WO2021184791A1 - 一种应用于微创手术的蛇形手术机器人 - Google Patents

一种应用于微创手术的蛇形手术机器人 Download PDF

Info

Publication number
WO2021184791A1
WO2021184791A1 PCT/CN2020/129176 CN2020129176W WO2021184791A1 WO 2021184791 A1 WO2021184791 A1 WO 2021184791A1 CN 2020129176 W CN2020129176 W CN 2020129176W WO 2021184791 A1 WO2021184791 A1 WO 2021184791A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
module
drive
pulley
distal
Prior art date
Application number
PCT/CN2020/129176
Other languages
English (en)
French (fr)
Inventor
赵保亮
胡颖
张朋
王腾
雷隆
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2021184791A1 publication Critical patent/WO2021184791A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • A61B2034/306Wrists with multiple vertebrae

Definitions

  • the invention belongs to the technical field of surgical robots, and more specifically, relates to a snake-shaped surgical robot applied to minimally invasive surgery.
  • Minimally invasive surgery refers to a surgical method that uses modern medical instruments and related equipment such as laparoscopy, thoracoscopy, and laryngoscope to perform surgery in the body cavity. Compared with traditional surgery, it has the advantages of less trauma, less pain, and faster recovery.
  • the robot In order to meet the flexibility required for surgery and to miniaturize the end effector, the robot generally adopts a rope drive form, placing the bulky driving part outside the body, and driving the end structure in the body through the rope.
  • multiple surgical instruments need to enter the body cavity from a single entrance, and the doctor's hands operate the instruments to work together at the same target point. Therefore, the surgical instruments need to be deployed in a triangular shape inside the body cavity.
  • the robotic arm includes two continuums, and its positioning structure is a multi-segment continuum. Therefore, there is a problem of insufficient rigidity during surgical operations, which will undoubtedly reduce the motion control accuracy of the robotic arm; in addition, Between two adjacent segments of continuum, the motion of one segment of the continuum will have a coupling effect on the drive of the other segment of continuum, which will also reduce the motion control accuracy of the robotic arm.
  • the purpose of the embodiments of the present invention is to provide a serpentine surgical robot applied to minimally invasive surgery, so as to solve the technical problems of insufficient rigidity and low motion control precision of the mechanical arm in the existing surgical robot.
  • the technical solution adopted by the present invention is to provide a serpentine surgical robot applied to minimally invasive surgery, including a sliding table module, a pulley module slidably connected to the sliding table module, and A drive module on the pulley module and a mechanical arm connected to the pulley module, the drive module provides power to the mechanical arm through the pulley module;
  • the robotic arm includes a surgical actuator, a first joint connected to the surgical actuator and capable of bending movement, and a second joint connected to the first joint and capable of rocking movement, wherein the first joint is a movable joint.
  • the second joint is a gear meshing structure.
  • the first joint includes a distal vertebra, at least one spacer vertebra, and a proximal vertebra that are rotationally connected in sequence, the distal vertebra is connected to the surgical implement, and the proximal vertebra is connected to the second vertebra. Joint connection
  • the first joint further includes a first driving wire for providing traction for the bending movement of the first joint, one end of the first driving wire is fixedly connected to the distal vertebra, and the first driving wire An end away from the distal vertebrae passes through the spacer vertebrae and the proximal vertebrae in turn and is fixedly connected to the pulley module.
  • an elastic support for maintaining the shape of the first joint is provided on the first joint, and the elastic support is fixedly connected to the distal vertebra, the spacer vertebra, and the proximal end in sequence On the vertebrae.
  • the second joint includes a distal rod, a proximal rod, a first gear pair, and a second gear pair, wherein the distal rod and the proximal rod are rotationally connected, and the A first gear pair is fixed on the distal rod, the second gear pair is fixed on the proximal rod, and the first gear pair and the second gear pair are meshed and connected;
  • the second joint further includes a second driving wire for providing traction for the rocking motion of the second joint, one end of the second driving wire is fixedly connected to the distal rod, and the second driving wire The end of the rod away from the distal end passes through the proximal rod and is fixedly connected to the pulley module.
  • the mechanical arm further includes a third joint connected to the second joint and capable of rocking motion, and a trunk connected to the third joint and capable of rotating along its own axis, the trunk and the pulley Module connection.
  • the structure of the second joint is the same as the structure of the third joint.
  • the robot arm is provided with a drive line for providing traction for the motion of the robot arm
  • the pulley module includes a lower base plate, a plurality of drive shafts, a plurality of spool shafts, and a plurality of pulley shafts.
  • a driving shaft, a plurality of spool shafts, and a plurality of pulley shafts are respectively arranged on the lower substrate, and the driving wire is fixedly connected to the corresponding driving shaft after passing through the corresponding spool shaft and the pulley shaft, respectively,
  • the driving module is used to drive a plurality of the driving shafts to rotate.
  • the drive shaft includes a drive spindle connected to the drive module, a winding wheel that is rotatably sleeved outside the drive spindle, and a tensioning wheel for restricting the rotation of the winding wheel relative to the drive spindle.
  • the drive wire is fixedly connected to the corresponding reel after passing through the corresponding spool shaft and the pulley shaft respectively.
  • the drive module includes a plurality of motors, and the output end of each motor is fixedly connected to the corresponding drive shaft through a coupling.
  • the sliding table module and the pulley module are detachably connected; and/or,
  • the drive module and the pulley module are detachably connected; and/or,
  • the pulley module is detachably connected to the mechanical arm.
  • the beneficial effects of the serpentine surgical robot provided by the present invention are: the continuum structure has the advantages of compact structure and easy realization of arc-like deformation movement, and the gear meshing structure has better resistance to deformation and reliable stability.
  • the present invention adopts The continuum structure and the gear meshing structure cooperate to form a mechanical arm, which can effectively improve the rigidity of the mechanical arm while ensuring the flexible movement and deformability of the end of the mechanical arm, and can also solve or improve the mechanical arm of the existing surgical robot.
  • the coupling effect improves the motion control accuracy of the mechanical arm.
  • the snake-shaped surgical robot of the present invention has strong operability, which is beneficial for doctors to perform micro-manipulation processing.
  • FIG. 1 is a schematic structural diagram of a serpentine surgical robot provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a mechanical arm provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first joint provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a second joint provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a pulley module provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structural wiring of a pulley module provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a second joint drive shaft provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an assembly structure of a pulley module and a driving module provided by an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
  • an embodiment of the present invention provides a serpentine surgical robot applied to minimally invasive surgery, including a sliding table module 400, a pulley module 200 slidably connected to the sliding table module 400, and The driving module 300 on the pulley module 200 and the robot arm 100 connected to the pulley module 200.
  • the driving module 300 provides power to the robot arm 100 through the pulley module 200.
  • the robot arm 100 is used to perform clamping, cutting, and stitching. Wait for surgical operation;
  • the robotic arm 100 includes a surgical actuator 110, a first joint 120 connected to the surgical actuator 110 at one end and capable of bending movement, and a second joint 130 connected to the end of the first joint 120 away from the surgical actuator 110 and capable of swinging movement.
  • the first joint 120 is a continuously deformable continuum structure
  • the second joint 130 is a gear meshing structure.
  • the sliding table module 400 slides on the sliding table module 400 and drives the mechanical arm 100 to move together, so that the mechanical arm 100 extends into the natural or artificial cavity.
  • the driving module 300 drives the first joint 120 and the second joint 130 to deform through the pulley module 200 to adapt to the shape of the cavity.
  • the driving module 300 drives the operation through the pulley module 200 Compared with traditional surgical methods, the actuator 110 performs surgical operations and has the advantages of less trauma, less pain, and faster recovery.
  • the beneficial effects of the serpentine surgical robot in the embodiment of the present invention are: the continuum structure has the advantages of compact structure and easy realization of arc-like deformation movement, and the gear meshing structure has better resistance to deformation and reliable stability.
  • the present invention The continuum structure and the gear meshing structure cooperate to form the robotic arm 100, which can effectively improve the rigidity of the robotic arm 100 while ensuring the flexible movement and deformability of the end of the robotic arm 100, and can also solve or improve the existing surgical robot
