作端末13を有している。遠隔操作端末13は、制御装置60を備えている。また、遠隔操作端末13は、図示しない送信機と受信機を備えている。なお、本願における遠隔操作端末13は、遠隔操作端末の一例であり、これに限定するものではない。
 遠隔操作端末13には、旋回操作具61が設けられている。旋回操作具61は、制御装置60に接続されている。そして、制御装置60は、電波信号を介して前述した制御装置20に接続されている。そのため、オペレータObが旋回操作具61を任意の方向へ倒すと(図4における矢印E参照)、前述した旋回操作具21を任意の方向に倒したのと同様にブーム7の旋回動作が行われる。つまり、オペレータObが旋回操作具61を任意の方向へ倒すと、適宜に旋回用油圧モータ31が稼働し、ブーム7が左旋回或いは右旋回するのである。
 また、遠隔操作端末13には、伸縮操作具62が設けられている。伸縮操作具62は、制御装置60に接続されている。そして、制御装置60は、電波信号を介して前述した制御装置20に接続されている。そのため、オペレータObが伸縮操作具62を任意の方向へ倒すと(図4における矢印F参照)、前述した伸縮操作具22を任意の方向に倒したのと同様にブーム7の伸縮動作が行われる。つまり、オペレータObが伸縮操作具62を任意の方向へ倒すと、適宜に伸縮用油圧シリンダ32が稼働し、ブーム7が伸長或いは収縮するのである。
 更に、遠隔操作端末13には、起伏操作具63が設けられている。起伏操作具63は、制御装置60に接続されている。そして、制御装置60は、電波信号を介して前述した制御装置20に接続されている。そのため、オペレータObが起伏操作具63を任意の方向へ倒すと(図4における矢印G参照)、前述した起伏操作具23を任意の方向に倒したのと同様にブーム7の起伏動作が行われる。つまり、オペレータObが起伏操作具63を任意の方向へ倒すと、適宜に起伏用油圧シリンダ33が稼働し、ブーム7が起立或いは倒伏するのである。
 加えて、遠隔操作端末13には、巻回操作具64が設けられている。巻回操作具64は、制御装置60に接続されている。そして、制御装置60は、電波信号を介して前述した制御装置20に接続されている。そのため、オペレータObが巻回操作具64を任意の方向へ倒すと(図4における矢印H参照)、前述した巻回操作具24を任意の方向に倒したのと同様にフック10の昇降動作が行われる。つまり、オペレータObが巻回操作具64を任意の方向へ倒すと、適宜に巻回用油圧モータ34が稼働し、フック10が上昇或いは降下するのである。
 更に加えて、遠隔操作端末13には、画像表示機65が設けられている。画像表示機65は、制御装置60に接続されている。そして、制御装置60は、電波信号を介して前述した制御装置20に接続されている。そのため、制御装置20は、画像表示機65を通じ、オペレータObへ情報を提供することができる。他方で、画像表示機65は、いわゆるタッチパネルであることから、オペレータObの入力機器であるともいえる。そのため、オペレータObは、画像表示機65を通じ、制御装置20へ情報を提供することもできる。なお、画像表示機65は、オペレータObが各種操作具61~64を操作しながら視認できるよう、遠隔操作端末13の正面に取り付けられている。
 このように、遠隔操作端末13は、制御装置20を通じて各駆動装置(31~34)を稼動させることができる。なお、制御装置20は、基本制御信号作成部20aと共振周波数算出部20bとフィルタ係数算出部20cとフィルタリング制御信号作成部20dを有している。
 基本制御信号作成部20aは、各駆動装置(31~34)の速度指令である基本制御信号Sを作成するものである(図6参照)。基本制御信号作成部20aは、オペレータによる各種操作具21~24・61~64の操作量や操作速度を認識し、状況毎に基本制御信号Sを作成する。具体的に説明すると、基本制御信号作成部20aは、旋回操作具21・61の操作量や操作速度に応じた基本制御信号S、伸縮操作具22・62の操作量や操作速度に応じた基本制御信号S、起伏操作具23・63の操作量や操作速度に応じた基本制御信号S、巻回操作具24・64の操作量や操作速度に応じた基本制御信号Sを作成する。
 共振周波数算出部20bは、各駆動装置(31~34)が作動することによって生じる荷物Wの振れの周波数である共振周波数ωを算出するものである。共振周波数算出部20bは、ブーム7の姿勢やワイヤロープ8の巻き出し量に基づいてフック10の吊下長さLを認識し、状況毎に共振周波数ωを算出する。具体的に説明すると、共振周波数算出部20bは、フック10の吊下長さLと重力加速度gを用いた下記の数式に基づいて共振周波数ωを算出する。
Figure JPOXMLDOC01-appb-M000001
