WO2020010759A1 - 一种驱动单侧平板布置的微创手术器械 - Google Patents
一种驱动单侧平板布置的微创手术器械 Download PDFInfo
- Publication number
- WO2020010759A1 WO2020010759A1 PCT/CN2018/113550 CN2018113550W WO2020010759A1 WO 2020010759 A1 WO2020010759 A1 WO 2020010759A1 CN 2018113550 W CN2018113550 W CN 2018113550W WO 2020010759 A1 WO2020010759 A1 WO 2020010759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- driving
- reel
- tendon
- deformation section
- guide wheel
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00367—Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B17/2909—Handles
- A61B2017/2912—Handles transmission of forces to actuating rod or piston
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
Definitions
- the invention belongs to the field of medical instruments, and in particular relates to a minimally invasive surgical instrument that drives a unilateral flat plate arrangement.
- minimally invasive surgery In the process of diagnosis and treatment of modern medicine, in order to achieve the requirements of small trauma, light pain, fast postoperative recovery and beautiful appearance, minimally invasive surgery has become more and more important in the field of medical surgery.
- doctors can achieve minimally invasive, accurate and efficient stereotactic surgery with the help of the robot.
- the doctor controls the front-end surgical instruments through the operating table to mimic the flexible movements of the doctor's arms and wrists. Therefore, the surgical instruments for minimally invasive surgical robots have higher design requirements.
- surgical instruments used in minimally invasive surgery should meet the requirements of miniaturization, light weight, multiple degrees of freedom, flexible operation, and easy installation.
- the object of the present invention is to provide a minimally invasive surgical instrument that drives a unilateral flat plate arrangement, which meets the requirements of miniaturization, light weight, multiple degrees of freedom, flexible operation, and easy installation, and can assist doctors in performing minimally invasive surgical operations.
- the invention includes a proximal driving part, a casing, a rod body, a deformed section and a distal actuator, wherein the deformed section is connected between the rod body and the distal actuator, and the proximal driving section includes integral bodies respectively installed on the casing.
- the overall driving rotation mechanism includes an overall rotation mechanism and an overall driving mechanism respectively installed on a housing, and the overall rotation mechanism is connected to the rod body.
- the deformation actuator is connected to drive the opening and closing of the remote actuator;
- the deformation section is at least one section, and a deformation section deflection driving mechanism corresponding to each deformation section is installed on the casing, and the deformation section of each section is driven by
- the tendon is connected to the corresponding deformation section deflection driving mechanism, and the deformation section deflection driving mechanism drives the deformation section to bend;
- the opening and closing driving mechanism of the remote actuator has the same structure as the deflection driving mechanism of the deformation section, and both include a reel shaft, a reel A and a docking disk, and the reel shaft is rotatably installed on the housing, and one end It is connected to one end of a docking disc located outside the housing, and the other end of the docking disc is connected to a power device; the reel A is installed on the reel shaft and is linked with the reel shaft, and the reel A
- the driving tendon is connected to the distal actuator or the deformation section;
- the power device drives the docking disk to rotate forward or reverse, thereby driving the reel shaft and the reel A to rotate, and driving the remote by the driving tendon
- the end effector opens or closes or bends the deformed section;
- One or more reels A are installed on the reel shaft, and when one reel A is installed on the reel shaft, the reel A is provided with at least two wire grooves for the driving tendon to be wound and fixed.
- A one end of the two driving tendons is wound in a clockwise and counterclockwise direction and fixed to any two wire grooves A, and the other ends of the two driving tendons are respectively connected to the distal actuator or Respectively connected to the deformation section; when a plurality of reels A are installed on the reel shaft, each reel A is provided with a wire groove A for the drive tendon to be wound and fixed, and one end of the two drive tendons It is wound in the clockwise direction and the counterclockwise direction respectively and fixed on the wire groove A of any two reels A, and the other ends of the two driving tendons are respectively connected to the distal actuator or the deformation respectively.
- the overall rotation mechanism includes a sleeve A, a bearing seat and a reel B, the bearing seat is mounted on the housing, the sleeve A is rotatably mounted on the bearing seat, one end is connected to the rod body, and the other end A reel B is installed;
- the overall driving mechanism includes a reel shaft, a reel A, and a docking disk, and the reel shaft is rotatably mounted on the casing, and one end is connected to one end of the docking disk outside the casing.
- the other end of the docking disc is connected to the power device;
- the reel A is mounted on the reel shaft and is linked with the reel shaft, and the reel A is connected to the reel B through a driving tendon Connected;
- the power device drives the docking disk to rotate forward or reverse, thereby driving the reel shaft and reel A to rotate, and the reel B and the sleeve A are rotated by the driving tendon to achieve all The overall rotation of the rod body, the deformed section and the distal end actuator;
- One or more reels A are installed on the reel shaft, and when one reel A is installed on the reel shaft, the reel A is provided with at least two wire grooves for the driving tendon to be wound and fixed. A, one end of the two driving tendons is wound in a clockwise and counterclockwise direction and fixed on any two wire grooves A, and the other ends of the two driving tendons are respectively connected to the reel B;
- each reel A is provided with a wire groove A for the driving tendon to be wound and fixed, and one end of the two driving tendons is clockwise and counterclockwise, respectively. It is wound in the direction and fixed on the wire groove A of any two reels A, and the other ends of the two driving tendons are respectively connected to the reels B;
- One or more reels B are installed on the other end of the sleeve A.
- the two ends are spirally processed in a clockwise direction and a counterclockwise direction respectively, and a wire for winding a driving tendon is spirally processed.
- the casing is provided with a plurality of auxiliary guiding devices, and the auxiliary guiding devices are a drive tendon guide seat or a guide wheel shaft system;
- the driving tendon guide seat includes a seat body and a guide plate. One end of the seat machine is installed on the housing, and the other end is provided with a guide plate. A circular hole is opened at the middle position of the guide plate, and the periphery of the circular hole is provided. A plurality of guide holes are provided along the circumferential direction for driving the tendon to pass through;
- the guide wheel shaft system includes a guide wheel shaft, a sleeve and a guide wheel.
- the guide wheel shaft is mounted on the housing.
- At least one guide wheel is rotatably installed in the axial direction on the guide wheel shaft.
- the guide wheel is installed on the guide wheel shaft. Axial limit of the upper sleeve;
- the housing includes a base, a cover plate and a cover.
- the cover plate is connected to the base through a plurality of posts.
- the overall driving mechanism, the deformation section deflection driving mechanism and the remote actuator opening and closing driving mechanism are respectively located on the base and the cover.
- an outer cover mounted on the base is covered on the outside of the cover plate;
- the overall driving mechanism, the deformation section deflection driving mechanism and the distal-end actuator opening and closing driving mechanism are arranged on one side along the axial direction of the rod body.
- the present invention adopts a planar arrangement, and the docking disc is arranged perpendicular to the axial direction, which is beneficial to the transmission of the driving force by the driving tendon; the driving mechanism of the instrument is arranged on one side along the axis of the rod body, compared with bilateral symmetry in the traditional sense The arrangement, the degree of integration of the driving part of the instrument is higher; the arrangement of the auxiliary guiding device of the proximal driving part, such as the driving tendon guide seat and the double-row guide wheel shaft system, ensures that the driving tendon will not come out of the guide wheel groove under large load conditions. Fall off.
- the invention has multiple degrees of freedom, is convenient for disassembly and assembly, and is convenient for quick replacement during the operation. It increases the flexibility of the operation, the mechanism layout is reasonable, and the requirements for miniaturization and light weight of the surgical instrument are better achieved.
- FIG. 1 is a schematic view of a three-dimensional structure of the present invention
- FIG. 2 is a front view of the overall structure of the present invention.
- FIG. 3 is a front view showing a structure of a near-end driving part of the present invention.
- FIG. 4 is a schematic perspective view of the three-dimensional structure of the proximal driving part of the present invention.
- FIG. 5 is a rear view of the structure of the near-end driving part of the present invention.
- FIG. 6 is a schematic structural diagram of a driving mechanism for opening and closing a remote actuator according to the present invention.
- FIG. 7 is a front view of the structure of the reel A in FIG. 6;
- FIG. 8 is a left side view of FIG. 7;
- FIG. 9 is a front view of the structure of the docking disk in FIG. 6;
- FIG. 10 is a left side view of FIG. 9;
- FIG. 11 is a schematic structural diagram of an overall rotating mechanism according to the present invention.
- FIG. 12 is a top cross-sectional view of FIG. 11;
- FIG. 13 is a front view of the structure of the reel B in FIG. 11;
- FIG. 14 is a left side view of FIG. 13;
- FIG. 15 is a front view of a structure of a driving tendon guide seat according to the present invention.
- FIG. 16 is a left side view of FIG. 15;
- 17 is a schematic structural diagram of a guide wheel shaft system according to the present invention.