  • the coupling effect of the robotic arm 100 improves the motion control accuracy of the robotic arm 100.
  • the serpentine surgical robot according to the embodiment of the present invention has strong operability and can meet the requirements of single-hole minimally invasive surgery or natural surgery. The requirements of cavity surgery are conducive to the doctor's micro-manipulation processing.
  • the manipulator 100 is connected to the pulley module 200 by a rope drive.
  • the manipulator 100 is provided with a plurality of drive wires 160 for providing traction for the deformation movement of the robotic arm 100, one end of each drive wire 160 is fixedly connected to the corresponding joint on the robotic arm 100, and the other end is fixedly connected to the pulley module 200,
  • the driving module 300 adjusts the posture of the robot arm 100 through the pulley module 200 retracting and retracting the driving line 160.
  • the mechanical arm 100 of the embodiment of the present invention has a compact structure, and realizes the miniaturization of the mechanical arm 100, so that the mechanical arm 100 meets the use requirements of minimally invasive surgery.
  • the drive wire 160 can be a nickel-titanium alloy wire or a steel wire.
  • the drive wire 160 can also be made of other materials, as long as the drive wire 160 can be used to provide traction. The present invention does not do it here. Special restrictions.
  • the first joint 120 includes a distal vertebra 121, at least one spacer vertebra 122, and a proximal vertebra 123 that are rotationally connected in sequence, that is, the distal vertebra 121 and the proximal vertebra 121 At least one spacer vertebra 122 is provided between the end vertebrae 123.
  • the distal vertebra 121, the spacer vertebra 122, and the proximal vertebra 123 can swing relative to each other.
  • the joint 120 also includes a first driving line 161 for providing traction for the bending movement of the first joint 120.
  • the first driving line 161 is the driving line 160 corresponding to the first joint 120 of the robot arm 100, and the first driving line 161 is One end is fixedly connected to the distal vertebra 121, and the end of the first driving wire 161 away from the distal vertebra 121 passes through the spacer vertebra 122 and the proximal vertebra 123 in turn, and then is fixedly connected to the pulley module 200.
  • the driving module 300 can retract the first driving wire 161 through the pulley module 200, so as to adjust the bending posture of the first joint 120.
  • the first joint 120 is provided with an elastic support 124 for maintaining the shape of the first joint 120, and the elastic support 124 is fixedly connected to the distal vertebrae in turn. 121.
  • the rigidity of the first joint 120 can be enhanced, so that the robotic arm 100 can have sufficient rigidity during surgery. It is convenient for doctors to manipulate.
  • the elastic support 124 may be disposed inside the first joint 120, that is, the elastic support 124 sequentially passes through the distal vertebra 121, at least one spacer vertebra 122, and the proximal vertebra 123, the elastic support 124 and It is fixedly connected to the distal vertebra 121, the spacer vertebra 122, and the proximal vertebra 123.
  • the elastic support 124 can also be arranged outside the first joint 120 according to the selection of the actual situation, and the present invention is not limited here.
  • the elastic support 124 is an elastic support wire.
  • a plurality of elastic support wires are provided on the first joint 120, and the plurality of elastic support wires are arranged in the circumferential direction. Evenly arranged in the first joint 120, that is, a plurality of elastic support wires are uniformly arranged in the distal vertebra 121, at least one spacer vertebra 122, and the proximal vertebra 123 in the circumferential direction.
  • the cooperation of the plurality of elastic support wires can make the first The various components of the joint 120 always keep in contact, and the stiffness distribution at the first joint 120 is even.
  • the shape of the elastic support 124 can also be adjusted appropriately according to the selection of the actual situation.
  • the elastic support 124 can also be set in a tubular structure. In this structure, the elastic support 124 can be sleeved on the first The joint 120 is internally or sleeved on the outside of the first joint 120.
  • the elastic support wire can be a nickel-titanium alloy wire or a steel wire.
  • the elastic support wire can also be selected from other materials, as long as the elastic support wire can improve the rigidity of the first joint 120, the present invention is This is not particularly limited.
  • the second joint 130 includes a distal rod 131, a proximal rod 132, a first gear pair 133, and a second gear pair 134, wherein the far One end of the end rod 131 is fixedly connected with the end of the proximal vertebra 123 away from the spacer vertebra 122, the end of the distal rod 131 away from the proximal vertebra 123 and the end of the proximal rod 132 are rotatably connected, and the first gear pair 133 Fixed on the distal rod 131, the second gear pair 134 is fixed on the proximal rod 132, the first gear pair 133 and the second gear pair 134 are meshed and connected; the second joint 130 also includes a second joint 130
  • the second drive line 162 that provides traction for the rocking motion of the robot arm 100 is the drive line 160 corresponding to the second joint 130 of the robot arm 100.
  • One end of the second drive line 162 is fixedly connected to the distal rod 131, One end of the two driving wires 162 away from the distal rod 131 passes through the proximal rod 132 and then is fixedly connected to the pulley module 200.
  • the driving module 300 can retract the second driving wire 162 through the pulley module 200, so as to adjust the swing posture of the second joint 130.
  • the distal rod 131 and the proximal rod 132 swing relatively.
  • the first gear pair 133 on the distal rod 131 and the proximal rod 132 are
  • the second gear pair 134 meshes and rotates, which can accurately adjust the swing posture of the second joint 130.
  • the second joint 130 further includes a fixed disk 135 arranged between the distal rod 131 and the proximal rod 132, and the end of the distal rod 131 away from the proximal vertebra 123 is rotatably connected.
  • the fixed disk 135 one end of the proximal rod 132 is rotatably connected to the fixed disk 135, so as to realize the rotational connection between the distal rod 131 and the proximal rod 132.
  • one end of the second drive wire 162 is fixedly connected to the distal rod 131, and the end of the second drive wire 162 away from the distal rod 131 passes through the fixed plate 135 and the proximal rod 132 in turn before being connected to the The pulley module 200 is fixedly connected.
  • the robotic arm 100 further includes a third end connected to the proximal rod 132 at an end far from the distal rod 131 and capable of swinging motion.
  • the joint 140 and the torso 150 whose one end is connected to the end of the third joint 140 away from the proximal rod 132 and can rotate along its own axis.
  • the end of the torso 150 away from the third joint 140 is connected to the pulley module 200, thereby improving
  • the degree of freedom of the robotic arm 100 facilitates the robotic arm 100 to extend into the cavity for surgical operations.
  • the structure of the second joint 130 is the same as the structure of the third joint 140, and the third joint 140 also includes corresponding distal rods 131, The fixed plate 135, the proximal rod 132, the first gear pair 133, the second gear pair 134, and the drive line 160 (third drive line 163) used to provide traction for the rocking motion of the second joint 130 are not repeated here.
  • the specific structure of the third joint 140 will be described in detail.
  • one end of the distal rod 131 of the third joint 140 away from the fixing plate 135 of the third joint 140 is fixedly connected to the proximal rod 132 of the second joint 130, which is away from the fixing plate of the second joint 130.
  • One end of 135, an end of the proximal rod 132 of the third joint 140 away from the fixing plate 135 of the third joint 140 is fixedly connected to the end of the trunk 150 away from the pulley module 200.
  • joints capable of rocking or bending motion can be added between the third joint 140 and the torso 150, and the added joints can adopt the structure of the first joint 120 or the second joint 130 to realize the joints.
  • the swaying motion or bending motion is not limited in the present invention.
  • the pulley module 200 includes an upper substrate 210 and a lower substrate 250 that are disposed oppositely.
  • the lower substrate 250 is slidably connected to the slide module 400, and the pulley
  • the module 200 also includes a plurality of drive shafts 220, a plurality of spool shafts 230, and a plurality of pulley shafts 240, which are respectively provided on the upper substrate 210 and the lower substrate 250 at both ends, wherein the spool shaft 230 and the pulley shaft 240 respectively rotate sleeves.
  • a pulley is provided, and the drive line 160 is fixedly connected to the corresponding drive shaft 220 after passing through the pulley of the corresponding spool 230 and the pulley of the pulley shaft 240 respectively, and the drive module 300 is used to drive a plurality of drive shafts 220 to rotate.
  • the pulleys corresponding to different drive lines 160 are staggered and arranged in a direction parallel to the spool 230 (or pulley shaft 240), and there is no collision and friction between the drive lines 160, so that the drive lines 160 can be smoothly arranged.
  • the sliding transfer of traction force effectively improves the motion control accuracy of the robotic arm 100.
  • the axial direction of the trunk 150 is defined as the first direction
  • the plurality of pulley shafts 240 are divided into two sets of opposed pulley shafts 240, and each set of pulley shafts 240 is included in the first direction.
  • the two first pulley shafts 241, the second pulley shaft 242, and the third pulley shaft 243 are arranged in sequence upward;
  • the drive shaft 220 includes two first pulley shafts arranged in sequence in the first direction and arranged between the two sets of pulley shafts 240.