 フィルタ係数算出部20cは、後述するノッチフィルタFが有している伝達係数H(s)の中心周波数係数ωのほか、ノッチ幅係数ζやノッチ深さ係数δを算出するものである。フィルタ係数算出部20cは、共振周波数算出部20bが算出した共振周波数ωを中心として対応する中心周波数係数ωを算出する。また、フィルタ係数算出部20cは、それぞれの基本制御信号Sに対応するノッチ幅係数ζやノッチ深さ係数δを算出する。なお、伝達係数H(s)は、中心周波数係数ωやノッチ幅係数ζやノッチ深さ係数δを用いた下記の数式で表される。
Figure JPOXMLDOC01-appb-M000002
 フィルタリング制御信号作成部20dは、ノッチフィルタFを作成するとともに、基本制御信号Sに対してノッチフィルタFをかけてフィルタリング制御信号Sfを作成するものである(図6参照)。フィルタリング制御信号作成部20dは、フィルタ係数算出部20cから各種係数ω・ζ・δを取得してノッチフィルタFを作成する。また、フィルタリング制御信号作成部20dは、基本制御信号作成部20aから基本制御信号Sを取得し、この基本制御信号Sに対してノッチフィルタFをかけてフィルタリング制御信号Sfを作成する。具体的に説明すると、フィルタリング制御信号作成部20dは、旋回操作具21・61の操作量等に応じた基本制御信号SとノッチフィルタFからフィルタリング制御信号Sf、伸縮操作具22・62の操作量等に応じた基本制御信号SとノッチフィルタFからフィルタリング制御信号Sf、起伏操作具23・63の操作量等に応じた基本制御信号SとノッチフィルタFからフィルタリング制御信号Sf、巻回操作具24・64の操作量等に応じた基本制御信号SとノッチフィルタFからフィルタリング制御信号Sfを作成する。
 このような構成により、制御装置20は、フィルタリング制御信号Sfに基づいて各種バルブ25~28を制御できる。ひいては、フィルタリング制御信号Sfに基づいて各駆動装置(31~34)を制御できる。
 次に、図5及び図6を用いて、ノッチフィルタFとフィルタリング制御信号Sfについて説明する。
 ノッチフィルタFは、共振周波数ωを中心とする任意の範囲で共振周波数ωに近づく程に減衰率が高くなった特徴を有している。共振周波数ωを中心とする任意の範囲は、ノッチ幅Bnとして表され、ノッチ幅Bnにおける減衰量の差異は、ノッチ深さDnとして表される。このため、ノッチフィルタFは、共振周波数ωとノッチ幅Bnとノッチ深さDnで特定される。なお、ノッチ深さDnは、ノッチ深さ係数δに基づいて定まるものである。従って、ノッチ深さ係数δ=0の場合は、共振周波数ωにおけるゲイン特性が-∞dBとなり、ノッチ深さ係数δ=1の場合は、共振周波数ωにおけるゲイン特性が0dBとなる。
 フィルタリング制御信号Sfは、各駆動装置(31~34)に伝達される速度指令である。ブーム7の加速に係るフィルタリング制御信号Sfは、基本制御信号Sよりも加速が穏やかであり、一時的に減速させてから再び加速していくような特徴を有している(図6におけるI部参照)。ここで、一時的に減速させるのは、加速時における荷物Wの振れを抑えるためである。また、ブーム7の減速に係るフィルタリング制御信号Sfは、基本制御信号Sよりも減速が穏やか又は同程度であり、一時的に増速させてから再び減速していくような特徴を有している(図6におけるJ部参照)。ここで、一時的に増速させるのは、減速時における荷物Wの振れを抑えるためである。なお、制御装置20は、オペレータOa・Obが停止操作を行ってから速度指令が0となるまでの時間Kを算出することができる。そのため、制御装置20は、この時間Kと速度推移、共振周波数ω等を利用してブーム7の制動距離を予測することができる。但し、時間Kを利用せず、他の数学的方法によって制動距離を予測することも可能である。
 次に、図7から図9を用いて、画像表示機43・65の表示態様について説明する。ここでは、ブーム7が旋回している状況に着目して説明する。
 まず、本願における前提について簡単に説明しておく。
 制御装置20は、遠隔操作端末13の位置を認識できる。これは、情報中継機42のアンテナが指向特性を有することで実現できる。また、前述したように、制御装置20は、ブーム7の旋回角度や伸縮長さ、起伏角度を認識できる。そのため、制御装置20は、カメラ41に対する遠隔操作端末13の位置方向を認識できる。従って、制御装置20は、ブーム7によるカメラ41の支持方向とカメラ41に対する遠隔操作端末13の位置方向のなす角度α(図8参照)を認識できる。なお、「ブーム7によるカメラ41の支持方向」とは、上方から見たときにブーム7の旋回中心Mとカメラ41を結んだ仮想線V1(図8参照)に沿う方向である。また、「カメラ41に対する遠隔操作端末13の位置方向」とは、上方から見たときにカメラ41と遠隔操作端末13を結んだ仮想線V2(図8参照)に沿う方向である。加えて、制御装置20は、図示しない方位計と接続されており、方位を認識できるものとする。本願における方位については、図8に方位記号で表す。