- FIG. 18 is another schematic structural diagram of a guide wheel shaft system according to the present invention.
- FIG. 19 is a front view of the structure of the guide wheel in FIG. 17 or FIG. 18;
- Figure 20 is a side view of Figure 19;
- FIG. 21 is a schematic view of the three-dimensional structure of the pillar of the present invention.
- 22 is a front view of a structure of an outer cover of the present invention.
- Figure 23 is a left side view of Figure 22;
- 1 is the near-end drive part
- 2 is a housing, 201 is a base, 202 is a cover plate, and 203 is an outer cover;
- 3 is the drive tendon guide seat, 301 is the seat body, 302 is the guide plate, 303 is the guide hole, and 304 is the round hole;
- 4 is an overall rotation mechanism, 401 is a sleeve A, 4011 is an open groove, 402 is a bearing seat, 403 is a bearing B, 404 is a reel B, 4041 is a wire groove B, and 4042 is a boss;
- 5 is a rod body, 6 is a deformation section, 7 is a distal actuator, 8 is an overall drive mechanism, and 9 is a deformation section deflection drive mechanism A;
- 10 is the opening and closing drive mechanism of the remote actuator
- 1001 is the reel shaft
- 1002 is the bearing A
- 1003 is the reel A
- 10031 is the wire groove A
- 10032 is the threaded hole
- 1004 is the docking disk
- 10041 is the D-shaped section Shaft hole
- 11 is a deformation section deflection driving mechanism B
- 12 is a deformation section deflection driving mechanism C
- 13 is a deformation section deflection driving mechanism D;
- 14 is the guide wheel shaft system A, 1401 is the guide wheel shaft A, 1402 is the sleeve B, 1403 is the guide wheel A, 1404 is the guide wheel B, 1405 is the guide wheel C, and 1406 is the guide wheel D;
- 15 is the guide wheel axle B
- 16 is the guide wheel axle C
- 17 is the guide wheel axle D
- 18 is the guide wheel axle E
- 19 is the guide wheel axle F;
- 20 is the guide wheel axle G
- 2001 is the guide wheel axle B
- 2002 is the sleeve C
- 2003 is the guide wheel E
- 2004 is the guide wheel F;
- 21 is the guide wheel axle system H
- 22 is the guide wheel axle system I
- 23 is the guide wheel axle system J
- 24 is the guide wheel axle system K
- 25 is the guide wheel axle system L
- 26 is an upright post
- 27 is a guide rail.
- the present invention includes a proximal driving part 1, a housing 2, a rod body 5, a deformation section 6, and a distal actuator 7, wherein the deformation section 6 is connected between the rod body 5 and the distal actuator 7.
- the proximal drive part 1 includes an integral drive rotation mechanism, a deformation section deflection drive mechanism, a distal actuator opening and closing drive mechanism 10, and an auxiliary guide device respectively installed on the housing 2.
- the integral drive rotation mechanism and the deformation section deflection drive The mechanism, the distal actuator opening and closing drive mechanism 10 and the auxiliary guide device are different from the symmetrical arrangement of the existing surgical instruments, and are arranged on one side along the axial direction of the rod body 5.
- the overall drive rotation mechanism includes an overall rotation mechanism 4 and an overall drive mechanism 8 respectively mounted on the housing 2.
- the overall rotation mechanism 4 is connected to the rod body 5, and is connected to the overall drive mechanism 8 through a drive tendon, and is driven by the overall drive mechanism 8.
- the whole rotation mechanism 4 drives the whole rotation of the rod body 5, the deformation section 6 and the distal end actuator 7.
- the remote actuator opening and closing driving mechanism 10 is connected to the remote actuator 7 through a driving tendon, and drives the remote actuator 7 to open and close.
- the deformation section 6 is at least one section.
- the housing 2 is provided with a deformation section deflection driving mechanism corresponding to each deformation section 6, and the deformation section 6 of each section is connected to the corresponding deformation section deflection driving mechanism through a driving tendon.
- the deflection driving mechanism drives the deformation sections 6 to bend.
- the achievable degrees of freedom of the present invention include the overall rotation of the rod body 5, the deformation section 6, and the distal end effector 7, the bending of the deformation section 6, and the opening and closing of the distal end effector 7.
- the driving tendon of the present invention may be driven by a tendon such as a rope or a wire.
- the housing 2 of the present invention includes a base 201, a cover plate 202, and an outer cover 203.
- the cover 202 passes through a plurality of (four in this embodiment) uprights 26 and the base 201.
- the upright column 26 is in an "L" shape, and two sides of the "L" shape are provided with threaded holes for screw connection with the base 201 and the cover plate 202.
- the overall driving mechanism 8, the deformation section deflection driving mechanism and the remote actuator opening and closing driving mechanism 10 are respectively located between the base 201 and the cover plate 202, and an outer cover 203 screwed to the base 201 is covered on the outside of the cover plate 202.
- the driving mechanism 8, the deformation section deflection driving mechanism, the distal-end actuator opening and closing driving mechanism 10, and the auxiliary guide device are all located inside the outer cover 203.
- the back of the base 201 is provided with two mutually parallel guide rails 27, which are used in conjunction with the guide rail grooves on the power unit to facilitate the installation and fixation of surgical instruments.
- a plurality of mounting holes are respectively formed in the base 201 and the cover plate 202 of this embodiment, and are used to install bearings on the winding wheel shaft and the guide wheel shaft.
- the remote actuator opening and closing driving mechanism 10 has the same structure as the deformation section deflection driving mechanism, and both include a reel shaft, a reel A, and a docking disk.
- the reel shaft is rotatably mounted on the casing 2 and any one end is located on the casing. 2 One end of the external docking disc is connected, and the other end of the docking disc is connected to the power device; the reel A is installed on the reel shaft and is linked with the reel shaft. The reel A is executed by the drive tendon and the far end.
- the actuator 7 or the deformation section 6 are connected; the power device drives the docking disk to rotate forward or reverse, thereby driving the reel shaft and the reel A to rotate, and the distal actuator 7 is driven to open and close or the deformation section 6 to be bent by driving the tendon.
- One or more reels A are installed on the reel shaft, and when one reel A is installed on the reel shaft, the reel A is provided with at least two wire grooves A for driving and fixing the tendon, One end of the two driving tendons is wound in a clockwise and counterclockwise direction and fixed on any two wire grooves A, and the other ends of the two driving tendons are respectively connected to the distal end actuator 7 or the deformation section 6 respectively.
- each reel A When a plurality of reels A are installed on the reel shaft, each reel A is provided with a wire groove A for fixing the driving tendon, and one end of the two driving tendons is wound in a clockwise direction and a counterclockwise direction, respectively.
- the two ends of the two driving tendons are respectively connected to the distal end actuator 7 or the deformation section 6 respectively.
- the reel shaft 1001 of the opening and closing driving mechanism 10 of the remote actuator of this embodiment is rotatably mounted on the housing 2 through two bearings A1002 provided up and down, wherein the upper end of the bearing A1002 is located outside The ring is mounted on the cover plate 202, and the outer ring of the bearing A1002 at the lower end is mounted on the base 201.
- the remote actuator opening and closing drive mechanism 10 of this embodiment has two reels A1003, and each reel A1003 is respectively processed with a wire groove A10031 and two threaded holes 10032 for winding and fixing the driving tendon.
- One ends of the two driving tendons are wound in a clockwise direction and a counterclockwise direction and fixed on the wire groove A10031 of the two reels A1003, and are driven by adjusting the relative angle between the two reels A1003 and the reel shaft 1001.
- the tendon is pre-tensioned.
- the two threaded holes 10032 of each reel A1003 are fixed on the reel shaft 1001 by the top wire; the other ends of the two driving tendons are connected to the remote actuator 7 respectively.
- the middle of the docking disk 1004 is provided with a D-shaped section shaft hole 10041.
- the lower end of the reel shaft 1001 passes through the bearing A1002 fixed to the base 201 and is connected to the docking disk 1004 through a D-shaped shaft hole.
- the other end of the docking disk 1004 is connected with power.
- the docking disk of the device is connected, and the docking disk 1004 is driven to rotate by a power device (which may be a motor), and then the reel shaft 1001 is driven to rotate, thereby realizing the rotation of the reel A1003.
- a power device which may be a motor
- each deformation section 6 has degrees of freedom of bending left and right and up and down; each deformation section 6 corresponds to two deformation section deflection driving mechanisms, and one of the deformation section deflection driving mechanisms is used for The deformation section is driven to bend left and right, and another deformation section deflection drive mechanism is used to drive the deformation section to bend up and down.
- This embodiment has six degrees of freedom, four deformation section deflection drive mechanisms to achieve four degrees of freedom for two deformation sections, plus a remote actuator opening and closing drive for achieving 7 degrees of freedom of opening and closing of the remote actuator.