  • the spool shaft 230 specifically includes two sets of pulley shafts respectively.
  • each first drive line 161 passes through the corresponding first spool 231 and the first pulley shaft 241 in turn, and then is fixed on the first drive shaft 221
  • Each second drive line 162 passes through the corresponding second spool shaft 232 and the second pulley shaft 242 in turn and then is fixed on the second drive shaft 222
  • each third drive line 163 passes through the corresponding second spool shaft 232 and the second pulley shaft in turn.
  • the three-pulley shaft 243 is then fixed on the third drive shaft 223, and the drive module 300 drives the corresponding drive shaft 220 to rotate to realize the retracting and retracting of the drive line 160, thereby adjusting the deformation of the corresponding part of the mechanical arm 100.
  • first drive wires 161 are provided on the first joint 120, that is, two pairs of first drive wires 161 are provided on the first joint 120; in each pair of first drive wires 161, two first drive wires The end of the wire 161 away from the distal vertebra 121 is fixedly connected to the same first drive shaft 221 through the corresponding first spool 231 and the first pulley shaft 241, that is, two of the first drive wires 161 in each pair are fixedly connected to the same first drive shaft 221.
  • the first drive wires 161 are arranged on the pulley module 200 in an antagonistic manner. The two first drive wires 161 of each pair of first drive wires 161 will not collide or rub against each other.
  • the two pairs of first drive wires 161 are respectively It is used to control the bending movement of the first joint 120 in different directions, so that the first joint 120 in the embodiment of the present invention has two degrees of freedom.
  • the two first drive lines 161 are controlled by one first drive shaft 221 to control the retracting, which can reduce the number of pulleys, spools 230 and drive shafts 220, so that the pulley module 200 and the drive module 300 are miniaturized. , And can streamline the control algorithm, effectively improve the accuracy of motion control. It can be understood that, according to the actual selection, in order to adjust the degree of freedom of the first joint 120, the number of the first driving lines 161 on the first joint 120 can be appropriately adjusted, and the present invention is not limited herein.
  • two second drive wires 162 are provided on the second joint 130, that is, a pair of second drive wires 162 are provided on the second joint 130, and the two second drive wires 162 of the second joint 130 are far away from the distal end
  • One end of the rod 131 is fixedly connected to the same second drive shaft 222 through the corresponding second spool shaft 232 and the second pulley shaft 242 respectively, and the two second drive wires 162 of the second joint 130 are arranged in an antagonistic manner to On the pulley module 200, the two second drive wires 162 will not collide or rub against each other.
  • the two second drive wires 162 are used to control the swing movement of the second joint 130 in the same direction, so that the first The two joint 130 has one degree of freedom.
  • the two second drive lines 162 are controlled by one second drive shaft 222 to control the retracting, which can reduce the number of pulleys, the spool 230 and the drive shaft 220, so that the pulley module 200 and the drive module 300 are miniaturized. And it can streamline the control algorithm and effectively improve the accuracy of motion control. It can be understood that, according to the actual selection, in order to adjust the degree of freedom of the second joint 130, the number of the second drive lines 162 on the second joint 130 can be appropriately adjusted, and the present invention is not limited herein.
  • two third drive wires 163 are provided on the third joint 140, that is, a pair of third drive wires 163 are provided on the third joint 140, and the two third drive wires 163 of the third joint 140 are far away from the distal end.
  • One end of the rod 131 is fixedly connected to the same third drive shaft 223 through the corresponding second spool shaft 232 and the third pulley shaft 243, and the two third drive wires 163 of the third joint 140 are arranged in an antagonistic manner.
  • the two third drive wires 163 will not collide and rub against each other.
  • the two third drive wires 163 are used to control the swing movement of the third joint 140 in the same direction, so that the The three joint 140 has one degree of freedom.
  • the two third drive wires 163 are controlled by a third drive shaft 223 to control the retracting, which can reduce the number of pulleys, the spool 230 and the drive shaft 220, so that the pulley module 200 and the drive module 300 are miniaturized. And it can streamline the control algorithm and effectively improve the accuracy of motion control. It can be understood that, according to the actual selection, in order to adjust the degree of freedom of the third joint 140, the number of the third drive lines 163 on the third joint 140 can be appropriately adjusted, and the present invention is not limited herein.
  • the surgical implement 110 may be a clamp with an opening and closing function, and the clamp includes a piece for providing the opening and closing movement of the clamp.
  • the fourth drive line 164 of traction that is, the clamp has one degree of freedom.
  • the spool 230 also includes a third spool 233, and the drive shaft 220 also includes a fourth drive shaft 224.
  • One end of the fourth drive line 164 is fixedly connected to the clamp.
  • the other end of the fourth drive line 164 passes through the corresponding third spool 233 and then fixedly connected to the fourth drive shaft 224.
  • the drive module 300 drives the fourth drive shaft 224 to rotate to realize the retracting and retracting of the fourth drive line 164. , So that the clamp can open and close.
  • the drive shaft 220 further includes a rotary drive shaft 225
  • the trunk 150 is provided with two rotary drive wires 165
  • one end of the rotary drive wire 165 is fixed Connected to the torso 150
  • the other end of the rotation driving wire 165 is directly fixedly connected to the rotation driving shaft 225
  • the two rotation driving wires 165 are used to control the rotation of the torso 150, so that the torso 150 has a degree of freedom.
  • other methods such as adopting bevel gears can also be used to drive the torso 150 to rotate, and the present invention is not limited herein.
  • the robot arm 100 is provided with a guide channel corresponding to each drive wire 160, and each drive wire 160 is fixedly connected to the pulley module 200 after passing through the corresponding guide channel. There is collision and friction, so that the drive line 160 can smoothly transmit the traction force, which effectively improves the motion control accuracy of the robot arm 100.
  • the drive shaft 220 includes a drive spindle 2201 connected to the drive module 300, a winding wheel 2202 rotatingly sleeved outside the drive spindle 2201, and a restrictor
  • the winding wheel 2202 rotates the fastener 2203 relative to the driving spindle 2201
  • the driving wire 160 is fixedly connected to the corresponding winding wheel 2202 after passing through the corresponding spool 230 and the pulley shaft 240
  • the driving module 300 is connected to the driving spindle 2201 , So that the driving module 300 can drive the driving spindle 2201 to rotate, and at the same time drive the corresponding winding wheel 2202 to rotate, so as to retract and retract the driving wire 160.
  • the reel 2202 can be rotated relative to the drive spindle 2201 until the drive wire 160 is fully tensioned, and the fastener 2203 is used to restrict the reel 2202 from rotating relative to the drive spindle 2201.
  • the fastener 2203 can be a set screw.
  • the set screw is passed through the winding wheel 2202 and then inserted into the drive spindle 2201.
  • the fastener 2203 may also have other structures, and the present invention is not limited herein.
  • the driving module 300 includes a motor board 310 fixedly connected to the upper substrate 210 and a plurality of motors 320 fixedly connected to the motor board 310, each The output end of the motor 320 is fixedly connected to the corresponding drive shaft 220 (drive spindle 2201) through the coupling 330, so that each drive shaft 220 can be driven individually, namely the surgical actuator 110, the first joint 120, and the second joint 130, the third joint 140, and the trunk 150 can be driven separately.
  • the number of pulleys, the spooling shaft 230 and the driving shaft 220 of the embodiment of the present invention are less, and the number of the corresponding motors 320 is also less, so that the driving module 300 is miniaturized.
  • the sliding table module 400 and the pulley module 200 are detachably connected; and/or, the driving module 300 and the pulley module 200 are detachably connected; and/or, the pulley module 200 and the robot arm 100 are detachably connected .
  • the serpentine surgical robot in the embodiment of the present invention can be disassembled to facilitate maintenance or cleaning and disinfection.
  • the surgical actuator 110 of the robotic arm 100 can open and close, that is, the surgical actuator 110 has one degree of freedom; the first joint 120 can perform bending movements in two directions, that is, the first joint 120 can perform bending movement in two directions.
  • the joint 120 has two degrees of freedom; the second joint 130 and the third joint 140 can respectively perform rocking motions, that is, the second joint 130 and the third joint 140 have one degree of freedom; the trunk 150 can rotate in its axial direction, that is, the trunk 150 has one degree of freedom; the pulley module 200 is slidably connected to the sliding table module 400, and the pulley module 200 can drive the entire robot arm 100 to move when sliding relative to the sliding table module 400, that is, the robot arm 100 also has a degree of freedom.
  • the robotic arm 100 of the embodiment of the present invention has seven degrees of freedom, so that the doctor can operate the robotic arm 100 to perform surgical operations such as clamping, cutting, and suturing.