 前述したように、ブーム7は、オペレータOaによる旋回操作具21の操作或いはオペレータObによる旋回操作具61の操作に応じて旋回する。このとき、カメラ41は、ブーム7とともに旋回する。すると、カメラ41の狙点Pもブーム7とともに旋回することととなり(図7における矢印N参照)、ひいては狙点Pを中心とする画像領域R1・R2も旋回することとなる。
 ブーム7が旋回している状況において、画像領域R1の内側には、地上に置かれた荷物Qが含まれているものとする(図8参照)。画像領域R1は、キャビン11の内部に設けられた画像表示機43に表示される(図9A参照)。画像領域R1は、カメラ41の撮影範囲に内接した矩形状となっている。これは、フック10或いはフック10に吊り下げられた荷物Wの周囲状況を広く見渡せるように考慮したものである。
 同時に、ブーム7が旋回している状況において、画像領域R2の内側にも、地上に置かれた荷物Qが含まれているものとする(図8参照)。画像領域R2は、遠隔操作端末13の上面に設けられた画像表示機65に表示される(図9B参照)。画像領域R2は、画像領域R1に内接した円形状となっている。これは、画像を転回させても欠落(画像の部分的な欠け)が生じない点に加え、オペレータObに画像が転回して表示されている旨を改めて認識させることができる点を考慮したものである。なお、かかる画像は、なす角度αに基づいて転回される。このようにするのは、オペレータObにとって最も方向を認識しやすい画像となるからである。
 加えて、画像領域R1・R2には、フック10或いはフック10に吊り下げられた荷物Wの移動方向が矢印型の画像Tにて表示される(図9A及び図9B参照)。フック10或いはフック10に吊り下げられた荷物Wがブーム7の先端部分における鉛直下方にあることを考慮すると、かかる移動方向は、ブーム7の先端部分が移動する方向に等しいといえる。なお、画像Tの長さは、移動速度の速さに応じて適宜に調節される。また、画像Tの色彩を加減速に合わせて変更するとしてもよい。更に、画像Tを点滅させる等の態様を加減速に合わせて変更するとしてもよい。
 更に加えて、画像領域R1・R2には、走行体2の位置方向を表す標識U1が表示される。また、画像領域R1・R2には、遠隔操作端末13の位置方向を表す標識U2が表示される。そして、画像領域R1・R2には、方位を表す標識U3が表示される。
 ところで、オペレータOa・Obが旋回停止操作を行った場合におけるブーム7の制動距離は、以下のように算出される。ここでは、ブーム7の制動距離をΔΦとして説明する。
 ブーム7の制動距離ΔΦは、下記の数式によって表される。このとき、「Φ'」はブーム7の旋回速度であり、「T」は荷振れ周期である。また、「Pnf」は荷振れ低減率であり、「Dcc」は減速度制限である。なお、ブーム7の旋回速度Φ'は、センサによって検出される(図6参照)。荷振れ周期Tと荷振れ低減率Pnfと減速度制限Dccについては後述する。
Figure JPOXMLDOC01-appb-M000003
 荷振れ周期Tは、共振周波数ωを用いて表すことができる。そのため、荷振れ周期Tは、下記の数式によって表される。また、荷振れ低減率Pnfは、ノッチ幅係数ζやノッチ深さ係数δを用いた関数によって定まる値である。更に、減速度制限Dccは、旋回用油圧モータ31の回転速度を低下させる際の制限値である。荷振れ低減率Pnfと減速度制限Dccは、機種毎に定められた値とすることもできる。
Figure JPOXMLDOC01-appb-M000004
 更に、荷物Wの振れ量は、下記の数式によって算出される。ここでは、荷物Wの振れ量(振幅)をΔΨとして説明する。また、フック10と荷物Wを一の剛体とみなし、その復元力をF、重量をMとする。但し、フック10に荷物Wを吊り下げていない状況においては、フック10の復元力をF、フック10の重量をMとする。なお、フック10と荷物Wを一の剛体とみなさず、二重振り子として算出するとしてもよい。
Figure JPOXMLDOC01-appb-M000005
 次に、図10から図12を用いて、オペレータOa・Obが旋回停止操作を行った場合における表示態様について説明する。
 図10に示すように、画像領域R1・R2には、ブーム7の制動距離が表示される(X部参照)。具体的に説明すると、画像領域R1・R2には、矢印型の画像Tが延びているので、この画像Tの延長線上にブーム7の制動距離が表示される(X部参照)。フック10或いはフック10に吊り下げられた荷物Wがブーム7の先端部分における鉛直下方にあることを考慮すると、ブーム7の制動距離は、フック10或いはフック10に吊り下げられた荷物Wの制動距離に等しいといえる。なお、制動距離の値は、速度推移や時間推移に連関して連続的に変化する。本願においては、ブーム7が旋回している状況について説明したが、ブーム7が伸縮及び起伏している状況についても適用できる。また、ブーム7の旋回等に加え、フック10が昇降している状況についても適用できる。