- the mechanism 10 and an overall driving mechanism 8 that realizes the overall degree of freedom of rotation.
- the four deformation section deflection driving mechanisms of this embodiment are a deformation section deflection driving mechanism A9, a deformation section deflection driving mechanism B11, a deformation section deflection driving mechanism C12, and a deformation section deflection driving mechanism D13, all of which have the same structure as the distal end of this embodiment.
- the actuator opening and closing driving mechanism 10 is the same; the other ends of the two driving tendons in the deflection driving mechanism of each deformation section are respectively fixed to the end faces of a deformation section 6.
- the overall rotation mechanism 4 includes a sleeve A401, a bearing block 402, a bearing B403, and a reel B404.
- the bearing block 402 is fixed to the base 201 of the housing 2 through a screw connection.
- the sleeve A401 is rotatably mounted on the bearing block 402 through three bearings B403.
- the inner ring of the three bearings B403 is in contact with the outside of the sleeve A401.
- the outer ring of the three bearings B403 is mounted on the bearing block 402.
- One end of the sleeve A401 is connected to the rod body 5, and the other end is provided with a plurality of (two in this embodiment) elongated opening grooves 4011 along the circumferential direction; a reel B404 is installed at the other end of the sleeve A401, On the inner hole wall of the reel B404, a plurality of bosses 4042 (two in this embodiment) and rectangular end faces are evenly distributed along the circumferential direction. When the reel B404 and the sleeve A401 are installed, each of the bosses 4042 is provided. It is inserted into an opening groove 4011 to fix the reel B404 to the sleeve A401. One or more reels B404 are installed on the other end of the sleeve A401.
- each reel B404 is processed with a wire groove B4041 that spirals in a clockwise or counterclockwise direction for winding the driving tendon; this embodiment is in a winding
- the two ends of the wire wheel B404 are respectively provided with a wire groove B4041.
- the driving tendon is wound in the wire groove B4041.
- the end of the driving tendon is embedded in the slot of the wire groove B4041 to fix the end of the driving tendon.
- the other end of the driving tendon is wound and fixed to the overall rotation mechanism. 4 on the wire groove of the reel A in 4 to realize the connection between the overall rotating mechanism 4 and the overall driving mechanism 8.
- the overall drive mechanism 8 has the same structure as the remote actuator opening and closing drive mechanism 10.
- the overall drive mechanism 8 of this embodiment has two reels A, and one end of the two drive tendons are respectively wound and fixed in the overall drive mechanism 8.
- the other ends of the wire grooves A of the two reels A are respectively wound and fixed with the wire grooves B4041 at both ends of the reel B404 in the overall rotation mechanism 4.
- the casing 2 is provided with a plurality of auxiliary guiding devices to assist the drive tendon to route the proximal drive portion 1.
- the auxiliary guide device is a drive tendon guide seat 3 or a guide wheel shaft system.
- the drive tendon guide seat 3 is installed at the exit of the reel B404 of the overall rotation mechanism 4 and includes a seat body 301 and a guide disc 302.
- One end of the seat machine 301 is fixed to the base of the housing 2.
- the other end is provided with a guide disc 302, and a circular hole 304 is opened at a middle position on the guide disc 302, and a plurality of guide holes 303 are uniformly provided along the circumference of the circular hole 304 for driving tendons to pass through to restrict the drive.
- the relative position of the tendon is provided.
- the steering wheel shaft system is distributed in the proximal driving portion 1 to assist the drive tendon to run in the proximal driving portion 1.
- the guide wheel shaft system comprises a guide wheel shaft, a sleeve and a guide wheel.
- the guide wheel shaft is mounted on the housing 2.
- At least one guide wheel is mounted on the guide wheel shaft in the axial direction.
- the guide wheel passes through the sleeve shaft installed on the guide wheel shaft. To the limit.
- the guide wheel shaft system of this embodiment is divided into two types, one of which is shown in FIG. 17, including a guide wheel shaft A1401, a sleeve B1402, a guide wheel A1403, a guide wheel B1404, a guide wheel C1405, and a guide wheel D1406.
- the upper and lower ends of A1401 are respectively installed in the mounting holes provided in the base 201 and the cover plate 202.
- Four guide wheels (guide wheel A1403, guide wheel B1404, guide wheel C1405, and guide wheel D1406) are rotatably installed on the guide wheel shaft A1401, respectively.
- a sleeve B1402 mounted on the guide wheel shaft A1401 is provided at each of the upper and lower ends of the four guide wheels to axially limit the four guide wheels.
- FIG. 18 Another type of guide wheel shaft system is shown in FIG. 18, which includes a guide wheel shaft B2001, a sleeve C2002, a guide wheel E2003, and a guide wheel F2004.
- the upper and lower ends of the guide wheel shaft B2001 are respectively installed on the base 201 and the cover plate 202.
- two guide wheels (guide wheel E2003 and guide wheel F2004) are respectively mounted on the guide wheel shaft B2001, and the upper and lower ends of each guide wheel are respectively provided with a sleeve C2002 mounted on the guide wheel shaft B2001.
- a guide wheel carries out axial limit.
- the guide wheel shaft system can be used independently, most of which are arranged in pairs.
- the drive tendons are limited to the wire groove between the guide wheels of the two guide wheel shaft systems to prevent the drive tendons from falling off during work.
- 12 guide wheel shaft systems are provided in the proximal driving part 1, which are a guide wheel shaft system A14, a guide wheel shaft system B15, a guide wheel shaft system C16, a guide wheel shaft system D17, a guide wheel shaft system E18, a guide wheel shaft system F19, and a guide.
- each guide wheel of this embodiment is a disc-shaped part, a shaft hole is provided at the center portion, and a wire groove is processed at the radial middle portion to guide the tendon.
- the distal actuator 7 of the present invention may be a scissors, a grasping forceps or a needle holder, and the deformation section 6 may be a continuous flexible body or a multi-joint type mechanism, which is not limited by the present invention.
- connection mode and working principle of the driving tendon of the present invention are:
- the surgical instrument in this embodiment has six degrees of freedom, including the overall rotation of the rod body 5, the deformation section 6, and the distal end effector 7, the four directions (up, down, left and right) of the deformation section 6, and the distal end effector 7 opening.
- These six degrees of freedom are composed of the overall driving mechanism 8, the remote actuator opening and closing driving mechanism 10, the four deformation section deflection driving mechanisms (the deformation section deflection driving mechanism A9, the deformation section deflection driving mechanism B11, and the deformation section deflection driving mechanism. C12, deformation section deflection drive mechanism D13) drive.
- the guide wheel shaft system G20 is shown in Figure 18.
- the two guide wheels shown, the guide wheel shaft system H uses four guide wheels as shown in FIG. 17; the two driving tendons pass through the guide wheel E2003 in the guide wheel shaft system G20 and the guide wheel C in the guide wheel shaft system H21, and the other end It is wound in clockwise and counterclockwise directions and fixed to the two ends of the reel B404 in the overall rotation mechanism 4, respectively.
- the driving tendon of the overall drive mechanism 8 is routed, and the overall rotation mechanism 4 and the overall drive mechanism 8 are realized. Connection.
- the docking disk in the overall driving mechanism 8 rotates clockwise, thereby driving the reel shaft and the two reels A in the overall driving mechanism 8 to rotate clockwise; at this time, the winding The driving tendon fixed on the reel A is tightened to drive the reel B404 in the overall rotation mechanism 4 to rotate counterclockwise; when the corresponding motor in the power unit is rotated counterclockwise, the docking disk in the overall drive mechanism 8 is driven to reverse Rotate clockwise to drive the reel shaft in the overall drive mechanism 8 and the two reels A to rotate counterclockwise; at this time, the drive tendon wound on one of the reels A is tightened to drive the overall rotation mechanism 4
- the bobbin wheel B404 rotates clockwise, thereby realizing the overall bidirectional rotation function of the rod body 5, the deformation section 6, and the remote end effector 7.
- the deformation section 6 of this embodiment has four degrees of freedom, and can realize bending in four directions.
- the deformation section 6 in this embodiment includes two deformation sections, each of which has two degrees of freedom, and is driven by four driving tendons. Since the connection form and the working principle are consistent, only one deformation section is driven here.
- One end of the two driving tendons is respectively fixed to the end face of the deformed section, passes through the wire groove on the deformed section, the rod body 5, the overall rotation mechanism 4, and the guide hole 303 on the drive tendon guide seat 3, and then passes through a pair of guide wheel shaft systems ( Guide wheel shaft system A14 and guide wheel shaft system B15), the guide wheel shaft system A14 and the guide wheel shaft system B15 each use four guide wheels as shown in FIG.
