WO2020012209A1 - 経路算出方法、運転制御方法及び経路算出装置 - Google Patents

経路算出方法、運転制御方法及び経路算出装置 Download PDF

Info

Publication number
WO2020012209A1
WO2020012209A1 PCT/IB2018/000832 IB2018000832W WO2020012209A1 WO 2020012209 A1 WO2020012209 A1 WO 2020012209A1 IB 2018000832 W IB2018000832 W IB 2018000832W WO 2020012209 A1 WO2020012209 A1 WO 2020012209A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
information
road
vehicle
comparison
Prior art date
Application number
PCT/IB2018/000832
Other languages
English (en)
French (fr)
Inventor
藤田晋
Original Assignee
日産自動車株式会社
ルノー エス、ア、エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス、ア、エス filed Critical 日産自動車株式会社
Priority to JP2020529830A priority Critical patent/JP7024871B2/ja
Priority to PCT/IB2018/000832 priority patent/WO2020012209A1/ja
Publication of WO2020012209A1 publication Critical patent/WO2020012209A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance

Definitions

  • the present invention relates to a route calculation method, an operation control method, and a route calculation device.
  • Patent Document 1 When calculating a recommended route to a destination, a technique is known in which a section where automatic driving control is interrupted is specified, and a route of the automatic driving vehicle is set based on the length of the interrupted section and the number of interruptions.
  • the problem to be solved by the present invention is to calculate a route in consideration of difficulty in comparing a lane boundary line recognized by a sensor mounted on a vehicle with a lane boundary line defined in map information. .
  • the present invention is for comparing first lane information obtained from first information based on detection information of a sensor mounted on a host vehicle with second lane information obtained from second information based on map information.
  • the above problem is solved by calculating a route to a destination including a waypoint.
  • the first lane information based on the detection information of the on-vehicle sensor and the second lane information based on the map information can be compared. The result can be obtained.
  • FIG. 9 is a first diagram for describing a combining process.
  • FIG. 8 is a second diagram for describing the combining process.
  • FIG. 14 is a third diagram for describing the combining process. It is a flowchart figure which shows the control procedure of the operation control system of this embodiment. It is a flowchart which shows the control procedure regarding a comparison process.
  • FIG. 1 is a diagram showing a block configuration of the operation control system 1.
  • the operation control system 1 of the present embodiment includes a route calculation device 100, an in-vehicle device 200, and an operation control device 400.
  • the operation control system 1 may include a server 300 to which the route calculation device 100 can exchange information via the communication device 30.
  • the operation control system 1, the route calculation device 100, the in-vehicle device 200, the server 300, the operation control device 400, and each device included therein are computers that include an arithmetic device such as a CPU and execute arithmetic processing.
  • the route calculation device 100 may be configured as hardware integrated with the operation control device 400 or the in-vehicle device, or may be configured to be distributed as another device.
  • an example of an operation control system configured so that the route calculation device 100 exchanges information with the in-vehicle device 200 mounted on the vehicle and the operation control device 400 via the communication device 30 and cooperates with each other. explain.
  • the in-vehicle device 200 will be described.
  • the in-vehicle device 200 acquires detection information regarding the own vehicle and the situation around the own vehicle, and outputs the detection information to the outside.
  • the in-vehicle device 200 makes the own vehicle run autonomously based on a command from the operation control device 400.
  • the on-vehicle device 200 includes a communication device 210, a detection device 220, a navigation device 230, a storage device 240, an output device 250, a vehicle sensor 260, a lane keeping device 270, a vehicle controller 280, a driving device 290, and a steering device 295.
  • the communication device 210 executes communication between each device of the in-vehicle device 200 and communication with the external server 300.
  • the devices constituting the in-vehicle device 200 are connected to each other via a CAN (Controller Area Network) or another in-vehicle LAN (communication device 210) for exchanging information with each other.
  • the in-vehicle device 200 can exchange information with the route calculation device 100 and the operation control device 400 via the in-vehicle LAN (communication device 210).
  • the in-vehicle device 200 exchanges information with the external server 300 via the communication device 210 that performs wireless communication.
  • the detection device 220 acquires detection information around the own vehicle traveling on the route.
  • the vehicle detection device 220 recognizes the existence, position, and area of the traveling lane in which the vehicle moves, and detects the existence, existence position, and the existence area of an object including an obstacle present around the traveling lane.
  • the detection device 220 includes a camera 221.
  • the camera 221 is an imaging device including an imaging element such as a CCD, for example.
  • the camera 221 may be an infrared camera or a stereo camera.
  • the camera 221 is installed at a predetermined position of the vehicle, and captures an image of a lane marker of a traveling lane of the vehicle and an object around the vehicle.
  • the periphery of the vehicle includes the front, rear, front side, and rear side of the vehicle.
  • the target object includes a two-dimensional marker such as a lane marker or a stop line written on the road surface.
  • the object includes a three-dimensional object.
  • the object includes a stationary object such as a sign.
  • the target object includes a moving object such as a pedestrian, a two-wheeled vehicle, and a four-wheeled vehicle (other vehicle).
  • the objects include road structures including guardrails, curbstones, etc., signals, signs, and display devices.
  • the detection device 220 analyzes the image data, and recognizes, based on the analysis result, the traveling lane in which the vehicle travels and the existence, position, and area of the lane near the traveling lane.
  • the detection device 220 recognizes the presence / absence, position, and type of the lane marker of the traveling lane.
  • the detection device 220 recognizes the presence, position, occupied area, and type of the target object.
  • the detection device 220 includes a radar device 222.
  • a radar device 222 a device known at the time of application, such as a millimeter wave radar, a laser radar, an ultrasonic radar, or a laser range finder, can be used.
  • the detection device 220 detects the presence or absence of the target, the position of the target, and the distance to the target based on the reception signal of the radar device 222.
  • the detection device 220 detects the presence or absence of the target, the position of the target, and the distance to the target based on the clustering result of the point cloud information acquired by the laser radar.
  • the detection device 220 may acquire the detection information of the traveling lane from an external device via the communication device 210. For example, when the server 300 collects and accumulates via the communication device 330 via the detection information acquired by the detection devices 220 of a plurality of other vehicles, the detection device 220 outputs the detection information of the other vehicle. Alternatively, determination information based on the detection information may be acquired from the server 300. When the server 300 manages the detection information of another vehicle as so-called probe information, the route calculation device 100 can use the information. Based on the detection information of other vehicles that have previously traveled on the driving lane, it is possible to set a waypoint, calculate the traveling route 24, generate the traveling environment information 26, and correct the detection information of the own vehicle.
  • the detection device 220 may acquire detection information of the other vehicle.
  • the detection device 220 can also acquire, as the detection information, information on the driving lane or the road including the driving lane from the external device of the intelligent transportation system (Intelligent Transport Systems: ITS) via the communication device 210.
  • the detecting device 220 may acquire the information on the vicinity of the vehicle using the on-vehicle detecting device 220, and may acquire the information on the area farther than the predetermined distance from the vehicle via the communication device 210 from an external device provided on the road side.
  • the detection device 220 may include the position detection device 223. In this example, the detection result of the position detection device 231 provided in the navigation device 230 is obtained. The detection device 220 sequentially outputs a detection result to the processor 11.
  • the navigation device 230 calculates the route from the current position of the vehicle to the destination by using a method known at the time of filing.
  • the calculated route is sent to the driving control device 400 and / or the vehicle controller 280 for use in driving control of the vehicle.
  • the calculated route is output as route guidance information via an output device 250 described later.
  • the navigation device 230 includes a position detection device 231.
  • the position detection device 231 includes a receiver of a global positioning system (Global Positioning System, GPS), and detects a traveling position (latitude / longitude / map coordinate value) of a traveling vehicle.
  • the current position information is sent to the processor 11 as detection information.
  • information of the odometry, the direction sensor, and the vehicle sensor 260 may be used in addition to the reception signal from the positioning satellite.
  • the navigation device 230 accesses the storage device 240 and refers to the map information 241, the lane information 242, and the traffic rule information 243.
  • the navigation device 230 specifies a traveling lane on which the vehicle travels based on the current position of the vehicle detected by the position detection device 231.
  • the traveling lane may be a part of the route to the destination specified by the user, or may be a part of the route to the destination estimated based on the traveling history of the vehicle / user.
  • the navigation device 230 specifies a traveling lane in which the vehicle travels by referring to map information 241 and the like described below.
  • the output device 250 includes a display 251 and a speaker 252.
  • the output device 250 outputs various kinds of information related to the driving control to the user or the occupants of the surrounding vehicles.
  • the output device 250 outputs the shift amount between the driving lane and the lane of the map information 241, the contents of change of the first information and / or the second information, the planned driving action plan, and information on driving control based on the driving action plan. I do.
  • the output device 250 may output various types of information regarding driving control to an external device such as an intelligent transportation system via a communication device.
  • the vehicle sensor 260 includes a steering angle sensor 261, a vehicle speed sensor 262, and a posture sensor 263.
  • the steering angle sensor 261 detects information such as a steering amount, a steering speed, and a steering acceleration, and outputs the information to the vehicle controller 280.
  • Vehicle speed sensor 262 detects the speed and / or acceleration of the vehicle and outputs the detected speed and / or acceleration to vehicle controller 280.
  • Attitude sensor 263 detects the position of the vehicle, the pitch angle of the vehicle, the yaw angle of the vehicle, and the roll angle of the vehicle, and outputs the detected vehicle angle to vehicle controller 280.
  • Attitude sensor 263 includes a gyro sensor.
  • the lane keeping device 270 detects a traveling lane from the image captured by the camera 221.
  • the lane keeping device 270 has a lane departure prevention function (lane keeping support function) that controls the movement of the vehicle such that the position of the lane marker of the lane and the position of the vehicle maintain a predetermined relationship.
  • the operation control device 400 controls the movement of the vehicle such that the vehicle travels at a predetermined lateral position (for example, the center) of the lane.
  • the lane marker is not limited as long as it has a function of defining a lane, and may be a diagram drawn on a road surface, a plant existing between lanes, or a lane marker.
  • a road structure such as a guardrail, a curb, a separation strip, a sidewalk, or a motorcycle-only road existing on the shoulder side of the road may be used.
  • the lane marker may be a stationary object such as a signboard, a sign, a store, or a roadside tree existing on the shoulder side of the lane.
  • the vehicle controller 280 of the present embodiment controls the operation of the vehicle according to the operation plan drafted by the operation control processor 411.
  • the vehicle controller 280 operates the vehicle sensor 260, the driving device 290, and the steering device 295.
  • Vehicle controller 280 acquires vehicle information from vehicle sensor 260.
  • the vehicle controller 280 of this embodiment is an in-vehicle computer such as an electronic control unit (ECU), and electronically controls the operation / operation of the vehicle.
  • ECU electronice control unit
  • Examples of the vehicle include an electric vehicle having an electric motor as a traveling drive source, an engine vehicle having an internal combustion engine as a traveling drive source, and a hybrid vehicle having both an electric motor and an internal combustion engine as a traveling drive source.
  • electric vehicles and hybrid vehicles that use an electric motor as a driving source include those that use a secondary battery as a power source for the electric motor and those that use a fuel cell as a power source for the electric motor.
  • the contents of the control executed by the lane keeping device 270 may be executed by the vehicle controller 280.
  • the drive device 290 of the present embodiment includes a drive mechanism of the vehicle.
  • the driving mechanism includes an electric motor and / or an internal combustion engine, which is the above-described traveling drive source, a power transmission device including a drive shaft and an automatic transmission for transmitting an output from these traveling drive sources to driving wheels, and brakes wheels.
  • a braking device 271 and the like are included.
  • the drive device 290 generates control signals for these drive mechanisms based on input signals from the accelerator operation and the brake operation, and control signals obtained from the vehicle controller 280 or the operation control device 400, and performs operation control including acceleration and deceleration of the vehicle. Execute. By transmitting the control information to the driving device 290, the driving control including acceleration and deceleration of the vehicle can be automatically performed.
  • the distribution of the torque output to each of the electric motor and the internal combustion engine according to the running state of the vehicle is also transmitted to the drive device 290.
  • the steering device 295 of this embodiment includes a steering actuator.
  • the steering actuator includes a motor mounted on a column shaft of the steering.
  • the steering device 295 executes change control of the traveling direction of the vehicle based on a control signal acquired from the vehicle controller 280 or an input signal by a steering operation.
  • the vehicle controller 280 executes control for changing the traveling direction by transmitting control information including the steering amount to the steering device 295.
  • the control of the driving device 290 and the control of the steering device 295 may be performed completely automatically, or may be performed in a manner that supports the driving operation (progressing operation) of the driver.
  • the control of the drive device 290 and the control of the steering device 295 can be interrupted / stopped by the intervention of the driver.
  • the operation control device 400 includes a control device 410, a storage device 420, and a communication device 430.
  • An output device may be provided.
  • the output device has the same function as the output device 250 of the in-vehicle device 200 described above.
  • the control device 410 and the storage device 420 can exchange information with each other via a wired or wireless communication line.
  • the communication device 430 exchanges information with the in-vehicle device 200, exchanges information inside the operation control device 400, and exchanges information between the external device and the operation control system 1.
  • the control device 410 includes an operation control processor 411.
  • the operation control processor 411 is an arithmetic unit that performs operation control processing including drafting of a vehicle operation plan. Specifically, the operation control processor 411 executes a program (ROM: Read Only Memory) storing a program for executing an operation control process including drafting of an operation plan, and executes the program stored in the ROM to thereby control the control device.
  • ROM Read Only Memory
  • the control device 410 refers to the route generated by the route calculation device 100 in a predetermined processing cycle in the operation control process, and performs the operation control process using the route.
  • the route calculation device 100 will be described.
  • the form of the route calculation device 100 according to the present embodiment is not limited.
  • a part of the route calculation device 100 may be mounted on a vehicle, or may be a portable device capable of exchanging information with the vehicle-mounted device 200, the operation control device 400, and the server 300.
  • Terminal devices include devices such as smartphones and PDAs.
  • the route calculation device 100 includes a control device 10, a storage device 20, and a communication device 30.
  • the control device 10 includes a processor 11 that executes a process of calculating the travel route 24.
  • the processor 11 is an arithmetic device having an information processing function of performing a generation process of the traveling route 24.
  • the traveling route 24 is used for a vehicle autonomous traveling process and a vehicle traveling support process.
  • the processor 11 executes a program (ROM: Read Only Memory) storing a program for executing a process of generating a traveling route 24 from the current position of the vehicle to the destination, and a program stored in the ROM.
  • the computer includes a CPU (Central Processing Unit) as an operation circuit functioning as the control device 10 and a RAM (Random Access Memory) serving as an accessible storage device.
  • the control device 10 of the present embodiment executes each function by cooperation of software for realizing the above functions and the above hardware.
  • the processor 11 acquires information based on the detection information of the detection device 220 and the vehicle sensor 260 mounted on the own vehicle via the communication device 30.
  • the first information is information on a surrounding traveling environment including a lane in which the host vehicle travels, based on the detection information.
  • the control device 10 including the processor 11 executes a process of acquiring first information.
  • the first information is information based on detection information of a sensor mounted on the own vehicle.
  • the vehicle-mounted sensor includes a detection device 220 and a vehicle sensor 260.
  • the detection information includes a captured image of the camera 221 of the detection device 220 described below and information obtained from the captured image.
  • the detection information includes a detection signal of the radar device 222 and information obtained from the detection signal.
  • the detection information includes information on the behavior of the vehicle detected by the vehicle sensor 260.
  • the detection information includes current position information.
  • the current position information may be detected by the position detection device 223 of the detection device 220 or may be detected by the position detection device 231 of the navigation device 230 described later.
  • the vehicle-mounted sensor includes a receiving device 224 that receives, using the communication device 210, detection information provided by an external information providing system such as an intelligent transportation system (ITS: Intelligent Transport Systems).
  • the receiving device 224 may acquire an image captured by a camera device installed on a road via short-range wireless communication.
  • the receiving device 224 may acquire detection information (including a captured image) of another vehicle via short-range wireless communication.
  • the detection information received by the receiving device 224 mounted on the host vehicle is used as detection information at the current position of the host vehicle running.
  • the control device 10 identifies a “traveling lane” in which the own vehicle travels on the lane to which the current position of the own vehicle belongs.
  • the traveling lane can be identified based on the current position of the host vehicle, and the traveling position of the traveling lane can be specified.
  • the position of the traveling lane may be determined based on the coordinates of the image captured by the camera 221 and the position of the vehicle with the vehicle sensor 260.
  • the traveling lane may be specified based on the determination of the navigation device 230.
  • the first information of the present embodiment is based on detection information of sensors (including the detection device 220, the vehicle sensor 260, and the position detection device 231) mounted on the own vehicle, and includes information on surroundings including a driving lane on which the own vehicle runs. This is information on the driving environment.
  • the first information is information on a driving lane of a road on which the own vehicle runs, and a road including the driving lane.
  • the first information includes first lane information related to the traveling lane of the own vehicle.
  • the first lane information includes lane marker information that defines a driving lane.
  • the first lane information is information on the driving lane and includes identification information of the driving lane.
  • the first lane information is information on the road including the driving lane, and includes identification information of the road including the driving lane.
  • the identification information of the traveling lane is associated with the identification information of the road including the traveling lane. That is, if the traveling lane is specified by the identification information, information on the road to which the traveling lane belongs can be obtained.
  • the first lane information includes information in which a factor affecting the result of the comparison between the first lane information and the second lane information, which is determined based on the acquired detection information, is associated with the lane.
  • the information on the factors includes (1) a road condition relating to ease of lane recognition, (2) a road attribute relating to ease of lane identification, (3) a matching result between the first lane information and the second lane information, and (4) Include any one or more of lane position detection accuracy.
  • the degree of difficulty in comparison changes according to the contents of the above factors.
  • the degree of comparison difficulty is determined to be relatively low.
  • the degree of comparison difficulty is high, it is difficult to compare the first lane information and the second lane information and associate them with each other, that is, it can be said that the result of the comparison is incorrect (large error).
  • the degree of comparison difficulty is low, it is easy to compare the first lane information and the second lane information and associate them, that is, it can be said that the result of the comparison is accurate (the error is small).
  • the control device 10 refers to the map information 21 stored in the storage device 20 and acquires the second information on the road lane.
  • the second information includes information for identifying one target lane from a plurality of lanes included in the road.
  • the target lane is information corresponding to the traveling lane in the first lane information.
  • the second information includes lane marker information of each lane of the road.
  • the lane marker information of each lane is information on the position, mode, or attribute of the lane marker.
  • the second information is part or all of the map information 21.
  • the storage device 20 of the present embodiment stores map information 21, lane information 22, and traffic rule information 23.
  • the map information 21 is high-accuracy digital map information (high-accuracy map, dynamic map).
  • the map information 21 of the present embodiment is used in the operation control processing of the operation control device 400.
  • the map information 21 has two-dimensional information and / or three-dimensional information. In the present embodiment, the mode in which the map information 21 is stored in the storage device 20 of the route calculation device 100 will be described. However, the map information 21 may be stored in the storage device 240 of the in-vehicle device 200 or the communication device 30.
  • FIG. 1 shows a plurality of map information (21, 241, 321), lane information (22, 242, 322), and traffic rule information (23, 243, 323). At least one of these is accessed. It can be configured where possible.
  • the road information includes identification information for identifying one target lane from the plurality of lanes.
  • Each lane is specified by position information (map coordinate values) such as latitude and longitude, and which lane (N-th) is specified by identification information.
  • position information map coordinate values
  • N-th which lane (N-th) is specified by identification information.
  • each lane is associated with the road to which the lane belongs by identification information.
  • the map information 21 has identification information for specifying each single lane, and connection destination lane information for identifying a connection destination lane of each lane.
  • ⁇ A“ lane ”in the present embodiment is an area in which vehicles existing along the direction in which the road extends can travel.
  • each “lane” can be identified by a difference in position (coordinates) along the width direction of the road.
  • the lane includes one or a plurality of links.
  • the links are separated on the lane by nodes, which are two end points separated in the direction in which the lane extends.
  • the link corresponding to the lane arranged in parallel on the road can be identified by a position (coordinate) along the width direction of the road, and can be identified by a position (coordinate) along the extending direction of the road.
  • the map information 21 of the present embodiment includes identification information for specifying each lane, and information for specifying the next consecutive lane.
  • the map information 21 allows the driving control device 400 to perform a reading process.
  • the driving control device 400 refers to the map information 21 to autonomously move (drive) the own vehicle along the target route, and the lane in which the own vehicle travels in the future. Can be predicted.
  • the map information 21 includes the lane information 22.
  • the control device 10 acquires, from the map information 21, second lane information on a lane (target lane) corresponding to the lane included in the first lane information.
  • the lane included in the first lane information may be the traveling lane of the own vehicle.
  • the lane of the second lane information corresponding to the traveling lane is the target lane.
  • Each road included in the map information 21 is specified by position information (map coordinate values) such as latitude and longitude, and is specified by identification information for specifying the road.
  • the lane information 22 includes road type information, road attribute information, road width information, road shape information (curvature radius, intersection structure, etc.), intersections (junction points, branch points) on the road, which are associated with road identification information.
  • the lane information 22 includes lane type information (branch, merge, intersection), lane attribute information (right-turn lane, left-turn lane, straight-ahead lane, etc.), lane width information, lane shape information (corresponding to lane identification information) Radius of curvature, intersection structure, etc., information of intersections (merging points, branch points) on lanes, lane up / down information, number of adjacent lanes, up lane number information, down lane number information, lane marker ( Boundary) information (dashed line, solid line, color, planting, guardrail, structure type, block, lighting type display, etc.).
  • the map information 21 includes traffic rule information 23.
  • the traffic rule information 23 is a traffic rule such as a temporary stop on a route, parking / stop prohibition, a slow drive, a speed limit, and the like, which the vehicle must observe when traveling.
  • the traffic rule information 23 includes information such as one-way traffic, entry prohibition, temporary stop, progress priority, overtaking permission / prohibition (permission of admission to an adjacent lane), parking prohibition, parking permission, and the like.
  • Each rule is defined for each point (latitude and longitude), each link, and each lane.
  • the traffic rule information 23 may include information on a traffic signal obtained from a device provided on the road side.
  • the control device 10 acquires the second information on the road lane with reference to the map information 21 stored in the storage device 20 described above.
  • the second information is position information such as coordinate values of lane markers, information for identifying lane markers such as solid lines, dashed lines, and yellow lines, and lane markers for separation band structures such as curbs, plants, and guardrails. Any one or more pieces of information for identifying the mode.
  • the lane marker information is provided with identification information of the position of each lane (Nth / right / left). Thereby, the mode of the lane marker of the Nth lane, the mode of the lane marker on the right side of the lane, and the mode of the lane marker on the left side of the lane can be specified.
  • the map information 21 stores, for each lane, information on combinations of lane markers, such as a lane marker on the left side is a solid line and a lane marker on the right side is a curb, as second information.
  • the second lane information is associated with the lane, which is determined based on the acquired detection information and which affects the result of the comparison between the first lane information and the second lane information. Includes information obtained.
  • the identification information of the traveling lane in the first information and the identification information of the target lane in the second information corresponding to the traveling lane can be associated with each other. From the identification information of the first information relating to one traveling lane A, it is possible to extract the traveling lane (target lane) B and the second information of the traveling lane (target lane) B on the map information corresponding to the traveling lane A. it can. For example, the control device 10 determines whether the own vehicle is based on the position information of the first information, the road information sign included in the captured image of the first information, or the identification information of the target lane of the second information corresponding to the traveling lane. The road to which the traveling lane belongs is specified (the identification information of the road is obtained).
  • a traveling lane in which the host vehicle travels is specified from the train image of the preceding vehicle included in the captured image of the first information (the traveling lane identification information is obtained).
  • the control device 10 reads the identification information of the traveling road and the identification information of the traveling lane from the lane information 22 stored in the storage device 20.
  • the control device 10 may refer to the map information 241 included in the vehicle-mounted device 200 and the map information 321 included in the server 300 via the communication device 30.
  • the control device 10 calculates the route of the own vehicle using the first information and the second information.
  • the first information is information of a real space when the own vehicle travels. Since the first information uses the sensor detection information as a source (information source), it can be predicted that the first information reflects the actual situation more than the map information 21.
  • the second information is based on the past measurement information, and uses the map information 21 in which the respective measurement information is matched as a source. Changes in routes (existence of obstacles, construction, etc.) are not reflected. If the detection conditions are ideal and the situation of the own vehicle is exemplary (model), the difference between the first information and the second information is small (for example, less than the first threshold), and the first information and the second information are different. One route can be calculated based on the two pieces of information. However, since such a situation is rare, the control device 10 is required to compare the first information with the second information and calculate a route in consideration of the comparison result.
  • the control device 10 of the present embodiment sets a waypoint for performing the comparison process in order to control a point / timing at which the first lane information and the second lane information are compared.
  • the control device 10 calculates a route including the set waypoint.
  • FIG. 2 (FIG. 2) is a diagram showing a route including the waypoint QP. A plurality of routes from the current position VP of the vehicle to the destination DP can be calculated, but the route shown in FIG. 2 is a route including the waypoint QP.
  • the route to the destination DP includes lanes RT1, RT2, RT3, RT4, and RT5 divided into a plurality of links.
  • the waypoint QP belongs to the lane RT2 in which the comparison difficulty described later satisfies the predetermined condition.
  • the route includes a waypoint for performing the comparison process.
  • the vehicle traveling on the route executes a comparison process between the first lane information and the second lane information at the waypoint.
  • the own vehicle traveling on the calculated route compares the first lane information with the second lane information when passing through the waypoint.
  • the waypoint is a point belonging to a lane having a low degree of difficulty in comparing the first lane information and the second lane information.
  • the control device 10 can obtain a comparison result between the first lane information and the second lane information at the waypoint where the degree of comparison difficulty is low.
  • the comparison result obtained at the waypoint is a result in which an error due to disturbance is suppressed.
  • the comparison result can be used for a mapping process for associating the position corresponding to the detected current position with the map information 21.
  • the comparison result includes first lane information relating to the detected traveling lane of the own vehicle and second lane relating to the traveling lane of the own vehicle obtained from the map information 21 (a target lane corresponding to the detected traveling lane). Can be used for matching.
  • the first information or the second information includes information in which a factor affecting the result of the comparison between the first lane information and the second lane information is associated with the lane.
  • the factor associated with the lane may be included in both the first information and the second information.
  • the control device 10 determines the degree of difficulty in comparing lanes based on the information on the factors associated with the lanes.
  • the control device 10 specifies a lane in which the determined degree of comparison difficulty satisfies a predetermined condition.
  • the control device 10 sets a point belonging to the specified lane as a waypoint.
  • “Comparative difficulty” is an evaluation value according to the difficulty of the comparison process between the first lane information and the second lane information. It is determined that the first lane information and the second lane information match. For example, when the shape, position, attribute, and the like of the lane of the first lane information and the lane of the second lane information match (there is no deviation). The comparison process is the easiest, and the degree of difficulty in comparison is determined to be the lowest. As described above, the first lane information based on the detection information rarely matches the second lane information based on the map information. A judgment is made by setting a predetermined threshold value for the evaluation of coincidence.
  • the control device 10 is suitable for obtaining the degree of difficulty in comparing lanes based on the factors associated with the lanes, and using the degree of difficulty in comparison as an index to compare the first lane information with the second lane information.
  • Extract lanes (low in comparison difficulty).
  • a lane whose degree of comparison satisfies a predetermined condition is specified as a lane suitable for the comparison processing between the first lane information and the second lane information.
  • the extracted lanes are preferably included in one or more routes from the current position of the vehicle to the destination. It is preferable that the difference between the time required to reach the destination via the route passing through the waypoint and the time required to reach the destination via the shortest route is within a predetermined time.