Abstract

一种应用于微创手术的蛇形手术机器人,包括滑台模组(400)、滑动连接于滑台模组(400)上的滑轮模组(200)、设于滑轮模组(200)上的驱动模组(300)以及与滑轮模组(200)连接的机械臂(100),驱动模组(300)通过滑轮模组(200)为机械臂(100)提供动力;机械臂(100)包括手术执行器(110)、与手术执行器(110)连接且能弯曲运动的第一关节(120)以及与第一关节(120)连接且能摇摆运动的第二关节(130),其中,第一关节(120)为连续体结构,第二关节(130)为齿轮啮合结构。通过连续体结构和齿轮啮合结构配合组成机械臂(100),可以在保证机械臂(100)的末端的灵活运动及变形能力的前提下,有效提高机械臂(100)的刚度,并且还能解决或改善现有手术机器人的机械臂(100)的耦合作用,提高机械臂(100)的运动控制精度和可操作性。

Description

一种应用于微创手术的蛇形手术机器人 技术领域
本发明属于外科手术机器人技术领域,更具体地说,是涉及一种应用于微创手术的蛇形手术机器人。
背景技术
微创手术是指利用腹腔镜、胸腔镜、喉镜等现代医疗器械及相关设备在人体腔体内施行手术的一种手术方式,相比传统手术具有创伤小、疼痛少、痊愈快等优势。为了满足手术所要求的灵活性,同时使末端执行器械小型化,机器人一般采用绳驱动形式,将体积庞大的驱动部分置于体外,通过绳驱动体内的末端结构。在进行单孔微创手术及自然腔道手术时,多个手术器械需要从单一入口进入体腔,医生双手操作器械对同一目标点进行协同工作,因此手术器械需要在体腔内侧向展开呈三角形态。现有的蛇形手术机器人中,机械臂包括两段连续体,其定位结构为多段连续体,因而存在着进行手术操作时刚度不足的问题,这无疑会降低机械臂的运动控制精度;此外,在相邻两段连续体之间,其中一段连续体的运动会对另一段连续体的驱动产生耦合作用,这也会降低机械臂的运动控制精度。
技术问题
本发明实施例的目的在于提供一种应用于微创手术的蛇形手术机器人,以解决现有的手术机器人中的机械臂存在刚度不足和运动控制精度低的技术问题。
技术解决方案
为实现上述目的,本发明采用的技术方案是:提供一种应用于微创手术的蛇形手术机器人,包括滑台模组、滑动连接于所述滑台模组上的滑轮模组、设于所述滑轮模组上的驱动模组以及与所述滑轮模组连接的机械臂,所述驱动模组通过所述滑轮模组为所述机械臂提供动力;
所述机械臂包括手术执行器、与所述手术执行器连接且能弯曲运动的第一关节以及与所述第一关节连接且能摇摆运动的第二关节,其中,所述第一关节为可连续变形的连续体结构,所述第二关节为齿轮啮合结构。
可选地,所述第一关节包括依次转动连接的远端椎骨、至少一个间隔椎骨以及近端椎骨,所述远端椎骨与所述手术执行器连接,所述近端椎骨与所述第二关节连接;
所述第一关节还包括用于为所述第一关节的弯曲运动提供牵引力的第一驱动线,所述第一驱动线的一端与所述远端椎骨固定连接,所述第一驱动线的远离所述远端椎骨的一端依次穿过所述间隔椎骨和所述近端椎骨后与所述滑轮模组固定连接。
可选地,所述第一关节上设有用于保持所述第一关节的形状的弹性支撑件,所述弹性支撑件依次固定连接于所述远端椎骨、所述间隔椎骨及所述近端椎骨上。
可选地,所述第二关节包括远端杆件、近端杆件、第一齿轮副、第二齿轮副,其中,所述远端杆件和所述近端杆件转动连接,所述第一齿轮副固定于所述远端杆件上,所述第二齿轮副固定于所述近端杆件上,所述第一齿轮副和所述第二齿轮副啮合连接;
所述第二关节还包括用于为所述第二关节的摇摆运动提供牵引力的第二驱动线,所述第二驱动线的一端与所述远端杆件固定连接,所述第二驱动线的远离所述远端杆件的一端穿过所述近端杆件后与所述滑轮模组固定连接。
可选地,所述机械臂还包括与所述第二关节连接且能摇摆运动的第三关节以及与所述第三关节连接且能沿自身轴向转动的躯干,所述躯干与所述滑轮模组连接。
可选地,所述第二关节的结构与所述第三关节的结构相同。
可选地,所述机械臂上设有用于为所述机械臂的运动提供牵引力的驱动线,所述滑轮模组包括下基板、多个驱动轴、多个分线轴和多个滑轮轴,多个驱动轴、多个分线轴和多个滑轮轴分别设于所述下基板上,所述驱动线分别经过对应的所述分线轴和所述滑轮轴后固定连接于对应的所述驱动轴,所述驱动模组用于驱动多个所述驱动轴转动。
可选地,所述驱动轴包括与所述驱动模组连接的驱动主轴、转动套设于所述驱动主轴外的绕线轮以及用于限制所述绕线轮相对所述驱动主轴转动的紧固件,所述驱动线分别经过对应的所述分线轴和所述滑轮轴后固定连接于对应的所述绕线轮上。
可选地,所述驱动模组包括多个电机,每一所述电机的输出端通过联轴器与对应的所述驱动轴固定连接。
可选地,所述滑台模组与所述滑轮模组可拆卸连接;和/或,
所述驱动模组与所述滑轮模组可拆卸连接;和/或,
所述滑轮模组与所述机械臂可拆卸连接。
有益效果
本发明提供的蛇形手术机器人的有益效果在于:连续体结构具有结构紧凑和易于实现类圆弧变形运动的优点,齿轮啮合结构具有较佳的抵抗变形的能力和可靠的稳定性,本发明通过连续体结构和齿轮啮合结构配合组成机械臂,可以在保证机械臂的末端的灵活运动及变形能力的前提下,有效提高机械臂的刚度,并且还能解决或改善现有手术机器人的机械臂的耦合作用,提高机械臂的运动控制精度,相比于现有的手术机器人,本发明的蛇形手术机器人的可操作性强,有利于医生进行微操处理。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的蛇形手术机器人的结构示意图;
图2为本发明实施例提供的机械臂的结构示意图;
图3为本发明实施例提供的第一关节的结构示意图;
图4为本发明实施例提供的第二关节的结构示意图;
图5为本发明实施例提供的滑轮模组的结构示意图;
图6为本发明实施例提供的滑轮模组的结构布线示意图;
图7为本发明实施例提供的第二关节驱动轴的结构示意图;
图8为本发明实施例提供的滑轮模组与驱动模组的组装结构示意图。
其中,图中各附图标记:
100-机械臂;110-手术执行器;120-第一关节;121-远端椎骨;122-间隔椎骨;123-近端椎骨;124-弹性支撑件;130-第二关节;131-远端杆件;132-近端杆件;133-第一齿轮副;134-第二齿轮副;135-固定盘;140-第三关节;150-躯干;160-驱动线;161-第一驱动线;162-第二驱动线;163-第三驱动线;164-第四驱动线;165-旋转驱动线;200-滑轮模组;210-上基板;220-驱动轴;2201-驱动主轴;2202-绕线轮;2203-紧固件;221-第一驱动轴;222-第二驱动轴;223-第三驱动轴;224-第四驱动轴;225-旋转驱动轴;230-分线轴;231-第一分线轴;232-第二分线轴;233-第三分线轴;240-滑轮轴;241-第一滑轮轴;242-第二滑轮轴;243-第三滑轮轴;250-下基板;300-驱动模组;310-电机板;320-电机;330-联轴器;400-滑台模组。
本发明的实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图1与图2,本发明实施例提供一种应用于微创手术的蛇形手术机器人,包括滑台模组400、滑动连接于滑台模组400上的滑轮模组200、设于滑轮模组200上的驱动模组300以及与滑轮模组200连接的机械臂100,驱动模组300通过滑轮模组200为机械臂100提供动力,机械臂100用于执行夹持、切割、缝合等手术操作;
机械臂100包括手术执行器110、一端与手术执行器110连接且能弯曲运动的第一关节120以及与第一关节120的远离手术执行器110的一端连接且能摇摆运动的第二关节130,其中,第一关节120为可连续变形的连续体结构,第二关节130为齿轮啮合结构。
本发明实施例的蛇形手术机器人工作时,滑台模组400于滑台模组400上滑动并带动机械臂100一同运动,使机械臂100伸入自然腔道或人工腔道,在机械臂100进入腔道的过程,驱动模组300通过滑轮模组200驱动第一关节120和第二关节130变形以适应腔道的形状,到达病灶部位后,驱动模组300通过滑轮模组200驱动手术执行器110进行手术操作,相比于传统的手术方式,具有创伤小、疼痛少、痊愈快等优势。
本发明实施例的蛇形手术机器人的有益效果在于:连续体结构具有结构紧凑和易于实现类圆弧变形运动的优点,齿轮啮合结构具有较佳的抵抗变形的能力和可靠的稳定性,本发明通过连续体结构和齿轮啮合结构配合组成机械臂100,可以在保证机械臂100的末端的灵活运动及变形能力的前提下,有效提高机械臂100的刚度,并且还能解决或改善现有手术机器人的机械臂100的耦合作用,提高机械臂100的运动控制精度,相比于现有的手术机器人,本发明实施例的蛇形手术机器人的可操作性强,可以满足单孔微创手术或者自然腔道手术的要求,有利于医生进行微操处理。
具体地,在本发明的一个实施例中,如图2所示,本发明实施例的蛇形手术机器人中,机械臂100采用绳驱动的方式与滑轮模组200连接,具体来说,机械臂100上设有多个用于为机械臂100的变形运动提供牵引力的驱动线160,每一个驱动线160的一端与机械臂100上对应的关节固定连接,另一端固定连接于滑轮模组200,驱动模组300通过滑轮模组200收放驱动线160来调整机械臂100的姿态。本发明实施例的机械臂100的结构紧凑,实现了机械臂100的小型化,使得机械臂100符合微创手术的使用需求。
可选地,驱动线160可以为镍钛合金丝或钢丝,当然根据实际情况的选择,驱动线160也选用其它材料,只要保证驱动线160能够用于提供牵引力即可,本发明在此不做特别限制。
具体地,在本发明的一个实施例中,如图3所示,第一关节120包括依次转动连接的远端椎骨121、至少一个间隔椎骨122以及近端椎骨123,即远端椎骨121和近端椎骨123之间设有至少一个间隔椎骨122,远端椎骨121、间隔椎骨122和近端椎骨123之间可以进行相对摆动,远端椎骨121的一端与手术执行器110的一端连接,远端椎骨121的远离手术执行器110的一端转动连接于间隔椎骨122,近端椎骨123的一端转动连接于间隔椎骨122,近端椎骨123的远离间隔椎骨122的一端与第二关节130连接;第一关节120还包括用于为第一关节120的弯曲运动提供牵引力的第一驱动线161,第一驱动线161即为对应机械臂100的第一关节120的驱动线160,第一驱动线161的一端与远端椎骨121固定连接,第一驱动线161的远离远端椎骨121的一端依次穿过间隔椎骨122和近端椎骨123后与滑轮模组200固定连接。通过上述设置,使得驱动模组300可以通过滑轮模组200来收放第一驱动线161,以便于调整第一关节120的弯曲姿态。
具体地,在本发明的一个实施例中,如图3所示,第一关节120上设有用于保持第一关节120的形状的弹性支撑件124,弹性支撑件124依次固定连接于远端椎骨121、至少一个间隔椎骨122及近端椎骨123上,通过在第一关节120上设置具有弹性支撑件124,可以增强第一关节120的刚度,使得机械臂100可以在手术时拥有足够的刚度,便于医生进行操控。
具体地,本发明实施例的蛇形手术机器人中,由于机械臂100采用绳驱动的方式与滑轮模组200连接,即机械臂100呈内中空设置,以便于将驱动线160设置在机械臂100内部,在该实施例中,弹性支撑件124可以设置在第一关节120内部,即弹性支撑件124依次穿过远端椎骨121、至少一个间隔椎骨122及近端椎骨123,弹性支撑件124且固定连接于远端椎骨121、间隔椎骨122及近端椎骨123上。当然,根据实际情况的选择,弹性支撑件124也可以设置在第一关节120外,本发明在此不做限制。
具体地,本发明实施例的蛇形手术机器人中,弹性支撑件124为弹性支撑丝,在该实施例中,第一关节120上设有多个弹性支撑丝,多个弹性支撑丝沿周向均匀设置于第一关节120内,也即多个弹性支撑丝沿周向均匀设置于远端椎骨121、至少一个间隔椎骨122及近端椎骨123内,通过多个弹性支撑丝配合可以使得第一关节120的各个部件始终保持接触,第一关节120处的刚度分布均匀。可以理解的是,根据实际情况的选择,弹性支撑件124的形状也可以做适当调整,例如,弹性支撑件124也可以设置为管状结构,此结构下,弹性支撑件124可以套接于第一关节120内部或者套设于第一关节120外侧。
可选地,弹性支撑丝可以为镍钛合金丝或钢丝,当然根据实际情况的选择,弹性支撑丝也选用其它材料,只要保证弹性支撑丝能够提高第一关节120的刚度即可,本发明在此不做特别限制。
具体地,在本发明的一个实施例中,如图4所示,第二关节130包括远端杆件131、近端杆件132、第一齿轮副133、第二齿轮副134,其中,远端杆件131的一端与近端椎骨123的远离间隔椎骨122的一端固定连接,远端杆件131的远离近端椎骨123的一端和近端杆件132的一端转动连接,第一齿轮副133固定于远端杆件131上,第二齿轮副134固定于近端杆件132上,第一齿轮副133和第二齿轮副134啮合连接;第二关节130还包括用于为第二关节130的摇摆运动提供牵引力的第二驱动线162,第二驱动线162即为对应机械臂100的第二关节130的驱动线160,第二驱动线162的一端与远端杆件131固定连接,第二驱动线162的远离远端杆件131的一端穿过近端杆件132后与滑轮模组200固定连接。通过上述设置,使得驱动模组300可以通过滑轮模组200来收放第二驱动线162,以便于调整第二关节130的摇摆姿态。
具体地,在拉动第二驱动线162时,远端杆件131与近端杆件132之间相对摆动,此时,远端杆件131上的第一齿轮副133与近端杆件132上的第二齿轮副134啮合转动,可以精准地调整第二关节130的摇摆姿态。
具体地,如图4所示,第二关节130还包括设于远端杆件131和近端杆件132之间的固定盘135,远端杆件131的远离近端椎骨123的一端转动连接于固定盘135,近端杆件132的一端转动连接于固定盘135,从而实现远端杆件131和近端杆件132之间的转动连接。在该实施例下,第二驱动线162的一端与远端杆件131固定连接,第二驱动线162的远离远端杆件131的一端依次穿过固定盘135和近端杆件132后与滑轮模组200固定连接。
具体地,在本发明的一个实施例中,如图1与图2所示,机械臂100还包括一端与近端杆件132的远离远端杆件131的一端连接且能摇摆运动的第三关节140,以及一端与第三关节140的远离近端杆件132的一端连接且能沿自身轴向转动的躯干150,躯干150的远离第三关节140的一端与滑轮模组200连接,从而提高机械臂100的自由度,以便于机械臂100伸入腔道进行手术操作。
可选地,结合图4与图6,本发明实施例的机械臂100中,第二关节130的结构与第三关节140的结构相同,第三关节140也包括对应的远端杆件131、固定盘135、近端杆件132、第一齿轮副133、第二齿轮副134以及用于为第二关节130的摇摆运动提供牵引力的驱动线160(第三驱动线163),在此不再对第三关节140的具体结构进行赘述。在该实施例中,第三关节140的远端杆件131的远离第三关节140的固定盘135的一端固定连接于第二关节130的近端杆件132的远离第二关节130的固定盘135的一端,第三关节140的近端杆件132的远离第三关节140的固定盘135的一端固定连接于躯干150的远离滑轮模组200的一端固定连接。通过上述设置,使得驱动模组300可以通过滑轮模组200来收放第三驱动线163,以便于调整第三关节140的摇摆姿态。
可以理解的是,第三关节140和躯干150之间还可以增设更多能够摇摆运动或者弯曲运动的关节,且所增设的关节可以采用如第一关节120或者第二关节130的结构来实现关节的摇摆运动或者弯曲运动,本发明在此不做限制。
具体地,在本发明的一个实施例中,如图5和图8所示,滑轮模组200包括相对设置的上基板210和下基板250,下基板250滑动连接于滑台模组400,滑轮模组200还包括两端分别设于上基板210和下基板250上的多个驱动轴220、多个分线轴230和多个滑轮轴240,其中,分线轴230和滑轮轴240上分别转动套设有滑轮,驱动线160分别经过对应的分线轴230的滑轮和滑轮轴240的滑轮后固定连接于对应的驱动轴220,驱动模组300用于驱动多个驱动轴220转动。在该实施例中,对应不同驱动线160的滑轮在平行于分线轴230(或滑轮轴240)的方向上错落布置,各驱动线160之间不会产生碰撞与摩擦,使得驱动线160可以顺滑的传递牵引力,有效提高机械臂100的运动控制精度。
具体地,如图5和图6所示,定义躯干150的轴向为第一方向,多个滑轮轴240分为两组相对设置的滑轮轴240,每一组滑轮轴240包括于第一方向上依次排列的两个第一滑轮轴241、第二滑轮轴242和第三滑轮轴243;驱动轴220包括于第一方向上依次排列且设于两组滑轮轴240之间的两个第一驱动轴221、第二驱动轴222和第三驱动轴223;多个分线轴230设于第三滑轮轴243的远离第二滑轮轴242的一侧,分线轴230具体包括分别对应两组滑轮轴240的两个第一分线轴231和两个第二分线轴232,每一个第一驱动线161依次经过对应的第一分线轴231和第一滑轮轴241后固定在第一驱动轴221上,每一个第二驱动线162依次经过对应的第二分线轴232和第二滑轮轴242后固定在第二驱动轴222上,每一个第三驱动线163依次经过对应的第二分线轴232和第三滑轮轴243后固定在第三驱动轴223上,驱动模组300通过驱动对应的驱动轴220转动以实现收放驱动线160,从而调整机械臂100对应的部位变形。通过上述设置,各驱动线160之间不会产生碰撞与摩擦,使得驱动线160可以顺滑的传递牵引力,有效提高机械臂100的运动控制精度。
可选地,第一关节120上设有四根第一驱动线161,即第一关节120上设有两对第一驱动线161;每一对第一驱动线161中,两个第一驱动线161的远离远端椎骨121的一端分别经对应的第一分线轴231和第一滑轮轴241后固定连接于同一个第一驱动轴221上,即每一对第一驱动线161中的两个第一驱动线161以拮抗方式布置到滑轮模组200上,每一对第一驱动线161中的两个第一驱动线161彼此不会有碰撞与摩擦,两对第一驱动线161分别用于控制第一关节120在不同方向上的弯曲运动,使得本发明实施例的第一关节120具有两个自由度。通过上述设置,两根第一驱动线161通由一个第一驱动轴221来控制收放,可以减少滑轮、分线轴230和驱动轴220的数量,使得滑轮模组200和驱动模组300小型化,并且还能精简控制算法,有效提高运动控制精度。可以理解的是,根据实际情况的选择,为了调整第一关节120的自由度,第一关节120上的第一驱动线161的数量可以作适当调整,本发明在此不做限制。
可选地,第二关节130上设有两根第二驱动线162,即第二关节130上设有一对第二驱动线162,第二关节130的两根第二驱动线162的远离远端杆件131的一端分别经对应的第二分线轴232和第二滑轮轴242后固定连接于同一个第二驱动轴222上,第二关节130的两根第二驱动线162以拮抗方式布置到滑轮模组200上,两根第二驱动线162彼此不会有碰撞与摩擦,两根第二驱动线162用于控制第二关节130在同一方向上的摇摆运动,使得本发明实施例的第二关节130具有一个自由度。通过上述设置,两根第二驱动线162由一个第二驱动轴222来控制收放,可以减少滑轮、分线轴230和驱动轴220的数量,使得滑轮模组200和驱动模组300小型化,并且还能精简控制算法,有效提高运动控制精度。可以理解的是,根据实际情况的选择,为了调整第二关节130的自由度,第二关节130上的第二驱动线162的数量可以作适当调整,本发明在此不做限制。
可选地,第三关节140上设有两根第三驱动线163,即第三关节140上设有一对第三驱动线163,第三关节140的两根第三驱动线163的远离远端杆件131的一端分别经对应的第二分线轴232和第三滑轮轴243后固定连接于同一个第三驱动轴223上,第三关节140的两根第三驱动线163以拮抗方式布置到滑轮模组200上,两根第三驱动线163彼此不会有碰撞与摩擦,两根第三驱动线163用于控制第三关节140在同一方向上的摇摆运动,使得本发明实施例的第三关节140具有一个自由度。通过上述设置,两根第三驱动线163由一个第三驱动轴223来控制收放,可以减少滑轮、分线轴230和驱动轴220的数量,使得滑轮模组200和驱动模组300小型化,并且还能精简控制算法,有效提高运动控制精度。可以理解的是,根据实际情况的选择,为了调整第三关节140的自由度,第三关节140上的第三驱动线163的数量可以作适当调整,本发明在此不做限制。
具体地,在本发明的一个实施例中,如图5和图6所示,手术执行器110可以为具有开合功能的夹钳,夹钳包括一根用于为夹钳的开合运动提供牵引力的第四驱动线164,即夹钳具有一个自由度,分线轴230还包括第三分线轴233,驱动轴220还包括第四驱动轴224,第四驱动线164的一端固定连接于夹钳上,第四驱动线164的另一端经过对应的第三分线轴233后固定连接于第四驱动轴224上,驱动模组300通过驱动第四驱动轴224转动以实现收放第四驱动线164,从而使夹钳进行开合运动。
具体地,在本发明的一个实施例中,如图5和图6所示,驱动轴220还包括旋转驱动轴225,躯干150上设有两根旋转驱动线165,旋转驱动线165的一端固定连接于躯干150上,旋转驱动线165的另一端直接固定连接于旋转驱动轴225上,两根旋转驱动线165用于控制躯干150转动,使得躯干150具有一个自由度。可以理解的是,根据实际情况的选择,也可以采用如采用锥齿轮等其它等方式来驱动躯干150转动,本发明在此不做限制。
可选地,机械臂100上分别对应每根驱动线160设有引导通道,每一根驱动线160经对应的引导通道后固定连接于滑轮模组200上,多根驱动线160之间不会有碰撞与摩擦,使得驱动线160可以顺滑的传递牵引力,有效提高机械臂100的运动控制精度。
具体地,在本发明的一个实施例中,如图7所示,驱动轴220包括与驱动模组300连接的驱动主轴2201、转动套设于驱动主轴2201外的绕线轮2202以及用于限制绕线轮2202相对驱动主轴2201转动的紧固件2203,驱动线160分别经过对应的分线轴230和滑轮轴240后固定连接于对应的绕线轮2202上,驱动模组300与驱动主轴2201连接,使得驱动模组300能够驱使驱动主轴2201转动,同时带动对应的绕线轮2202转动,以对驱动线160进行收放。在将驱动线160固定在绕线轮2202后,可以使得绕线轮2202相对驱动主轴2201转动,直至驱动线160完全张紧后,采用紧固件2203限制绕线轮2202相对驱动主轴2201转动。在该实施例中,紧固件2203可以为紧定螺钉,当驱动线160完全张紧后,使紧定螺钉依次穿过绕线轮2202后插进驱动主轴2201,当然,根据实际情况选择,紧固件2203也可以为其它结构,本发明在此不做限制。
具体地,在本发明的一个实施例中,如图8所示,驱动模组300包括固定连接于上基板210上的电机板310以及固定连接于电机板310上的多个电机320,每一个电机320的输出端通过联轴器330与对应的驱动轴220(驱动主轴2201)固定连接,从而使得每个驱动轴220能够被单独驱动,即手术执行器110、第一关节120、第二关节130、第三关节140及躯干150能够分别被单独驱动。相比于现有的机械手臂的驱动机构,本发明实施例的滑轮、分线轴230和驱动轴220的数量较少,对应的电机320的数量也将少,从而使得驱动模组300小型化。
可选地,滑台模组400与滑轮模组200可拆卸连接;和/或,驱动模组300与滑轮模组200可拆卸连接;和/或,滑轮模组200与机械臂100可拆卸连接。通过上述设置,可以对本发明实施例的蛇形手术机器人进行拆卸,以便于进行维护或者清洗消毒。
本发明实施例的蛇形手术机器人中,机械臂100的手术执行器110能够开合运动,即手术执行器110具有一个自由度;第一关节120能在两个方向进行弯曲运动,即第一关节120具有两个自由度;第二关节130和第三关节140分别能进行摇摆运动,即第二关节130和第三关节140分别具有一个自由度;躯干150能在其轴向转动,即躯干150具有一个自由度;滑轮模组200滑动连接于滑台模组400,滑轮模组200相对于滑台模组400滑动时能带动整个机械臂100运动,即机械臂100还具有一个自由度,由此可见,本发明实施例的机械臂100具有七个自由度,以便于医生操作机械臂100进行夹持、切割、缝合等手术操作。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种应用于微创手术的蛇形手术机器人,其特征在于,包括滑台模组、滑动连接于所述滑台模组上的滑轮模组、设于所述滑轮模组上的驱动模组以及与所述滑轮模组连接的机械臂,所述驱动模组通过所述滑轮模组为所述机械臂提供动力;
    所述机械臂包括手术执行器、与所述手术执行器连接且能弯曲运动的第一关节以及与所述第一关节连接且能摇摆运动的第二关节,其中,所述第一关节为可连续变形的连续体结构,所述第二关节为齿轮啮合结构。
  2. 如权利要求1所述的应用于微创手术的蛇形手术机器人,其特征在于,所述第一关节包括依次转动连接的远端椎骨、至少一个间隔椎骨以及近端椎骨,所述远端椎骨与所述手术执行器连接,所述近端椎骨与所述第二关节连接;
    所述第一关节还包括用于为所述第一关节的弯曲运动提供牵引力的第一驱动线,所述第一驱动线的一端与所述远端椎骨固定连接,所述第一驱动线的远离所述远端椎骨的一端依次穿过所述间隔椎骨和所述近端椎骨后与所述滑轮模组固定连接。
  3. 如权利要求2所述的应用于微创手术的蛇形手术机器人,其特征在于,所述第一关节上设有用于保持所述第一关节的形状的弹性支撑件,所述弹性支撑件依次固定连接于所述远端椎骨、所述间隔椎骨及所述近端椎骨上。
  4. 如权利要求1所述的应用于微创手术的蛇形手术机器人,其特征在于,所述第二关节包括远端杆件、近端杆件、第一齿轮副、第二齿轮副,其中,所述远端杆件和所述近端杆件转动连接,所述第一齿轮副固定于所述远端杆件上,所述第二齿轮副固定于所述近端杆件上,所述第一齿轮副和所述第二齿轮副啮合连接;
    所述第二关节还包括用于为所述第二关节的摇摆运动提供牵引力的第二驱动线,所述第二驱动线的一端与所述远端杆件固定连接,所述第二驱动线的远离所述远端杆件的一端穿过所述近端杆件后与所述滑轮模组固定连接。
  5. 如权利要求1所述的应用于微创手术的蛇形手术机器人,其特征在于,所述机械臂还包括与所述第二关节连接且能摇摆运动的第三关节以及与所述第三关节连接且能沿自身轴向转动的躯干,所述躯干与所述滑轮模组连接。
  6. 如权利要求5所述的应用于微创手术的蛇形手术机器人,其特征在于,所述第二关节的结构与所述第三关节的结构相同。
  7. 如权利要求1-6任一项所述的应用于微创手术的蛇形手术机器人,其特征在于,所述机械臂上设有用于为所述机械臂的运动提供牵引力的驱动线,所述滑轮模组包括下基板、多个驱动轴、多个分线轴和多个滑轮轴,多个驱动轴、多个分线轴和多个滑轮轴分别设于所述下基板上,所述驱动线分别经过对应的所述分线轴和所述滑轮轴后固定连接于对应的所述驱动轴,所述驱动模组用于驱动多个所述驱动轴转动。
  8. 如权利要求7所述的应用于微创手术的蛇形手术机器人,其特征在于,所述驱动轴包括与所述驱动模组连接的驱动主轴、转动套设于所述驱动主轴外的绕线轮以及用于限制所述绕线轮相对所述驱动主轴转动的紧固件,所述驱动线分别经过对应的所述分线轴和所述滑轮轴后固定连接于对应的所述绕线轮上。
  9. 如权利要求7所述的应用于微创手术的蛇形手术机器人,其特征在于,所述驱动模组包括多个电机,每一所述电机的输出端通过联轴器与对应的所述驱动轴固定连接。
  10. 如权利要求1-6任一项所述的应用于微创手术的蛇形手术机器人,其特征在于,所述滑台模组与所述滑轮模组可拆卸连接;和/或,
    所述驱动模组与所述滑轮模组可拆卸连接;和/或,
    所述滑轮模组与所述机械臂可拆卸连接。
PCT/CN2020/129176 2020-03-18 2020-11-16 一种应用于微创手术的蛇形手术机器人 WO2021184791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010190432.9 2020-03-18
CN202010190432.9A CN111437036B (zh) 2020-03-18 2020-03-18 一种应用于微创手术的蛇形手术机器人

Publications (1)

Publication Number Publication Date
WO2021184791A1 true WO2021184791A1 (zh) 2021-09-23

Family

ID=71629264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129176 WO2021184791A1 (zh) 2020-03-18 2020-11-16 一种应用于微创手术的蛇形手术机器人

Country Status (2)

Country Link
CN (1) CN111437036B (zh)
WO (1) WO2021184791A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113855251A (zh) * 2021-10-12 2021-12-31 浙江理工大学 一种多自由度微创手术器械
CN114027982A (zh) * 2021-12-09 2022-02-11 合肥工业大学 一种基于连续体构型的单杆柔性驱动手术机器人执行器
CN114052926A (zh) * 2022-01-14 2022-02-18 极限人工智能有限公司 手术控制器械组件、分体式手术装置及软组织机器人
CN114800619A (zh) * 2022-06-10 2022-07-29 北京通用人工智能研究院 一种柔性连续体机器人的线牵引驱动装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437036B (zh) * 2020-03-18 2021-03-12 中国科学院深圳先进技术研究院 一种应用于微创手术的蛇形手术机器人
CN112168239B (zh) * 2020-09-22 2022-03-01 武汉联影智融医疗科技有限公司 多关节运动解耦控制组件、远端执行机构及手术器械
CN112206018B (zh) * 2020-09-22 2022-04-26 武汉联影智融医疗科技有限公司 多关节组件、远端执行机构及手术器械
CN113243947B (zh) * 2021-05-19 2022-01-11 中国科学院自动化研究所 面向肺部微小结节的支气管介入连续体机器人
CN113208737B (zh) * 2021-06-08 2023-04-28 山东大学 一种可用于单孔手术机器人的受限连续体
CN113907876A (zh) * 2021-09-22 2022-01-11 中南大学湘雅医院 一种仿脊柱高刚性直线驱动的机械臂及手术机器人
CN114209426B (zh) * 2021-11-08 2023-08-08 哈尔滨工业大学(深圳) 一种用于变刚度机械臂的锁定结构
CN114404044B (zh) * 2022-02-16 2024-04-05 上海交通大学 一种连续体构型的微创手术机器人及其工作方法
CN114587600B (zh) * 2022-02-22 2023-06-27 哈尔滨工业大学(深圳) 一种用于微创手术的机器人
CN114631891A (zh) * 2022-03-04 2022-06-17 吉林大学 一种柔性手术机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104507397A (zh) * 2012-07-24 2015-04-08 理查德·沃尔夫有限公司 具有可运动部分的医疗器械的杆
CN106955161A (zh) * 2017-03-30 2017-07-18 微创(上海)医疗机器人有限公司 手术机器人用蛇形关节、手术器械及内窥镜
EP3524201A1 (en) * 2001-06-29 2019-08-14 Intuitive Surgical Operations Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US20190254760A1 (en) * 2018-02-19 2019-08-22 Gregory P. Schmitz Universal joint for surgical robotics
CN110575256A (zh) * 2019-08-28 2019-12-17 哈尔滨理工大学 一种孔腔内窥镜手术机器人
CN111437036A (zh) * 2020-03-18 2020-07-24 中国科学院深圳先进技术研究院 一种应用于微创手术的蛇形手术机器人

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264253A (ja) * 2007-04-20 2008-11-06 Olympus Medical Systems Corp 医療用処置具及び内視鏡処置システム
CN102274077A (zh) * 2011-05-09 2011-12-14 无锡佑仁科技有限公司 微创血管介入手术机器人
EP3320873A4 (en) * 2015-07-09 2019-01-30 Kawasaki Jukogyo Kabushiki Kaisha SURGICAL ROBOT
GB2572739B (en) * 2018-01-26 2020-11-18 Ip2Ipo Innovations Ltd Joint component
CN110269686B (zh) * 2018-03-14 2021-01-01 深圳市精锋医疗科技有限公司 具有转动部的连接组件、操作臂及手术机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3524201A1 (en) * 2001-06-29 2019-08-14 Intuitive Surgical Operations Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
CN104507397A (zh) * 2012-07-24 2015-04-08 理查德·沃尔夫有限公司 具有可运动部分的医疗器械的杆
CN106955161A (zh) * 2017-03-30 2017-07-18 微创(上海)医疗机器人有限公司 手术机器人用蛇形关节、手术器械及内窥镜
US20190254760A1 (en) * 2018-02-19 2019-08-22 Gregory P. Schmitz Universal joint for surgical robotics
CN110575256A (zh) * 2019-08-28 2019-12-17 哈尔滨理工大学 一种孔腔内窥镜手术机器人
CN111437036A (zh) * 2020-03-18 2020-07-24 中国科学院深圳先进技术研究院 一种应用于微创手术的蛇形手术机器人

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113855251A (zh) * 2021-10-12 2021-12-31 浙江理工大学 一种多自由度微创手术器械
CN114027982A (zh) * 2021-12-09 2022-02-11 合肥工业大学 一种基于连续体构型的单杆柔性驱动手术机器人执行器
CN114027982B (zh) * 2021-12-09 2023-07-21 合肥工业大学 一种基于连续体构型的单杆柔性驱动手术机器人执行器
CN114052926A (zh) * 2022-01-14 2022-02-18 极限人工智能有限公司 手术控制器械组件、分体式手术装置及软组织机器人
CN114052926B (zh) * 2022-01-14 2022-03-29 极限人工智能有限公司 手术控制器械组件、分体式手术装置及软组织机器人
CN114800619A (zh) * 2022-06-10 2022-07-29 北京通用人工智能研究院 一种柔性连续体机器人的线牵引驱动装置
CN114800619B (zh) * 2022-06-10 2023-07-04 北京通用人工智能研究院 一种柔性连续体机器人的线牵引驱动装置

Also Published As

Publication number Publication date
CN111437036B (zh) 2021-03-12
CN111437036A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021184791A1 (zh) 一种应用于微创手术的蛇形手术机器人
KR101126288B1 (ko) 수술도구 종단부의 롤링 운동이 가능한 최소침습수술용 수술장치
JP5289504B2 (ja) 向上した巧緻性および感度で最低侵襲性外科手術を行うための連結外科手術器具
JP2020096991A (ja) 機械的利益把握のロボット制御
WO2022042177A1 (zh) 手术器械、及手术器械平台
CN105455902B (zh) 机器人手腕和手术机器人
EP2741798A1 (en) Remote center of motion mechanism and method of use
WO2022001188A1 (zh) 连续体器械及手术机器人
JP7096393B2 (ja) 手術システムおよび支持装置
CN113662673A (zh) 机械臂、从操作设备及手术机器人
WO2018174227A1 (ja) 把持機構
CN116407215A (zh) 一种穿戴式多自由度可弯曲的手术器械
CN113855251A (zh) 一种多自由度微创手术器械
CN112043391A (zh) 手术器械、从操作设备及手术机器人
CN112370173A (zh) 手术器械、从操作设备及手术机器人
WO2022001186A1 (zh) 连续体器械及手术机器人
CN218552386U (zh) 一种可使前端执行装置多方向偏摆的驱动机构
CN218305109U (zh) 一种远心不动机构、机械手及手术机器人
US20230372041A1 (en) Surgical instrument, slave operating device, and surgical robot
WO2022001187A1 (zh) 连续体器械及手术机器人
WO2022001185A1 (zh) 连续体器械及手术机器人
WO2022249524A1 (ja) アーム装置
EP3508159B1 (en) Flexible surgical instrument system with prepositioned drive input
CN115519535A (zh) 一种远心不动机构、驱动方法、机械手及手术机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926103

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20926103

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05.07.2023)