 このように、本願に係るクレーン1においては、ブーム7の動作に供する駆動装置(31~34)と、駆動装置(31~34)の作動状態を制御する制御装置20と、ブーム7の先端部分から下方を撮影するカメラ41と、カメラ41が撮影した画像を表示する画像表示機43・65と、を具備している。そして、ブーム7の動作を停止させる場合、制御装置20は、駆動装置(31~34)の基本制御信号Sに対してフィルタFをかけてフィルタリング制御信号Sfを作成し、フィルタリング制御信号Sfに基づいて駆動装置20を制御するとともに、ブーム7の制動距離を予測して画像表示機43・65に表示する。かかるクレーン1によれば、オペレータOa・Obが画像表示機43・65を見ることで、フック10或いはフック10に吊り下げた荷物Wの周囲状況を把握でき、同時にブーム7の制動距離を把握できる。従って、フック10或いはフック10に吊り下げられた荷物Wが建築物等に衝突する前に回避操作を行うことが可能となる。
 この点、本クレーン1は、ブーム7の制動距離から荷物Wが停止する位置を予測することができるので、かかる位置に荷物Wの標識Yを表示するとしてもよい。標識Yは、カメラ41が撮影した荷物Wの画像を切り出したものであるが、これに限定するものではない。例えば、円形や矩形等の簡単な図形であってもよい。
 このように、本願に係るクレーン1において、制御装置20は、荷物Wが停止する位置を予測して荷物Wの標識Yを画像表示機43・65に表示する。かかるクレーン1によれば、表示された荷物Wの標識Yから建築物等に衝突するか否かを容易に判断することができる。従って、荷物Wが建築物等に衝突する前に回避操作を行うことが可能となる。
 加えて、本クレーン1は、ブーム7の減速度やフック10の吊下長さLから荷物Wの振れ量(振幅)を予測することができるので、かかる振れ量を考慮した荷物Wの振れ範囲Yrを表示するとしてもよい。振れ範囲Yrは、荷物Wの移動方向に大きい楕円形状(荷物Wの移動方向に長軸が沿う楕円形状)となっているが、これに限定するものではない。例えば、範囲を示す直線等であってもよい。
 このように、本願に係るクレーン1において、制御装置20は、荷物Wの振れ量を予測して荷物Wの振れ範囲Yrを画像表示機43・65に表示する。かかるクレーン1によれば、表示された荷物Wの振れ範囲Yrから建築物等に衝突するか否かを容易に判断することができる。従って、荷物Wが建築物等に衝突する前に回避操作を行うことが可能となる。
 ところで、前述した技術的思想は、荷物Wを吊り下げていない状況においても適用できる。
 即ち、本クレーン1は、ブーム7の制動距離からフック10が停止する位置を予測することができるので、かかる位置にフック10の標識Zを表示するとしてもよい。標識Zは、カメラ41が撮影したフック10の画像を切り出したものであるが、これに限定するものではない。例えば、円形や矩形等の簡単な図形であってもよい。
 このように、本願に係るクレーン1において、制御装置20は、フック10が停止する位置を予測してフック10の標識Zを画像表示機43・65に表示する。かかるクレーン1によれば、表示されたフック10の標識Zから建築物等に衝突するか否かを容易に判断することができる。従って、フック10が建築物等に衝突する前に回避操作を行うことが可能となる。
 加えて、本クレーン1は、ブーム7の減速度やフック10の吊下長さLからフック10の振れ量(振幅)を予測することができるので、かかる振れ量を考慮したフック10の振れ範囲Zrを表示するとしてもよい。振れ範囲Zrは、フック10の移動方向に大きい楕円形状(フック10の移動方向に長軸が沿う楕円形状)となっているが、これに限定するものではない。例えば、範囲を示す直線等であってもよい。
 このように、本願に係るクレーン1において、制御装置20は、フック10の振れ量を予測してフック10の振れ範囲Zrを画像表示機43・65に表示する。かかるクレーン1によれば、表示されたフック10の振れ範囲Zrから建築物等に衝突するか否かを容易に判断することができる。従って、フック10が建築物等に衝突する前に回避操作を行うことが可能となる。
 最後に、本願においては、フィルタリング制御信号Sfを作成するフィルタとしてノッチフィルタFを用いているが、これに限定するものではない。つまり、特定の周波数域だけ減衰又は削減できるバンドストップフィルタであればよい。例えば、バンドリミットフィルタやバンドエリミネーションフィルタ等である。