- the other end of one of the driving tendons passes the guide wheel in the guide wheel shaft system A14 B1404 and the guide wheel B in the guide wheel shaft system B15 are wound in a clockwise direction and fixed on one reel A of the deflection drive mechanism A9 of the deformation section, and the other end of the other drive tendon passes through the guide wheel shaft system A14.
- the guide wheel B1404 and the guide wheel B in the guide wheel shaft system B15 are wound counterclockwise and fixed to the other winding wheel A in the deflection drive mechanism A9 of the deformation section.
- the drive tendon for driving the deformation section to swing left and right is routed. After that, the connection between the deformation section deflection driving mechanism A9 and the deformation section is realized.
- the docking disk in the deformation section deflection driving mechanism A9 is driven to rotate counterclockwise, thereby driving the reel shaft and the two reels A in the deformation section deflection driving mechanism A9 to rotate counterclockwise;
- the driving tendon wound and fixed on the other reel A is tightened, and transmitted through the driving tendon, so that the deformation section is bent to the left, thereby realizing the bidirectional bending of the deformation section in the plane, and the deformation section deflects the driving mechanism A9.
- the cooperation of the deformation section deflection driving mechanism B11, the deformation section deflection driving mechanism C12, and the deformation section deflection driving mechanism D13 realizes the four-way bending of the deformation section 6.
- the driving tendon of the opening and closing driving mechanism 10 of the remote actuator may be one or two, and the specific number is determined by the structure of the remote actuator 7.
- the gripper with the single-sided opening and closing of the remote actuator 7 is
- the driving tendon is one at this time.
- the middle part of the driving tendon is fixed to the openable side of the grasping forceps.
- the two ends of the driving tendon pass through the deformation section 6, the rod body 5, the overall rotation mechanism 4, and the circular hole 304 on the middle of the driving tendon guide seat 3, and then pass through the guide wheel shaft.
- System E18 and guide wheel axle system F19 Both guide wheel axle system E18 and guide wheel axle system F19 use two guide wheels as shown in FIG.
- one end of the driving tendon passes through guide wheel E and guide wheel axle system F19 in guide wheel axle system E18.
- the guide wheel E is wound in a clockwise direction and fixed on a reel A1003 in the opening and closing drive mechanism 10 of the remote actuator, and the other end of the drive tendon passes through the guide wheel F and the guide wheel shaft system in the guide wheel shaft system E18.
- the guide wheel F in F19 is wound in the counterclockwise direction and fixed on the other reel A1003 in the opening and closing driving mechanism 10 of the remote actuator.
- the driving tendon of the opening and closing driving mechanism 10 of the remote actuator is routed. This completes the connection between the remote actuator opening and closing drive mechanism 10 and the remote actuator 7.
- the docking disk 1004 in the opening and closing driving mechanism 10 of the remote actuator is rotated clockwise, so that the winding wheel shaft 1001 and the two in the opening and closing driving mechanism 10 of the remote actuator are driven.
- the reel A1003 rotates clockwise.
- the driving tendon wound on one of the reels A1003 is tightened and passed through the driving tendon, so that the unilateral forceps of the grasping forceps are opened.
- the corresponding motor in the power unit rotates counterclockwise
- the docking disk 1004 in the opening and closing driving mechanism 10 of the remote actuator is rotated counterclockwise, so that the winding wheel shaft 1001 and the two in the opening and closing driving mechanism 10 of the remote actuator are driven.
- the reel A1003 rotates counterclockwise; at this time, the drive tendon wound and fixed on the other reel A1003 is tightened and passed through the drive tendon to close the unilateral forceps of the grasping forceps. Driven by the action.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Robotics (AREA)