  • the “comparability level” for evaluating the difficulty / easiness of the comparison processing between the first lane information and the second lane information is determined, the difficulty / easiness of the comparison processing can be accurately determined.
  • FIG. 3 shows an example of “factors” and “predetermined conditions” used when calculating the degree of difficulty of comparison.
  • the comparison difficulty of this embodiment includes the following (1) difficulty of lane recognition, (2) difficulty of lane identification, and (3) processing of association based on comparison (hereinafter, also referred to as matching processing or map-matching processing). ), And (4) the difficulty of position detection.
  • the first lane information is information on the traveling lane of the own vehicle obtained from the first information based on the detection information of the on-board sensor.
  • the second lane information is information obtained from second information based on map information measured in advance. If the accuracy of lane recognition is low and the lane recognition result is inaccurate, the first lane information will be inaccurate, making it difficult to compare the first lane information with the second lane information. For this reason, in the present embodiment, the “road condition” related to the ease of recognition of the lane, which is associated with each of the lanes, is included in the first information or the second information as a factor affecting the result of the comparison.
  • the control device 10 specifies a lane in which the degree of comparison difficulty of the lane determined based on the road condition satisfies a predetermined condition, and sets a point belonging to this lane as a waypoint.
  • the “road condition” related to the ease of lane recognition includes information such as no lane marker, missing lane marker, intersection (lane mark is interrupted), and the like. No lane mark is displayed inside the intersection. The information as to whether or not it is an intersection affects the ease of lane recognition. The lane inside the intersection is more likely to be unrecognizable than the lane outside the intersection.
  • the control device 10 determines that the lane associated with the road condition that is not within the intersection satisfies the predetermined degree of difficulty in comparison.
  • the “road condition” may include parking availability information or the number of parked vehicles associated with each of the lanes.
  • the information on the availability of parking affects the ease of recognition of the lane. In a lane where parking is possible, there is a higher possibility that a parked vehicle exists than in a lane where parking is prohibited. The presence of a parked vehicle increases the possibility of hiding the lane.
  • the control device 10 determines that the lane associated with the parking information not permitting parking satisfies the predetermined difficulty.
  • the number (number) of parked vehicles affects the ease of lane recognition. The lane hidden by the parked vehicle is longer in the lane with more parked vehicles than in the lane with less parked vehicles.
  • the control device 10 determines that the lane for which the number of parked vehicles is less than the predetermined number has a comparative difficulty satisfying the predetermined condition.
  • a lane in which the lane can be easily recognized is specified, and a route including a waypoint belonging to the lane can be calculated.
  • On the route to the destination there is no or few parked vehicles, and it is easy to compare the first lane information and the second lane information. Therefore, the first information and the second information are compared and associated. (Matching) can be performed accurately.
  • the “road condition” may include lane departure information associated with each of the lanes, the lane departure information regarding the possibility of the vehicle deviating from the lane.
  • the possibility that a vehicle deviates from the lane affects the ease of recognition of the lane. Departing from the lane includes running beyond the running lane and changing lanes from the running lane to a different lane. It can be determined that the likelihood of a lane departure is equal to or greater than a predetermined threshold value for a lane that can be overtaken, a lane provided with a parking area, and a lane with a lane width smaller than a predetermined value. When the vehicle departs from the lane, the lane cannot be recognized continuously, so that it is difficult to recognize the lane.
  • a lane associated with lane departure information in which the possibility of lane departure is less than the predetermined threshold value is easier to recognize than a lane in which the possibility of lane departure is equal to or more than a predetermined value.
  • the control device 10 specifies a lane in which the degree of difficulty of comparison of lanes determined based on the road attribute satisfies a predetermined condition, and sets a point belonging to this lane as a waypoint.
  • the “road attribute” relating to the ease of lane identification includes information on whether or not the lane belongs to a specific road.
  • the specific road is a road on which a lane can be easily identified, and is a predefined road.
  • the specific road includes a road having one lane in the up direction or the down direction or an intersection, and includes a road having one lane after passing through the intersection.
  • the lane is a road that is difficult to recognize, it is possible to specify the lane of the road on which the lane can be easily identified based on the road attribute. Since the route including the waypoint belonging to the lane in which the first lane information and the second lane information are easily compared is calculated, an accurate comparison result between the first lane information and the second lane information can be obtained. Even when there is a parked vehicle and lane recognition is difficult, when the vehicle is traveling on a specific road, the lane of the first lane information and the lane of the second lane information can be associated without being confused. At a waypoint on a lane belonging to a specific road, the first lane information and the second lane information can be easily compared, and an accurate difference between the first lane information and the second lane information can be calculated.
  • the control device 10 specifies the traveling road to which the traveling lane belongs from the position information of the first information, refers to the map information 21 or the lane information 22, and determines the road attribute of the traveling road.
  • the control device 10 determines the attribute of the traveling road to which the traveling lane belongs from the number of lane markers extracted from the lane marker image ahead of the own vehicle and the mode of the lane marker based on the captured image of the first information. Based on the captured image of the first information, the control device 10 determines the attribute of the traveling road to which the traveling lane belongs from the image of the train in front of the host vehicle.
  • the control device 10 determines whether or not the traveling road is a predetermined specific road based on the characteristics of the traveling road obtained based on the first information or the second information. When it is determined that the traveling road to which the traveling lane belongs is a specific road, the control device 10 determines that the lane is a lane whose degree of comparison difficulty satisfies a predetermined condition.
  • the “specific road” in the present embodiment will be described.
  • the control device 10 determines whether the road to which the lane included in the route to the destination belongs is a specific road that satisfies a predetermined condition based on the first information or the second information, or the first information and the second information. I do.
  • the predetermined condition that defines a specific road is defined from the viewpoint of specifying a “single (unique) lane”. Although not particularly limited, an example of the definition of the specific road is shown below.
  • the specific road can be defined as a road in which the number of lanes belonging to a road (traveling road) is a predetermined number. The greater the number of lanes belonging to a road, the more difficult it is to identify the only lane. By defining a specific road based on the number of lanes belonging to one road, it is possible to limit situations / scenes / timings in which only one lane among the lanes belonging to the road is likely to be specified.
  • the control device 10 calculates the number of lanes belonging to the road (traveling road) using the first information. Based on the captured image of the first information, the number of lanes can be calculated from the number of lane markers on the traveling road included in the captured image or the number of rows of other vehicles ahead.
  • the control device 10 calculates the number of lanes belonging to the road (traveling road) using the second information.
  • the second information includes the number of lanes of the road to which the target lane corresponding to the traveling lane belongs.
  • the control device 10 can calculate the number of driving lanes with reference to the second information associated with the road of the map information corresponding to the driving road to which the current position of the first information belongs.
  • the specific road can be defined as a single road in which the number of lanes in the ascending and descending directions of the traveling road is respectively single.
  • the traveling direction of the lane can be identified using the first information (only) or the first information and the second information. If the road belongs to a road having a single number of lanes in the up direction and a single number of lanes in the down direction, a single lane can be specified with high accuracy.
  • the specific road in this example is an up single lane and a down single lane. When only one lane is included in the road in which the own vehicle travels in the same traveling direction, it can be determined that the situation / scene / timing makes it easy to identify the lane.
  • the control device 10 compares the first lane information and the second lane information when traveling on a specific road where the actual traveling lane and the lane on the map information are easily associated (easily matched). Accurate comparison results can be obtained. Even in a scene where lane recognition is difficult, for example, when a lane mark is lost, when traveling on a specific road, the first lane information and the second lane information can be associated with each other, and an accurate difference between them can be calculated.
  • the control device 10 identifies whether the road / lane is the up direction or the down direction based on the moving direction of the other vehicle extracted from the temporal change of the captured image included in the first information, using the first information.
  • the traveling direction (up or down) of the lane can be detected by a temporal change in the current position of the first information.
  • the traveling direction (up or down) of the lane can be detected by a temporal change of the captured image of the first information of the camera 221.
  • the traveling direction (up or down) of the lane can be detected by the acceleration of the vehicle speed sensor 262.
  • the control device 10 calculates the number of lanes from the number of lane markers of the traveling road included in the captured image based on the captured image of the first information, and determines whether the number of lanes in the up direction and the down direction is single. to decide.
  • the control device 10 calculates the number of lanes from the number of rows of other vehicles ahead of the traveling road included in the captured image of the first information, and determines whether the number of lanes going up or down is single.
  • the control device 10 can determine, using the second information, whether the number of lanes in the up direction and the down direction of the traveling road is single.
  • the second information includes the number of lanes of the road to which the target lane corresponding to the traveling lane belongs.
  • the second information includes information indicating whether the target lane corresponding to the traveling lane is a single lane in the up direction and the down lane is a single road.
  • the control device 10 determines whether the number of lanes belonging to the road (traveling road) is single using the first information and the second information.
  • the number of traveling lanes is determined by referring to the second information associated with the road of the map information corresponding to the traveling road to which the current position of the first information belongs, and it can be determined whether or not the number of traveling lanes is single.
  • the specific road can be defined as a road in which the number of lanes in the up or down direction of the traveling road is a single road. That is, the specific road is a one-way road in which one of the lanes in the up direction or the down direction is one-way.
  • the traveling direction of the lane can be identified using the first information (only) or the first information and the second information. In the case where the number of lanes in the up direction is single or the number of lanes in the down direction belongs to a road, only one lane can be specified with high accuracy.
  • the specific road can be defined as a road in which the number of lanes of the traveling road changes from plural to single. At the current position, the number of lanes of the traveling road is plural, but at the position on the traveling direction side, the number of lanes merges singly. It is easier to specify a single lane when the number of lanes is single than when the number of lanes belonging to the road is plural. That is, even if the number of lanes on the traveling road is plural at the current position of the own vehicle while traveling, the number of lanes changes singly at the traveling position (position on the downstream side in the traveling direction) in the future (multiple lanes).
  • the control device 10 specifies a lane that can be predicted to travel on a specific road suitable for comparing the first lane information and the second lane information, the first lane information actually detected and the second lane of the map information are specified. A route including a waypoint with a small information difference can be generated.
  • the control device 10 calculates the number of lanes belonging to the road (traveling road) using the first information. Based on the captured image of the first information, it is determined that the number of lanes at the current position of the own vehicle is plural, and the area in front of the own vehicle (the area separated from the current position of the own vehicle by a predetermined distance in the traveling direction) When it is determined from the captured image of (1) that the number of lanes is single, the control device 10 determines that the own vehicle is traveling on the specific road.
  • the number of lanes can be determined based on the number of lane markers on the traveling road extracted from the captured image of the area including the current position and the area in front of the own vehicle.
  • the number of lanes can be determined based on the number of trains of other vehicles in front extracted from the captured image of the area including the current position and the area in front of the own vehicle.
  • the control device 10 refers to the second information to acquire the number of lanes belonging to the traveling road including the current position and the number of lanes belonging to the traveling road in an area separated from the current position by a predetermined distance in the traveling direction from the current position.
  • the control device 10 can acquire information on the driving lane including the current position and the connection link connected to the driving lane based on the current position detected by the position detecting device 231 and the lane information 22 of the map information 21. it can. From the connection link information included in the lane information 22, the number of lanes of the traveling road at the current position and the number of lanes of the traveling road at a point separated from the current position by a predetermined distance or more in the traveling direction can be acquired.
  • the control device 10 acquires the number of lanes belonging to the traveling road including the current position and the number of lanes belonging to the traveling road in an area separated from the current position by a predetermined distance or more in the traveling direction from the current position using the first information and the second information. .
  • the number of traveling lanes is calculated by referring to the traveling information to which the current position of the first information belongs and the second information relating to the road of the map information corresponding to the traveling road to which the position separated by a predetermined distance in the traveling direction from the current position belongs. it can.
  • the specific road has a plurality of driving road lanes, and the driving road travels on any one of the driving road lanes based on a lane marker pattern that defines a lane belonging to the driving road. It can be defined as a road that can specify whether it is running. For example, when each of a plurality of lanes belonging to a road is a lane having a different lane marker mode (pattern), the traveling lane can be specified based on the lane marker pattern.
  • the lane marker pattern includes an aspect of a right lane marker that defines a lane, an aspect of a left lane marker, or an aspect of a combination of left and right lane markers.
  • the lane can be specified. Even when there are a plurality of lanes on the traveling road to which the current position belongs, if the vehicle is traveling on a road that can identify which lane is traveling based on the lane marker pattern, the first lane information It can be determined that the situation / scene / timing is suitable for the execution of the process of comparing the information with the second lane information.
  • the control device 10 sets the waypoint on a lane belonging to a specific road where it is easy to compare the first lane information and the second lane information, so that the first lane information based on the detection information and the second lane information based on the map information are used.
  • a route including a waypoint with a small difference between the two can be generated.
  • the control device 10 recognizes the lane marker pattern of the lane belonging to the road (traveling road) using the first information.
  • the control device 10 can specify the lane from the lane marker pattern of the traveling road included in the captured image based on the captured image of the first information.
  • the lane marker pattern is extracted from the captured image.
  • the lane markers are extending (scattered) in the traveling direction, boundary lines (solid lines / dashed lines), curbs, plants, guardrails, road studs, and the like.
  • the lane marker pattern includes the type, color, form, and the like of the lane marker.
  • the control device 10 identifies the type of the lane marker by performing a pattern matching process by comparing the previously stored reference image pattern with the image of the lane marker extracted from the captured image.
  • the control device 10 recognizes the lane marker pattern of the lane belonging to the road (traveling road) using the second information.
  • the second information includes characteristics of a lane marker that defines a lane.
  • the second information stores the feature of the lane marker for each lane.
  • the features of the lane marker include the mode of the lane marker (solid line, broken line, color) and the structure of the lane marker (separator such as curbstone, planting, guardrail, road stud, etc.).
  • the features of the lane markers include, for each lane, the features of the right lane marker and the features of the left lane marker.
  • the lane marker pattern is defined by the characteristics of a pair of left and right lane markers of the lane.
  • the control device 10 recognizes the lane marker pattern belonging to the traveling road using the first information and the second information.
  • the feature on the image of the lane marker of the lane belonging to the traveling road is acquired from the captured image included in the first information.
  • the lane marker pattern of the traveling lane is recognized with reference to the second information on the road in the map information corresponding to the traveling road to which the current position of the first information belongs.
  • the lane marker pattern of the driving lane is recognized with reference to the second information associated with the road of the map information corresponding to the driving road to which the current position of the first information belongs, and one lane is specified based on the lane marker pattern. it can. If the road in the up or down direction has a plurality of lanes, it may not be possible to extract the only lane corresponding to the traveling lane. There are cases where the pattern of the lane marker on the right side and the pattern of the lane marker on the left side of a road including a plurality of lanes are different.
  • the specific road has a plurality of lanes in the up direction or the down direction in the traveling road, and the number of lanes in the traveling road is determined based on a lane marker pattern defining the lane in the up direction or the lane in the down direction. It can be defined as a road that can specify which lane of a plurality of lanes is traveling. For example, when each of a plurality of lanes belonging to an upward road is a lane having a different lane marker mode (pattern), or each of a plurality of lanes belonging to a downward road has a different lane marker mode (pattern). In the case of a lane, the traveling lane can be specified based on the lane marker pattern.
  • the control device 10 can identify whether the road / lane is the up direction or the down direction using the first information or the second information by the above-described method.
  • the control device 10 recognizes the lane marker pattern of the up or down lane belonging to the traveling road using the first information and the second information by the above-described method. Referring to the second information associated with the road of the map information corresponding to the traveling road to which the current position of the first information belongs, and including the information of whether the road or the lane is in the up direction or the down direction, The lane marker pattern of the lane is recognized, and one lane can be specified based on the lane marker pattern.
  • the own vehicle is traveling on a road with a plurality of oncoming lanes, it may not be possible to extract the only target lane corresponding to the traveling lane. In such a case, it is determined whether or not the traveling road is a specific road based on the lane marker pattern of the up or down lane.
  • the specific road is a road in which the number of lanes in the up direction or the down direction of the traveling road is plural, and the lanes in the up direction or the down direction are defined by predetermined characteristic lane markers. Yes, it can be defined.
  • the characteristic lane marker includes the mode of the lane marker (solid line, broken line, color) and the structure of the lane marker (separator such as curbstone, planting, guardrail). If the lane has a characteristic lane marker, one lane can be specified.
  • the lane marker closest to the oncoming road is a plant
  • the outermost lane marker (opposite to the oncoming road) is a curb
  • the lane having the planting lane marker can be specified as the only lane on the opposite road side.
  • a lane having a curb lane marker can be specified as the only outermost lane.
  • the control device 10 can identify whether the road / lane is the up direction or the down direction using the first information or the second information by the above-described method.
  • the control device 10 recognizes a lane marker pattern of a lane belonging to a road (traveling road) for each of the upward direction and the downward direction.
  • a lane marker is defined by a predetermined characteristic lane marker
  • one lane can be specified from lanes in the up or down direction based on the lane marker pattern of the traveling road extracted from the captured image.
  • the control device 10 compares the reference image pattern of the “predetermined characteristic lane marker” stored in advance with the image of the lane marker extracted from the captured image and performs the pattern matching process to determine whether the captured lane marker is “predetermined characteristic lane marker”. It can be determined whether or not it is a “lane marker”.
  • the lane marker closest to the oncoming road is a plant
  • the outermost lane marker (opposite to the oncoming road) is a curb
  • the lane having the planting lane marker can be specified as the lane closest to the opposite road
  • the lane having the curb lane marker can be specified as the outermost lane.
  • the control device 10 can recognize the lane marker pattern of the up or down lane belonging to the road (traveling road).
  • the second information in this example includes information on whether the road or the lane is in the up direction or the down direction.
  • the second information in this example includes information in which the features of the lane markers are associated with the lane identification information.
  • the control device 10 determines whether the lane marker of the up or down lane belonging to the traveling road is a predetermined lane marker using the first information and the second information.
  • the lane marker of the traveling lane is referred to by referring to the second information including the information associated with the road of the map information corresponding to the traveling road to which the current position of the first information belongs, and the characteristic of the lane marker associated with each road or lane. Is recognized, and one lane can be specified based on the fact that the lane marker is a “predetermined lane marker”.
  • the host vehicle is traveling on a road with a plurality of lanes, it may not be possible to extract the only target lane corresponding to the traveling lane. In such a case, it is determined whether or not the traveling road is a specific road based on whether or not the lane marker of the traveling lane is a predetermined lane marker.
  • RD1 shown in FIG. 4A is a so-called one-way road, and has only one lane in the up or down direction.
  • Lane LK1 is the only lane on road RD1.
  • the traveling road is a specific road having a single lane, the traveling lane can be identified with high accuracy based on the detection information.
  • the traveling lane based on the first information and the traveling lane (target lane) based on the second information can be accurately compared and associated (matched). High. If the vehicle is traveling on such a specific road, the first lane information and the second lane information are accurately compared, and the difference between the two positions can be accurately calculated. The same applies to the following RD2 and RD3.
  • the RD2 is a road in which the number of lanes in the up direction and the number of lanes in the down direction are each a single road.
  • the lane LKU1 is an up (or down) lane
  • the lane LKD1 is a down (or up) lane.
  • the traveling direction of the lane can be determined based on the first information and / or the second information.
  • the number of lanes along one traveling direction is limited to one, so that the traveling lane can be specified with high accuracy.
  • the number of lanes of the lanes having the same running direction is single, there is no lane to be mistaken.
  • RD3 is a road having two lanes each in the upward direction or the downward direction.
  • the number of lanes may be two or more.
  • Lanes LKU1 and LKU2 are lanes in the up direction (or down direction), and lanes LKD1 and LKD2 are lanes in the down direction (or up direction). Even if the traveling direction of the lane can be identified, there are a plurality of lanes along one direction, and it is not possible to identify a single lane only by identifying the traveling direction. However, focusing on the combination of the two lane markers that define the lane, the combination of the lane marker modes of the lanes LKU1 and LKU2 is different, like the road RD3.
  • the right lane marker of lane LKU1 is a dashed line
  • the left lane marker of lane LKU1 is a solid line
  • the right lane marker of the lane LKU2 is planting, and the left lane marker of the lane LKU2 is a broken line.
  • the combination patterns of the two lane markers of the lanes LKU1 and LKU2 are different from each other, and the lane LKU1 and the lane LKU2 can be identified based on the lane marker pattern.
  • the control device 10 defines the specific road as a road to which a plurality of lanes each having a different lane marker pattern belongs. When the lane marker patterns of a plurality of lanes are different, there is a low possibility that the lanes are mistaken.
  • FIG. 4B shows an example in which a lane marker pattern common to a part of a plurality of lanes belonging to a road is included.
  • the road shown in FIG. 4B is a road with four lanes on each side.
  • the road in the up direction and the road in the down direction are separated by planting, and the lanes LKU4 and LKD1, which are present on both sides of the plantation separation zone, have a unique predetermined lane marker pattern for each of the up and down directions. Having.
  • the links LKU2 and LKU3 both have dashed lane markers on both sides, and have the same pattern of left and right lane markers.
  • each of the links LKU2 and LKU3 of the four link groups UP in the up direction has a lane marker of a broken line on both sides, the pattern (combination) of the left and right lane markers is common, and the four links in the down direction.
  • each of the links LKD2 and LKD3 has a dashed lane marker on both sides.
  • the traveling lane and the target lane cannot be specified in any of the host vehicles V1a and V1b. There is. As described above, a plurality of lanes having the same traveling direction are included, and it is inappropriate to define a road on which each lane cannot be identified from the form of the lane marker as a specific road.
  • the lane is defined by the planting ST which is the predetermined characteristic lane marker, and the lane LKU4 is the only lane whose traveling direction is the UP direction.
  • a lane is defined by a predetermined characteristic lane marker
  • one lane can be specified based on the characteristic lane marker.
  • the lane in the traveling direction DW only the lane LKD1 has a characteristic lane marker (plant ST) among a plurality of lanes.
  • the planting ST which is a characteristic lane marker
  • the traveling direction can be identified, the lane can be specified.
  • a characteristic lane marker such as a guardrail or a curb, one lane can be specified.
  • the control device 10 recognizes the mode / pattern of the lane marker of the lane based on the image captured by the camera 221 by performing a pattern matching process or the like.
  • the control device 10 recognizes the mode / pattern of the lane marker of the lane based on the radar reception signal of the radar device 222. Since the second information of the map information 21 stores the information of the mode / pattern of the lane marker of each lane, the lane is determined based on the mode / pattern of the lane marker among a plurality of lanes narrowed down by the first information such as the position information. Can be specified.
  • the first information or the second information includes a past matching history of the matching processing of the first lane information and the second lane information associated with each of the lanes as a factor affecting the result of the comparison.
  • the association process matchesing process
  • the matching process is stored in the matching history 25 as a failure.
  • the matching process is stored in the matching history 25 as a success.
  • the “matching history” including the success rate / failure rate of the matching process is set as a factor of the degree of difficulty of comparison that affects the result of lane comparison.
  • the matching history includes the result of comparing the first lane information with the second lane information. For example, if it is determined that the attribute or shape of the lane mark has changed as a result of the comparison, the information is stored as a matching history.
  • the first lane information is based on the detection information, and the second lane information is stored past information. If there is a difference between the first lane information and the second lane information, the first lane information is trusted and it is determined that the attribute or shape of the lane mark has changed, and the determination result is stored in the waiting history. You may.
  • the control device 10 specifies a lane in which the degree of comparison difficulty determined based on the matching history satisfies a predetermined condition, and sets a point belonging to the lane as a waypoint. Based on past results, a route including a waypoint belonging to a lane in which the first lane information and the second lane information can be easily compared is calculated, so that an accurate comparison result between the first lane information and the second lane information is calculated. Obtainable.
  • the matching history includes a matching success rate based on a comparison result between the first lane information and the second lane information associated with each of the lanes, and the lane associated with the matching history having a matching success rate equal to or greater than a predetermined threshold.
  • a predetermined threshold are specified as lanes whose degree of comparison difficulty satisfies a predetermined condition.
  • the first information includes information on a surrounding traveling environment including a traveling lane in which the other vehicle has traveled, based on detection information of a sensor mounted on the other vehicle.
  • the matching history 25 includes information on a comparison result between the first lane information of the other vehicle and the second lane information referred to by the other vehicle.
  • the waypoint can be set by referring not only to the matching history of the own vehicle but also to the matching history of other vehicles. Therefore, even if the own vehicle has never passed, it is possible to determine a suitable place for the matching process. it can.
  • the content of the first information may vary depending on the performance of the on-board sensor, the arrangement of the on-board sensor, and the like. For this reason, it is preferable to accumulate the matching history with the identifier of the vehicle or vehicle type and the sensor accuracy. By referring to the matching history in which the vehicle type or the sensor accuracy of the own vehicle is common, it is possible to determine a place suitable for the matching process based on the first information of the own vehicle.
  • the matching history 25 includes a comparison result of whether or not the second lane information to be compared with the first lane information, which is associated with each of the lanes, has been detected.
  • the second lane information is information stored in the storage device
  • the first lane information is information indicating a current environment based on actual detection information.
  • the control device 10 compares the first lane information with the second lane information, the information about the lane mark corresponding to the first lane information or the like is included in the second lane information even though the first lane information is detected. If there is no such information, the matching information is stored in the matching history 25 in association with the lane identifier.
  • the control device 10 compares the first lane information with the second lane information, it is detected in the first lane information, and the second lane information includes information on a lane mark corresponding to the first lane information. Is stored in the matching history 25 in association with the information indicating that fact and the identifier of the lane. The control device 10 specifies a lane associated with the matching history from which the second lane information corresponding to the first lane information has been extracted as a lane whose degree of comparison difficulty satisfies a predetermined condition. Although the map information 21 does not always include all the information, the first lane information is compared with the second lane information by referring to the matching history 25 regarding the presence or absence of the second lane information corresponding to the first lane information. Can be specified.
  • the first information includes the position detection accuracy of the current position of the own vehicle associated with each of the lanes as a factor affecting the result of the comparison.
  • the control device 10 specifies a lane in which the degree of difficulty of comparison of lanes determined based on the position detection accuracy satisfies a predetermined condition, and sets a point belonging to the specified lane as a waypoint.
  • the position detection accuracy affects the accuracy of the first information based on the detection information. If the position detection accuracy is low, it is predicted that the accuracy of the first information is also low. When the accuracy of the first information is low, the degree of difficulty in comparison between the first lane information and the second lane information increases (comparison becomes difficult).
  • the position detection accuracy is defined as a factor that affects the result of the comparison between the first lane information and the second lane information.
  • the position detection accuracy includes the reception sensitivity of the position detection satellite signal associated with each of the lanes. This information can be acquired during traveling, or can be acquired from a vehicle that has passed through the lane in the past and accumulated.
  • the control device 10 specifies a lane in which the reception sensitivity of the position detection satellite signal is equal to or higher than a predetermined threshold as a lane whose degree of comparison difficulty satisfies a predetermined condition.
  • the accuracy of the position information obtained from the GPS can be determined by the number of received signals. When evaluating the reception sensitivity of the position detection satellite signal, the number of satellites that can receive the signal among a plurality of GPS satellites can be used as a threshold.
  • the reception sensitivity of the position detection satellite signal is equal to or more than a predetermined threshold.
  • a predetermined threshold For example, when “the number of satellites that can receive a signal is N or more”, it may be determined that the reception sensitivity of the position detection satellite signal is equal to or more than a predetermined threshold.
  • the position detection accuracy includes a traveling state of the own vehicle associated with each of the lanes.
  • a traveling state in which the position detection accuracy decreases is defined in advance. For example, when the turning amount of the vehicle is equal to or more than a predetermined value, the position detection accuracy decreases. In other words, if the curvature of the road is equal to or more than a predetermined value / the radius of curvature is less than a predetermined value, the position detection accuracy decreases. If the speed of the vehicle is lower than a predetermined value (a low speed of about 10 km / h), the position detection accuracy decreases. When the speed of the vehicle decreases, the model used in the odometry for estimating the position of the vehicle changes.
  • the control device 10 is a model of the odometry for detecting the position of the vehicle, in which the turning amount of the vehicle is less than a predetermined value, the vehicle is traveling on a road having a curvature less than a predetermined curvature, the speed of the vehicle is not less than a predetermined value, If it is determined that the vehicle is a model for normal traveling, it is determined that the traveling state is a predetermined state, and a lane in which the vehicle can travel in the traveling state is defined as a lane whose comparative difficulty satisfies the predetermined condition. Identify. Thereby, the level of the position detection accuracy of the vehicle is maintained at or above the predetermined value, and it is possible to set the waypoint on the lane where the first lane information and the second lane information can be easily compared.
  • the “factors” including the “road conditions”, “road attributes”, “matching history”, and “position detection accuracy” are associated with each lane or road link (lane or road defined by two nodes). Can be This “factor” may be detected by a sensor of the own vehicle or another vehicle.
  • the first information or the second information includes, as factors affecting the result of the comparison associated with each lane, road conditions relating to the ease of lane recognition and ease of lane identification. Factors affecting the result of comparison of at least one of the road attribute related to, the matching history related to the comparison processing (matching processing) of the first information and the second information, and the position detection accuracy of the current position of the vehicle. Can be included as As shown in FIG. 3, an evaluation value can be defined in advance for the above-mentioned factor of the degree of comparison difficulty. Each factor can be appropriately weighted.
  • the control device 10 refers to the information in which the evaluation value is defined for each factor, determines the overall comparison difficulty of the lane based on one or a plurality of factors, and minimizes the overall comparison difficulty.
  • the route may include one or more route points. It is preferable that the waypoint is set to the lane with the lowest comparison difficulty.
  • a transit point may be provided in a plurality of lanes whose comparative difficulty is less than a predetermined value. This makes it possible to comprehensively evaluate the degree of comparison difficulty based on a plurality of factors.
  • an evaluation value for an intersection without a lane mark, a curvature of a lane (radius of curvature), a loss of a received signal from a GPS satellite, or the like so as to increase the degree of comparison difficulty.
  • the difficulty of lane recognition is high
  • the difficulty of position detection is high in places where the curvature is large
  • the difficulty of position detection is high in places where GPS signals cannot be received. In such a place, it is preferable that the waypoint at which the first lane information and the second lane information are compared is not set.
  • the control device 10 calculates a route including a waypoint belonging to a lane whose degree of difficulty in comparing the first lane information and the second lane information satisfies a predetermined condition. At the waypoint, the control device 10 compares the first lane information with the second lane information. The control device 10 calculates a difference between the first lane information at the waypoint and the second lane information at the waypoint, and based on the difference, the travel lane of the first lane information and the travel lane of the second lane information are determined. The first information and the second information are combined so as to be connected. Since the traveling lanes are connected based on the difference between the first lane information and the second lane information at the waypoint determined to be relatively easy to compare, the first lane information and the second lane information are accurately matched. can do.
  • the control device 410 of the operation control device 400 corrects the route using the result of the comparison between the first lane information and the second lane information, and causes the host vehicle to travel on the corrected route.
  • the first lane information is information on an actual traveling environment based on detection information of a sensor of the own vehicle.
  • the second lane information is information on a road or a lane of a road based on the map information 21 stored in advance. Even when the map information 21 is detailed map information, it is necessary to confirm the current and actual position of the traveling road when the vehicle is to travel autonomously. By correcting the route using the difference between the first lane information and the second lane information, it is possible to execute automatic driving control in which both the information on the real space detected by the sensor and the map information 21 are considered.
  • the control device 10 calculates the route, and combines the first information and the second information to generate the traveling environment information 26 (generate / provide / form).
  • the process of synthesizing the first information and the second information includes at least one of a connection process, an integration process, a superimposition process, or a change (correction) process of the first information and the second information.
  • the first information is information on the actual real environment (the traveling environment) detected by the vehicle detection device 220.
  • the second information is information on lanes acquired from the map information 21.
  • the synthesizing process is a process of editing the first information and the second information into one piece of information so that the continuity of the information on the driving lane is maintained.
  • the first information and the second information are combined so that the position of the traveling lane is not shifted and the information of the lane marker of the traveling lane is not interrupted. Thereby, it is possible to obtain the traveling environment information 26 including the continuous route synthesized based on the difference between the first lane information and the second lane information.
  • the traveling environment information 26 may be stored in the storage device 20 or may be stored in the storage device 20 of the in-vehicle device 200 that can be accessed.
  • the driving environment information 26 is information that can be referred to by the driving control device 400 and is used in driving control processing including automatic driving.
  • the connection process includes information on the driving lane included in the first information, information on the area including the driving lane, and information on the lane included in the second information or information on the area including the lane (including map information).
  • the integration process includes information on the driving lane included in the first information, information on the area including the driving lane, and information on the lane included in the second information or information on the area including the lane (including map information). This is a process of combining / aggregating / overlapping such that continuity is maintained.
  • the correction process changes the content of the first information or the second information, the content of the first information and the second information, and converts any one of the first information and the second information into the first information or the second information.
  • the first information based on the detection information is evaluated as the information reflecting the environment of the real space (information indicating a driving environment similar to a real situation), and the second information is evaluated based on the first information.
  • the contents of the information may be modified (changed).
  • FIG. 5A shows an example of the map information 21.
  • FIG. 5B shows the current position (V1b) of the host vehicle V1b in the map information 21 and the traveling lane L1 based on the first information obtained from the detection information.
  • the range in which the first information based on the detection information can be obtained is shown as a region DR1.
  • the range of the region DR1 differs depending on the accuracy of the detection device 220 and the like.
  • the target lane LM corresponding to the traveling lane L1 is shown.
  • the traveling lane L1 and the target lane LM are the lanes whose distances are relatively closest, and the lanes whose distances are less than a predetermined value.
  • the control device 10 compares the traveling lane L1 of the first lane information with the traveling lane (target lane) LM of the second lane information at a timing when the vehicle approaches the waypoint within a predetermined distance. Then, the difference d1 that is the distance between the two lanes is calculated.
  • the control device 10 compares the first information based on the detection device 220 and the position detection device 231 mounted on the own vehicle V1b with the second information on the lane stored in the map information 21 to calculate the difference d1.
  • the rudder d1 is the difference at the waypoint.
  • the control device 10 shifts one or both of the traveling lane L1 and the target lane LM according to the distance difference d1, and connects them.
  • the control device 10 combines the first information and the second information based on the difference d1 and the first information such that the target lane is connected to the traveling lane.
  • the first information based on the detection information is assumed to be true information
  • the second information is shifted (moved) based on the first information
  • the positions of the first information and the second information are combined and combined. I do.
  • the map information 21 of the second information is determined by a predetermined amount in the coordinate XY direction based on the difference d1 calculated earlier so that the target lane LM is connected to the traveling lane L1 where the host vehicle V1b travels. shift.
  • the traveling environment information 26 in which the target lane LM of the map information 21 is connected to the traveling lane L1 can be generated.
  • the predetermined region DR2 including the lane as well as the lane may be shifted.
  • FIG. 6 A processing procedure of the operation control system 1 of the present embodiment will be described based on a flowchart of FIG. 6 (FIG. 6). It should be noted that the above description is referred to for the contents of the processing in each step, and here, the flow of the processing will be mainly described.
  • the processor 11 of the control device 10 acquires detection information of a vehicle to be controlled.
  • the detection information includes a captured image of the camera 221, measurement information of the radar device 222, position information of the position detection device 223, or a detection result based on the information.
  • the detection information includes output information of the vehicle sensor 260.
  • the detection information includes information related to driving of the vehicle such as a traveling direction, a speed, an acceleration, a braking amount, a steering amount, a steering speed, a steering acceleration, and the like, specification information of the vehicle, and performance information of the vehicle.
  • the detection information includes the position of the traveling lane in which the own vehicle travels, the position of the lane marker of the traveling lane, the mode of the lane marker, the presence / absence of an object around the own vehicle, the attribute of the object (stationary object or moving object), the object This includes the position of the object, the speed / acceleration of the object, and the traveling direction of the object.
  • the detection information can be obtained from the in-vehicle device 200 including the detection device 220, the navigation device 230, and the vehicle sensor 260.
  • step S2 the processor 11 calculates the current position of the running own vehicle based on the detection information.
  • the current position is determined based on the GPS reception signal and detection information including odometer information.
  • step S3 the processor 11 acquires a destination. Destinations include input, calculated, and guessed.
  • step S ⁇ b> 4 the processor 11 acquires the first information on the surrounding traveling environment including the traveling lane in which the vehicle travels based on the detection information.
  • step S5 the processor 11 refers to the map information 21 stored in the storage device 20 to obtain the second information on the road lane.
  • the acquired second information is information on the target lane corresponding to the traveling lane.
  • step S6 the processor 11 calculates one or more routes to the destination. The degree of comparison difficulty of each lane included in each route is determined.
  • step S7 the processor 11 determines whether or not the degree of difficulty of comparison of each lane satisfies a predetermined condition. If the comparison difficulty satisfies the predetermined condition, the process proceeds to step S8.
  • step S8 the processor 11 specifies a lane to which the degree of comparison difficulty satisfying the predetermined condition is associated.
  • step S9 the processor 11 sets a waypoint in the specified lane.
  • the waypoint is a point where the first lane information and the second lane information are compared.
  • the first lane information detected at or near the waypoint is compared with the second lane information corresponding to the first lane information, and the difference in the position of the common traveling lane is calculated.
  • step S10 the processor 11 calculates a route passing through a waypoint. If the degree of comparison difficulty does not satisfy the predetermined condition in step S7, the route to the destination is calculated without setting the waypoint.
  • step S101 the processor 11 acquires first information including the current position of the vehicle. This processing corresponds to steps S1-S2 in FIG.
  • step S102 the processor 11 calculates one or a plurality of temporary routes to the destination.
  • step S103 the processor 11 determines the degree of difficulty of comparison of each lane for each link. Specifically, in step S104, the processor 11 (1) difficulty in lane recognition, (2) difficulty in lane identification, (3) difficulty in comparison processing (matching processing), and (4) difficulty in position detection Get any one or more of the degrees.
  • step S105 the processor 11 determines whether or not there is a lane that individually or comprehensively satisfies the predetermined condition for each comparison difficulty level. If there is no lane satisfying the predetermined degree of comparison difficulty, a route point cannot be set, and the process proceeds to step S11 in FIG. If there is a lane satisfying the predetermined condition, in step S106, a waypoint belonging to the lane is set. As long as the position belongs to the lane satisfying the predetermined condition, the position of the waypoint is not particularly limited, and the waypoint is set so that the distance of the route to the destination is the shortest.
  • the processor 11 specifies the road to which the lane belongs in step S107, calculates the road-level route, and calculates the lane-level route in the following step S108.
  • step S109 the processor 11 compares the first lane information and the second lane information in the vicinity of the waypoint and associates them (matches).
  • the first lane information and the second lane information are converted into common coordinates.
  • the processor 11 compares the position of the traveling lane of the first lane information with the position of the traveling lane of the second lane information, and calculates a difference therebetween.
  • the vicinity of the waypoint is a point where the difficulty of comparing the first lane information and the second lane information is low. Therefore, as a result of the comparison, the difference between the traveling lanes can be accurately calculated.
  • step S110 the processor 11 combines the first information and the second information so that the traveling lane of the first lane information and the traveling lane of the second lane information are connected.
  • the second information may be shifted according to the calculated difference.
  • the connected lane of the first lane information and the lane of the second lane information are adopted as a new route including a waypoint.
  • the own vehicle is controlled to travel on this new route.
  • the traveling environment information 26 obtained by combining the first information and the second information includes a route.
  • a difference difference amount, direction of separation
  • the new route may be stored in association with the waypoint.
  • the reliability of the new route or the difference can be evaluated based on the degree of difficulty in comparing the waypoints. Further, the map information 21 may be shifted according to the difference and updated as new map information 21.
  • the traveling environment information 26 obtained by combining the first information and the second information is used for autonomous traveling control.
  • the driving control device 400 causes the own vehicle to travel along the corrected route in the combined traveling environment information 26.
  • the map information 21 corrected at the waypoint having a low degree of comparison difficulty can be used in the next operation control.
  • step S111 the processor 11 stores the history of the comparison process (matching process) in the matching history 25.
  • the matching history stores the success / failure / difference amount of association (matching) by comparison processing in association with lanes.
  • the processor 11 writes the new traveling environment information 26 corrected according to the difference to the storage device 20 every time the comparison process (matching process) is performed at the waypoint.
  • the traveling environment information 26 may be superimposed on the map information 21. At this time, the calculated difference may be stored in association with the lane identification information. In the next process, the traveling environment information 26 can be generated by reading out only the difference.
  • step S12 the operation control processor 411 of the operation control device 400 acquires target object information including the detected obstacle.
  • step S13 the operation control processor 411 calculates a route avoiding the target.
  • step S14 the driving control processor 411 determines driving behavior at each point on the route.
  • the driving behavior includes “progress”, “steering”, and “stop”.
  • the driving behavior includes speed, acceleration, steering angle, deceleration, and deceleration (deceleration).
  • the latest traveling environment information 26 is read.
  • step S15 the operation control processor 411 drafts an operation plan in which each point and the driving behavior are associated with time.
  • step S16 the operation control processor 411 creates an operation control command for causing the vehicle to execute the operation plan.
  • step S17 the driving control processor 411 sends a driving control command to the vehicle controller 280.
  • step S18 the driving control processor 411 causes the vehicle to execute a driving plan via the vehicle controller 280.
  • the vehicle controller 280 executes operation control based on the planned operation plan.
  • step S19 the operation control processor 411 executes operation control until reaching the destination.
  • the traveling control can be performed according to the actual environment acquired by the detection information. Since the traveling environment information 26 is generated by a synthesis process in which the traveling lane and the target lane of the map information 21 are accurately associated, the control content calculated based on the traveling environment information 26 is accurate and may be changed. None. As a result, smooth running is achieved without causing the vehicle to uselessly steer or accelerate / decelerate.
  • the driving control processor 411 determines the target X coordinate based on the actual X coordinate value of the host vehicle V1 (X axis is the vehicle width direction), the target X coordinate value corresponding to the current position, and the feedback gain. A target control value related to a steering angle, a steering angular velocity, and the like required to move the value to the vehicle V1 is calculated.
  • the operation control processor 411 outputs the target control value to the on-vehicle device 200.
  • the vehicle V1 travels on a target route defined by the target lateral position.
  • the operation control processor 411 calculates a target Y coordinate value along the route (the Y axis is the traveling direction of the vehicle).
  • the operation control processor 411 compares the current Y coordinate value and the vehicle speed and acceleration / deceleration at the current position of the vehicle V1 with the target Y coordinate value corresponding to the current Y coordinate value and the vehicle speed and acceleration / deceleration at the target Y coordinate value. Based on the result, a feedback gain for the Y coordinate value is calculated. The operation control processor 411 calculates a target control value related to the Y coordinate value based on the vehicle speed and acceleration / deceleration according to the target Y coordinate value and the feedback gain of the Y coordinate value.
  • the target control value in the Y-axis direction refers to the operation of a drive mechanism for realizing acceleration / deceleration and vehicle speed according to the target Y coordinate value (for an engine vehicle, the operation of an internal combustion engine, the electric vehicle system).
  • Control value for the hybrid vehicle including the torque distribution between the internal combustion engine and the electric motor in a hybrid vehicle) and the brake operation.
  • the control function calculates a target intake air amount (a target opening of a throttle valve) and a target fuel injection amount based on the current and target acceleration / deceleration and vehicle speed values. Is transmitted to the driving device 290.
  • the operation control processor 411 outputs the calculated target control value in the Y-axis direction to the in-vehicle device 200.
  • the vehicle controller 280 executes steering control and drive control, and causes the host vehicle to travel on a target route defined by the target X coordinate value and the target Y coordinate value. The process is repeated each time the target Y coordinate value is obtained, and the control value for each of the obtained target X coordinate values is output to the vehicle-mounted device 200.
  • the vehicle controller 280 executes a driving control command according to a command of the driving control processor 411 until reaching the destination.
  • the route calculation device 100 is configured and operates as described above, and since the route calculation method used in the route calculation device 100 is executed as described above, the following effects are obtained.
  • a route point for comparing the first lane information based on the detection information of the sensor mounted on the own vehicle with the second lane information based on the stored map information is determined.
  • the comparison between the first lane information based on the detection information of the onboard sensor and the second lane information based on the map information 21 of the storage device 20 Can be performed.
  • the own vehicle can be moved along the route including the waypoint for performing the comparison process, and the comparison process of the first lane information and the second lane information can be executed at the waypoint.
  • the own vehicle traveling on the calculated route can compare the first lane information with the second lane information when passing through the waypoint.
  • the processor 11 can obtain a comparison result between the first lane information and the second lane information at the waypoint suitable for the comparison processing.
  • the comparison result can be used for a mapping process for associating the detected current position with a position on the map information 21.
  • the comparison result includes first lane information relating to the detected traveling lane of the own vehicle and second lane relating to the traveling lane of the own vehicle obtained from the map information 21 (a target lane corresponding to the detected traveling lane). Can be used for matching.
  • information in which a factor affecting a result of comparison between the first lane information and the second lane information is associated with the lane is included in the first information or the second information.
  • the “comparability level” for evaluating the difficulty / easiness of the comparison processing between the first lane information and the second lane information is determined from a predefined factor, and the “comparability level” satisfies a predefined condition. Since the determination is further made, the difficulty / easiness of the comparison process can be accurately determined.
  • the road condition related to the ease of recognition of each lane is included in the first information or the second information as a factor affecting the result of the comparison, and based on the road condition.
  • a lane whose degree of comparison difficulty of the determined lane satisfies a predetermined condition is specified, and a point belonging to the lane is set as a waypoint.
  • the processor 11 can easily recognize the lane, and can obtain an accurate comparison result between the first lane information and the second lane information at the waypoint suitable for the comparison process.
  • the possibility of lane departure is associated with lane departure information having a probability of being less than a predetermined threshold, based on road conditions including lane departure information on the possibility that vehicles in each lane deviate.
  • the specified lane is specified as a lane whose comparative difficulty satisfies a predetermined condition, and a point belonging to the lane is set as a waypoint.
  • the first lane information and the second lane information can be compared.
  • the processor 11 can obtain an accurate comparison result between the first lane information and the second lane information at the waypoint suitable for the comparison process in which the possibility of lane departure is low.
  • the road attribute relating to the ease of identification of each lane is included in the first information or the second information as a factor affecting the result of comparison, and based on the road attribute.
  • a lane whose degree of comparison difficulty of the determined lane satisfies a predetermined condition is specified, and a point belonging to the lane is set as a waypoint.
  • the processor 11 can obtain an accurate comparison result between the first lane information and the second lane information at a waypoint suitable for a comparison process in which lane identification is easy.
  • the degree of difficulty of comparing lanes belonging to a specific road is determined by a predetermined condition based on a road attribute including information on whether or not the traveling road to which the lane belongs is a predetermined specific road. Is specified as a lane that satisfies the condition, and a point belonging to the lane is set as a waypoint.
  • the first lane information and the second lane information can be compared.
  • the processor 11 can obtain an accurate comparison result between the first lane information and the second lane information at the waypoint on the specific road where the lane can be easily identified.
  • the first lane information and the second lane information can be accurately associated with each other, and an accurate difference between the first lane information and the second lane information can be calculated.
  • a road having one lane in the upward direction or the downward direction is defined as a specific road.
  • the control device 10 compares the first lane information and the second lane information when traveling on a specific road where it is easy to compare the actual traveling lane with the traveling lane on the map information. The result can be obtained.
  • the first lane information and the second lane information can be accurately associated with each other, and an accurate difference between the first lane information and the second lane information can be calculated.
  • a road including an intersection and having one lane after passing through the intersection is defined as a specific road. Even if the number of lanes on the traveling road to which the current position belongs is plural, if the number of lanes on the traveling road is predicted to be single in the future, the first lane information and the second lane information are compared. It can be determined that the situation / scene / timing is suitable for the execution.
  • the control device 10 compares the first lane information and the second lane information when traveling on a specific road where it is easy to compare the actual traveling lane with the traveling lane on the map information. The result can be obtained. Even in a situation where lane recognition is difficult, when traveling on a specific road, the first lane information and the second lane information can be accurately associated, and the first lane information and the second lane information can be associated.
  • the matching history regarding the process (matching process) of comparing the first lane information and the second lane information is used as the first information or the second information
  • a lane in which the degree of comparison difficulty of the lane determined based on the road attribute satisfies a predetermined condition is specified, and a point belonging to the lane is set as a waypoint.
  • a route including a waypoint belonging to a lane in which the first lane information and the second lane information are easily compared is calculated.
  • the processor 11 can obtain an accurate comparison result between the first lane information and the second lane information at a waypoint suitable for a comparison process in which lane identification is easy.
  • the matching success rate corresponds to the matching history having a predetermined threshold or more.
  • the assigned lane is specified as a lane whose degree of comparison difficulty satisfies a predetermined condition, and a point belonging to the lane is set as a waypoint.
  • the first lane information and the second lane information can be compared when passing through a waypoint on a lane whose matching success rate is equal to or greater than a predetermined threshold.
  • the processor 11 can obtain an accurate comparison result between the first lane information and the second lane information at the waypoint of the lane where the association by matching (matching process) is likely to succeed.
  • the matching history based on the first information based on the detection information of the other vehicle is used, and the lane associated with the matching history whose matching success rate of the other vehicle is equal to or more than a predetermined threshold is used.
  • a lane whose degree of comparison difficulty satisfies a predetermined condition is specified, and a point belonging to the lane is set as a waypoint.
  • a process based on the degree of difficulty of comparison can be performed on a lane in which the host vehicle has no traveling experience or in which a comparison process (matching process) has not been performed.
  • the first lane information and the second lane information can be compared when passing the passing point on the lane where the matching success rate of the other vehicle is equal to or greater than the predetermined threshold.
  • the processor 11 can obtain an accurate comparison result between the first lane information and the second lane information at the waypoint of the lane where the comparison process (matching process) is likely to succeed in the experience of another vehicle.
  • the degree of difficulty in comparing the lanes is a predetermined condition. Identify the lane to be satisfied, and set a point belonging to the lane as a waypoint. If the second lane information corresponding to the first lane information cannot be detected in the second information, it means that the second information is missing. No comparison is made for lanes where the second information is missing.
  • the map information 21 does not always include all information.
  • the position detection accuracy of the current position of the own vehicle in each lane is included in the first information or the second information as a factor affecting the comparison result, and based on the position detection accuracy.
  • a lane in which the degree of difficulty of comparison of lanes determined satisfies a predetermined condition is specified, and a point belonging to the lane is set as a waypoint.
  • the position of the host vehicle is important information that is used for specifying the traveling lane and is used for identifying the lane of the first lane information, searching for the second lane information, and the like.
  • the route calculation method based on the position detection accuracy including the reception sensitivity of the position detection satellite signal, the lane having the reception sensitivity equal to or larger than the predetermined threshold is specified as the lane whose comparison difficulty satisfies the predetermined condition. Then, a point belonging to the lane is set as a waypoint. The first lane information and the second lane information can be compared when passing through a waypoint on a lane whose reception sensitivity is equal to or greater than a predetermined threshold.
  • the processor 11 can obtain an accurate comparison result at a transit point where the association by the comparison (matching process) is likely to be successful without performing the comparison in a place where a high-rise building stands in a forest or a lane where radio waves are difficult to receive such as a tunnel. it can.
  • the lane in which the traveling state of the own vehicle is in the predetermined state is set to the lane in which the degree of comparison difficulty satisfies the predetermined condition.
  • a point belonging to the lane is set as a waypoint.
  • the processor 11 does not perform comparison in a lane where traveling is likely to cause an error in position detection such as a sharp curve, so that an accurate comparison result at a waypoint can be obtained.
  • matching is performed on road conditions related to ease of lane recognition, road attributes related to ease of lane recognition, and comparison processing (matching processing) between first information and second information.
  • One or more of the history and the position detection accuracy of the current position of the host vehicle is included in the first information or the second information as a factor affecting the result of the comparison.
  • Refer to the information defined for each factor comprehensively determine the degree of difficulty in comparing lanes, identify one or more lanes to the destination so that the degree of difficulty in comparison is minimized, and specify one or more lanes. Since points belonging to a plurality of lanes are set as waypoints, it is possible to comprehensively evaluate the degree of difficulty in comparison based on a plurality of factors.
  • a difference between the first lane information at the waypoint and the second lane information at the waypoint is calculated, and based on the difference, the travel lane of the first lane information and the second lane information are calculated.
  • the first information and the second information are combined so that the traveling lane of the lane information is connected. Since the first information and the second information are combined using the difference between the first lane information and the second lane information at the waypoint having a low degree of comparison difficulty, the lanes of the first lane information and the second lane information are accurately connected.
  • the obtained information driving environment information
  • the own vehicle travels on a route that has been corrected using the result of comparison between the first lane information and the second lane information. Since the driving of the vehicle is controlled based on the route corrected according to the difference calculated at the waypoint, traveling according to the determination based on the detection information in the real environment can be realized. Since the route is corrected based on the difference calculated at the waypoint having a low degree of comparison difficulty, the vehicle can travel along the route in which the map information 21 and the actual situation are appropriately considered.
  • the route calculation device 100 of the present embodiment has the same operations and effects as those of the above-described route calculation method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

プロセッサ(11)は、車載されたセンサ(220)の検知情報に基づく第1レ一ン情報と、地図情報に基づく第2レーン情報との比較を行うための経由地点を設定する。 第1レーン情報は、第1情報から得られたレーンに関する情報である。第2レーン情報は、記憶された地図情報(21)に基づく第2情報から得られたレーンに関する情報である。プロセッサ(11)は、経由地点を含む、現在位置から目的地に至る経路を算出する。

Description

経路算出方法、運転制御方法及び経路算出装置
 本発明は、経路算出方法、運転制御方法及び経路算出装置に関する。
 目的地までの推奨ルートを算出する場合に、自動運転制御を中断する区間を特定し、中断区間の長さ、中断の回数に基づいて、自動運転車両のルートを設定する技術が知られている(特許文献1)。
特開2015−141050号公報
 しかしながら、従来の技術では、自動運転の中断区間の長さ、中断回数の低減は可能であるものの、車両に搭載されたセンサにより認識された車線境界線と、地図情報に規定された車線境界線との比較(マッチング)の困難性を考慮した経路が設定されていないという問題がある。
 本発明が解決しようとする課題は、車両に搭載されたセンサにより認識された車線境界線と、地図情報に規定された車線境界線との比較の困難性を考慮した経路を算出することである。
 本発明は、自車両に搭載されたセンサの検知情報に基づく第1情報から得られた第1レーン情報と、地図情報に基づく第2情報から得られた第2レーン情報とを比較するための経由地点を含む目的地に至る経路を算出することにより、上記課題を解決する。
 本発明によれば、設定された経由地点において、車載センサの検知情報に基づく第1レーン情報と、地図情報に基づく第2レーン情報とを比較させることができるので、経路途中の経由地点において比較結果を得ることができる。
本実施形態に係る運転制御システムのブロック構成図である。 経由地点の設定処理の例を説明するための図である。 比較困難度を説明するための図である。 特定道路を説明するための図である。 特定道路ではない道路(非特定道路)を説明するための図である。 合成処理を説明するための第1の図である。 合成処理を説明するための第2の図である。 合成処理を説明するための第3の図である。 本実施形態の運転制御システムの制御手順を示すフローチャート図である。 比較処理に関する制御手順を示すフローチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。本実施形態では、本発明に係る経路算出方法及び経路算出装置を、運転制御システムに適用した場合を例にして説明する。
 図1(FIG.1)は、運転制御システム1のブロック構成を示す図である。本実施形態の運転制御システム1は、経路算出装置100と、車載装置200と、運転制御装置400とを備える。運転制御システム1は、経路算出装置100が通信装置30を介して情報の授受が可能なサーバ300を備えてもよい。運転制御システム1、経路算出装置100、車載装置200、サーバ300、運転制御装置400及びこれらが備える各装置は、CPUなどの演算装置を備え、演算処理を実行するコンピュータである。
 経路算出装置100は、運転制御装置400や車載装置と一体のハードウェアとして構成してもよいし、別の装置として分散させた構成としてもよい。本例では、経路算出装置100が、通信装置30を介して、車両に搭載された車載装置200と運転制御装置400と情報を授受し、協動するように構成した運転制御システムを例にして説明する。
 車載装置200について説明する。
 車載装置200は、自車両及び自車両周囲の状況に関する検知情報を取得し、外部へ出力する。車載装置200は、運転制御装置400の指令に基づいて、自車両を自律走行させる。本実施形態の車載装置200は、通信装置210、検知装置220、ナビゲーション装置230、記憶装置240、出力装置250、車両センサ260と、レーンキープ装置270、車両コントローラ280、駆動装置290及び操舵装置295とを備える。
 通信装置210は、車載装置200の各装置間の通信と、外部のサーバ300との通信を実行する。車載装置200を構成する各装置は、相互に情報の授受を行うためにCAN(Controller Area Network)その他の車載LAN(通信装置210)によって接続されている。車載装置200は、車載LAN(通信装置210)を介して経路算出装置100、運転制御装置400と情報の授受を行うことができる。車載装置200は、無線通信を行う通信装置210を介して外部のサーバ300と情報の授受を行う。
 検知装置220は、経路を走行する自車両の周囲の検知情報を取得する。車両の検知装置220は、車両が移動する走行レーンの存在、位置及び領域を認識し、その周囲に存在する障害物を含む対象物の存在、存在位置及びその存在領域を検知する。特に限定されないが、検知装置220はカメラ221を含む。カメラ221は、例えばCCD等の撮像素子を備える撮像装置である。カメラ221は、赤外線カメラ、ステレオカメラでもよい。カメラ221は車両の所定の位置に設置され、車両の走行レーンのレーンマーカ、車両の周囲の対象物を撮像する。車両の周囲は、車両の前方、後方、前方側方、後方側方を含む。対象物は、路面に表記されたレーンマーカ、停止線などの二次元の標識を含む。対象物は三次元の物体を含む。対象物は、標識などの静止物を含む。対象物は、歩行者、二輪車、四輪車(他車両)などの移動体を含む。対象物は、ガードレール、縁石などの分離帯、信号、標識、表示装置を含む道路構造物を含む。
 検知装置220は、画像データを解析し、その解析結果に基づいて自車両が走行する走行レーン、及びその近傍のレーンの存在、位置、領域を認識する。検知装置220は、走行レーンのレーンマーカの有無、位置、種別を認識する。検知装置220は、対象物の存在、位置、占有領域、種別を認識する。
 検知装置220はレーダー装置222を備える。レーダー装置222としては、ミリ波レーダー、レーザーレーダー、超音波レーダー、レーザーレンジファインダーなどの出願時に知られた方式のものを用いることができる。検知装置220は、レーダー装置222の受信信号に基づいて対象物の存否、対象物の位置、対象物までの距離を検知する。検知装置220は、レーザーレーダーで取得した点群情報のクラスタリング結果に基づいて、対象物の存否、対象物の位置、対象物までの距離を検知する。
 検知装置220は、通信装置210を介して外部の装置から走行レーンの検知情報を取得してもよい。例えば、サーバ300が通信装置330を介して、複数の他車両の検知装置220により取得された検知情報を介して収集し、蓄積している場合には、検知装置220は、他車両の検知情報や、検知情報に基づく判断情報をサーバ300から取得してもよい。サーバ300が、他車両の検知情報をいわゆるプローブ情報として管理している場合には、経路算出装置100はその情報を利用できる。先に走行レーンを走行した他車両の検知情報に基づいて、経由地点の設定、走行経路24の算出、走行環境情報26の生成、自車両の検知情報の補正をすることができる。
 また、通信装置210が他車両と自車両とが車車間通信をすることが可能であれば、検知装置220は、他車両の検知情報を取得してもよい。もちろん、検知装置220は、高度道路交通システム(Intelligent Transport Systems:ITS)の外部装置から通信装置210を介して、走行レーン又は走行レーンを含む道路の情報を検知情報として取得することもできる。検知装置220は、車両近傍の情報は車載の検知装置220により取得し、車両から所定距離以上の遠い領域の情報は路側に設けられた外部装置から通信装置210を介して取得してもよい。
 検知装置220は、位置検知装置223を備えてもよい。本例では、ナビゲーション装置230が備える位置検知装置231の検知結果を取得する。検知装置220は、検知結果をプロセッサ11へ逐次出力する。
 ナビゲーション装置230は、車両の現在位置から目的地までの経路を出願時に知られた手法を用いて算出する。算出した経路は、車両の運転制御に用いるために、運転制御装置400及び/又は車両コントローラ280へ送出される。算出した経路は、経路案内情報として後述する出力装置250を介して出力される。ナビゲーション装置230は、位置検知装置231を備える。位置検知装置231は、グローバル・ポジショニング・システム(Global Positioning System,GPS)の受信機を備え、走行中の車両の走行位置(緯度・経度/地図座標値)を検知する。現在位置情報は、検知情報としてプロセッサ11へ送出される。位置情報の算出には、測位衛星からの受信信号のほか、オドメトリ、方位センサ、車両センサ260の情報を用いてもよい。
 ナビゲーション装置230は、記憶装置240にアクセスし、地図情報241、レーン情報242と、交通規則情報243を参照する。ナビゲーション装置230は、位置検知装置231により検知された車両の現在位置に基づいて、車両が走行する走行レーンを特定する。走行レーンはユーザが指定した目的地に至る経路の一部であってもよいし、車両/ユーザの走行履歴に基づいて推測された目的地に至る経路の一部であってもよい。ナビゲーション装置230は、後述する地図情報241等を参照して、車両が走行する走行レーンを特定する。
 出力装置250は、ディスプレイ251、スピーカ252を備える。出力装置250は、運転制御に関する各種の情報をユーザ又は周囲の車両の乗員に向けて出力する。出力装置250は、走行レーンと地図情報241のレーンとのずれ量、第1情報及び/又は第2情報の変更内容、立案された運転行動計画、その運転行動計画に基づく運転制御に関する情報を出力する。出力装置250は、通信装置を介して、高度道路交通システムなどの外部装置に運転制御に関する各種の情報を出力してもよい。
 車両センサ260は、舵角センサ261、車速センサ262、姿勢センサ263を有する。舵角センサ261は、操舵量、操舵速度、操舵加速度などの情報を検知し、車両コントローラ280へ出力する。車速センサ262は、車両の速度及び/又は加速度を検知し、車両コントローラ280へ出力する。姿勢センサ263は、車両の位置、車両のピッチ角、車両のヨー角車両のロール角を検知し、車両コントローラ280へ出力する。姿勢センサ263は、ジャイロセンサを含む。
 レーンキープ装置270は、カメラ221の撮像画像から走行レーンを検知する。レーンキープ装置270は、レーンのレーンマーカの位置と車両の位置とが所定の関係を維持するように車両の動きを制御する車線逸脱防止機能(レーンキープサポート機能)を備える。運転制御装置400はレーンの所定の横位置(例えば中央)を車両が走行するように、車両の動きを制御する。なお、レーンマーカは、レーンを規定する機能を有するものであれば限定されず、路面に描かれた線図であってもよいし、レーンの間に存在する植栽であってもよいし、レーンの路肩側に存在するガードレール、縁石、分離帯、歩道、二輪車専用道路などの道路構造物であってもよい。また、レーンマーカは、レーンの路肩側に存在する看板、標識、店舗、街路樹などの静止物であってもよい。
 本実施形態の車両コントローラ280は、運転制御プロセッサ411が立案する運転計画に従って車両の運転制御を実行する。車両コントローラ280は、車両センサ260、駆動装置290、及び操舵装置295を動作させる。車両コントローラ280は、車両センサ260から車両情報を取得する。本実施形態の車両コントローラ280は、Electronic Control Unit:ECUなどの車載コンピュータであり、車両の運転/動作を電子的に制御する。車両としては、電動モータを走行駆動源として備える電気自動車、内燃機関を走行駆動源として備えるエンジン自動車、電動モータ及び内燃機関の両方を走行駆動源として備えるハイブリッド自動車を例示できる。なお、電動モータを走行駆動源とする電気自動車やハイブリッド自動車には、二次電池を電動モータの電源とするタイプや燃料電池を電動モータの電源とするタイプのものも含まれる。尚、レーンキープ装置270で実行する制御の内容は、車両コントローラ280で実行するようにしてもよい。
 本実施形態の駆動装置290は、車両の駆動機構を備える。駆動機構には、上述した走行駆動源である電動モータ及び/又は内燃機関、これら走行駆動源からの出力を駆動輪に伝達するドライブシャフトや自動変速機を含む動力伝達装置、及び車輪を制動する制動装置271などが含まれる。駆動装置290は、アクセル操作及びブレーキ操作による入力信号、車両コントローラ280又は運転制御装置400から取得した制御信号に基づいてこれら駆動機構の各制御信号を生成し、車両の加減速を含む運転制御を実行する。駆動装置290に制御情報を送出することにより、車両の加減速を含む運転制御を自動的に行うことができる。なお、ハイブリッド自動車の場合には、車両の走行状態に応じた電動モータと内燃機関とのそれぞれに出力するトルク配分も駆動装置290に送出される。
 本実施形態の操舵装置295は、ステアリングアクチュエータを備える。ステアリングアクチュエータは、ステアリングのコラムシャフトに取り付けられるモータ等を含む。操舵装置295は、車両コントローラ280から取得した制御信号、又はステアリング操作により入力信号に基づいて車両の進行方向の変更制御を実行する。車両コントローラ280は、操舵量を含む制御情報を操舵装置295に送出することにより、進行方向の変更制御を実行する。駆動装置290の制御、操舵装置295の制御は、完全に自動で行われてもよいし、ドライバの駆動操作(進行操作)を支援する態様で行われてもよい。駆動装置290の制御及び操舵装置295の制御は、ドライバの介入操作により中断/中止させることができる。
 次に、運転制御装置400について説明する。
 運転制御装置400は、制御装置410と、記憶装置420と、通信装置430を備える。出力装置を備えてもよい。出力装置は、先述した車載装置200の出力装置250と同様の機能を有する。制御装置410と、記憶装置420とは、有線又は無線の通信回線を介して互いに情報の授受が可能である。通信装置430は、車載装置200との情報授受、運転制御装置400内部の情報授受、外部装置と運転制御システム1との情報授受を行う。
 制御装置410は、運転制御プロセッサ411を備える。運転制御プロセッサ411は、車両の運転計画の立案を含む運転制御処理を行う演算装置である。具体的に、運転制御プロセッサ411は、運転計画の立案を含む運転制御処理を実行させるプログラムが格納されたROM(Read Only Memory)と、このROMに格納されたプログラムを実行することで、制御装置410として機能する動作回路としてのCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)と、を備えるコンピュータである。 制御装置410は、運転制御処理において、経路算出装置100により生成された経路を所定の処理周期で参照し、経路を用いて運転制御処理を行う。
 経路算出装置100について説明する。本実施形態の経路算出装置100の形態は限定されず、その一部を、車両に搭載してもよいし、車載装置200、運転制御装置400、サーバ300と情報の授受が可能な可搬の端末装置に適用してもよい。端末装置は、スマートフォン、PDAなどの機器を含む。
 経路算出装置100は、制御装置10と、記憶装置20と、通信装置30とを備える。制御装置10は、走行経路24の算出処理を実行するプロセッサ11を備える。プロセッサ11は、走行経路24の生成処理を行う情報処理機能を備えた演算装置である。走行経路24は、車両の自律走行処理、車両の走行支援処理に用いられる。
 プロセッサ11は、自車両の現在位置から目的地に至る走行経路24を生成する処理を実行させるプログラムが格納されたROM(Read Only Memory)と、このROMに格納されたプログラムを実行することで、制御装置10として機能する動作回路としてのCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)と、を備えるコンピュータである。本実施形態の制御装置10は、上記機能を実現するためのソフトウェアと、上述したハードウェアの協働により各機能を実行する。
 プロセッサ11は、自車両に搭載された検知装置220,車両センサ260の検知情報に基づく情報を、通信装置30を介して取得する。第1情報は、検知情報に基づく、自車両が走行するレーンを含む周囲の走行環境に関する情報である。
 プロセッサ11を備える制御装置10は、第1情報の取得処理を実行する。第1情報は、自車両に搭載されたセンサの検知情報に基づく情報である。
 車載のセンサは、検知装置220、車両センサ260を含む。検知情報は、後述する検知装置220のカメラ221の撮像画像及び撮像画像から得られた情報を含む。検知情報は、レーダー装置222の検知信号及び検知信号から得られた情報を含む。検知情報は、車両センサ260が検知した車両の挙動に関する情報を含む。検知情報は、現在位置情報を含む。現在位置情報は、検知装置220の位置検知装置223により検出されてもよいし、後述するナビゲーション装置230の位置検知装置231により検出されてもよい。
 車載のセンサは、通信装置210を用いて高度道路交通システム(ITS:Intelligent Transport Systems)などの外部の情報提供システムが提供する検知情報を受信する受信装置224を含む。受信装置224は道路に設置されたカメラ装置の撮像画像を、近距離無線通信を介して取得してもよい。受信装置224は他車両の検知情報(撮像画像を含む)を、近距離無線通信を介して取得してもよい。自車両に搭載された受信装置224が受信する検知情報は、走行する自車両の現在位置における検知情報として用いられる。
 制御装置10は、自車両の現在位置が属するレーンを自車両が走行する「走行レーン」を識別する。自車両の現在位置に基づいて走行レーンを識別し、走行レーンの走行位置を特定できる。走行レーンの位置は、カメラ221の撮像画像の座標、車両センサ260の車両の位置に基づいて判断してもよい。走行レーンは、ナビゲーション装置230の判断に基づいて特定してもよい。
 本実施形態の第1情報は、自車両に搭載されたセンサ類(検知装置220、車両センサ260、位置検知装置231を含む)の検知情報に基づく、自車両が走行する走行レーンを含む周囲の走行環境に関する情報である。第1情報は、自車両が走行する道路の走行レーン、その走行レーンを含む道路に関する情報である。第1情報は、自車両の走行レーンに関する第1レーン情報を含む。第1レーン情報は、走行レーンを規定するレーンマーカ情報を含む。第1レーン情報は、走行レーンに関する情報であって、走行レーンの識別情報を含む。第1レーン情報は、走行レーンを含む道路に関する情報であって、走行レーンを含む道路の識別情報を含む。第1情報において、走行レーンの識別情報とその走行レーンを含む道路の識別情報とは対応付けられる。つまり、走行レーンが識別情報により特定されれば、走行レーンが属する道路に関する情報を取得できる。
 第1レーン情報は、取得された検知情報に基づいて判断された、第1レーン情報と第2レーン情報との比較の結果に影響を与える要因がレーンに対応づけられた情報を含む。要因に関する情報は、(1)レーンの認識のしやすさに関する道路状況、(2)レーンの識別のしやすさに関する道路属性、(3)第1レーン情報と第2レーン情報のマッチング結果、及び(4)レーンの位置検出精度のうちのいずれか一つ以上を含む。これらの要因に関する情報は、後述する比較困難度の判断に用いられる。上記要因の内容に応じて比較困難度は変化する。本実施形態において、要因が所定条件を満たす場合に、比較困難度は相対的に低いと判断される。ちなみに、比較困難度が高い場合には、第1レーン情報と第2レーン情報を比較して対応づける処理が難しい、つまり、比較の結果が不正確(誤差が大きい)であるといえる。比較困難度が低い場合には、第1レーン情報と第2レーン情報を比較して対応づける処理が容易である、つまり、比較の結果が正確(誤差が少ない)であるといえる。
 制御装置10は、記憶装置20に記憶された地図情報21を参照して、道路のレーンに関する第2情報を取得する。第2情報は、道路が備える複数のレーンから一の対象レーンを識別するための情報を含む。対象レーンは、第1レーン情報の走行レーンに対応する情報である。第2情報は、道路の各レーンのレーンマーカ情報を含む。各レーンのレーンマーカ情報とは、レーンマーカの位置、態様又は属性の情報である。第2情報は、地図情報21の一部の情報又は全部の情報である。
 本実施形態の記憶装置20は、地図情報21、レーン情報22、交通規則情報23を記憶する。地図情報21は、高精度のデジタル地図情報(高精度地図、ダイナミックマップ)である。本実施形態の地図情報21は、運転制御装置400の運転制御処理において用いられる。地図情報21は、二次元の情報及び/又は三次元の情報を有する。本実施形態では、地図情報21が経路算出装置100の記憶装置20に格納された態様を説明するが、地図情報21は、車載装置200の記憶装置240に記憶されてもよいし、通信装置30を介して読み/書き可能なサーバ300の記憶装置320に記憶されてもよいし、運転制御装置400の記憶装置40に記憶されてもよい。図1には、複数の地図情報(21、241、321)、レーン情報(22、242、322)、交通規則情報(23、243、323)を示すが、これらのうちの少なくとも一つをアクセス可能な状態で構成することができる。
 一の道路が複数のレーンを備える場合には、それら複数のレーンから一の対象レーンを識別するための識別情報を含む。各レーンは、緯度・経度などの位置情報(地図座標値)により特定されるとともに、いずれのレーン(第N番目)であるかを識別情報により特定される。道路に複数のレーンが属する場合には、各レーンと、そのレーンが属する道路とは識別情報により対応づけられる。地図情報21は、単一の各レーンを特定する識別情報と、各レーンの接続先のレーンを識別する接続先レーン情報とを有する。
 本実施形態における「レーン」は、道路の延在方向に沿って存在する車両が走行可能な領域である。道路が並列された複数のレーンを有する場合には、各「レーン」は道路の幅員方向に沿う位置(座標)の差異によって識別することができる。また、レーンは、一又は複数のリンクを含む。リンクはレーン上において、レーンの延在方向に離隔した2つの端点であるノードによって区切られる。道路に並列配置されたレーンに対応するリンクは、道路の幅員方向に沿う位置(座標)によって識別することができ、かつ、道路の延在方向に沿う位置(座標)によって識別することができる。
 本実施形態の地図情報21は、各レーンを特定する識別情報、次に連なるレーンを特定する情報を備える。地図情報21は、運転制御装置400の読み込み処理を許容する。運転制御装置400は、自動運転制御処理において、地図情報21を参照することにより、目標とする経路に沿って自車両を自律的に移動(運転)させること、及び、自車両が将来走行するレーンを予測することができる。
 地図情報21は、レーン情報22を含む。制御装置10は、第1レーン情報に含まれるレーンに対応するレーン(対象レーン)に関する第2レーン情報を地図情報21から取得する。第1レーン情報に含まれるレーンは、自車両の走行レーンであってもよい。この場合は、走行レーンに対応する第2レーン情報のレーンが対象レーンとなる。地図情報21に含まれる各道路は、緯度・経度などの位置情報(地図座標値)により特定されるとともに、道路を特定する識別情報により特定される。レーン情報22は、道路の識別情報に対応づけられた、道路種別情報、道路属性情報、道路の幅員情報、道路形状情報(曲率半径、交差点構造など)、道路上の交点(合流点、分岐点)の情報、道路の上り/下り情報、レーン数情報、上りレーン数情報、下りレーン数情報、道路のレーンマーカ(境界)の情報(破線、実線、色、植栽、ガードレール、構造物種別、ブロック、点灯式表示など)を含む。レーン情報22は、レーンの識別情報に対応づけられた、レーン種別情報(分岐、合流、交差)、レーン属性情報(右折レーン、左折レーン、直進レーンなど)、レーンの幅員情報、レーン形状情報(曲率半径、交差点構造など)、レーン上の交点(合流点、分岐点)の情報、レーンの上り/下り情報、隣接するレーン数情報、上りのレーン数情報、下りレーン数情報、レーンのレーンマーカ(境界)の情報(破線、実線、色、植栽、ガードレール、構造物種別、ブロック、点灯式表示など)を含む。
 また、地図情報21は、交通規則情報23を含む。交通規則情報23は、経路上における一時停止、駐車/停車禁止、徐行、制限速度などの車両が走行時に遵守すべき交通上の規則である。交通規則情報23は、一方通行、進入禁止、一時停止、進行の優先関係、追い越しの可否(隣接レーンへの進入の可否)、駐車禁止、駐車許可などの情報を含む。各規則は、地点(緯度、経度)ごと、リンクごと、レーンごとに定義される。交通規則情報23には、道路側に設けられた装置から取得する交通信号の情報を含めてもよい。
 制御装置10は、上述した記憶装置20に記憶された地図情報21を参照して、道路のレーンに関する第2情報を取得する。
 第2情報は、レーンマーカの座標値などの位置情報、レーンマーカが実線、破線、黄色などの線の態様を識別するための情報、及びレーンマーカが縁石・植栽・ガードレールなどの分離帯の構造物の態様を識別するための情報のうちの何れか一つ以上の情報である。レーンマーカ情報は、各レーンの位置(第N番目・右側/左側)の識別情報が付される。これにより、第N番目のレーンのレーンマーカの態様と、レーンの右側のレーンマーカの態様と、レーンの左側のレーンマーカの態様を特定できる。つまり、地図情報21には、各レーンについて、左側のレーンマーカが実線であり、右側のレーンマーカが縁石であるといったレーンマーカの組み合わせの情報が、第2情報としてレーンごとに格納されている。
 第1レーン情報と同様に、第2レーン情報は、取得された検知情報に基づいて判断された、第1レーン情報と第2レーン情報との比較の結果に影響を与える要因がレーンに対応づけられた情報を含む。要因に関する情報として、(1)レーンの認識のしやすさに関する道路状況、(2)レーンの識別のしやすさに関する道路属性、(3)第1レーン情報と第2レーン情報のマッチング結果、及び(4)レーンの位置検出精度のうちのいずれか一つ以上を含む。これらの要因に関する情報は、後述する比較困難度の判断に用いられる。
 第1情報の走行レーンの識別情報と、走行レーンに対応する第2情報の対象レーンの識別情報とは対応づけが可能である。一の走行レーンAに関する第1情報の識別情報から、その走行レーンAに対応する地図情報上の走行レーン(対象レーン)B及びその走行レーン(対象レーン)Bの第2情報を抽出することができる。例えば、制御装置10は、第1情報の位置情報、または第1情報の撮像画像に含まれる道路案内標識、または走行レーンに対応する第2情報の対象レーンの識別情報などに基づいて自車両が走行する走行レーンが属する道路を特定する(道路の識別情報を得る)。さらに、第1情報の撮像画像に含まれる先行車両の車列画像から自車両が走行する走行レーンを特定する(走行レーンの識別情報を得る)。制御装置10は、記憶装置20に記憶されたレーン情報22から、走行している道路の識別情報及び走行レーンの識別情報を読み込む。制御装置10は、車載装置200が備える地図情報241、サーバ300が備える地図情報321を、通信装置30を介して参照してもよい。
 制御装置10は、第1情報と第2情報を用いて、自車両の経路を算出する。第1情報は自車両の走行時における実空間の情報である。第1情報はセンサの検知情報をソース(情報源)とするので、地図情報21よりも現実の状況を反映していると予測できる。第2情報は過去の計測情報に基づいて、各計測情報の整合が図られた地図情報21をソースとし、走行中の自車両が検出する経路、車両の姿勢による状況の変化や、一時的な経路の変更(障害物の存在・工事など)は反映されない。検出条件が理想的であり、自車両の状況が模範的(モデル)なものであれば、第1情報と第2情報との差は小さく(例えば第1閾値未満)なり、第1情報と第2情報に基づいて一の経路を算出できる。しかし、そのような状況は稀であるから、制御装置10は、第1情報と第2情報を比較し、その比較結果を考慮した経路の算出が求められる。
 本実施形態の制御装置10は、第1レーン情報と第2レーン情報との比較を行う地点/タイミングを制御するために、比較処理が行われるための経由地点を設定する。制御装置10は、設定した経由地点を含む経路を算出する。
 図2(FIG.2)は、経由地点QPを含む経路を示す図である。車両の現在位置VPから目的地DPに至る経路は、複数算出できるが、図2に示す経路は、経由地点QPを含む経路である。目的地DPに至る経路は、複数のリンクに区切られたレーンRT1,RT2,RT3,RT4,RT5を含む。経由地点QPは、後述する比較困難度が所定条件を充足するレーンRT2に属する。
 経路は、比較処理が行われるための経由地点を含む。経路を走行する車両は、経由地点において第1レーン情報と第2レーン情報との比較処理を実行する。算出された経路を走行する自車両は、経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行う。後に詳述するが、経由地点は、第1レーン情報と第2レーン情報とを比較する際の比較の困難度が低いレーンに属する地点である。制御装置10は、比較の困難度が低い経由地点における第1レーン情報と第2レーン情報との比較結果を得ることができる。経由地点において得られた比較結果は、外乱による誤差が抑制された結果である。
 比較結果は、検出された現在位置に対応する位置を地図情報21に対応づけるマッピング処理に用いることができる。また、比較結果は、検出された自車両の走行レーンに関する第1レーン情報と、地図情報21から得られた自車両の走行レーン(検知された走行レーンに対応する対象レーン)に関する第2レーンとの対応づけ(マッチング)処理に用いることができる。
 次に、経由地点の設定処理について説明する。
 第1情報又は第2情報は、第1レーン情報と第2レーン情報との比較の結果に影響を与える要因がレーンに対応づけられた情報を含む。レーンに対応づけられた要因は、第1情報及び第2情報の両方に含ませることもできる。
 制御装置10は、レーンに対応づけられた要因に関する情報に基づいてレーンの比較困難度を求める。制御装置10は、判断された比較困難度が所定条件を充足するレーンを特定する。制御装置10は、特定されたレーンに属する地点を経由地点として設定する。
 「比較困難度」とは、第1レーン情報と第2レーン情報との比較処理の困難性に応じた評価値である。第1レーン情報と第2レーン情報が一致すると判断される、例えば、第1レーン情報のレーンと第2レーン情報のレーンとの形状、位置、属性などが一致する(ずれが無い)場合には、その比較処理は最も容易であり、比較困難度は最も低いと判断される。先述したように、検知情報に基づく第1レーン情報と地図情報に基づく第2レーン情報とが一致することは稀である。一致するという評価には所定の閾値を設けて判断する。制御装置10は、レーンに対応づけられた要因に基づいて、レーンの比較困難度を求め、その比較困難度を指標として、第1レーン情報と第2レーン情報との比較を行うのに適した(比較困難度が低い)レーンを抽出する。比較困難度が所定条件を充足するレーンを、第1レーン情報と第2レーン情報との比較処理に適したレーンとして特定する。抽出されるレーンは、自車両の現在位置から目的地に至る一又は複数の経路に含まれるものであることが好ましい。経由地点を通過する経路により目的地に至る所要時間と、最短経路により目的地に至る所要時間との差が所定時間以内であることが好ましい。
 第1レーン情報と第2レーン情報との比較処理の困難性/容易性を評価する「比較困難度」を判断するので、比較処理の困難性/容易性を正確に判断することができる。
 図3(FIG.3)に比較困難度を求める際に用いられる「要因」と「所定条件」の一例を示す。本実施形態の比較困難度は、下記の(1)レーン認識の困難度、(2)レーン識別の困難性、(3)比較に基づく対応付けの処理(以下、マッチング処理又はマップ−マッチング処理ともいう)の困難度、及び(4)位置検出の困難度のうちの何れか一つ以上の観点から判断される。
 以下、比較困難度について、その判断に用いられる要因及び所定条件について説明する。
 (1)レーン認識の困難度
 第1レーン情報は、車載のセンサの検知情報に基づく第1情報から得られた自車両の走行レーンに関する情報である。第2レーン情報は、予め計測された地図情報に基づく第2情報から得られる情報である。レーンの認識の精度が低く、レーンの認識結果が不正確であると、第1レーン情報が不正確となり、第1レーン情報と第2レーン情報との比較が困難となる。このため、本実施形態では、レーンのそれぞれに対応づけられた、レーンの認識のしやすさに関する「道路状況」を、比較の結果に影響を与える要因として、第1情報又は第2情報に含ませる。
 制御装置10は、道路状況に基づいて判断されたレーンの比較困難度が所定条件を充足するレーンを特定し、このレーンに属する地点を経由地点として設定する。
 レーンの認識のしやすさに関する「道路状況」は、レーンマーカが無い、レーンマーカに欠損がある、交差点である(レーンマークが途切れる)などの情報を含む。交差点内にはレーンマークが表示されない。交差点であるか否かの情報はレーンの認識のしやすさに影響を与える。交差点内のレーンは、交差点外のレーンよりもレーンが認識できない可能性が高い。制御装置10は、交差点内ではない旨の道路状況に対応づけられたレーンを、比較困難度が所定条件を充足すると判断する。
 「道路状況」に、レーンのそれぞれに対応づけられた、駐車の可否情報又は駐車車両の数量を含ませてもよい。駐車の可否情報はレーンの認識のしやすさに影響を与える。駐車が可能であるレーンでは、駐車が禁止されているレーンよりも駐車車両が存在する可能性が高い。駐車車両が存在するとレーンが隠れる可能性が高くなる。制御装置10は、駐車を許可しない旨の駐車情報に対応づけられたレーンを、比較困難度が所定条件を充足すると判断する。駐車車両の数量(台数)はレーンの認識のしやすさに影響を与える。駐車車両が多いレーンの方が、駐車車両が少ないレーンよりも駐車車両により隠されるレーンが長くなる。制御装置10は、駐車台数が所定数未満のレーンを、比較困難度が所定条件を充足すると判断する。
 駐車車両の存在を考慮し、レーンの認識がしやすいレーンを特定し、レーンに属する経由地点を含む経路を算出できる。目的地に至る経路において、駐車車両が存在しない又は台数が少ない、第1レーン情報と第2レーン情報との比較がしやすい地点を経由するので、第1情報と第2情報の比較及び対応づけ(マッチング)を正確に行うことができる。
 「道路状況」に、レーンのそれぞれに対応づけられた、レーンを車両が逸脱する可能性に関する車線逸脱情報を含ませてもよい。レーンを車両が逸脱する可能性はレーンの認識のしやすさに影響を与える。レーンを逸脱するとは、走行中のレーンをはみ出して走行すること、走行中のレーンから異なるレーンへレーンチェンジすることを含む。追い越し可能なレーン、パーキングエリアが設けられたレーン、レーン幅が所定値未満のレーンなどは、レーン逸脱の可能性が所定閾値以上であると判断できる。レーンを逸脱する際には、連続的にレーンを認識できないため、レーンの認識がしにくくなる。レーン逸脱の可能性が所定閾値未満の車線逸脱情報に対応づけられたレーンは、レーン逸脱の可能性が所定値以上であるレーンよりも、レーンを認識しやすい。
 車線逸脱の可能性を考慮し、連続的にレーンの認識がしやすいレーンを特定し、レーンに属する経由地点を含む経路を算出できる。目的地に至る経路において、レーンを逸脱する可能性が低く、第1レーン情報と第2レーン情報との比較がしやすい地点を経由するので、第1情報と第2情報の比較及び対応づけ(マッチング)を正確に行うことができる。
 (2)レーン識別の困難性
 第1レーン情報と第2レーン情報との比較において、道路が複数のレーンを有する場合には、レーン同士を正確に対応づける必要がある。正確な対応づけのためには、複数のレーンのうち、何番目のレーンであるのかを認識する必要がある。レーンの識別が不正確であると、第1レーン情報と第2レーン情報との比較が困難となる。このため、本実施形態では、レーンのそれぞれに対応づけられた、レーンの識別のしやすさに関する「道路属性」を、比較の結果に影響を与える要因として、第1情報又は第2情報に含ませる。
 制御装置10は、道路属性に基づいて判断されたレーンの比較困難度が所定条件を充足するレーンを特定し、このレーンに属する地点を経由地点として設定する。
 レーンの識別のしやすさに関する「道路属性」は、レーンが特定道路に属するか否かの情報を含む。特定道路とは、レーンの識別がしやすい道路であり、予め定義された道路である。例えば、特定道路は、上り方向又は下り方向の車線数が一本である道路、又は交差点を含み、交差点を通過後の車線数が一本である道路を含む。
 レーンが認識しにくい道路であっても、道路属性に基づいて、レーンの識別がしやすい道路のレーンを特定できる。第1レーン情報と第2レーン情報とを比較しやすいレーンに属する経由地点を含む経路を算出するので、第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。駐車車両が存在してレーン認識が難しい場面でも、特定道路を走行している場合には、第1レーン情報のレーンと第2レーン情報のレーンとを取り違えることがなく対応づけることができる。特定道路に属するレーン上の経由地点においては、第1レーン情報と第2レーン情報とを比較しやすく、第1レーン情報と第2レーン情報との正確な差異を算出できる。
 制御装置10は、第1情報の位置情報から走行レーンが属する走行道路を特定し、地図情報21又はレーン情報22を参照し、その走行道路の道路属性を判断する。制御装置10は、第1情報の撮像画像に基づいて、自車両前方のレーンマーカの画像から抽出されるレーンマーカの数、レーンマーカの態様から走行レーンが属する走行道路の属性を判断。制御装置10、第1情報の撮像画像に基づいて、自車両前方の車列の画像などから走行レーンが属する走行道路の属性を判断する。制御装置10は、第1情報又は第2情報に基づいて得た走行道路の特徴に基づいて、走行道路が予め定めた特定道路であるか否かを判断する。制御装置10は、走行レーンが属する走行道路が特定道路であると判断された場合には、そのレーンを比較困難度が所定条件を充足するレーンであると判断する。
 本実施形態における「特定道路」について、説明する。
 制御装置10は、第1情報若しくは第2情報、又は第1情報及び第2情報に基づいて目的地に至る経路に含まれるレーンが属する道路が所定条件を満たす特定道路であるか否かを判断する。本実施形態において、特定道路を定義する所定条件は、「唯一の(ユニークな)レーン」を特定する観点から定義される。特に限定されないが、特定道路の定義の例を以下に示す。
(2−1)特定道路は、道路(走行道路)に属するレーン数が予め定めた所定数である道路であると定義できる。一の道路に属するレーン数が多ければ多いほど、唯一のレーンを特定することがより難しくなる。一の道路に属するレーンの数に基づいて特定道路を定義することにより、道路に属するレーンのうち、唯一のレーンが特定されやすい状況/場面/タイミングを限定することができる。
 制御装置10は、第1情報を用いて、道路(走行道路)に属するレーン数を算出する。第1情報の撮像画像に基づいて、撮像画像に含まれる走行道路のレーンマーカの数、又は前方他車両の車列数からレーン数を算出できる。制御装置10は、第2情報を用いて、道路(走行道路)に属するレーン数を算出する。第2情報は、走行レーンに対応する対象レーンが属する道路のレーン数を含む。制御装置10は、第1情報の現在位置が属する走行道路に対応する地図情報の道路に関連づけられた第2情報を参照して、走行レーンの数を算出できる。
(2−2)特定道路は、走行道路の上り方向と下り方向のレーン数がそれぞれ単一の道路であると定義できる。第1情報(のみ)又は第1情報及び第2情報を用いてレーンの進行方向を識別できる。上り方向のレーン数が単一であり下り方向のレーン数が単一である道路に属する場合には、唯一のレーンを高い確度で特定できる。本例の特定道路は、言い換えると、上り単一レーンかつ下り単一レーンである。
 自車両の走行道路が同一の進行方向の道路に1本のみのレーンが含まれている場合には、レーンを識別しやすい状況/場面/タイミングであると判断できる。制御装置10は、実際の走行レーンと地図情報上のレーンとを対応づけやすい(マッチングしやすい)特定道路を走行しているときに、第1レーン情報と第2レーン情報とを比較するので、正確な比較結果を得ることができる。レーンマークが欠損するなどレーン認識が難しい場面でも、特定道路を走行している場合には、第1レーン情報と第2レーン情報とを対応づけることができ、それらの正確な差異を算出できる。
 制御装置10は、第1情報を用いて、第1情報に含まれる撮像画像の経時変化から抽出した他車両の移動方向に基づいて、道路/レーンが上り方向又は下り方向かを識別する。レーンの走行方向(上り又は下り)は、第1情報の現在位置の経時的変化により検知することができる。レーンの走行方向(上り又は下り)は、カメラ221の第1情報の撮像画像の経時的変化により検知することができる。レーンの走行方向(上り又は下り)は、車速センサ262の加速度により検知することができる。
 制御装置10は、第1情報の撮像画像に基づいて、撮像画像に含まれる走行道路のレーンマーカの数からレーン数を算出し、上り方向と下り方向のレーン数が単一であるか否かを判断する。制御装置10は、第1情報の撮像画像に含まれる走行道路の前方他車両の車列数からレーン数を算出し、上り又は下りのレーン数が単一であるか否かを判断する。
 制御装置10は、第2情報を用いて、走行道路の上り方向と下り方向のレーン数がそれぞれ単一であるか否かを判断できる。第2情報は、走行レーンに対応する対象レーンが属する道路のレーン数を含む。第2情報は、走行レーンに対応する対象レーンが上り方向のレーンが単一で、下り方向のレーンが単一の道路であるか否かの情報を含む。
 制御装置10は、第1情報及び第2情報を用いて、道路(走行道路)に属するレーン数が単一であるか否かを判断する。第1情報の現在位置が属する走行道路に対応する地図情報の道路に関連づけられた第2情報を参照して、走行レーンの数を求め、それが単一であるか否かを判断できる。
(2−3)特定道路は、走行道路の上り方向又は下り方向のレーン数が単一の道路であると定義できる。つまり、特定道路は、上り方向又は下り方向の一方のレーンが一方通行の道路である。上述した手法により、第1情報(のみ)又は第1情報及び第2情報を用いてレーンの進行方向を識別できる。上り方向のレーン数が単一又は下り方向のレーン数が単一である道路に属する場合には、唯一のレーンを高い確度で特定することができる。
(2−4)特定道路は、走行道路のレーン数が複数から単一に変化する道路であると定義できる。現在位置においては走行道路のレーン数が複数であるが、進行方向側の位置においてはレーン数が単一に合流するような道路である。道路に属するレーン数が複数である場合よりも、レーン数が単一である場合のほうが、唯一のレーンを特定することが容易になる。つまり、走行中の自車両の現在位置において、走行道路のレーン数が複数であっても、将来、走行する位置(進行方向の下流側の位置)において、レーン数が単一に変化する(複数車線が合流する)状況であれば、走行を継続すれば(時間が経過すれば)将来において唯一のレーンを特定することが容易な状況になることが予測できる。現在位置が属する走行道路のレーン数が複数である場合であっても、将来において走行道路のレーン数が単一になると予測される場合には第1レーン情報と第2レーン情報を比較する処理の実行に適した状況/場面/タイミングであると判断できる。制御装置10は、第1レーン情報と第2レーン情報を比較するのに適した特定道路を走行すると予測できるレーンを特定するので、実際に検出される第1レーン情報と地図情報の第2レーン情報の差分が小さい経由地点を含む経路を生成できる。
 制御装置10は、第1情報を用いて道路(走行道路)に属するレーン数を算出する。第1情報の撮像画像に基づいて、自車両の現在位置のレーン数が複数であることが判断され、さらに、自車両の前方領域(自車両の現在位置から進行方向に所定距離以上離隔した領域)の撮像画像からレーン数が単一であることが判断された場合には、制御装置10は自車両が特定道路を走行していると判断する。レーン数は、現在位置を含む領域および自車両の前方領域の撮像画像から抽出された走行道路のレーンマーカの数に基づいて判断できる。レーン数は、現在位置を含む領域および自車両の前方領域の撮像画像から抽出された前方他車両の車列数に基づいて判断できる。
 制御装置10は、第2情報を参照し、現在位置を含む走行道路に属するレーン数と現在位置から進行方向側に所定距離以上離隔した領域の走行道路に属するレーン数を取得する。制御装置10は、位置検知装置231により検知された現在位置と、地図情報21のレーン情報22とに基づいて、現在位置を含む走行レーン及び走行レーンに接続する接続リンクの情報を取得することができる。レーン情報22に含まれる接続リンクの情報から、現在位置における走行道路のレーン数、及び現在位置から進行方向側に所定距離以上離隔した地点における走行道路のレーン数を取得できる。現在位置を含む走行レーンのレーン数が複数であっても、レーン数の変更地点(交差点・合流点)の通過後にレーンが単一の道路に進入することが予測されるときには、特定道路を走行中であると判断できる。
 制御装置10は、第1情報及び第2情報を用いて、現在位置を含む走行道路に属するレーン数と現在位置から進行方向側に所定距離以上離隔した領域の走行道路に属するレーン数を取得する。第1情報の現在位置が属する走行道路、現在位置から進行方向側に所定距離だけ離隔した位置が属する走行道路に対応する地図情報の道路に関する第2情報を参照して、走行レーンの数を算出できる。
(2−5)特定道路は、走行道路のレーン数が複数であり、走行道路が当該走行道路に属するレーンを規定するレーンマーカのパターンに基づいて、走行道路のレーンのうちのいずれのレーンを走行しているかを特定できる道路である、と定義できる。たとえば、道路に属する複数のレーンのそれぞれが異なるレーンマーカの態様(パターン)を有するレーンである場合には、レーンマーカのパターンに基づいて、走行レーンを特定できる。レーンマーカのパターンとは、レーンを規定する右側のレーンマーカの態様、左側のレーンマーカの態様、又は左右のレーンマーカの組み合わせの態様を含む。例えば、道路において、右側のレーンマーカが黄色の実線であり、左側のレーンマーカが白線の破線であるレーンが唯一であれば、そのレーンを特定できる。
 現在位置が属する走行道路のレーン数が複数である場合であっても、レーンマーカのパターンに基づいて、どのレーンを走行しているかを特定できる道路を走行している場合には、第1レーン情報と第2レーン情報とを比較する処理の実行に適した状況/場面/タイミングであると判断できる。制御装置10は、第1レーン情報と第2レーン情報とを比較しやすい特定道路に属するレーンに経由地点を設定するので、検知情報に基づく第1レーン情報と地図情報に基づく第2レーン情報との差分が小さい経由地点を含む経路を生成できる。
 制御装置10は、第1情報を用いて、道路(走行道路)に属するレーンのレーンマーカのパターンを認識する。制御装置10は、第1情報の撮像画像に基づいて、撮像画像に含まれる走行道路のレーンマーカのパターンからレーンを特定できる。レーンマーカのパターンは、撮像画像から抽出する。レーンマーカは進行方向に延びる(点在する)、境界線(実線・破線)、縁石、植栽、ガードレール、路鋲などである。レーンマーカのパターンは、レーンマーカの種別、色、形態などである。制御装置10は、予め記憶した基準画像パターンと、撮像画像から抽出されたレーンマーカの画像と対比してパターンマッチング処理により、レーンマーカの種別を識別する。
 制御装置10は、第2情報を用いて、道路(走行道路)に属するレーンのレーンマーカのパターンを認識する。第2情報は、レーンを定義するレーンマーカの特徴を含む。第2情報は、レーンマーカの特徴をレーンごとに記憶する。レーンマーカの特徴は、レーンマーカの態様(実線、破線、色)、レーンマーカの構造(縁石、植栽、ガードレール、路鋲などの分離帯)を含む。レーンマーカの特徴は、レーンごとに、右側のレーンマーカの特徴と、左側のレーンマーカの特徴を含む。レーンマーカのパターンは、レーンの左右一対のレーンマーカの特徴により定義される。走行レーンのレーン数が複数であっても、各レーンのレーンマーカの特徴がそれぞれ異なるのであれば、唯一のレーンを高い確度で特定することができる。このように、特定道路を、一の道路に属する複数レーンのレーンマーカの特徴がすべて異なるものである道路と定義することにより、唯一のレーンが特定されやすい状態の走行レーンを特定できる。
 制御装置10は、第1情報及び第2情報を用いて、走行道路に属するレーンマーカのパターンを認識する。第1情報に含む撮像画像から走行道路に属するレーンのレーンマーカの画像上の特徴を取得する。第1情報の現在位置が属する走行道路に対応する地図情報の道路に関する第2情報を参照して、走行レーンのレーンマーカのパターンを認識する。
 第1情報の現在位置が属する走行道路に対応する地図情報の道路に関連づけられた第2情報を参照して、走行レーンのレーンマーカのパターンを認識し、レーンマーカのパターンに基づいて一のレーンを特定できる。
 上り方向又は下り方向の道路が複数レーンを有する場合には、走行レーンに対応する唯一のレーンを抽出できない場合がある。複数レーンを含む道路の右側のレーンマーカのパターンと左側のレーンマーカのパターンが異なる場合がある。
(2−6)特定道路は、走行道路における上り方向のレーン数又は下り方向のレーン数が複数であり、上り方向のレーン又は下り方向のレーンを規定するレーンマーカのパターンに基づいて、走行道路の複数レーンのうちのいずれのレーンを走行しているかを特定できる道路である、と定義できる。たとえば、上り方向の道路に属する複数のレーンのそれぞれが異なるレーンマーカの態様(パターン)を有するレーンである場合、又は下り方向の道路に属する複数のレーンのそれぞれが異なるレーンマーカの態様(パターン)を有するレーンである場合には、レーンマーカのパターンに基づいて、走行レーンを特定できる。制御装置10は、上述の手法により、第1情報又は第2情報を用いて、道路/レーンが上り方向又は下り方向かを識別できる。
 制御装置10は、上述の手法により、第1情報及び第2情報を用いて、走行道路に属する上り方向又は下り方向のレーンのレーンマーカのパターンを認識する。第1情報の現在位置が属する走行道路に対応する地図情報の道路に関連づけられ、道路又はレーンのそれぞれについて上り方向であるか下り方向であるかの情報を含む第2情報を参照して、走行レーンのレーンマーカのパターンを認識し、レーンマーカのパターンに基づいて一のレーンを特定できる。
 自車両が対向複数レーンの道路を走行している場合には、走行レーンに対応する唯一の対象レーンを抽出できない場合がある。このような場合には、上り方向又は下り方向のレーンのレーンマーカのパターンに基づいて、走行道路が特定道路であるか否かを判断する。
(2−7)特定道路は、走行道路の上り方向のレーン数又は下り方向のレーン数が複数であり、上り方向のレーン又は下り方向のレーンが所定の特徴的レーンマーカにより規定されている道路である、と定義できる。特徴的レーンマーカとしてはレーンマーカの態様(実線、破線、色)、レーンマーカの構造(縁石、植栽、ガードレールなどの分離帯)を含む。レーンが特徴的レーンマーカを有すれば、一のレーンを特定できる。例えば、上り方向又は下り方向の複数レーンのレーンマーカのうち、最も対向道路側のレーンマーカは植栽であり、最も外側(対向道路とは反対側)のレーンマーカは縁石であるという場合を検討する。この場合には、植栽のレーンマーカを有するレーンは最も対向道路側の唯一のレーンとして特定できる。また、縁石のレーンマーカを有するレーンは最も外側の唯一のレーンとして特定できる。制御装置10は、上述の手法により、第1情報又は第2情報を用いて、道路/レーンが上り方向又は下り方向かを識別できる。
 制御装置10は、上り方向又は下り方向ごとに道路(走行道路)に属するレーンのレーンマーカのパターンを認識する。レーンマーカが所定の特徴的レーンマーカにより規定されている場合には、撮像画像から抽出された走行道路のレーンマーカのパターンに基づいて上り方向又は下り方向のレーンの中から一のレーンを特定できる。制御装置10は、予め記憶した「所定の特徴的レーンマーカ」の基準画像パターンと、撮像画像から抽出されたレーンマーカの画像とを対比してパターンマッチング処理により、撮像されたレーンマーカが「所定の特徴的レーンマーカ」であるか否かを判断できる。例えば、複数レーンのレーンマーカのうち、最も対向道路側のレーンマーカは植栽であり、最も外側(対向道路とは反対側)のレーンマーカは縁石であるという場合である。この場合には、植栽のレーンマーカを有するレーンは最も対向道路側のレーンとして特定でき、縁石のレーンマーカを有するレーンは最も外側のレーンとして特定できる。
 制御装置10は、第2情報を用いて、道路(走行道路)に属する上り方向又は下り方向のレーンのレーンマーカのパターンを認識できる。本例における第2情報は、道路又はレーンのそれぞれについて上り方向であるか下り方向であるかの情報を含む。本例における第2情報は、レーンマーカの特徴とレーンの識別情報とを対応づけた情報を含む。
 制御装置10は、第1情報及び第2情報を用いて、走行道路に属する上り方向又は下り方向のレーンのレーンマーカが所定のレーンマーカであるか否かを判断する。第1情報の現在位置が属する走行道路に対応する地図情報の道路に関連づけられ、道路又はレーンのそれぞれについてレーンマーカの特徴が対応づけられた情報を含む第2情報を参照して、走行レーンのレーンマーカの特徴を認識し、レーンマーカが「所定のレーンマーカ」であることに基づいて一のレーンを特定できる。自車両が複数レーンの道路を走行している場合には、走行レーンに対応する唯一の対象レーンを抽出できない場合がある。このような場合には、走行レーンのレーンマーカが所定のレーンマーカであるか否かに基づいて、走行道路が特定道路であるか否かを判断する。
 上述した特定道路の一例を図4A及び図4Bに基づいて説明する。
 図4A(FIG.4A)に示すRD1は、いわゆる一方通行の道路であり、上り方向又は下り方向のレーン数が単一である道路である。レーンLK1は、道路RD1における唯一のレーンである。走行道路が、レーン数が単一である特定道路である場合には、検知情報に基づいて走行レーンを高い確度で特定できる。また、取り違えるレーンが無いため、レーン数が単一である特定道路の走行レーンと地図情報21の対象レーンとの比較づけは、正確に行われる可能性が高い。第1レーン情報と第2レーン情報を比較する場合に、第1情報に基づく走行レーンと第2情報に基づく走行レーン(対象レーン)とが正確に比較され、対応づけられる(マッチングされる)可能性が高い。このような特定道路を走行中であれば、第1レーン情報と第2レーン情報との比較は正確に行われ、両者の位置の差分を正確に算出できる。以下のRD2,RD3も同様である。
 RD2は、上り方向及び下り方向のレーン数がそれぞれ単一の道路である。レーンLKU1は、上り方向(又は下り方向)のレーンであり、レーンLKD1は、下り方向(又は上り方向)のレーンである。先述したように、レーンの進行方向は、第1情報及び/又は第2情報に基づいて判断できる。上り/下りのレーンが単一の道路においては、一の進行方向に沿うレーンは一本に限定されるので、走行レーンを高い確度で特定できる。走行方向が共通するレーンのレーン数が単一である場合には取り違えるレーンが無い。
 RD3は、上り方向又は下り方向のレーン数が各2本の道路である。レーン数は2本以上でもよい。レーンLKU1、LKU2は、上り方向(又は下り方向)のレーンであり、レーンLKD1,LKD2は、下り方向(又は上り方向)のレーンである。レーンの進行方向が識別しできたとしても、一の方向に沿うレーンは複数存在し、走行方向を識別するだけでは唯一のレーンを特定することができない。
 しかし、レーンを規定する2本のレーンマーカの組み合わせに着目すると、道路RD3のように、レーンLKU1とLKU2のレーンマーカの態様の組み合わせが異なる。レーンLKU1の右側レーンマーカは破線であり、レーンLKU1の左側レーンマーカは実線である。レーンLKU2の右側レーンマーカは植栽であり、レーンLKU2の左側レーンマーカは破線である。このような道路においては、レーンLKU1とLKU2の2本のレーンマーカの組み合わせパターンはそれぞれ異なり、レーンマーカのパターンに基づいて、レーンLKU1とレーンLKU2とを識別できる。
 制御装置10は、特定道路を、複数のレーンのそれぞれが異なるレーンマーカのパターンを有するレーンが属する道路であると定義する。複数のレーンのレーンマーカのパターンが異なる場合にはレーンを取り違える可能性が低い。
 図4B(FIG.4B)は、道路に属する複数のレーンの一部に共通するレーンマーカのパターンが含まれる例を示す。
 図4Bに示す道路は片側4レーンの道路である。上り方向の道路と下り方向の道路とは植栽で区切られており、この植栽の分離帯の両側に存在するレーンLKU4とLKD1は、上り又は下りの方向ごとに唯一の所定のレーンマーカのパターンを有する。一方、上り方向の4本のリンクグループUPにおいて、リンクLKU2とLKU3は、いずれも両側に破線のレーンマーカを有しており、左右レーンマーカのパターンが共通する。
 このような道路RD4においては、進行方向(UP/DW)を認識できたとしても、車両の現在位置に誤差が含まれる場合には、自車両V1a、V1bの何れの車両においても走行レーンを正確に特定できない場合がある。走行レーンを正確に特定できない場合に、レーンマーカの態様を用いてレーンの特定を行う。しかし、上り方向の4本のリンクグループUPのリンクLKU2,LKU3は、いずれも両側に破線のレーンマーカを有しており、左右のレーンマーカのパターン(組み合わせ)が共通し、下り方向の4本のリンクグループDWにおいても、リンクLKD2,LKD3は、いずれも両側に破線のレーンマーカを有する。自車両V1aの前方レーンマーカに関する検知情報と、自車両V1bの前方レーンマーカに関する検知情報とが共通するので、自車両V1a、V1bのいずれの車両においても、走行レーン、対象レーンを特定することができない可能性がある。このように進行方向が共通する複数のレーンが含まれ、レーンマーカの態様からは各レーンを識別できない道路を特定道路と定義するのは不適切である。
 しかし、所定の特徴的レーンマーカ(例えば植栽ST)に着目すると、所定の特徴的レーンマーカである植栽STによりレーンが規定され、走行方向がUP方向のレーンはレーンLKU4のみである。所定の特徴的レーンマーカによりレーンが規定される場合には、特徴的レーンマーカに基づいて一のレーンを特定することができる。進行方向DWのレーンにおいては、複数のレーンのうち、特徴的レーンマーカ(植栽ST)を有するレーンはレーンLKD1のみである。このように特徴的レーンマーカである植栽STと進行方向が識別できればレーンを特定できる。レーンが、特徴的レーンマーカであるガードレール、縁石などにより規定されている場合にも一のレーンを特定することができる。
 なお、制御装置10は、カメラ221の撮像画像に基づいて、パターンマッチング処理などによりレーンのレーンマーカの態様/パターンを認識する。制御装置10は、レーダー装置222のレーダー受信信号に基づいてレーンのレーンマーカの態様/パターンを認識する。地図情報21の第2情報は、各レーンのレーンマーカの態様/パターンの情報を記憶するので、位置情報などの第1情報によって絞り込んだ複数のレーンの内、レーンマーカの態様/パターンに基づいて、レーンを特定できる。
 (3)比較に基づく対応づけ処理(マッチング処理/マップ−マッチング処理)の困難度
 第1レーン情報と第2レーン情報との比較において、検知情報に基づく走行レーンと、地図情報上の走行レーン(対象レーン)とを対応づけることができない場合がある。例えば、検知情報に基づく走行レーンと、地図情報上の走行レーン(対象レーン)との位置情報に所定値以上の差分が生じた場合は、これらが同一のレーンで無い可能性があるため、比較処理が中止される。このような場合は、比較に基づく対応づけ処理(マッチング処理)が失敗したと判断される。
 第1情報又は第2情報は、レーンのそれぞれに対応づけられた、過去における第1レーン情報と第2レーン情報のマッチング処理に関するマッチング履歴を、比較の結果に影響を与える要因として含む。先述したように、第1レーン情報と第2レーン情報との差分が所定値以上である場合などは対応づけの処理(マッチング処理)が失敗したとして、マッチング履歴25に記憶される。他方、第1レーン情報と第2レーン情報との差分が所定値未満である場合などは対応づけの処理(マッチング処理)が成功したものとして、マッチング履歴25に記憶される。マッチング処理の成功率/失敗率を含む「マッチング履歴」を、レーンの比較の結果に影響を与える比較困難度の要因とする。
 マッチング履歴は、第1レーン情報と第2レーン情報とを比較した結果を含む。例えば、比較の結果、レーンマークの属性や形状が変化したと判断された場合には、その情報をマッチング履歴として記憶する。第1レーン情報は検知情報に基づくものであり、第2レーン情報は記憶された過去の情報である。第1レーン情報と第2レーン情報とに相違がある場合には、第1レーン情報を信用して、レーンマークの属性や形状が変化したと判断し、その判断結果を待ちイング履歴に記憶してもよい。
 制御装置10は、マッチング履歴に基づいて判断された比較困難度が所定条件を充足するレーンを特定し、そのレーンに属する地点を経由地点として設定する。過去の実績に基づいて、第1レーン情報と第2レーン情報とを比較しやすいレーンに属する経由地点を含む経路を算出するので、第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。
 マッチング履歴は、レーンのそれぞれに対応づけられた、第1レーン情報と第2レーン情報との比較結果に基づくマッチング成功率を含み、マッチング成功率が所定閾値以上のマッチング履歴に対応づけられたレーンを、比較困難度が所定条件を充足するレーンとして特定する。レーンの位置や属性によっては、正確な検知情報が得られない場所が存在することがある。本例によれば、比較による対応づけ処理(マッチング処理)が失敗する傾向のあるレーンに経由地点を設定しないようにすることができる。言い換えると、マッチング処理が成功する可能性の高いレーンに経由地点を設定することができる。
 第1情報は、他車両に搭載されたセンサの検知情報に基づく、他車両が走行した走行レーンを含む周囲の走行環境に関する情報を含む。マッチング履歴25は、他車両の第1レーン情報と他車両が参照した第2レーン情報の比較結果に関する情報を含む。
 自車両のマッチング履歴だけではなく、他車両のマッチング履歴を参照して経由地点を設定できるので、自車両が通過したことがない場所であっても、マッチング処理に適した場所を判断することができる。
 なお、第1情報は車載センサの検知情報に基づくものであるので、車載センサの性能、車載センサの配置などによって第1情報の内容が異なる場合がある。このため、マッチング履歴は、車両や車種の識別子、センサ精度を付して蓄積することが好ましい。自車両の車種又はセンサ精度が共通する、マッチング履歴を参照することにより、自車両の第1情報に基づくマッチング処理に適した場所を判断できる。
 マッチング履歴25は、レーンのそれぞれに対応づけられた、第1レーン情報と比較される第2レーン情報を検出できたか否かの比較結果を含む。第2レーン情報は記憶装置に記憶された情報であり、第1レーン情報は実際の検知情報に基づく現時点の環境を示す情報である。制御装置10が第1レーン情報と第2レーン情報を比較した場合に、第1レーン情報において検知されたにもかかわらず、第2レーン情報に第1レーン情報に対応するレーンマークに関する情報などが無い場合には、その旨の情報とレーンの識別子とを対応づけてマッチング履歴25に記憶する。同様に、制御装置10が第1レーン情報と第2レーン情報を比較した場合に、第1レーン情報において検知され、第2レーン情報に第1レーン情報に対応するレーンマークに関する情報などが有る場合には、その旨の情報とレーンの識別子とを対応づけてマッチング履歴25に記憶する。
 制御装置10は、第1レーン情報に対応する第2レーン情報を抽出することができたマッチング履歴に対応づけられたレーンを、比較困難度が所定条件を充足するレーンとして特定する。地図情報21が全ての情報を含むとは限らないが、第1レーン情報に対応する第2レーン情報の有無に関するマッチング履歴25を参照することにより、第1レーン情報と第2レーン情報との比較が適切に行われるレーンを特定することができる。
 (4)位置検出の困難度
 第1情報は、レーンのそれぞれに対応づけられた、自車両の現在位置の位置検出精度を、比較の結果に影響を与える要因として含む。
 制御装置10は、位置検出精度に基づいて判断されたレーンの比較困難度が所定条件を充足するレーンを特定し、特定したレーンに属する地点を経由地点として設定する。
 位置検出精度は、検知情報に基づく第1情報の精度に影響を与える。位置検出精度が低いと第1情報の精度も低いと予測される。第1情報の精度が低いと、第1レーン情報と第2レーン情報との比較処理における比較困難度は高くなる(比較が難しくなる)。本実施形態では、位置検出精度を、第1レーン情報と第2レーン情報との比較の結果に影響を与える要因として定義する。位置検出精度に基づいて比較困難度を判断し、比較困難度が所定条件を満たすレーン上の経由地点を設定することにより、第1レーン情報と第2レーン情報とを比較しやすい経路を算出できる。
 位置検出精度は、レーンのそれぞれに対応づけられた、位置検出衛星信号の受信感度を含む。この情報は、走行中に取得することもできるし、過去にレーンを通過した車両から取得して、蓄積することができる。
 制御装置10は、位置検出衛星信号の受信感度が所定閾値以上であるレーンを、比較困難度が所定条件を充足するレーンとして特定する。GPSから得る位置情報の精度は、受信信号の数によって判断できる。位置検出衛星信号の受信感度を評価する際に、複数のGPS衛星のうち信号が受信できた衛星の数を閾値とすることができる。例えば、「信号が受信できた衛星の数がN個以上である」場合に、位置検出衛星信号の受信感度が所定閾値以上であると判断してもよい。
 これにより、高層ビルが林立する場所や、トンネルなど電波を受信しにくいレーンに経由地点を設定しないようにすることができる。このような場合でも先述した特定道路を走行しているときには、比較困難度が所定条件を充足するレーンとして特定することもできる。特に、特定道路を走行している場合には、GPS信号をロストした場合であっても、オドメトリなどにより位置検出精度を担保することもできる。
 位置検出精度は、レーンのそれぞれに対応づけられた、自車両の走行状態を含む。本実施形態では、位置検出精度が低下する走行状態を予め定義する。例えば、車両の旋回量が所定値以上となる場合には、位置検出精度が低下する。言い換えると、道路の曲率が所定値以上/曲率半径が所定値未満である場合には、位置検出精度が低下する。また、車両の速度が所定値未満である(10km/h程度の低速)である場合には、位置検出精度が低下する。車両の速度が低くなると、オドメトリにおいて自車位置推定に用いられるモデルが変更される。オドメトリのモデルが低速モデルに変更されると、位置検出精度が低下すると予測できる。
 制御装置10は、車両の旋回量が所定値未満である、車両が所定の曲率未満の道路を走行している、車両の速度が所定値以上である、又は車両の位置検出用のオドメトリのモデルが通常走行用のモデルであると判断された場合には、走行状態が所定の状態であると判断し、その走行状態で車両が走行できるレーンを、比較困難度が所定条件を充足するレーンとして特定する。
 これにより、車両の位置検出精度のレベルが所定値以上に保たれ、第1レーン情報と第2レーン情報とを比較しやすいレーン上の経由地点を設定できる。
 上述した「道路状況」、「道路属性」、「マッチング履歴」、「位置検出精度」を含む「要因」はレーン又は道路のリンク(2点のノードで定義づけられるレーン又は道路)ごとに対応づけられる。この「要因」は、自車両又は他車両のセンサにより検出されてもよい。
 (5)総合判断
 第1情報又は第2情報は、レーンのそれぞれに対応づけられた比較の結果に影響を与える要因として、レーンの認識のしやすさに関する道路状況、レーンの識別のしやすさに関する道路属性、第1情報と第2情報の比較処理(マッチング処理)に関するマッチング履歴、及び自車両の現在位置の位置検出精度のうちのいずれか一つ以上を、比較の結果に影響を与える要因として含むことができる。
 図3に示すように、上記の比較困難度の要因については、予め評価値を定義することができる。各要因については、適宜に重みづけをすることができる。制御装置10は、要因ごとに評価値が定義された情報を参照し、一又は複数の要因に基づいて、レーンの総合的な比較困難度を判断し、総合的な比較困難度が最小となるように、目的地に至るまでの一又は複数のレーンを特定し、レーンに属する地点を経由地点として設定する。経路に含まれる経由地点は、一つでも複数でもよい。経由地点は、比較困難度が最も低いレーンに設定されることが好ましい。比較困難度が所定値未満の複数のレーンに経由地点を設けてもよい。
 これにより、複数の要因に基づいて、総合的に比較困難度を評価することができる。
 特に限定するものではないが、レーンマークが無い交差点、レーンの曲率(曲率半径)、GPS衛星からの受信信号のロストなどについては、比較困難度が高くなるように評価値を設定することが好ましい。交差点ではレーン認識の困難度が高く、曲率が大きい場所では位置検出の困難度が高く、GPS信号が受信できない場所では位置検出の困難度が高い。このような場所において、第1レーン情報と第2レーン情報との比較が行われる経由地点が設定されないようにすることが好ましい。
 制御装置10は、第1レーン情報と第2レーン情報とを比較する際の比較困難度が所定条件を充足するレーンに属する経由地点を含む経路を算出する。経由地点において、制御装置10は、第1レーン情報と第2レーン情報とを比較する。制御装置10は、経由地点における第1レーン情報と経由地点における第2レーン情報との差分を算出し、その差分に基づいて、第1レーン情報の走行レーンと第2レーン情報の走行レーンとが接続するように、第1情報と第2情報とを合成する。
 比較が相対的に容易であると判断された経由地点における第1レーン情報と第2レーン情報との差分に基づいて走行レーンを接続させるので、第1レーン情報と第2レーン情報を正確にマッチングすることができる。
 運転制御装置400の制御装置410は、第1レーン情報と、第2レーン情報との比較の結果を用いて経路を修正し、修正された経路を、自車両に走行させる。
 第1レーン情報は、自車両のセンサの検知情報に基づく実際の走行環境についての情報である。第2レーン情報は予め記憶された地図情報21に基づく道路又は道路のレーンに関する情報である。地図情報21が詳細な地図情報であっても、車両を自律走行させる場合においては、現在かつ実際の走行路の位置を確認する必要がある。第1レーン情報と第2レーン情報の差分を用いて経路を修正することにより、センサにより検知された実空間の情報と地図情報21との両方が考慮された自動運転制御を実行できる
 制御装置10は、経路を算出するとともに、第1情報と第2情報とを合成(composite)して走行環境情報26を生成(generate/provide/form)する。第1情報と第2情報との合成処理は、第1情報と第2情報の接続処理、統合処理、重畳処理又は変更(修正)処理の何れか一つ以上を含む。第1情報は、車両の検知装置220により検知された現実の実環境(走行中の環境)に関する情報である。第2情報は、地図情報21から取得されるレーンに関する情報である。合成処理は、走行レーンに関する情報の連続性が保たれるように、第1情報と第2情報とを一つの情報に編集する処理である。走行レーンの位置がずれたり、走行レーンのレーンマーカの情報が途切れたりしないように、第1情報と第2情報を合成する。これにより、第1レーン情報と第2レーン情報の差分に基づいて合成された連続する経路を含む走行環境情報26を得ることができる。走行環境情報26は、記憶装置20に記憶させてもよいし、アクセス可能な車載装置200の記憶装置20に記憶させてもよい。走行環境情報26は、運転制御装置400が参照可能な情報であり、自動運転を含む走行制御処理において利用される。
 接続処理は、第1情報に含まれる走行レーンに関する情報と、走行レーンを含む領域に関する情報と第2情報に含まれるレーンに関する情報又はレーンを含む領域に関する情報(地図情報を含む)とを、情報の連続性が維持されるように繋げる処理である。
 統合処理は、第1情報に含まれる走行レーンに関する情報と、走行レーンを含む領域に関する情報と第2情報に含まれるレーンに関する情報又はレーンを含む領域に関する情報(地図情報を含む)を、情報の連続性が維持されるように纏める/集約する/重畳させる処理である。
 修正処理は、第1情報若しくは第2情報の内容、第1情報及び第2情報の内容を変更し、第1情報又は第2情報の何れか一方の情報を、第1情報又は第2情報に基づいて変更・修正をする処理である。本実施形態では、検知情報に基づく第1情報を、実空間の環境が反映された情報(現実の状況に近似した走行環境を示す情報)であるとして評価し、第1情報を基準として第2情報の内容を修正(変更)するようにしてもよい。
 第1情報と第2情報の合成手法の概要を図5A~図5C(FIG.5A~5C)に基づいて説明する。本図では、便宜上、詳細なレーンは示さない。同図においては、地図情報21の縮小率なども説明の便宜を優先するものである。
 図5Aは、地図情報21の一例を示す。図5Bは地図情報21に自車両V1bの現在位置(V1b)と、検知情報から得た第1情報に基づく走行レーンL1を示す。検知情報に基づく第1情報が取得可能な範囲を領域DR1として示す。領域DR1の範囲は検知装置220の精度などに応じて異なる。走行レーンL1と対応する対象レーンLMを示す。位置に基づいて判断する場合には、走行レーンL1と対象レーンLMとは、距離が相対的に最も近いレーン、距離が所定値未満のレーンである。特に限定されないが、制御装置10は、自車両が経由地点に所定距離以内に接近したタイミングで、第1レーン情報の走行レーンL1と第2レーン情報の走行レーン(対象レーン)LMとを比較して、両レーンの距離である差分d1を算出する。制御装置10は、自車両V1bに車載された検知装置220、位置検知装置231に基づく第1情報と、地図情報21に格納されたレーンに関する第2情報とを比較して差分d1を算出する。舵部d1は経由地点における差分である。
 制御装置10は、走行レーンL1と対象レーンLMを距離の差分d1に応じて何れか一方又は両方をシフトして、これらを接続する。制御装置10は、差分d1と第1情報とに基づいて、対象レーンが走行レーンに接続するように、第1情報と第2情報とを合成する。本実施形態では、検知情報に基づく第1情報を真の情報と仮定し、第2情報を第1情報に基づいてシフト(移動)して、第1情報と第2情報の位置を合わせて合成する。図5Cに示すように、自車両V1bが走行する走行レーンL1に対象レーンLMが接続するように、先に算出した差分d1に基づいて、第2情報の地図情報21を座標XY方向に所定量シフトする。この処理により、地図情報21の対象レーンLMを走行レーンL1に接続させた走行環境情報26を生成できる。レーンのみならず、レーンを含む所定領域DR2をシフトさせてもよい。
 本実施形態の運転制御システム1の処理手順を、図6(FIG.6)のフローチャートに基づいて説明する。なお、各ステップにおける処理の内容に関しては、上述した説明を援用し、ここでは処理の流れを中心に説明する。
 まず、ステップS1において、制御装置10のプロセッサ11は、制御対象となる車両の検知情報を取得する。検知情報は、カメラ221の撮像画像、レーダー装置222の計測情報、位置検知装置223の位置情報、またはこれらの情報に基づく検知結果を含む。検知情報は、車両センサ260の出力情報を含む。検知情報は、進行方向、速度、加速度、制動量、操舵量、操舵速度、操舵加速度、などの車両の運転に関する情報と、車両の諸元情報、車両の性能情報を含む。検知情報は、自車両が走行する走行レーンの位置、走行レーンのレーンマーカの位置、レーンマーカの態様、自車両の周囲の対象物の存在の有無、対象物の属性(静止物又は移動体)、対象物の位置、対象物の速度・加速度、対象物の進行方向を含む。検知情報は、検知装置220、ナビゲーション装置230、車両センサ260を含む車載装置200から取得できる。
 ステップS2において、プロセッサ11は、検知情報に基づいて、走行中の自車両の現在位置を算出する。現在位置は、GPS受信信号、オドメータ情報を含む検知情報に基づいて判断する。
 ステップS3において、プロセッサ11は、目的地を取得する。目的地は入力されたもの、算出されたもの、推測されたものを含む。
 ステップS4において、プロセッサ11は、検知情報に基づいて、自車両が走行する走行レーンを含む周囲の走行環境に関する第1情報を取得する
 ステップS5において、プロセッサ11は、記憶装置20に記憶された地図情報21を参照して、道路のレーンに関する第2情報を取得する。限定されないが、取得する第2情報は、走行レーンに対応する対象レーンに関する情報であることが好ましい。
 ステップS6において、プロセッサ11は、目的地に至る一又は複数の経路を算出する。各経路に含まれる各レーンの比較困難度を判断する。
 ステップS7において、プロセッサ11は、各レーンの比較困難度が所定条件を充足するか否かを判断する。比較困難度が所定条件を充足する場合にはステップS8に進む。
 ステップS8において、プロセッサ11は、所定条件を充足する比較困難度が対応づけられたレーンを特定する。
 ステップS9において、プロセッサ11は、特定されたレーンに経由地点を設定する。経由地点は、第1レーン情報と第2レーン情報との比較が行われる地点である。この経由地点又は経由地点近傍において検出された第1レーン情報と、この第1レーン情報に対応する第2レーン情報とのを比較し、共通の走行レーンの位置の差分が算出される。
 ステップS10において、プロセッサ11は、経由地点を通る経路を算出する。ステップS7において比較困難度が所定条件を充足しない場合には、経由地点の設定は行わずに、目的地に至る経路を算出する。
 図7(FIG.7)のフローチャートに基づいて、経由地点を含む経路の算出と、走行環境情報26の生成処理を説明する。
 ステップS101において、プロセッサ11は、自車両の現在位置を含む第1情報を取得する。この処理は、図6のステップS1−S2に対応する。
 ステップS102において、プロセッサ11は、目的地に至る一又は複数の仮の経路を算出する。
 ステップS103において、プロセッサ11は、各レーンの比較困難度をリンクごとに判断する。具体的に、ステップS104において、プロセッサ11は(1)レーン認識の困難度、(2)レーン識別の困難度、(3)比較処理(マッチング処理)の困難度、及び(4)位置検出の困難度のうちの何れか一つ以上を取得する。
 ステップS105において、プロセッサ11は、各比較困難度について、個別に又は総合的に所定条件を充足するレーンが存在するか否かを判断する。比較困難度が所定条件を満たすレーンが存在しない場合には、経由地点が設定できないので、図6のステップS11へ進む。所定条件を満たすレーンが存在する場合には、ステップS106において、レーンに属する経由地点を設定する。所定条件を満たすレーンに属している位置であれば、経由地点の位置は特に限定されず、目的地に至る経路の距離が最短となるように、経由地点を設定する。
 プロセッサ11は、ステップS107において、レーンが属する道路を特定し、道路レベルの経路を算出し、続くステップS108において、レーンレベルの経路を算出する。
 ステップS109において、プロセッサ11は、経由地点の近傍において、第1レーン情報と第2レーン情報とを比較し、対応づける(マッチングさせる)。第1レーン情報と第2レーン情報とは共通の座標に変換される。プロセッサ11は、第1レーン情報の走行レーンと、第2レーン情報の走行レーンの位置を比較し、これらの差分を算出する。経由地点近傍は、第1レーン情報と第2レーン情報とを比較する困難性が低い地点である。このため、比較の結果、走行レーンの差分を正確に算出できる。
 ステップS110において、プロセッサ11は、第1レーン情報の走行レーンと、第2レーン情報の走行レーンとが接続されるように、第1情報と第2情報を合成する。算出された差分に応じて第2情報をシフトさせてもよい。接続された第1レーン情報のレーンと、第2レーン情報のレーンとは、経由地点を含む新たな経路として採用される。この新たな経路を走行するように、自車両は制御される。第1情報と第2情報を合成した走行環境情報26は、経路を含む。接続された新たな経路の位置は、記憶装置20に記憶する経由地点における比較結果である差分(差分量、離隔の方向)を記憶装置20に記憶してもよい。新たな経路は、経由地点と対応づけて記憶してもよい。経由地点の比較困難度に基づいて、新たな経路又は差分の信頼性を評価できる。また、差分に応じて地図情報21をシフトさせ、それを新たな地図情報21として更新してもよい。第1情報と第2情報を合成した走行環境情報26は、自律走行制御に用いられる。運転制御装置400は、合成された走行環境情報26における修正後の経路に沿って自車両を走行させる。比較困難度の低い経由地点において補正された地図情報21を、次回の運転制御において利用することができる。
 ステップS111において、プロセッサ11は、比較処理(マッチング処理)の履歴をマッチング履歴25に記憶する。マッチング履歴は、対比処理による対応づけ(マッチング)の成否/差分量をレーンに対応づけて記憶する。プロセッサ11は、経由地点において比較処理(マッチング処理)を実行する都度に、差分に応じて修正された新しい走行環境情報26を記憶装置20に書き込む。走行環境情報26は、地図情報21に重畳させてもよい。このとき、算出した差分をレーン識別情報に対応づけて記憶してもよい。次の処理において、差分だけを読みだして走行環境情報26を生成することができる。
 対応する図6のステップS12以降の運転制御処理に移行する。
 運転制御装置400の運転制御プロセッサ411は、ステップS12において、検知された障害物を含む対象物情報を取得する。ステップS13において、運転制御プロセッサ411は、対象物を避けた経路を算出する。ステップS14において、運転制御プロセッサ411は、経路の各地点における運転行動を決定する。運転行動は「進行」「操舵」「停止」を含む。運転行動には、速度、加速度、操舵角、減速、減速度(減速加速度)を含む。最新の走行環境情報26を読み込む。
 ステップS15において、運転制御プロセッサ411は、各地点と運転行動とを経時的に対応づけた運転計画を立案する。ステップS16において、運転制御プロセッサ411は、運転計画を車両に実行させるための運転制御命令を作成する。ステップS17において、運転制御プロセッサ411は、運転制御命令を車両コントローラ280に送出する。ステップS18において、運転制御プロセッサ411は、車両コントローラ280を介して、車両に運転計画を実行させる。車両コントローラ280は、立案された運転計画に基づいて、運転制御を実行する。ステップS19において、運転制御プロセッサ411は、目的地に到達するまで運転制御を実行する。
 生成された走行環境情報26に基づいて車両の運転を制御するので、検知情報により取得された現実の環境に応じた走行制御ができる。走行環境情報26は、走行レーンと地図情報21の対象レーンとが正確に対応づけられた合成処理により生成されるので、走行環境情報26に基づいて算出された制御内容は正確であり、変更されることがない。結果として、車両に無駄な操舵や加減速をさせることがなく、滑らかな走行を実現する。
 具体的に、運転制御プロセッサ411は、自車両V1の実際のX座標値(X軸は車幅方向)と、現在位置に対応する目標X座標値と、フィードバックゲインとに基づいて、目標X座標値の上を車両V1に移動させるために必要な操舵角や操舵角速度等に関する目標制御値を算出する。運転制御プロセッサ411は、目標制御値を車載装置200に出力する。車両V1は、目標横位置により定義される目標経路上を走行する。運転制御プロセッサ411は、経路に沿う目標Y座標値(Y軸は車両の進行方向)を算出する。運転制御プロセッサ411は、車両V1の現在のY座標値、現在位置における車速及び加減速と、現在のY座標値に対応する目標Y座標値、その目標Y座標値における車速及び加減速との比較結果に基づいて、Y座標値に関するフィードバックゲインを算出する。運転制御プロセッサ411は、目標Y座標値に応じた車速および加減速度と、Y座標値のフィードバックゲインとに基づいて、Y座標値に関する目標制御値が算出される。
 ここで、Y軸方向の目標制御値とは、目標Y座標値に応じた加減速度および車速を実現するための駆動機構の動作(エンジン自動車にあっては内燃機関の動作、電気自動車系にあっては電動モータ動作を含み、ハイブリッド自動車にあっては内燃機関と電動モータとのトルク配分も含む)およびブレーキ動作についての制御値である。たとえば、エンジン自動車にあっては、制御機能は、現在および目標とするそれぞれの加減速度および車速の値に基づいて、目標吸入空気量(スロットルバルブの目標開度)と目標燃料噴射量を算出し、これを駆動装置290へ送出する。
 運転制御プロセッサ411は、算出されたY軸方向の目標制御値を車載装置200に出力する。車両コントローラ280は、操舵制御及び駆動制御を実行し、自車両に目標X座標値及び目標Y座標値によって定義される目標経路上を走行させる。目標Y座標値を取得する度に処理を繰り返し、取得した目標X座標値のそれぞれについての制御値を車載装置200に出力する。車両コントローラ280は、目的地に至るまで、運転制御プロセッサ411の指令に従い運転制御命令を実行する。
 本発明の実施形態の経路算出装置100は以上のように構成され動作し、経路算出装置100において使用される経路算出方法は、以上のように実行されるので、以下の効果を奏する。
[1]本実施形態の経路算出方法では、自車両に搭載されたセンサの検知情報に基づく第1レーン情報と、記憶された地図情報に基づく第2レーン情報とを比較するための経由地点を設定し、その経由地点を含む経路を算出する。
 本実施形態によれば、現在位置から目的地に至る経路上の経由地点において、車載センサの検知情報に基づく第1レーン情報と、記憶装置20の地図情報21に基づく第2レーン情報との比較を行わせることができる。
 比較処理が行われるための経由地点を含む経路に沿って自車両を移動させ、経由地点において第1レーン情報と第2レーン情報との比較処理を実行させることができる。算出される経路を走行する自車両は、経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、比較処理に適した経由地点における第1レーン情報と第2レーン情報との比較結果を得ることができる。
 比較結果は、検出された現在位置を地図情報21上の位置に対応づけるマッピング処理に用いることができる。また、比較結果は、検出された自車両の走行レーンに関する第1レーン情報と、地図情報21から得られた自車両の走行レーン(検知された走行レーンに対応する対象レーン)に関する第2レーンとの対応づけ(マッチング)処理に用いることができる。
[2]本実施形態の経路算出方法では、第1レーン情報と第2レーン情報との比較の結果に影響を与える要因がレーンに対応づけられた情報を第1情報又は第2情報に含ませ、第1レーン情報と第2レーン情報とを比較する際の比較困難度を要因に基づいて判断し、比較困難度が所定条件を充足するレーンを特定し、そのレーンに属する地点を経由地点として設定する。
 第1レーン情報と第2レーン情報との比較処理の困難性/容易性を評価する「比較困難度」を予め定義した要因から判断し、「比較困難度」が予め定義した所定条件を充足するか否かをさらに判断するので、比較処理の困難性/容易性を正確に判断することができる。
[3]本実施形態の経路算出方法では、各レーンの認識のしやすさに関する道路状況を比較の結果に影響を与える要因として、第1情報又は第2情報に含ませ、道路状況に基づいて判断されたレーンの比較困難度が所定条件を充足するレーンを特定し、そのレーンに属する地点を経由地点として設定する。経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、レーンの認識がしやすく、比較処理に適した経由地点における第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。
[4]本実施形態の経路算出方法では、各レーンの駐車の可否情報又は駐車車両の数量を含む道路状況に基づいて、駐車を許可しない情報又は所定数量未満の駐車車両が存在する旨の駐車情報に対応づけられたレーンを、比較困難度が所定条件を充足するレーンとして特定し、そのレーンに属する地点を経由地点として設定する。駐車車両が無い又は少ないレーン上の経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、駐車車両が無い又は少ないという比較処理に適した経由地点における第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。
[5]本実施形態の経路算出方法では、各レーンの車両が逸脱する可能性に関する車線逸脱情報を含む道路状況に基づいて、レーン逸脱の可能性が所定閾値未満の車線逸脱情報に対応づけられたレーンを、比較困難度が所定条件を充足するレーンとして特定し、そのレーンに属する地点を経由地点として設定する。レーンを逸脱する可能性が低いレーン上の経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、車線逸脱の可能性が低いという比較処理に適した経由地点における第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。
[6]本実施形態の経路算出方法では、各レーンの識別のしやすさに関する道路属性を比較の結果に影響を与える要因として、第1情報又は第2情報に含ませ、道路属性に基づいて判断されたレーンの比較困難度が所定条件を充足するレーンを特定し、そのレーンに属する地点を経由地点として設定する。経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、レーンの識別が容易である比較処理に適した経由地点における第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。
[7]本実施形態の経路算出方法では、レーンが属する走行道路が予め定めた特定道路であるか否かの情報を含む道路属性に基づいて、特定道路に属するレーンを比較困難度が所定条件を充足するレーンとして特定し、そのレーンに属する地点を経由地点として設定する。特定道路に属するレーン上の経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、レーンの識別がしやすい特定道路の経由地点における第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。レーンマークが欠損している、駐車車両が存在する、車線逸脱の可能性があるといったレーン認識が難しい場面でも、特定道路を走行している場合には、第1レーン情報と第2レーン情報とを正確に対応づけることができ、第1レーン情報と第2レーン情報との正確な差分を算出できる。
[8]本実施形態の経路算出方法では、上り方向又は下り方向の車線数が一本である道路を特定道路として定義する。同一の進行方向の道路に1本のみのレーンが含まれている場合には、レーンを識別しやすい状況/場面/タイミングであると判断できる。制御装置10は、実際の走行レーンと地図情報上の走行レーンとの比較がしやすい特定道路を走行しているときに、第1レーン情報と第2レーン情報とを比較するので、正確な比較結果を得ることができる。レーンマークが欠損している、駐車車両が存在する、車線逸脱の可能性があるといったレーン認識が難しい場面でも、特定道路を走行している場合には、第1レーン情報と第2レーン情報とを正確に対応づけることができ、第1レーン情報と第2レーン情報との正確な差分を算出できる。
[9]本実施形態の経路算出方法では、交差点を含み、交差点を通過後の車線数が一本である道路を特定道路として定義する。現在位置が属する走行道路のレーン数が複数である場合であっても、将来において走行道路のレーン数が単一になると予測される場合には第1レーン情報と第2レーン情報を比較する処理の実行に適した状況/場面/タイミングであると判断できる。制御装置10は、実際の走行レーンと地図情報上の走行レーンとの比較がしやすい特定道路を走行しているときに、第1レーン情報と第2レーン情報とを比較するので、正確な比較結果を得ることができる。レーン認識が難しい場面でも、特定道路を走行している場合には、第1レーン情報と第2レーン情報とを正確に対応づけることができ、第1レーン情報と第2レ
[10]本実施形態の経路算出方法では、第1レーン情報と第2レーン情報とを比較する処理(マッチング処理)に関するマッチング履歴を比較の結果に影響を与える要因として、第1情報又は第2情報に含ませ、道路属性に基づいて判断されたレーンの比較困難度が所定条件を充足するレーンを特定し、そのレーンに属する地点を経由地点として設定する。過去の実績に基づいて、第1レーン情報と第2レーン情報との比較処理がしやすいレーンに属する経由地点を含む経路を算出する。経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、レーンの識別が容易である比較処理に適した経由地点における第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。
[11]本実施形態の経路算出方法では、第1レーン情報と第2レーン情報との比較結果に基づくマッチング成功率を含むマッチング履歴に基づいて、マッチング成功率が所定閾値以上のマッチング履歴に対応づけられたレーンを、比較困難度が所定条件を充足するレーンとして特定し、そのレーンに属する地点を経由地点として設定する。マッチング成功率が所定閾値以上のレーン上の経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、比較による対応づけ(マッチング処理)が成功しやすいレーンの経由地点における第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。
[12]本実施形態の経路算出方法では、他車両の検知情報に基づく第1情報に基づくマッチング履歴を用い、他車両のマッチング成功率が所定閾値以上のマッチング履歴に対応づけられたレーンを、比較困難度が所定条件を充足するレーンとして特定し、そのレーンに属する地点を経由地点として設定する。自車両に走行経験が無い又は比較処理(マッチング処理)をしたことが無いレーンについても比較困難度に基づく処理を行うことができる。他車両のマッチング成功率が所定閾値以上のレーン上の経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、他車両の経験において、比較処理(マッチング処理)が成功しやすいレーンの経由地点における第1レーン情報と第2レーン情報との正確な比較結果を得ることができる。
[13]本実施形態の経路算出方法では、第1レーン情報に対応する第2レーン情報が第2情報において対応する対象レーンが検出できた場合には、そのレーンを比較困難度が所定条件を充足するレーンとして特定し、そのレーンに属する地点を経由地点として設定する。第1レーン情報に対応する第2レーン情報が第2情報において検出できない場合には、第2情報に欠けがあるということである。第2情報に欠けがあるレーンにおいては比較を行わない。地図情報21が全ての情報を含むとは限らない。第1レーン情報に対応する第2レーン情報の有無に関するマッチング履歴25を参照することにより、第1レーン情報と第2レーン情報との比較が適切に行われるレーンを特定することができる。
[14]本実施形態の経路算出方法では、各レーンの自車両の現在位置の位置検出精度を比較の結果に影響を与える要因として第1情報又は第2情報に含ませ、位置検出精度に基づいて判断されたレーンの比較困難度が所定条件を充足するレーンを特定し、そのレーンに属する地点を経由地点として設定する。自車両の位置は、走行レーンの特定に用いられ、第1レーン情報のレーンの識別、第2レーン情報の検索などに用いられる重要な情報である。位置検出精度に基づいて比較困難度を判断し、比較困難度が所定条件を満たすレーン上の経由地点を設定することにより、第1レーン情報と第2レーン情報とを比較しやすい経路を算出できる。
[15]本実施形態の経路算出方法では、位置検出衛星信号の受信感度を含む位置検出精度に基づいて、受信感度が所定閾値以上のレーンを、比較困難度が所定条件を充足するレーンとして特定し、そのレーンに属する地点を経由地点として設定する。受信感度が所定閾値以上のレーン上の経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、高層ビルが林立する場所や、トンネルなど電波を受信しにくいレーンにおいて比較を行うことなく、比較による対応づけ(マッチング処理)が成功しやすい経由地点における正確な比較結果を得ることができる。
[16]本実施形態の経路算出方法では、自車両の走行状態を含む位置検出精度に基づいて、自車両の走行状態が所定の状態となるレーンを、比較困難度が所定条件を充足するレーンとして特定し、そのレーンに属する地点を経由地点として設定する。自車両の位置検出が正確に行われる走行状態を維持できるレーン上の経由地点を通過する際に、第1レーン情報と第2レーン情報との比較を行うことができる。プロセッサ11は、急カーブなどの位置検出に誤差が生じやすい走行が強いられるレーンにおいて比較を行わないので、経由地点における正確な比較結果を得ることができる。
[17]本実施形態の経路算出方法では、レーンの認識のしやすさに関する道路状況、レーンの識別のしやすさに関する道路属性、第1情報と第2情報の比較処理(マッチング処理)に関するマッチング履歴、及び自車両の現在位置の位置検出精度のうちのいずれか一つ以上を、比較の結果に影響を与える要因として、第1情報又は第2情報に含ませる。要因ごとに定義された情報を参照し、レーンの比較困難度を総合的に判断し、比較困難度が最小となるように、目的地に至るまでの一又は複数のレーンを特定し、一又は複数のレーンに属する地点を経由地点として設定するので、複数の要因に基づいて、総合的に比較困難度を評価することができる。
[18]本実施形態の経路算出方法では、経由地点における第1レーン情報と経由地点における第2レーン情報との差分を算出し、その差分に基づいて、第1レーン情報の走行レーンと第2レーン情報の走行レーンとが接続するように、第1情報と第2情報とを合成する。比較困難度が低い経由地点における第1レーン情報と第2レーン情報との差分を用いて第1情報と第2情報を合成するので、第1レーン情報と第2レーン情報のレーンが正確に接続された情報(走行環境情報)を得ることができる。
[19]本実施形態の運転制御方法では、第1レーン情報と第2レーン情報との比較の結果を用いて修正された経路を、自車両に走行させる。経由地点において算出された差分に応じて修正された経路に基づいて車両の運転を制御するので、現実の環境下における検知情報に基づく判断に応じた走行を実現できる。比較困難度が低い経由地点において算出された差分に基づいて経路が修正されているので、地図情報21と現実の状況とが適切に考慮された経路に従い車両を走行させることができる。
[20]本実施形態の経路算出装置100は、上述した経路算出方法と同様の作用及び効果を奏する。
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
1…運転制御システム
100…経路算出装置
 10…制御装置
 11…プロセッサ
 20…記憶装置
  21…地図情報
  22…レーン情報
  23…交通規則情報
  24…走行経路
  25…マッチング履歴
  26…走行環境情報
 30…通信装置
200…車載装置
 210…通信装置
 220…検知装置、センサ
  221…カメラ
  222…レーダー装置
 230…ナビゲーション装置
  231…位置検知装置、センサ
  232…記憶装置
 240…記憶装置
  241…地図情報
  242…レーン情報
  243…交通規則情報
250…出力装置
 251…ディスプレイ
 252…スピーカ
260…車両センサ、センサ
 261…舵角センサ
 262…車速センサ
 263…姿勢センサ
270…レーンキープ装置
280…車両コントローラ
290…駆動装置
295…操舵装置
300…サーバ
 310…制御装置
 311…プロセッサ
 320…記憶装置
  321…地図情報
  322…レーン情報
  323…交通規則情報
 330…通信装置
400…運転制御装置
410…制御装置
  411…運転制御プロセッサ
 420…記憶装置
 430…通信装置

Claims (20)

  1.  経路算出装置が備えるプロセッサにより実行させる、自車両の現在位置から目的地に至る経路を算出する経路算出方法であって、
     前記自車両に搭載されたセンサの検知情報に基づく第1情報から得られたレーンに関する第1レーン情報と、記憶された地図情報に基づく第2情報から得られた前記レーンに関する第2レーン情報との比較するための経由地点を設定し、
     前記経由地点を含む前記経路を算出する経路算出方法。
  2.  前記第1情報又は前記第2情報は、前記第1レーン情報と前記第2レーン情報との比較の結果に影響を与える要因が前記レーンに対応づけられた情報を含み、
     前記経由地点の設定処理は、
     前記要因に基づく前記第1レーン情報と前記第2レーン情報とを比較する際の比較困難度を判断し、
     前記比較困難度が所定条件を充足する前記レーンを特定する処理と、
     前記レーンに属する地点を前記経由地点として設定する処理とを有する請求項1に記載の経路算出方法。
  3.  前記第1情報又は前記第2情報は、前記レーンのそれぞれに対応づけられた、前記レーンの認識のしやすさに関する道路状況を前記比較の結果に影響を与える要因として含み、
     前記経由地点の設定処理は、
     前記道路状況に基づいて判断された前記レーンの比較困難度が所定条件を充足する前記レーンを特定する処理と、
     前記レーンに属する地点を前記経由地点として設定する処理とを有する請求項1又は2に記載の経路算出方法。
  4.  前記道路状況は、前記レーンのそれぞれに対応づけられた、駐車の可否情報又は駐車車両の数量を含み、
     駐車を許可しない情報又は所定数量未満の駐車車両が存在する旨の駐車情報に対応づけられた前記レーンを、前記比較困難度が前記所定条件を充足する前記レーンとして特定する請求項3に記載の経路算出方法。
  5.  前記道路状況は、前記レーンのそれぞれに対応づけられた、前記レーンを車両が逸脱する可能性に関する車線逸脱情報を含み、
     レーン逸脱の可能性が所定閾値未満の前記車線逸脱情報に対応づけられた前記レーンを、前記比較困難度が前記所定条件を充足する前記レーンとして特定する請求項3に記載の経路算出方法。
  6.  前記第1情報又は前記第2情報は、前記レーンのそれぞれに対応づけられた、前記レーンの識別のしやすさに関する道路属性を、前記比較の結果に影響を与える要因として含み、
     前記経由地点の設定処理は、
     前記道路属性に基づいて判断された前記レーンの比較困難度が所定条件を充足する前記レーンを特定する処理と、
     前記レーンに属する地点を前記経由地点として設定する処理とを有する請求項1~5の何れか一項に記載の経路算出方法。
  7.  前記道路属性は、前記レーンのそれぞれに対応づけられた、前記レーンが属する走行道路が予め定めた特定道路であるか否かの情報を含み、
     前記特定道路である道路に属する前記レーンを、前記比較困難度が所定条件を充足する前記レーンとして特定する請求項6に記載の経路算出方法。
  8.  前記特定道路は、上り方向又は下り方向の車線数が一本である道路である請求項7に記載の経路算出方法。
  9.  前記特定道路は、交差点を含み、前記交差点を通過後の車線数が一本である道路である請求項7又は8に記載の経路算出方法。
  10.  前記第1情報又は前記第2情報は、前記レーンのそれぞれに対応づけられた、前記第1レーン情報と前記第2レーン情報の比較処理に関するマッチング履歴を、前記比較の結果に影響を与える要因として含み、
     前記経由地点の設定処理は、
     前記マッチング履歴に基づいて判断された前記レーンの比較困難度が所定条件を充足する前記レーンを特定する処理と、
     前記レーンに属する地点を前記経由地点として設定する処理とを有する請求項1~9の何れか一項に記載の経路算出方法。
  11.  前記マッチング履歴は、前記レーンのそれぞれに対応づけられた、前記第1レーン情報と前記第2レーン情報との比較結果に基づくマッチング成功率を含み、
     前記マッチング成功率が所定閾値以上の前記マッチング履歴に対応づけられた前記レーンを、前記比較困難度が前記所定条件を充足する前記レーンとして特定する請求項10に記載の経路算出方法。
  12.  前記第1情報は他車両に搭載されたセンサの検知情報に基づくレーンに関する情報を含み、
     前記マッチング履歴は、前記他車両の第1レーン情報と前記他車両が参照する前記第2レーン情報の比較結果に関する情報を含む請求項10又は11に記載の経路算出方法。
  13.  前記マッチング履歴は、前記レーンのそれぞれに対応づけられた、前記第1レーン情報と比較される前記第2レーン情報を検出できたか否かの比較結果を含み、
     前記第2レーン情報を抽出できた前記比較結果に対応づけられた前記レーンを、前記比較困難度が前記所定条件を充足する前記レーンとして特定する請求項10~12の何れか一項に記載の経路算出方法。
  14.  前記第1情報は、前記レーンのそれぞれに対応づけられた、前記自車両の現在位置の位置検出精度を、前記比較の結果に影響を与える要因として含み、
     前記経由地点の設定処理は、
     前記位置検出精度に基づいて判断された前記レーンの比較困難度が所定条件を充足する前記レーンを特定する処理と、
     前記レーンに属する地点を前記経由地点として設定する処理とを有する請求項1~13の何れか一項に記載の経路算出方法。
  15.  前記位置検出精度は、前記レーンのそれぞれに対応づけられた、位置検出衛星信号の受信感度を含み、
     前記位置検出衛星信号の受信感度が所定閾値以上の前記レーンを、前記比較困難度が前記所定条件を充足する前記レーンとして特定する請求項14に記載の経路算出方法。
  16.  前記位置検出精度は、前記レーンのそれぞれに対応づけられた、前記自車両の走行状態を含み、
     前記走行状態が所定の状態である前記レーンを、前記比較困難度が前記所定条件を充足する前記レーンとして特定する請求項14又は15に記載の経路算出方法。
  17.  前記第1情報又は前記第2情報は、前記レーンのそれぞれに対応づけられた前記比較の結果に影響を与える要因として、前記レーンの認識のしやすさに関する道路状況、前記レーンの識別のしやすさに関する道路属性、前記第1情報と前記第2情報の比較処理に関するマッチング履歴、及び前記自車両の現在位置の位置検出精度のうちのいずれか一つ以上を、前記比較の結果に影響を与える要因として含み、
     前記経由地点の設定処理は、
     前記要因ごとに評価値が定義された情報を参照し、一又は複数の前記要因に基づいて、前記レーンの比較困難度を判断し、前記比較困難度が最小となるように、前記目的地に至るまでの一又は複数の前記レーンを特定する処理と、
     一又は複数の前記レーンに属する地点を前記経由地点として設定する処理とを有する請求項1~16の何れか一項に記載の経路算出方法。
  18.  前記経由地点における前記第1レーン情報と前記経由地点における前記第2レーン情報との差分を算出し、
     前記差分に基づいて、前記第1レーン情報の前記レーンと前記第2レーン情報の前記レーンとが接続するように、前記第1情報と前記第2情報とを合成する請求項1~17の何れか一項に記載の経路算出方法。
  19.  請求項1~18の何れか一項における経路算出方法において、前記第1レーン情報と、前記第2レーン情報との比較の結果を用いて修正された経路を取得し、
     前記自車両に前記経路を走行させる運転制御方法。
  20.  自車両の現在位置から目的地に至る経路を算出するプロセッサを備え、
     前記プロセッサは、
     通信装置を介して前記自車両に搭載されたセンサの検知情報を取得する処理と、
     前記検知情報に基づく第1情報から得られたレーンに関する第1レーン情報と、記憶された地図情報に基づく第2情報から得られた前記レーンに関する第2レーン情報とを比較するための経由地点を設定する処理と、
     前記経由地点を含む前記経路を算出する処理と、を実行する経路算出装置。
PCT/IB2018/000832 2018-07-11 2018-07-11 経路算出方法、運転制御方法及び経路算出装置 WO2020012209A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020529830A JP7024871B2 (ja) 2018-07-11 2018-07-11 経路算出方法、運転制御方法及び経路算出装置
PCT/IB2018/000832 WO2020012209A1 (ja) 2018-07-11 2018-07-11 経路算出方法、運転制御方法及び経路算出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/000832 WO2020012209A1 (ja) 2018-07-11 2018-07-11 経路算出方法、運転制御方法及び経路算出装置

Publications (1)

Publication Number Publication Date
WO2020012209A1 true WO2020012209A1 (ja) 2020-01-16

Family

ID=69141579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/000832 WO2020012209A1 (ja) 2018-07-11 2018-07-11 経路算出方法、運転制御方法及び経路算出装置

Country Status (2)

Country Link
JP (1) JP7024871B2 (ja)
WO (1) WO2020012209A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220230452A1 (en) * 2019-05-13 2022-07-21 Hitachi Astemo, Ltd. On-vehicle system, externality recognition sensor, electronic control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152873A1 (ja) * 2015-03-24 2016-09-29 パイオニア株式会社 自動運転支援装置、制御方法、プログラム及び記憶媒体
WO2016203515A1 (ja) * 2015-06-15 2016-12-22 三菱電機株式会社 走行車線判別装置および走行車線判別方法
WO2017154779A1 (ja) * 2016-03-09 2017-09-14 三菱電機株式会社 測位装置および測位方法
JP2018063122A (ja) * 2016-10-11 2018-04-19 日産自動車株式会社 経路選択方法及び経路選択装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152873A1 (ja) * 2015-03-24 2016-09-29 パイオニア株式会社 自動運転支援装置、制御方法、プログラム及び記憶媒体
WO2016203515A1 (ja) * 2015-06-15 2016-12-22 三菱電機株式会社 走行車線判別装置および走行車線判別方法
WO2017154779A1 (ja) * 2016-03-09 2017-09-14 三菱電機株式会社 測位装置および測位方法
JP2018063122A (ja) * 2016-10-11 2018-04-19 日産自動車株式会社 経路選択方法及び経路選択装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220230452A1 (en) * 2019-05-13 2022-07-21 Hitachi Astemo, Ltd. On-vehicle system, externality recognition sensor, electronic control device
US11961311B2 (en) * 2019-05-13 2024-04-16 Hitachi Astemo, Ltd. On-vehicle system, externality recognition sensor, electronic control device

Also Published As

Publication number Publication date
JP7024871B2 (ja) 2022-02-24
JPWO2020012209A1 (ja) 2021-08-26

Similar Documents

Publication Publication Date Title
JP7068456B2 (ja) 走行環境情報の生成方法、運転制御方法、走行環境情報生成装置
US11989666B1 (en) Predicting trajectory intersection by another road user
CN110356402B (zh) 车辆控制装置、车辆控制方法及存储介质
RU2737874C1 (ru) Способ хранения информации транспортного средства, способ управления движением транспортного средства и устройство хранения информации транспортного средства
JP6956268B2 (ja) 走行環境情報の生成方法、運転制御方法、走行環境情報生成装置
JP6852793B2 (ja) 車線情報管理方法、走行制御方法及び車線情報管理装置
US10317224B2 (en) Route retrieval apparatus and vehicular automated driving apparatus
US11697416B2 (en) Travel assistance method and travel assistance device
JP2020060369A (ja) 地図情報システム
US20230080281A1 (en) Precautionary observation zone for vehicle routing
US20180347993A1 (en) Systems and methods for verifying road curvature map data
CN112829753A (zh) 基于毫米波雷达的护栏估计方法、车载设备和存储介质
JP4577827B2 (ja) 走行車両の次道路予測装置
JP7154914B2 (ja) 運転制御方法及び運転制御装置
JPWO2018211645A1 (ja) 運転支援方法及び運転支援装置
JP2020052673A (ja) 運転制御方法及び運転制御装置
JP7024871B2 (ja) 経路算出方法、運転制御方法及び経路算出装置
JP7488219B2 (ja) 地図情報判定装置、地図情報判定用コンピュータプログラム及び地図情報判定方法
CN116935693A (zh) 碰撞预警方法、车载终端及存储介质
JP7123645B2 (ja) 走行支援方法及び走行支援装置
JP7202120B2 (ja) 運転支援装置
JP2023151307A (ja) 走路推定方法及び走路推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926161

Country of ref document: EP

Kind code of ref document: A1