 本発明は、クレーンに利用可能である。
 1     クレーン
 2     走行体
 3     旋回体
 7     ブーム
 8     ワイヤロープ
 9     ウインチ
 10    フック
 12    操作システム
 13    遠隔操作端末
 20    制御装置
 31    旋回用油圧モータ(駆動装置)
 32    伸縮用油圧シリンダ(駆動装置)
 33    起伏用油圧シリンダ(駆動装置)
 34    巻回用油圧モータ(駆動装置)
 41    カメラ
 43    画像表示機
 65    画像表示機
 F     ノッチフィルタ(フィルタ)
 S     基本制御信号
 Sf    フィルタリング制御信号
 W     荷物
 X     ブームの制動距離
 Y     荷物の標識
 Z     フックの標識

Claims (5)

  1.  ブームと、
     前記ブームから垂下するワイヤロープと、
     前記ワイヤロープの巻き入れ及び巻き出しによって昇降するフックと、を備え、
     前記フックに荷物を吊り下げた状態で当該荷物を運搬するクレーンにおいて、
     前記ブームの動作に供する駆動装置と、
     前記駆動装置の作動状態を制御する制御装置と、
     前記ブームの先端部分から下方を撮影するカメラと、
     前記カメラが撮影した画像を表示する画像表示機と、を具備し、
     前記ブームの動作を停止させる場合、
     前記制御装置は、前記駆動装置の基本制御信号に対してフィルタをかけてフィルタリング制御信号を作成し、前記フィルタリング制御信号に基づいて前記駆動装置を制御するとともに、前記ブームの制動距離を予測して前記画像表示機に表示する、ことを特徴とするクレーン。
  2.  前記制御装置は、前記荷物が停止する位置を予測して当該荷物の標識を前記画像表示機に表示する、ことを特徴とする請求項1に記載のクレーン。
  3.  前記制御装置は、前記荷物の振れ量を予測して当該荷物の振れ範囲を前記画像表示機に表示する、ことを特徴とする請求項1又は請求項2に記載のクレーン。
  4.  前記制御装置は、前記フックが停止する位置を予測して当該フックの標識を前記画像表示機に表示する、ことを特徴とする請求項1に記載のクレーン。
  5.  前記制御装置は、前記フックの振れ量を予測して当該フックの振れ範囲を前記画像表示機に表示する、ことを特徴とする請求項1又は請求項4に記載のクレーン。
PCT/JP2019/020939 2018-07-10 2019-05-27 クレーン WO2020012798A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19834252.9A EP3822222B1 (en) 2018-07-10 2019-05-27 Crane
CN201980044808.0A CN112384466B (zh) 2018-07-10 2019-05-27 起重机
US16/967,537 US11198596B2 (en) 2018-07-10 2019-05-27 Crane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018131035A JP7172206B2 (ja) 2018-07-10 2018-07-10 クレーン
JP2018-131035 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020012798A1 true WO2020012798A1 (ja) 2020-01-16

Family

ID=69142876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020939 WO2020012798A1 (ja) 2018-07-10 2019-05-27 クレーン

Country Status (5)

Country Link
US (1) US11198596B2 (ja)
EP (1) EP3822222B1 (ja)
JP (1) JP7172206B2 (ja)
CN (1) CN112384466B (ja)
WO (1) WO2020012798A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7416065B2 (ja) * 2019-06-20 2024-01-17 株式会社タダノ 可動範囲表示システムおよび可動範囲表示システムを備えるクレーン