- Ophthalmology & Optometry (AREA)
- Manipulator (AREA)
Abstract
一种驱动单侧平板布置的微创手术器械,包括近端驱动部分(1)、壳体(2)、杆体(5)、形变段(6)及远端执行器(7),近端驱动部分(1)包括整体驱动旋转机构、形变段偏转驱动机构及远端执行器开合驱动机构(10),整体驱动旋转机构包括整体旋转机构(4)及整体驱动机构(8),整体旋转机构(4)与杆体(5)相连,并通过驱动腱与整体驱动机构(8)连接,由整体驱动机构(8)驱动整体旋转机构(4)带动杆体(5)、形变段(6)及远端执行器(7)整体旋转;远端执行器开合驱动机构(10)通过驱动腱与远端执行器(7)连接,驱动远端执行器(7)开合;形变段(6)通过驱动腱与对应的形变段偏转驱动机构相连,由形变段偏转驱动机构驱动形变段(6)弯曲。该微创手术器械具有手术的驱动小型化和轻量化,内部驱动腱走行稳定,单侧布置驱动可实现高密集度的驱动集成,便于手术过程中快速更换等优点。
Description
本发明属于医疗器械领域,具体地说是一种驱动单侧平板布置的微创手术器械。
在现代医学的诊疗过程中,为了实现手术创伤小、疼痛感轻、术后恢复快且美观等要求,微创手术在医疗外科领域占有越来越重要的地位。随着微创手术机器人的出现,医生可以在该机器人的帮助下实现微创、精准、高效的立体定向手术。对于微创手术机器人系统,医生通过操作台控制前端手术器械模仿医生手臂与腕部的灵活动作,因此对于微创手术机器人用手术器械有着更高的设计要求。微创手术所使用的手术器械相比于传统意义的手术器械,应满足小型化、轻量化、具有多自由度且操作灵活、便于安装等要求。器械内部多种形式的驱动腱需要能够稳定的走行,保障操作的稳定性。此外,对于单孔腔镜手术机器人还需要采用特殊设计的驱动端构型,以实现多支器械通过单一孔道开展手术在驱动端所需的集成化布置。
发明内容
本发明的目的在于提供一种驱动单侧平板布置的微创手术器械,满足了小型化、轻量化、多自由度、操作灵活、便于安装等要求,可辅助医生进行微创手术操作。
本发明的目的是通过以下技术方案来实现的:
本发明包括近端驱动部分、壳体、杆体、形变段及远端执行器,其中形变段连接于杆体与远端执行器之间,所述近端驱动部分包括分别安装在壳体上的整体驱动旋转机构、形变段偏转驱动机构及远端执行器开合驱动机构,该整体驱动旋转机构包括分别安装在壳体上的整体旋转机构及整体驱动机构,该整体旋转机构与所述杆体相连,并通过驱动腱与所述整体驱动机构连接,由整体驱动机构驱动整体旋转机构带动杆体、形变段及远端执行器整体旋转;所述远端执行器开合驱动机构通过驱动腱与远端执行器连接,驱动该远端执行器开合;所述形变段至少为一段,所述壳体上安装有与各形变段相对应的形变段偏转驱动机构,每段的所述形变段均通过驱动腱与对应的形变段偏转驱动机构相连,由形变段偏转驱动机构驱动形变段弯曲;
其中:所述远端执行器开合驱动机构与形变段偏转驱动机构结构相同,均包括绕线轮轴、绕线轮A及对接盘,该绕线轮轴转动安装在所述壳体上,任意一端与位于壳体外部的对接盘的一端相连,所述对接盘的另一端与动力装置连接;所 述绕线轮A安装在绕线轮轴上,并与绕线轮轴连动,该绕线轮A通过驱动腱与远端执行器或形变段相连;所述动力装置驱动对接盘正向或反向旋转,进而带动所述绕线轮轴及绕线轮A旋转,通过所述驱动腱带动所述远端执行器开合或带动所述形变段弯曲;
所述绕线轮轴上安装有一个或多个绕线轮A,当绕线轮轴上安装有一个绕线轮A时,该绕线轮A上设有供驱动腱缠绕固定的至少两个线槽A,两根所述驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个线槽A上,两根所述驱动腱的另一端分别与所述远端执行器连接或分别与所述形变段连接;当绕线轮轴上安装多个绕线轮A时,每个绕线轮A上均设有供驱动腱缠绕固定的线槽A,两根所述驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个绕线轮A的线槽A上,两根所述驱动腱的另一端分别与所述远端执行器连接或分别与所述形变段连接;
所述整体旋转机构包括套筒A、轴承座及绕线轮B,该轴承座安装在所述壳体上,所述套筒A转动安装在轴承座上,一端与所述杆体连接,另一端安装有绕线轮B;所述整体驱动机构包括绕线轮轴、绕线轮A及对接盘,该绕线轮轴转动安装在所述壳体上,任意一端与位于壳体外部的对接盘的一端相连,所述对接盘的另一端与动力装置连接;所述绕线轮A安装在绕线轮轴上,并与绕线轮轴连动,该绕线轮A通过驱动腱与所述绕线轮B相连;所述动力装置驱动对接盘正向或反向旋转,进而带动所述绕线轮轴及绕线轮A旋转,通过所述驱动腱带动所述绕线轮B及套筒A旋转,实现所述杆体、形变段及远端执行器整体旋转;
所述绕线轮轴上安装有一个或多个绕线轮A,当绕线轮轴上安装有一个绕线轮A时,该绕线轮A上设有供驱动腱缠绕固定的至少两个线槽A,两根所述驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个线槽A上,两根所述驱动腱的另一端分别与所述绕线轮B连接;当绕线轮轴上安装多个绕线轮A时,每个绕线轮A上均设有供驱动腱缠绕固定的线槽A,两根所述驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个绕线轮A的线槽A上,两根所述驱动腱的另一端分别与所述绕线轮B连接;
所述套筒A的另一端上安装有一个或多个绕线轮B,当绕线轮B为一个时,两端分别沿顺时针方向螺旋及逆时针方向螺旋加工有用于缠绕驱动腱的线槽B;当所述绕线轮B为多个时,每个绕线轮B上均加工有沿顺时针方向螺旋或逆时针方向螺旋的、用于缠绕驱动腱的线槽B;
所述壳体上设有多个辅助导向装置,该辅助导向装置为驱动腱导向座或导向轮轴系;
所述驱动腱导向座包括座体及导向盘,该座机的一端安装在所述壳体上,另一端设有导向盘,所述导向盘上的中间位置开设有圆孔,该圆孔的外围沿圆周方向均匀开设有多个供驱动腱穿过的导向孔;
所述导向轮轴系包括导向轮轴、套筒及导向轮,该导向轮轴安装在壳体上,在所述导向轮轴上沿轴向转动安装有至少一个导向轮,所述导向轮通过安装在导向轮轴上的套筒轴向限位;
所述壳体包括底座、盖板及外罩,该盖板通过多根立柱与底座连接,所述整体驱动机构、形变段偏转驱动机构及远端执行器开合驱动机构分别位于底座与盖板之间,在所述盖板外侧罩有安装在底座上的外罩;
所述整体驱动机构、形变段偏转驱动机构及远端执行器开合驱动机构沿杆体的轴向单侧布置。
本发明的优点与积极效果为:
1.本发明采用平面式布置,垂直于轴向布置对接盘,有利于驱动腱对驱动力的传递;器械的驱动机构沿杆体轴线方向采用单侧布置,相比于传统意义上的双侧对称布置,器械驱动部分的集成度更高;近端驱动部分辅助导向装置的布置,如驱动腱导向座、双排导向轮轴系等,确保了大载荷条件下,驱动腱不会从导向轮槽中脱落。
2.本发明具有多自由度,方便拆装,便于手术过程中的快速更换,增加了手术动作的灵活度,机构布局合理,较好地实现了手术器械的小型化、轻量化等要求。
图1为本发明的立体结构示意图;
图2为本发明的整体结构主视图;
图3为本发明近端驱动部分的结构主视图;
图4为本发明近端驱动部分的立体结构示意图;
图5为本发明近端驱动部分的结构后视图;
图6为本发明远端执行器开合驱动机构的结构示意图;
图7为图6中绕线轮A的结构主视图;
图8为图7的左视图;
图9为图6中对接盘的结构主视图;
图10为图9的左视图;
图11为本发明整体旋转机构的结构示意图;
图12为图11的俯视剖视图;
图13为图11中绕线轮B的结构主视图;
图14为图13的左视图;
图15为本发明驱动腱导向座的结构主视图;
图16为图15的左视图;
图17为本发明导向轮轴系的一种结构示意图;
图18为本发明导向轮轴系的另一种结构示意图;
图19为图17或图18中导向轮的结构主视图;
图20为图19的侧视图;
图21为本发明立柱的立体结构示意图;
图22为本发明外罩的结构主视图;
图23为图22的左视图;
其中:1为近端驱动部分;
2为壳体,201为底座,202为盖板,203为外罩;
3为驱动腱导向座,301为座体,302为导向盘,303为导向孔,304为圆孔;
4为整体旋转机构,401为套筒A,4011为开口槽,402为轴承座,403为轴承B,404为绕线轮B,4041为线槽B,4042为凸台;
5为杆体,6为形变段,7为远端执行器,8为整体驱动机构,9为形变段偏转驱动机构A;
10为远端执行器开合驱动机构,1001为绕线轮轴,1002为轴承A,1003为绕线轮A,10031为线槽A,10032为螺纹孔,1004为对接盘,10041为D型截面轴孔;
11为形变段偏转驱动机构B,12为形变段偏转驱动机构C,13为形变段偏转驱动机构D;
14为导向轮轴系A,1401为导向轮轴A,1402为套筒B,1403为导向轮A,1404为导向轮B,1405为导向轮C,1406为导向轮D;
15为导向轮轴系B,16为导向轮轴系C,17为导向轮轴系D,18为导向轮轴系E,19为导向轮轴系F;
20为导向轮轴系G,2001为导向轮轴B,2002为套筒C,2003为导向轮E,2004为导向轮F;
21为导向轮轴系H,22为导向轮轴系I,23为导向轮轴系J,24为导向轮轴系K,25为导向轮轴系L,26为立柱,27为导轨。
下面结合附图对本发明作进一步详述。
如图1~4所示,本发明包括近端驱动部分1、壳体2、杆体5、形变段6及远端执行器7,其中形变段6连接于杆体5与远端执行器7之间,近端驱动部分1包括分别安装在壳体2上的整体驱动旋转机构、形变段偏转驱动机构、远端执行器开合驱动机构10及辅助导向装置,该整体驱动旋转机构、形变段偏转驱动机构、远端执行器开合驱动机构10及辅助导向装置区别于现有手术器械的对称布置方式,采用沿杆体5的轴向单侧布置。整体驱动旋转机构包括分别安装在壳体2上的整体旋转机构4及整体驱动机构8,该整体旋转机构4与杆体5相连, 并通过驱动腱与整体驱动机构8连接,由整体驱动机构8驱动整体旋转机构4带动杆体5、形变段6及远端执行器7整体旋转。远端执行器开合驱动机构10通过驱动腱与远端执行器7连接,驱动该远端执行器7开合。形变段6至少为一段,壳体2上安装有与各形变段6相对应的形变段偏转驱动机构,每段的形变段6均通过驱动腱与对应的形变段偏转驱动机构相连,由形变段偏转驱动机构驱动各形变段6弯曲。本发明可实现的自由度包括杆体5、形变段6及远端执行器7的整体旋转,形变段6的弯曲和远端执行器7的开合。本发明的驱动腱可采用绳索、丝等腱传动。
如图1~5及图21~23所示,本发明的壳体2包括底座201、盖板202及外罩203,该盖板202通过多根(本实施例为四根)立柱26与底座201连接,立柱26呈“L”形,“L”形的两条边上均开有螺纹孔,用于与底座201和盖板202螺纹连接。整体驱动机构8、形变段偏转驱动机构及远端执行器开合驱动机构10分别位于底座201与盖板202之间,在盖板202外侧罩有螺纹连接固定在底座201上的外罩203,整体驱动机构8、形变段偏转驱动机构、远端执行器开合驱动机构10及辅助导向装置均位于外罩203内部。底座201的背面安装有两根相互平行的导轨27,与动力装置上的导轨槽配合使用,便于手术器械的安装和固定。本实施例的底座201及盖板202上分别开设有了多个安装孔,用于安装绕线轮轴上的轴承以及导向轮轴。
远端执行器开合驱动机构10与形变段偏转驱动机构结构相同,均包括绕线轮轴、绕线轮A及对接盘,该绕线轮轴转动安装在壳体2上,任意一端与位于壳体2外部的对接盘的一端相连,对接盘的另一端与动力装置连接;绕线轮A安装在绕线轮轴上,并与绕线轮轴连动,该绕线轮A通过驱动腱与远端执行器7或形变段6相连;动力装置驱动对接盘正向或反向旋转,进而带动绕线轮轴及绕线轮A旋转,通过驱动腱带动远端执行器7开合或带动形变段6弯曲。绕线轮轴上安装有一个或多个绕线轮A,当绕线轮轴上安装有一个绕线轮A时,该绕线轮A上设有供驱动腱缠绕固定的至少两个线槽A,两根驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个线槽A上,两根驱动腱的另一端分别与远端执行器7连接或分别与形变段6连接。当绕线轮轴上安装多个绕线轮A时,每个绕线轮A上均设有供驱动腱缠绕固定的线槽A,两根驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个绕线轮A的线槽A上,两根驱动腱的另一端分别与远端执行器7连接或分别与形变段6连接。
如图6~10所示,本实施例的远端执行器开合驱动机构10的绕线轮轴1001通过上下设置的两个轴承A1002转动安装在壳体2上,其中位于上端的轴承A1002的外圈安装在盖板202上,位于下端的轴承A1002的外圈安装在底座201上。本实施例的远端执行器开合驱动机构10具有两个绕线轮A1003,每个绕线轮A1003上分别加工有供驱动腱缠绕固定的线槽A10031和两个螺纹孔10032;安装时, 两根驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在两个绕线轮A1003的线槽A10031上,通过调整两个绕线轮A1003与绕线轮轴1001的相对夹角进行驱动腱的预紧,每个绕线轮A1003的两个螺纹孔10032均通过顶丝将绕线轮A1003固定在绕线轮轴1001上;两根驱动腱的另一端分别连接于远端执行器7上。对接盘1004的中间开设有D型截面轴孔10041,绕线轮轴1001的下端穿过固定在底座201的轴承A1002、与对接盘1004通过D型截面轴孔连接;对接盘1004的另一端与动力装置的对接盘相连,通过动力装置(可为电机)驱动对接盘1004旋转,进而带动绕线轮轴1001旋转,从而实现绕线轮A1003的旋转。
本实施例的形变段6为两个,每个形变段6均具有左右弯曲及上下弯曲的自由度;每个形变段6对应两个形变段偏转驱动机构,其中一个形变段偏转驱动机构用于驱动形变段左右弯曲,另一个形变段偏转驱动机构用于驱动形变段上下弯曲。本实施例具有六个自由度,四个形变段偏转驱动机构,实现两个形变段的四个自由度,再加上一个实现远端执行器7开合自由度的远端执行器开合驱动机构10和一个实现整体旋转自由度的整体驱动机构8,这六个驱动机构在底座201上按两排三列的规律分布。当根据需要再增加驱动机构时,可根据实际的自由度数量以及集成度需求分布。本实施例的四个形变段偏转驱动机构分别为形变段偏转驱动机构A9、形变段偏转驱动机构B11、形变段偏转驱动机构C12及形变段偏转驱动机构D13,结构均与本实施例的远端执行器开合驱动机构10相同;每个形变段偏转驱动机构中的两根驱动腱的另一端分别固接于一个形变段6的端面。
如图1~5及图11~14所示,整体旋转机构4包括套筒A401、轴承座402、轴承B403及绕线轮B404,该轴承座402通过螺纹连接固定在壳体2的底座201上,套筒A401通过三个轴承B403转动安装在轴承座402上,三个轴承B403的内圈与套筒A401的外侧接触,三个轴承B403的外圈安装在轴承座402上。套筒A401的一端与杆体5连接,另一端沿圆周方向均布有多个(本实施例为两个)长条形的开口槽4011;绕线轮B404安装在套筒A401的另一端,绕线轮B404的内孔壁上沿圆周方向均布有多个(本实施例为两个)、端面呈长方形的凸台4042,在绕线轮B404与套筒A401安装时,每个凸台4042插入一个开口槽4011中,使绕线轮B404固接于套筒A401上。套筒A401的另一端上安装有一个或多个绕线轮B404,当绕线轮B404为一个时,两端分别沿顺时针方向螺旋及逆时针方向螺旋加工有用于缠绕驱动腱的线槽B4041;当绕线轮B404为多个时,每个绕线轮B404上均加工有沿顺时针方向螺旋或逆时针方向螺旋的、用于缠绕驱动腱的线槽B4041;本实施例是在一个绕线轮B404的两端分别设有线槽B4041,驱动腱缠绕在线槽B4041中,驱动腱末端会嵌入线槽B4041的槽孔中来固定驱动腱末端,驱动腱的另一端缠绕并固定在整体旋转机构4中绕线轮A的线槽上,以此实现整体旋转机构4与整体驱动机构8的连接,当整体驱动机构8正向或反向旋转时,通过驱动腱带动整体旋转机构4中绕线轮B404旋转,从而实现杆体5、形变段6 以及远端执行器7的整体旋转自由度。
整体驱动机构8的结构与远端执行器开合驱动机构10相同,本实施例的整体驱动机构8具有两个绕线轮A,两根驱动腱的一端分别缠绕并固定于整体驱动机构8中两个绕线轮A的线槽A中,另一端分别与整体旋转机构4中绕线轮B404两端的线槽B4041缠绕并固定。
壳体2上设有多个辅助导向装置,以辅助驱动腱在近端驱动部分1走线。辅助导向装置为驱动腱导向座3或导向轮轴系。
如图15及图16所示,驱动腱导向座3安装在整体旋转机构4的绕线轮B404的出口部位,包括座体301及导向盘302,该座机301的一端固定在壳体2的底座201上,另一端设有导向盘302,导向盘302上的中间位置开设有圆孔304,该圆孔304的外围沿圆周方向均匀开设有多个供驱动腱穿过的导向孔303,约束驱动腱的相对位置关系。
导向轮轴系分布在近端驱动部分1,来辅助驱动腱在近端驱动部分1走线。导向轮轴系包括导向轮轴、套筒及导向轮,该导向轮轴安装在壳体2上,在导向轮轴上沿轴向转动安装有至少一个导向轮,导向轮通过安装在导向轮轴上的套筒轴向限位。
本实施例的导向轮轴系分为两种类型,其中一种类型如图17所示,包括导向轮轴A1401、套筒B1402、导向轮A1403、导向轮B1404、导向轮C1405及导向轮D1406,导向轮轴A1401的上下两端分别安装在底座201和盖板202上开设的安装孔内,四个导向轮(导向轮A1403、导向轮B1404、导向轮C1405及导向轮D1406)分别转动安装在导向轮轴A1401上,并在四个导向轮的上下两端各设置一个安装在导向轮轴A1401上的套筒B1402,对四个导向轮进行轴向限位。
另一种类型的导向轮轴系如图18所示,包括导向轮轴B2001、套筒C2002、导向轮E2003及导向轮F2004,导向轮轴B2001的上下两端分别安装在底座201和盖板202上开设的安装孔内,两个导向轮(导向轮E2003及导向轮F2004)分别转动安装在导向轮轴B2001上,每个导向轮的上下两端各设置有安装在导向轮轴B2001上的套筒C2002,对两个导向轮进行轴向限位。导向轮轴系可单独使用,多数为两两配对布置,将驱动腱限制在两导向轮轴系的导向轮之间的线槽中,防止驱动腱工作过程中脱落。
本实施例在近端驱动部分1设置了12个导向轮轴系,分别为导向轮轴系A14、导向轮轴系B15、导向轮轴系C16、导向轮轴系D17、导向轮轴系E18、导向轮轴系F19、导向轮轴系G20、导向轮轴系H21、导向轮轴系I22、导向轮轴系J23、导向轮轴系K24及导向轮轴系L25,导向轮轴系A14与导向轮轴系B15、导向轮轴系C16与导向轮轴系D17、导向轮轴系E18与导向轮轴系F19、导向轮轴系I22与导向轮轴系J23、导向轮轴系K24与导向轮轴系L25两两配对布置,导向轮轴系G20、导向轮轴系H21单独布置。如图19、图20所示,本实施例的各导向轮 均为一圆盘型零件,中心部位设置有轴孔,径向中间部位加工有线槽,为驱动腱导向。
本发明的远端执行器7可以为剪刀、抓钳或持针器,形变段6可以为连续柔性体或多关节型机构,本发明不做约束。
本发明驱动腱的连接方式及工作原理为:
本实施例中的手术器械具有六个自由度,其中包括杆体5、形变段6以及远端执行器7的整体旋转、形变段6的四个方向(上下左右)弯曲以及远端执行器7开合,这六个自由度由整体驱动机构8、远端执行器开合驱动机构10、四个形变段偏转驱动机构(形变段偏转驱动机构A9、形变段偏转驱动机构B11、形变段偏转驱动机构C12、形变段偏转驱动机构D13)驱动,现以整体驱动机构8为例分别说明形变段偏转驱动机构、远端执行器开合驱动机构10的驱动腱在手术器械内部连接方式及工作原理:
整体驱动机构8的驱动腱有两根,两根驱动腱的一端分别按顺时针和逆时针方向缠绕并固定在整体驱动机构8中两个绕线轮A上,导向轮轴系G20采用如图18所示的两个导向轮,导向轮轴系H采用如图17所示的四个导向轮;两根驱动腱经过导向轮轴系G20中导向轮E2003和导向轮轴系H21中导向轮C后,另一端分别按顺时针和逆时针方向缠绕并固定在整体旋转机构4中的绕线轮B404的两端,此时整体驱动机构8的驱动腱走线完毕,实现了整体旋转机构4与整体驱动机构8的连接。当动力装置中的对应电机顺时针旋转,带动整体驱动机构8中的对接盘顺时针旋转,从而带动整体驱动机构8中的绕线轮轴和两个绕线轮A顺时针旋转;此时,缠绕固定在绕线轮A上的驱动腱收紧,带动整体旋转机构4中的绕线轮B404逆时针旋转;当动力装置中的对应电机逆时针旋转时,带动整体驱动机构8中的对接盘逆时针旋转,从而带动整体驱动机构8中的绕线轮轴和两个绕线轮A逆时针旋转;此时,缠绕固定在其中一个绕线轮A上的驱动腱收紧,带动整体旋转机构4中的绕线轮B404顺时针旋转,从而实现杆体5、形变段6以及远端执行器7的整体双向旋转功能。
本实施例的形变段6具有四个自由度,可以实现四个方向的弯曲。本实施例中的形变段6包括两个形变段,每个形变段均有两个自由度,共由四根驱动腱驱动,由于其连接形式与工作原理均一致,这里仅以驱动一个形变段左右摆动的一对驱动腱为例加以说明:
两根驱动腱的一端分别固定在形变段的端面,穿过形变段上的线槽、杆体5、整体旋转机构4、驱动腱导向座3上的导向孔303后,经过一对导向轮轴系(导向轮轴系A14和导向轮轴系B15),导向轮轴系A14和导向轮轴系B15均采用如图17所示的四个导向轮;其中一根驱动腱的另一端经过导向轮轴系A14中的导向轮B1404和导向轮轴系B15中的导向轮B后沿顺时针方向缠绕并固定在形变段偏转驱动机构A9中的一个绕线轮A上,另外一根驱动腱的另一端经过导向轮轴 系A14中的导向轮B1404和导向轮轴系B15中的导向轮B后沿逆时针方向缠绕并固定在形变段偏转驱动机构A9中的另一个绕线轮A上,此时驱动形变段左右摆动的驱动腱走线完毕,实现了形变段偏转驱动机构A9与形变段的连接。当动力装置中的对应电机顺时针旋转,带动形变段偏转驱动机构A9中的对接盘顺时针旋转,从而带动形变段偏转驱动机构A9中的绕线轮轴和两个绕线轮A顺时针旋转;此时,缠绕固定在其中一个绕线轮A上的驱动腱收紧,经过驱动腱传递,使得形变段向右侧弯曲。当动力装置中的对应电机逆时针旋转,带动形变段偏转驱动机构A9中的对接盘逆时针旋转,从而带动形变段偏转驱动机构A9中的绕线轮轴和两个绕线轮A逆时针旋转;此时,缠绕固定在另一个绕线轮A上的驱动腱收紧,经过驱动腱传递,使得形变段向左侧弯曲,从而实现了形变段在平面内的双向弯曲,形变段偏转驱动机构A9、形变段偏转驱动机构B11、形变段偏转驱动机构C12及形变段偏转驱动机构D13的配合工作,实现了形变段6的四向弯曲。
远端执行器开合驱动机构10的驱动腱可以是一根或两根,具体数目由远端执行器7的结构形式所决定,这里以远端执行器7为单边开合的抓钳为例,此时驱动腱为一根。驱动腱中部与抓钳可开合的单边固接,驱动腱两端穿过形变段6、杆体5、整体旋转机构4、驱动腱导向座3上中间的圆孔304后,分别经过导向轮轴系E18和导向轮轴系F19,导向轮轴系E18和导向轮轴系F19均采用如图18所示的两个导向轮;驱动腱的一端经过导向轮轴系E18中的导向轮E和导向轮轴系F19中的导向轮E后沿顺时针方向缠绕并固定在远端执行器开合驱动机构10中的一个绕线轮A1003上,驱动腱的另外一端经过导向轮轴系E18中的导向轮F和导向轮轴系F19中的导向轮F后沿逆时针方向缠绕并固定在远端执行器开合驱动机构10中的另一个绕线轮A1003上,此时远端执行器开合驱动机构10的驱动腱走线完毕,实现了远端执行器开合驱动机构10与远端执行器7的连接。当动力装置中的对应电机顺时针旋转,带动远端执行器开合驱动机构10中的对接盘1004顺时针旋转,从而带动远端执行器开合驱动机构10中的绕线轮轴1001和两个绕线轮A1003顺时针旋转,此时,缠绕固定在其中一个绕线轮A1003上的驱动腱收紧,经过驱动腱传递,使得抓钳的单边钳张开。当动力装置中的对应电机逆时针旋转,带动远端执行器开合驱动机构10中的对接盘1004逆时针旋转,从而带动远端执行器开合驱动机构10中的绕线轮轴1001和两个绕线轮A1003逆时针旋转;此时,缠绕固定在另一个绕线轮A1003上的驱动腱收紧,经过驱动腱传递,使得抓钳的单边钳闭合,从而实现了远端执行器7开合动作的驱动。
Claims (10)
- 一种驱动单侧平板布置的微创手术器械,其特征在于:包括近端驱动部分(1)、壳体(2)、杆体(5)、形变段(6)及远端执行器(7),其中形变段(6)连接于杆体(5)与远端执行器(7)之间,所述近端驱动部分(1)包括分别安装在壳体(2)上的整体驱动旋转机构、形变段偏转驱动机构及远端执行器开合驱动机构(10),该整体驱动旋转机构包括分别安装在壳体(2)上的整体旋转机构(4)及整体驱动机构(8),该整体旋转机构(4)与所述杆体(5)相连,并通过驱动腱与所述整体驱动机构(8)连接,由整体驱动机构(8)驱动整体旋转机构(4)带动杆体(5)、形变段(6)及远端执行器(7)整体旋转;所述远端执行器开合驱动机构(10)通过驱动腱与远端执行器(7)连接,驱动该远端执行器(7)开合;所述形变段(6)至少为一段,所述壳体(2)上安装有与各形变段(6)相对应的形变段偏转驱动机构,每段的所述形变段(6)均通过驱动腱与对应的形变段偏转驱动机构相连,由形变段偏转驱动机构驱动形变段(6)弯曲。
- 根据权利要求1所述驱动单侧平板布置的微创手术器械,其特征在于:所述远端执行器开合驱动机构(10)与形变段偏转驱动机构结构相同,均包括绕线轮轴、绕线轮A及对接盘,该绕线轮轴转动安装在所述壳体(2)上,任意一端与位于壳体(2)外部的对接盘的一端相连,所述对接盘的另一端与动力装置连接;所述绕线轮A安装在绕线轮轴上,并与绕线轮轴连动,该绕线轮A通过驱动腱与远端执行器(7)或形变段(6)相连;所述动力装置驱动对接盘正向或反向旋转,进而带动所述绕线轮轴及绕线轮A旋转,通过所述驱动腱带动所述远端执行器(7)开合或带动所述形变段弯曲。
- 根据权利要求2所述驱动单侧平板布置的微创手术器械,其特征在于:所述绕线轮轴上安装有一个或多个绕线轮A,当绕线轮轴上安装有一个绕线轮A时,该绕线轮A上设有供驱动腱缠绕固定的至少两个线槽A,两根所述驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个线槽A上,两根所述驱动腱的另一端分别与所述远端执行器(7)连接或分别与所述形变段(6)连接;当绕线轮轴上安装多个绕线轮A时,每个绕线轮A上均设有供驱动腱缠绕固定的线槽A,两根所述驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个绕线轮A的线槽A上,两根所述驱动腱的另一端分别与所述远端执行器(7)连接或分别与所述形变段(6)连接。
- 根据权利要求1所述驱动单侧平板布置的微创手术器械,其特征在于:所述整体旋转机构(4)包括套筒A(401)、轴承座(402)及绕线轮B(404),该轴承座(402)安装在所述壳体(2)上,所述套筒A(401)转动安装在轴承座(402)上,一端与所述杆体(5)连接,另一端安装有绕线轮B(404);所述 整体驱动机构(8)包括绕线轮轴、绕线轮A及对接盘,该绕线轮轴转动安装在所述壳体(2)上,任意一端与位于壳体(2)外部的对接盘的一端相连,所述对接盘的另一端与动力装置连接;所述绕线轮A安装在绕线轮轴上,并与绕线轮轴连动,该绕线轮A通过驱动腱与所述绕线轮B(404)相连;所述动力装置驱动对接盘正向或反向旋转,进而带动所述绕线轮轴及绕线轮A旋转,通过所述驱动腱带动所述绕线轮B(404)及套筒A(401)旋转,实现所述杆体(5)、形变段(6)及远端执行器(7)整体旋转。
- 根据权利要求4所述驱动单侧平板布置的微创手术器械,其特征在于:所述绕线轮轴上安装有一个或多个绕线轮A,当绕线轮轴上安装有一个绕线轮A时,该绕线轮A上设有供驱动腱缠绕固定的至少两个线槽A,两根所述驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个线槽A上,两根所述驱动腱的另一端分别与所述绕线轮B(404)连接;当绕线轮轴上安装多个绕线轮A时,每个绕线轮A上均设有供驱动腱缠绕固定的线槽A,两根所述驱动腱的一端分别沿顺时针方向和逆时针方向缠绕并固定在任意两个绕线轮A的线槽A上,两根所述驱动腱的另一端分别与所述绕线轮B(404)连接。
- 根据权利要求4所述驱动单侧平板布置的微创手术器械,其特征在于:所述套筒A(401)的另一端上安装有一个或多个绕线轮B(404),当绕线轮B(404)为一个时,两端分别沿顺时针方向螺旋及逆时针方向螺旋加工有用于缠绕驱动腱的线槽B(4041);当所述绕线轮B(404)为多个时,每个绕线轮B(404)上均加工有沿顺时针方向螺旋或逆时针方向螺旋的、用于缠绕驱动腱的线槽B(4041)。
- 根据权利要求1所述驱动单侧平板布置的微创手术器械,其特征在于:所述壳体(2)上设有多个辅助导向装置,该辅助导向装置为驱动腱导向座(3)或导向轮轴系。
- 根据权利要求7所述驱动单侧平板布置的微创手术器械,其特征在于:所述驱动腱导向座(3)包括座体(301)及导向盘(302),该座机(301)的一端安装在所述壳体(2)上,另一端设有导向盘(302),所述导向盘(302)上的中间位置开设有圆孔(304),该圆孔(304)的外围沿圆周方向均匀开设有多个供驱动腱穿过的导向孔(303);所述导向轮轴系包括导向轮轴、套筒及导向轮,该导向轮轴安装在壳体(2)上,在所述导向轮轴上沿轴向转动安装有至少一个导向轮,所述导向轮通过安装在导向轮轴上的套筒轴向限位。
- 根据权利要求1所述驱动单侧平板布置的微创手术器械,其特征在于:所述壳体(2)包括底座(201)、盖板(202)及外罩(203),该盖板(202)通过多根立柱(26)与底座(201)连接,所述整体驱动机构(8)、形变段偏转驱动机构及远端执行器开合驱动机构(10)分别位于底座(201)与盖板(202)之间,在所述盖板(202)外侧罩有安装在底座(201)上的外罩(203)。
- 根据权利要求1所述驱动单侧平板布置的微创手术器械,其特征在于:所述整体驱动机构(8)、形变段偏转驱动机构及远端执行器开合驱动机构(10)沿杆体(5)的轴向单侧布置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810751786.9 | 2018-07-10 | ||
CN201810751786.9A CN110693539A (zh) | 2018-07-10 | 2018-07-10 | 一种驱动单侧平板布置的微创手术器械 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020010759A1 true WO2020010759A1 (zh) | 2020-01-16 |
Family
ID=69143090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/113550 WO2020010759A1 (zh) | 2018-07-10 | 2018-11-02 | 一种驱动单侧平板布置的微创手术器械 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110693539A (zh) |
WO (1) | WO2020010759A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114098972B (zh) * | 2020-08-28 | 2024-10-18 | 中国科学院沈阳自动化研究所 | 一种可用于微创手术机器人的手术器械 |
CN112022238B (zh) * | 2020-08-28 | 2021-06-15 | 中国科学院沈阳自动化研究所 | 一种微创手术机器人用手术器械 |
CN112022239B (zh) * | 2020-08-28 | 2021-06-15 | 中国科学院沈阳自动化研究所 | 一种微创手术机器人用模块化形变驱动装置 |
CN113456234A (zh) * | 2020-09-11 | 2021-10-01 | 苏州威森特医疗机器人有限公司 | 具有力反馈功能的微创手术机器人 |
CN113317823B (zh) * | 2021-04-22 | 2022-06-07 | 华中科技大学 | 一种具备主动形变功能的抽吸切割式多点取样针 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101120888A (zh) * | 2006-08-08 | 2008-02-13 | 泰尔茂株式会社 | 作业机构及操纵装置 |
US20090065549A1 (en) * | 2007-09-11 | 2009-03-12 | Tyco Healthcare Group Lp | Articulating joint for surgical instruments |
CN101390763A (zh) * | 2008-10-31 | 2009-03-25 | 天津大学 | 辅助微创外科手术的机器人本体系统 |
CN101500493A (zh) * | 2006-08-16 | 2009-08-05 | 坎布里奇内窥镜设备有限公司 | 外科手术器械 |
CN104783844A (zh) * | 2015-01-22 | 2015-07-22 | 天津手智医疗科技有限责任公司 | 一种智能化微创手术器械 |
WO2017188851A1 (ru) * | 2016-04-29 | 2017-11-02 | Общество С Ограниченной Ответственностью "Мроботикс" | Концевой эффектор с шарнирным узлом и привод эндоскопического хирургического аппарата |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101732093B (zh) * | 2009-11-30 | 2011-09-07 | 哈尔滨工业大学 | 腹腔微创手术用微型机械手 |
CN102973321B (zh) * | 2012-10-17 | 2014-12-03 | 哈尔滨工程大学 | 外科手术用手动多自由度微机械手 |
CN103085083B (zh) * | 2013-01-07 | 2015-06-24 | 汪雯 | 可弯转可伸缩的柔性连续体机械结构 |
KR102521822B1 (ko) * | 2014-10-10 | 2023-04-17 | 트랜스엔테릭스 서지컬, 인크. | 전기기계적 수술 시스템 |
CN105748118B (zh) * | 2016-05-16 | 2019-03-19 | 南京科医思医疗科技有限公司 | 一种多向可调节拉钩 |
CN108175455A (zh) * | 2018-02-26 | 2018-06-19 | 山东大学齐鲁医院 | 一种具有移动和自转定位关节的单孔手术器械 |
CN208942219U (zh) * | 2018-07-10 | 2019-06-07 | 中国科学院沈阳自动化研究所 | 驱动单侧平板布置的微创手术器械 |
-
2018
- 2018-07-10 CN CN201810751786.9A patent/CN110693539A/zh active Pending
- 2018-11-02 WO PCT/CN2018/113550 patent/WO2020010759A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101120888A (zh) * | 2006-08-08 | 2008-02-13 | 泰尔茂株式会社 | 作业机构及操纵装置 |
CN101500493A (zh) * | 2006-08-16 | 2009-08-05 | 坎布里奇内窥镜设备有限公司 | 外科手术器械 |
US20090065549A1 (en) * | 2007-09-11 | 2009-03-12 | Tyco Healthcare Group Lp | Articulating joint for surgical instruments |
CN101390763A (zh) * | 2008-10-31 | 2009-03-25 | 天津大学 | 辅助微创外科手术的机器人本体系统 |
CN104783844A (zh) * | 2015-01-22 | 2015-07-22 | 天津手智医疗科技有限责任公司 | 一种智能化微创手术器械 |
WO2017188851A1 (ru) * | 2016-04-29 | 2017-11-02 | Общество С Ограниченной Ответственностью "Мроботикс" | Концевой эффектор с шарнирным узлом и привод эндоскопического хирургического аппарата |
Also Published As
Publication number | Publication date |
---|---|
CN110693539A (zh) | 2020-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020010759A1 (zh) | 一种驱动单侧平板布置的微创手术器械 | |
WO2021027894A1 (zh) | 手术机器人及手术器械 | |
CN107550526B (zh) | 一种具有自锁性的手持式微创手术器械 | |
US10500002B2 (en) | Dexterous wrists | |
EP3484397B1 (en) | Multi-cable medical instrument | |
KR102587514B1 (ko) | 더블 벤딩형 플렉시블 수술 도구 시스템 | |
US8151661B2 (en) | Compact capstan | |
US9649020B2 (en) | Control assembly | |
WO2018177038A1 (zh) | 手术机器人用蛇形关节、手术器械及内窥镜 | |
WO2021184791A1 (zh) | 一种应用于微创手术的蛇形手术机器人 | |
WO2018177039A1 (zh) | 手术机器人用蛇形关节、手术器械及内窥镜 | |
US20110172648A1 (en) | Tool for minimally invasive surgery and method for using the same | |
JP2020515330A (ja) | 手術ロボット用ヘビ型ジョイント、手術器具及び内視鏡 | |
CN105287002A (zh) | 一种机器人辅助微创手术用柔性多关节手术微器械 | |
WO2019137380A1 (zh) | 多用途的柔性手术工具系统 | |
JP2003061969A (ja) | マニピュレータ | |
CN104490477A (zh) | 一种用于腹腔镜手术的多自由度单孔手术机器人 | |
CN112022238B (zh) | 一种微创手术机器人用手术器械 | |
US20230255707A1 (en) | Surgical instrument, slave operating equipment and surgical robot | |
JPWO2018174228A1 (ja) | 医療用処置具 | |
WO2024050966A1 (zh) | 细长型医疗器械驱动装置 | |
CN115844321B (zh) | 一种医用主动式连续型内窥镜机器人 | |
CN211156230U (zh) | 手术机器人及手术器械 | |
JP2022016327A (ja) | 医療用アーム装置 | |
CN212490143U (zh) | 可用于微创手术机器人的手术器械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18926003 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18926003 Country of ref document: EP Kind code of ref document: A1 |