WO2021167007A1 (ja) * 2020-02-19 2021-08-26 株式会社タダノ クレーン用危険範囲表示装置及びクレーン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012155A1 (ja) * 2003-08-05 2005-02-10 Sintokogio, Ltd. クレーン及びそのコントローラ
JP2007141179A (ja) * 2005-11-22 2007-06-07 Aisin Aw Co Ltd 車両の運転支援方法及び運転支援装置
JP2011045167A (ja) * 2009-08-19 2011-03-03 Nihon Univ 運転支援システム、運転支援方法、運転支援プログラム
JP2015151211A (ja) 2014-02-12 2015-08-24 三菱電機株式会社 クレーン装置
JP2015196403A (ja) * 2014-03-31 2015-11-09 株式会社デンソー 車両用表示制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971994B2 (ja) * 2012-03-19 2016-08-17 株式会社タダノ クレーン作業監視装置
JP6772765B2 (ja) * 2016-11-07 2020-10-21 株式会社タダノ 画像表示装置
US10829347B2 (en) * 2016-11-22 2020-11-10 Manitowoc Crane Companies, Llc Optical detection system for lift crane
JP6834887B2 (ja) * 2017-09-29 2021-02-24 株式会社タダノ クレーン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012155A1 (ja) * 2003-08-05 2005-02-10 Sintokogio, Ltd. クレーン及びそのコントローラ
JP2007141179A (ja) * 2005-11-22 2007-06-07 Aisin Aw Co Ltd 車両の運転支援方法及び運転支援装置
JP2011045167A (ja) * 2009-08-19 2011-03-03 Nihon Univ 運転支援システム、運転支援方法、運転支援プログラム
JP2015151211A (ja) 2014-02-12 2015-08-24 三菱電機株式会社 クレーン装置
JP2015196403A (ja) * 2014-03-31 2015-11-09 株式会社デンソー 車両用表示制御装置

Also Published As

Publication number Publication date
EP3822222A1 (en) 2021-05-19
EP3822222B1 (en) 2023-10-18
JP2020007121A (ja) 2020-01-16
EP3822222A4 (en) 2022-04-20
JP7172206B2 (ja) 2022-11-16
CN112384466A (zh) 2021-02-19
US11198596B2 (en) 2021-12-14
US20210214194A1 (en) 2021-07-15
CN112384466B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US11718510B2 (en) Crane and crane control method
EP3689809A1 (en) Crane
WO2020012798A1 (ja) クレーン
DE102019122796A1 (de) Kran und Verfahren zum Steuern eines solchen Krans
US11905145B2 (en) Remote control terminal and work vehicle
US11434111B2 (en) Crane
EP3689808B1 (en) Crane
JP6822603B2 (ja) クレーン
EP3831765A1 (en) Crane
EP3825273B1 (en) Crane
EP3763656B1 (en) Work vehicle
JP7114949B2 (ja) 作業車両
EP4332048A1 (en) Control device, crane, and method for controlling crane
EP3822221A1 (en) Crane and crane control method
JP2019147686A (ja) クレーン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE