WO2022001186A1 - 连续体器械及手术机器人 - Google Patents

连续体器械及手术机器人 Download PDF

Info

Publication number
WO2022001186A1
WO2022001186A1 PCT/CN2021/080946 CN2021080946W WO2022001186A1 WO 2022001186 A1 WO2022001186 A1 WO 2022001186A1 CN 2021080946 W CN2021080946 W CN 2021080946W WO 2022001186 A1 WO2022001186 A1 WO 2022001186A1
Authority
WO
WIPO (PCT)
Prior art keywords
proximal
continuum
distal
sliding
connecting rod
Prior art date
Application number
PCT/CN2021/080946
Other languages
English (en)
French (fr)
Inventor
徐凯
刘旭
Original Assignee
北京术锐技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010623370.6A external-priority patent/CN113855110A/zh
Priority claimed from CN202010618751.5A external-priority patent/CN113855107A/zh
Priority claimed from CN202010617404.0A external-priority patent/CN113858260B/zh
Priority claimed from CN202010618747.9A external-priority patent/CN113855105A/zh
Application filed by 北京术锐技术有限公司 filed Critical 北京术锐技术有限公司
Priority to US18/010,066 priority Critical patent/US20230225758A1/en
Priority to CN202180034500.5A priority patent/CN115605140A/zh
Priority to EP21832207.1A priority patent/EP4173576A1/en
Publication of WO2022001186A1 publication Critical patent/WO2022001186A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2908Multiple segments connected by articulations

Definitions

  • the present disclosure relates to the field of medical instruments, and in particular, to a continuum instrument and a surgical robot.
  • Minimally invasive surgery has less trauma to patients and faster recovery after surgery, and has occupied an important position in surgical operations.
  • surgical instruments including surgical tools and visual lighting modules enter the human body through incisions or natural orifices to reach the surgical site for surgery.
  • the distal end structure of the existing surgical instrument is mainly a series hinged connection of multiple rods, which is driven by the pulling force of the wire rope, so that the surgical instrument can be bent at the hinge joint. Since the wire rope must be kept in a continuous tension state by the pulley, it is difficult to further miniaturize the surgical instrument with this driving method, and it is also difficult to further improve the movement performance of the instrument.
  • the flexible continuum structure can realize continuous bending deformation, so the flexible continuum structure is widely used in flexible manipulators, endoscopes, controllable Research and development of medical devices such as catheters, as well as industrial deep cavity detection endoscopes, flexible robotic arms and other new special equipment.
  • the existing continuum structure generally pushes and pulls the driving wire in the continuum structure directly through the driving mechanism, so as to realize the bending of the continuum structure in any direction.
  • High flexibility, good stability and other stricter requirements the existing driving structure has gradually been unable to meet the above requirements, and the existing driving method is to directly push and pull the driving wire to move, so when the number of driving wires is large, the driving mechanism The number will also increase accordingly, making the structure complex.
  • the present disclosure provides a continuum device comprising: at least one proximal continuum including a proximal base, a first proximal stop, a second proximal stop, a plurality of proximal ends Structural bones and a plurality of proximal driving bones, the proximal ends of the plurality of proximal driving bones are fixedly connected with the second proximal end stop plate, the plurality of proximal end driving bones pass through the first proximal end stop plate, and the distal ends are connected to the proximal end bases.
  • Disk fixed connection at least one distal continuum, including a distal stop disk and a plurality of distal structural bones, the plurality of distal structural bones are connected with or integrally formed with a plurality of proximal structural bones, and the distal end of the plurality of distal structural bones is formed. The end is fixedly connected with the distal end stop.
  • the present disclosure provides a surgical robot, comprising at least one surgical trolley, at least one positioning arm, and at least one surgical instrument; the at least one surgical instrument includes at least one continuum instrument as described above and is arranged in a continuous The end device at the distal end of the body instrument; at least one positioning arm is movably arranged on at least one operating trolley, and at least one surgical instrument is respectively arranged at the distal end of the at least one positioning arm.
  • FIG. 1 shows a schematic structural diagram of a continuum device according to some embodiments of the present disclosure
  • Fig. 2 shows a partial structural schematic diagram of another continuum device according to some embodiments of the present disclosure
  • FIG. 3 shows a schematic structural diagram of a drive transmission mechanism according to some embodiments of the present disclosure
  • FIG. 4 shows a top view of the drive transmission mechanism shown in FIG. 3 according to some embodiments of the present disclosure
  • FIG. 5 shows a schematic structural diagram of a third connecting rod of the drive transmission mechanism shown in FIG. 3 according to some embodiments of the present disclosure
  • FIG. 6 shows a schematic structural diagram of a fourth connecting rod of the drive transmission mechanism shown in FIG. 3 according to some embodiments of the present disclosure
  • FIG. 7 shows a partial structural schematic diagram of another continuum apparatus according to some embodiments of the present disclosure.
  • FIG. 8 shows a partial structural schematic diagram of the continuum device shown in FIG. 7 according to some embodiments of the present disclosure
  • FIG. 9 shows a schematic structural diagram of the drive transmission mechanism shown in FIG. 7 according to some embodiments of the present disclosure.
  • FIG. 10 shows a partial structural schematic diagram of the drive transmission mechanism shown in FIG. 9 according to some embodiments of the present disclosure
  • FIG. 11 shows a partial structural schematic diagram of the drive transmission mechanism shown in FIG. 9 according to some embodiments of the present disclosure
  • Fig. 12 shows a partial structural schematic diagram of another continuum device according to some embodiments of the present disclosure.
  • FIG. 13 shows a schematic structural diagram of the drive transmission mechanism shown in FIG. 11 according to some embodiments of the present disclosure
  • FIG. 14 shows a partial structural schematic diagram of the drive transmission mechanism shown in FIG. 12 according to some embodiments of the present disclosure
  • FIG. 15 shows a partial structural schematic diagram of the drive transmission mechanism shown in FIG. 12 according to some embodiments of the present disclosure
  • FIG. 16 shows a partial structural schematic diagram of the drive transmission mechanism shown in FIG. 12 according to some embodiments of the present disclosure
  • FIG. 17 shows a partial structural schematic diagram of another continuum apparatus according to some embodiments of the present disclosure.
  • Fig. 18 shows a partial structural schematic diagram of another continuum device according to some embodiments of the present disclosure.
  • Fig. 19 shows a partial structural schematic diagram of another continuum device according to some embodiments of the present disclosure.
  • FIG. 20 shows a partial structural schematic diagram of a surgical robot according to some embodiments of the present disclosure.
  • the terms “installed”, “connected”, “connected” and “coupled” should be understood in a broad sense, for example, it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • installed e.g., it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the end close to the operator is defined as proximal, proximal or posterior, posterior, and the end close to the surgical patient is defined as distal, distal or anterior, anterior.
  • Figure 1 illustrates a continuum instrument 10 in accordance with some embodiments of the present disclosure.
  • the continuum device 10 may include a flexible continuum structure 110 .
  • the flexible continuum structure 110 may include at least one proximal continuum 111 at the proximal end and at least one distal continuum 112 at the distal end.
  • the proximal continuum 111 may include a proximal base 1111 , a first proximal stop 1112 , a proximal drive bone 1113 , a second proximal stop 1114 , and a proximal structural bone 1116 .
  • the proximal base 1111 , the first proximal stop 1112 and the second proximal stop 1114 are arranged at intervals.
  • the proximal ends of the plurality of proximal driving bones 1113 are fixedly connected with the second proximal stop plate 1114 .
  • a plurality of proximal driving bones 1113 pass through the first proximal stop plate 1112 , and the distal ends are fixedly connected with the proximal base plate 1111 .
  • the proximal ends of the plurality of proximal structural bones 1116 are fixedly connected to the first proximal stop plate 1112 .
  • the distal continuum 112 may include a distal base 1121 , a distal stop 1122 and a distal structural bone 1123 .
  • the distal base 1121 and the distal stop 1122 are arranged at intervals, and the distal base 1121 is adjacent to the proximal base 1111 .
  • the plurality of distal structural bones 1123 are connected to or integrally formed with the plurality of proximal structural bones 1116 and pass through the proximal base 1111 and the distal base 1121 .
  • the flexible continuum structure 110 may also include a structural bone guide tube bundle 113 .
  • the proximal end of the structural bone guide tube bundle 113 is fixedly connected to the proximal base plate 1111
  • the distal end of the structural bone guide tube bundle 113 is fixedly connected to the distal base plate 1121 .
  • the plurality of distal structural bones 1123 or the plurality of proximal structural bones 1116 pass through the proximal base plate 1111 , the structural bone guide tube bundle 113 and the distal base plate 1121 in sequence.
  • the structural bone guide bundle 113 can guide and constrain the plurality of distal structural bones 1123 or the plurality of proximal structural bones 1116 located between the proximal base 1111 and the distal base 1121 .
  • the continuum instrument 10 may also include a drive connection 120 .
  • the distal end of the driving connection part 120 is connected with the second proximal end stop 1114 , and the proximal end of the driving connection part 120 includes an input end.
  • the input end is used to drive the second proximal stop plate 1114 to move by the drive transmission mechanism, so as to drive the first proximal stop plate 1112 to turn over, so as to push and pull the proximal structural bone 1116 and the distal structural bone 1123, so as to realize the distal
  • the end continuum 112 turns in different directions in space.
  • the drive link 120 may include at least one movable joint (not shown).
  • the at least one movable joint may include at least one of a cylindrical pair, a moving pair, and a rotating pair.
  • the distal end of the at least one movable joint is connected with the second proximal end stop 1114 by at least one of a cylindrical pair, a moving pair, a rotating pair and a fixed connection.
  • the proximal end of at least one movable joint forms an input end, and the input end and the output end of the drive transmission mechanism can be connected by at least one of a cylindrical pair, a moving pair, a rotating pair and a fixed connection.
  • the cylindrical pair can be rotated as well as moved, the moving pair can only move, and the rotating pair can only rotate.
  • the second proximal stop 1114 can slide or rotate up and down relative to the drive link 120 or the drive link 120 relative to the output end of the drive transmission mechanism, thereby allowing the proximal continuum 111 to generate along the axis direction during the bending process Parasitic motion of sliding (slide up and down), and bending motion (rotation) in any direction.
  • the parasitic motion can prevent the distal continuum 112 from producing axial telescopic motion during the bending process, causing the cover wrapped around the distal continuum 112 to be wrinkled or overstretched, which affects the service life of the cover.
  • the continuum instrument 10 may include a drive transmission mechanism.
  • the output end of the drive transmission mechanism is connected to the second proximal stop plate 1114, and the output end is used to drive the second proximal stop plate 1114 to move, so as to drive the first proximal stop plate 1112 to turn over, so as to drive the bone 1113, proximal stop plate 1113 through the proximal end.
  • the end structural bone 1116 and the distal structural bone 1123 drive the distal continuum 112 to bend.
  • the output end of the drive transmission mechanism may include a sliding pin, and the second proximal end stop 1114 may include a guide hole.
  • the sliding pin is arranged in the guide hole, and is connected with the second proximal stop plate 1114 by at least one of a cylindrical pair, a moving pair and a rotating pair.
  • the output end of the drive transmission mechanism may include an annular shaft, the annular shaft is sleeved on the outer circumference of the second proximal end stop plate 1114, and is connected with the second proximal end stop plate 1114 in a cylindrical pair, a moving pair and At least one of the rotating pairs is connected.
  • the continuum instrument 10 may include a drive transmission mechanism.
  • the output end of the drive transmission mechanism can perform plane movement.
  • FIG. 2 shows a partial structural schematic diagram of the continuum instrument 10 including the drive transmission mechanism 130 according to some embodiments of the present disclosure.
  • 3 and 4 respectively show a schematic structural diagram and a top view of the drive transmission mechanism 130 according to some embodiments of the present disclosure.
  • the drive transmission mechanism 130 may include a planar linkage.
  • the planar link mechanism may include a first connecting rod 131 , a second connecting rod 132 , a third connecting rod 133 , a fourth connecting rod 134 , a fifth connecting rod 135 , a first input shaft 137 and a second input shaft 138 .
  • the first connecting rod 131 is fixedly disposed, and the first input shaft 137 and the second input shaft 138 are rotatably disposed on the first connecting rod 131 .
  • One end of the second connecting rod 132 is fixedly connected with the first input shaft 137 , and the other end of the second connecting rod 132 is hinged with one end of the third connecting rod 133 .
  • One end of the fifth connecting rod 135 is fixedly connected with the second input shaft 138 , and the other end of the fifth connecting rod 135 is hinged with one end of the fourth connecting rod 134 .
  • the other end of the fourth connecting rod 134 is movably connected with the other end of the third connecting rod 133 .
  • the other end of the third connecting rod 133 or the other end of the fourth connecting rod 134 forms the output end of the drive transmission mechanism, and the output end is connected with the second proximal end stop 1114, for example, through a cylindrical pair, so that the output end of the drive transmission mechanism 130 is connected to the
  • the second proximal stop 1114 can slide and rotate in the axial direction of the output end.
  • the second proximal stop disk 1114 can be moved in any direction in the horizontal plane through the plane linkage mechanism.
  • the output end of the drive transmission mechanism 130 may also be connected with the input end of the drive connection part 120 .
  • the first connecting rod 131 may include an arc-shaped connecting rod formed by a base, the second connecting rod 132 and the fifth connecting rod 135 may be straight, and the second connecting rod 132 and the fifth connecting rod 135 may be straight lines.
  • One end of the rod 132 and the fifth connecting rod 135 are fixedly connected with the first input shaft 137 and the second input shaft 138 respectively, so that they can rotate with the rotation of the first input shaft 137 and the second input shaft 138 .
  • FIG. 5 and FIG. 6 respectively show structural schematic diagrams of the third connecting rod and the fourth connecting rod of the drive transmission mechanism 130 according to some embodiments of the present disclosure. In some embodiments, as shown in FIGS.
  • one end of the third connecting rod 133 may include a straight rod, and the other end may include a circular shaft.
  • the annular shaft is provided with an arc-shaped groove 1331 in the circumferential direction.
  • One end of the fourth connecting rod 134 may include a straight rod, and the other end may include a circular ring, and the size of the circular ring corresponds to the size of the arc-shaped groove 1331 .
  • the circular ring of the fourth connecting rod 134 is fitted into the arc-shaped groove 1331 and can be rotated with each other.
  • the annular shaft of the third connecting rod 133 cooperates with the annular ring of the fourth connecting rod 134 to form the output end (eg, annular shaft) of the drive transmission mechanism 130 .
  • the annular shaft and the annular ring are sleeved on the outer circumference of the second proximal stop plate 1114 (or the outer circumference of the input end), for example, connected by a cylinder pair, so that the output end of the drive transmission mechanism 130 is connected to the second proximal end stop plate 1114 It can slide and rotate in the axial direction of the output end.
  • the output end of the drive transmission mechanism 130 may also include a sliding pin
  • the second proximal end stop 1114 may include a guide hole. The sliding pin is arranged in the guide hole, and can slide and rotate along the axial direction of the sliding pin together with the second proximal stop plate 1114 .
  • the second connecting rod 132 may include an opening 1321
  • the fifth connecting rod 135 may include an opening 1351 .
  • One end of the third connecting rod 133 is located in the opening 1321 and is hinged with the other end of the second connecting rod 132 .
  • One end of the fourth connecting rod 134 is located in the arc-shaped opening 1351 and is hinged with the other end of the fifth connecting rod 135 .
  • Providing the opening can facilitate the rotation of the third connecting rod 133 and the fourth connecting rod 134 .
  • the connecting rods can also be hinged to each other on the surface or the outside of the connecting rods, and the rotation of the connecting rods can also be realized.
  • the second connecting rod 132 and the fifth connecting rod 135 are driven to rotate, thereby driving the third connecting rod 133 and the fourth connecting rod 134 rotate, thereby driving the output end of the plane five-bar mechanism (eg, the annular shaft of the third connecting rod 133 and the annular ring of the fourth connecting rod 134 ) to move in the plane.
  • the second proximal stop disc 1114 can be driven to move in the plane, so that the proximal base disc 1111 and the second proximal stop disc 1114 are misaligned, and the axes of the two are no longer coincident.
  • the plurality of proximal driving bones 1113 can be driven to bend, so that the proximal continuum 111 can be bent, so as to drive the first proximal stop plate 1112 to turn over, so as to reverse the rotation of the proximal end stop plate 1112.
  • the plurality of proximal structural bones 1116 are pushed and pulled, thereby pushing and pulling the plurality of distal structural bones 1123 fixed on the first proximal stop plate 1112 (eg, evenly distributed).
  • the proximal continuum 111 corresponds to (eg, co-directional, reversed, or angled) turns.
  • the proximal drive bone 1113 is driven to bend, and the first proximal stop plate 1112 is driven to turn over to push and pull the proximal structural bone 1116 and the distal structural bone 1123, instead of pushing and pulling the proximal structural bone 1116 and the distal structural bone 1123.
  • the end structural bone 1113 and the distal structural bone 1123 are directly pushed and pulled.
  • the bending ratio of the proximal continuum 111 and the distal continuum 112 and the corresponding distribution radii of the proximal structural bone 1116 and the distal structural bone 1123 respectively are respectively distributed along the circumferential direction, which may be distributed on the circumference, or may be distributed on the circumference of a rectangle, a polygon, an ellipse or other shapes.
  • FIGS. 7 and 8 respectively show a partial structural schematic diagram of the continuum apparatus 10 including a drive transmission mechanism 230 according to some embodiments of the present disclosure
  • FIG. 9 shows a schematic structural diagram of the drive transmission mechanism 230 according to some embodiments of the present disclosure
  • FIG. 10 and FIG. 11 respectively show partial structural schematic diagrams of the drive transmission mechanism 230 according to some embodiments of the present disclosure.
  • the drive transmission mechanism 230 may include a gear chute mechanism, and the gear chute mechanism may include a first rotatable member 231 , a moving member 233 , a second rotatable member 232 and Slide assembly 234 .
  • the first rotatable member 231 can be used to rotate around its own rotation center under the driving of the first driving member 235 .
  • the moving member 233 can be used to rotate around its own rotation center under the rotational driving of the first rotatable member 231 , and the rotation center of the moving member 233 is offset from the rotation center of the first rotatable member 231 .
  • the moving member 233 is provided with a first sliding guide portion 2332, as shown in FIG. 10 .
  • the second rotatable member 232 is coaxially disposed with the first rotatable member 231 and can be used to rotate relative to the first rotatable member 231 under the driving of the second driving member 236 , and the second rotatable member 232 is provided with a second sliding
  • the guide portion 2322 is shown in FIG. 9 .
  • the sliding assembly 234 is slidably connected with the first sliding guide part 2332 and the second sliding guide part 2322 to slide along the first sliding guide part 2332 and the second sliding guide part 2322 .
  • the sliding assembly 234 is connected with the second proximal end stop plate 1114, for example, through a cylindrical pair, so that the sliding assembly 234 of the drive transmission mechanism 230 and the second proximal end stop plate 1114 can slide and rotate along the axial direction of the output end.
  • the sliding assembly 234 may also be connected to the input end of the drive connector 120 .
  • the second rotatable member 232 can be overlapped and arranged above the first rotatable member 231 , and the two can be rotated relative to each other.
  • the first rotatable member 231 may include, for example, a first driven gear 2311
  • the first driving member 235 may include a first driving gear 2351 .
  • the second rotatable member 232 may include, for example, a second driven gear 2321
  • the second driving member 236 may include a second driving gear 2361 .
  • the first driving gear 2351 meshes with the first driven gear 2311
  • the second driving gear 2361 meshes with the first driven gear 2311
  • the second driven gear 2321 is overlapped and arranged above the first driven gear 2311 .
  • the first driving gear 2351 can drive the first driven gear 2311 to rotate under the driving of the driving motor.
  • the second driving gear 2361 can drive the second driven gear 2321 to rotate under the driving of the driving motor, and the first driven gear 2311 and the second driven gear 2321 can rotate relative to each other.
  • the first rotatable member 231 and the second rotatable member 232 may include a first gear and a second gear, respectively, and the first driving member 235 and the second driving member 236 may include a driving motor (or motor), The first gear and the second gear are respectively rotatable relative to each other under the driving of the driving motor.
  • the transmission mode of the first rotatable member 231 and the second rotatable member 232 may also include other transmission modes, such as pulley transmission or sprocket transmission.
  • the moving member 233 may include an engaging portion 2331 for engaging with the first rotatable member 231 .
  • the moving member 233 may be a connecting rod, at least one end of which is in the shape of a circular arc.
  • the engaging portion 2331 may include teeth provided on the outer peripheral surface of the arc-shaped end portion.
  • the inner peripheral surface of the first rotatable member 231 (for example, the first driven gear 2311 ) is provided with inner ring teeth 2312 , and the teeth on the outer peripheral surface of the arc-shaped end engage with the inner ring teeth 2312 of the first rotatable member 231 to When the first rotatable member 231 is rotated, the moving member 233 is driven to rotate with the first rotatable member 231 .
  • another gear may be provided in the first rotatable member 231, and the other gear and the first rotatable member 231 rotate coaxially and synchronously, and the moving member
  • the teeth on the outer peripheral surface of the 233 mesh with the other gear, and the moving member 233 can also be rotated by the driving of the first rotatable member 231 .
  • the moving member 233 is provided with a first sliding guide portion 2332 , and the first sliding guide portion 2332 may include a first sliding groove arranged along the length direction of the moving member 233 .
  • the second rotatable member 232 eg, the second driven gear 2321
  • the second sliding guide portion 2322 may include a second sliding groove along the diameter of the second rotatable member 232 .
  • the sliding assembly 234 may include a sliding pin 2341 , which is slidably disposed in the first sliding groove and the second sliding groove, so that the sliding pin 2341 can move along the first sliding groove and/or the second sliding groove.
  • the distal end of the sliding pin 2341 forms the output end of the drive transmission mechanism 230, and is connected to the second proximal end stop 1114, for example, through a cylindrical pair, so that the sliding pin 2341 and the second proximal end stop 1114 can move along the sliding pin 2341.
  • the sliding assembly 234 may further include a sliding block 2342 fixedly connected with the sliding pin 2341 or integrally formed.
  • the second rotatable member 232 may be provided with a sliding rail 2323 parallel to the second sliding slot, and the sliding block 2342 is slidably arranged on the sliding rail 2323 .
  • the sliding block 2342 and the sliding rail 2323 may adopt a groove type fit.
  • the proximal end of the sliding pin 2341 is slidably disposed in the first sliding groove, and the distal end is fixedly connected to the slider 2342 through the first sliding groove and the second sliding groove.
  • the distal end of the sliding pin 2341 can be connected to the second proximal stop plate 1114 through the slider 2342 or connected to the second proximal stop plate 1114 through the slider 2342 .
  • the first sliding guide portion 2332 may include a first sliding rail (not shown) disposed along the length of the moving member 233
  • the second sliding guide portion 2322 may include a diameter disposed along the second rotatable member 232 . of the second rail.
  • the sliding assembly 234 may include a first sliding block, a second sliding block, and a sliding pin. The first sliding block is slidably arranged on the first sliding rail, the second sliding block is slidably arranged on the second sliding rail, one of the first sliding block and the second sliding block is arranged to be movably connected with the sliding pin, the first sliding block and the other one of the second sliding blocks is arranged to be fixedly connected with the sliding pin or integrally formed.
  • first sliding guide portion 2332 and the second sliding guide portion 2322 may include a slide rail
  • the other of the first sliding guide portion 2332 and the second sliding guide portion 2322 may include a sliding groove
  • the sliding assembly 234 may include a sliding block and a sliding pin fixedly connected with the sliding block or integrally formed, the sliding pin is arranged in the sliding groove, and the sliding block is slidably arranged on the sliding rail.
  • the drive transmission mechanism 230 may further include a rotating shaft 237 .
  • the proximal end of the rotating shaft 237 can be fixedly connected with the moving member 233 or integrally formed, the rotating shaft 237 can be located at one end close to the arc-shaped end, and the distal end of the rotating shaft 237 is rotatably disposed on the second rotatable member 232, Therefore, the rotation shaft 237 can rotate relative to the second rotatable member 232, and the rotation axis of the rotation shaft 237 is offset from the rotation center of the second rotatable member 232, so that when the first driven gear 2311 rotates at any angle, the first driven gear 2311 can rotate at any angle.
  • Both the second sliding groove and the first sliding groove can intersect, so that the sliding pin 2341 is located at the intersection of the two.
  • the plurality of proximal driving bones 1113 are driven to bend, so that the proximal continuum 111 is bent, so as to drive the first proximal stop plate 1112 to turn over, so as to counteract the plurality of bones whose ends are fixed on the first proximal stop plate 1112
  • the proximal structural bone 1116 is pushed and pulled, so that through the distal structural bone 1123, the distal continuum 112 is driven to produce a corresponding (eg, same, opposite, or angled) bending of the proximal continuum 111, and the distal end can be realized
  • the turning of the continuum 112 in space along a specific turning plane.
  • the bending degree of the proximal continuum 111 can be adjusted to adjust the bending degree of the distal continuum 112 by adjusting the distance that the sliding pin 2341 or the slider 2342 moves along the second chute.
  • the first driving gear 2351 drives the first driven gear 2311 to rotate
  • the second driven gear 2321 and the first driven gear 2311 are synchronized in the same direction (for example, When rotating at a constant speed), the position of the sliding pin 2341 in the first chute and the second chute does not change, but the azimuth angle of the sliding pin 2341 in the rotational plane of the driven gear changes (for example, the sliding pin 2341 performs a circular movement), thereby changing the direction of the bending plane of the sliding pin 2341.
  • the proximal continuum 111 When the proximal continuum 111 is bent, the pushing and pulling of the proximal structural bone 1116 by the first proximal stop plate 1112 is transmitted to the distal end of the distal continuum 112 through the distal structural bone 1123 , thereby realizing the distal continuum. 112 Turns in space along different turning planes. By cooperating to drive the second driven gear 2321 and the first driven gear 2311, the bending degree of the proximal continuum 111 in a specific bending plane and the bending in different bending planes can be adjusted, so as to realize the distal continuous The bending of the body 112 in any direction in space.
  • FIG. 12 shows a partial structural schematic diagram of the continuum apparatus 10 including another drive transmission mechanism 330 according to some embodiments of the present disclosure.
  • FIG. 13 shows a schematic structural diagram of a drive transmission mechanism 330 according to some embodiments of the present disclosure.
  • FIGS. 14-16 respectively show partial structural schematic diagrams of the drive transmission mechanism 330 according to some embodiments of the present disclosure.
  • the drive transmission mechanism 330 may include a rack and pinion mechanism, and the rack and pinion mechanism may include: a first rotatable member 331 , a second rotatable member 332 and a moving component.
  • the first rotatable member 331 can be used to rotate under the driving of the first driving member 335
  • the second rotatable member 332 is coaxially disposed with the first rotatable member 331 and can be used to be opposite to the second driving member 336 . It rotates on the first rotatable member 331 .
  • the second rotatable member 332 is provided with a sliding guide portion 3322, as shown in FIG. 13 .
  • At least a part of the moving assembly is slidably arranged on the sliding guide part 3322 , and at least another part of the moving assembly is arranged to be able to perform linear motion with the rotation of the first rotatable member 331 , and the distal end of the moving assembly forms the output end of the drive transmission mechanism 330 , the output end is connected with the second proximal stop plate 1114, for example, through a cylindrical pair, so that the output end of the drive transmission mechanism 330 and the second proximal stop plate 1114 can slide and rotate along the axial direction of the output end.
  • the distal end of the moving component can also be connected with the driving connection part 120 , and the second proximal stop disk 1114 is driven to move through the driving connection part 120 .
  • the second rotatable member 332 can be overlapped and arranged above the first rotatable member 331 , and the two can be rotated relative to each other.
  • the first rotatable member 331 may include a meshing gear 3312 and a first driven gear 3311 that are coaxially and fixedly connected to each other, and the meshing gear 3312 is located on the first driven gear 3311 the far side.
  • the first driving member 335 may include a first driving gear 3351 .
  • the second rotatable member 332 may include, for example, a second driven gear 3321 , and the second driving member 336 may include a second driving gear 3361 .
  • the first driving gear 3351 meshes with the first driven gear 3311
  • the second driving gear 3361 meshes with the second driven gear 3321
  • the second driven gear 3321 is overlapped and arranged above the meshing gear 3312 .
  • the first driving gear 3351 can be driven by the driving motor to drive the first driven gear 3311 to rotate
  • the second driving gear 3361 can be driven by the driving motor to drive the second driven gear 3321 to rotate
  • the first driven gear 3311 and The second driven gears 3321 are rotatable relative to each other.
  • the first rotatable member 331 may include a meshing gear 3312 and a first gear that are coaxially and fixedly connected to each other
  • the second rotatable member 332 may include a second gear
  • a first driving member 335 and a second driving member 336 may include a drive motor (or motor)
  • the first gear and the second gear may be rotated relative to each other by the drive motors, respectively.
  • the transmission modes of the first rotatable member 331 and the second rotatable member 332 may also include other transmission modes, such as pulley transmission or sprocket transmission.
  • the moving assembly may include a sliding portion 334 and an engaging portion 333 that are fixedly connected or integrally formed with each other.
  • the sliding portion 334 is slidably arranged on the sliding guide portion 3322 to be guided by the sliding guide portion 3322 to slide linearly relative to the second rotatable member 332 (eg, the second driven gear 3321 ), and the engaging portion 333 is arranged to align with the first rotatable member 332 .
  • the rotating member 331 eg, the first driven gear 3311
  • the engaging portion 333 may include a rack 3331 , and the rack 3331 may be engaged with the engaging gear 3312 .
  • the rack 3331 can be a straight rack and the meshing gear 3312 is a spur gear.
  • the rack 3331 can also be a helical rack and the meshing gear 3312 is a helical gear.
  • the sliding part 334 may include a sliding block 3341, the sliding guide part 3322 may include at least one sliding groove arranged in a direction parallel to the diameter of the second rotatable member 332, and the sliding block 3341 is slidably disposed in the sliding groove, One side of the sliding block 3341 is fixedly connected to the rack 3331 through the sliding groove.
  • the rack 3331 can move linearly under the driving of the meshing gear 3312 to drive the slider 3341 to move along the chute.
  • the sliding guide portion 3322 may include a pair of sliding grooves arranged symmetrically along the diameter of the second rotatable member 332 .
  • the slider 3341 may include a slider body 3342 and slider side wings 3343a and 3343b extending from both ends of the slider body 3342 toward the proximal end. The inner sides of the slider side wings 3343a and 3343b are provided with engaging steps for matching with the chute. The slider side wings 3343b are fixedly connected to the rack 3331 through the chute. As shown in FIG.
  • the slider body 3342 is provided with a connecting groove 3345, and the connecting groove 3345 is sleeved on the outer circumference (or the proximal outer circumference) of the second proximal stop plate 1114, for example, connected by a cylinder pair, so that the slider The main body 3342 and the second proximal stop plate 1114 can slide and rotate along the axial direction of the connecting groove 3345 .
  • the connecting slot 3345 may be circular, corresponding to the shape of the second proximal stop plate 1114 .
  • the connecting slot 3345 may also have other shapes, such as rectangles, polygons, and the like.
  • the shape of the outer circumference of the second proximal stop plate 1114 matches the shape of the inner circumference of the connecting groove 3345, and the two can be connected by a moving pair.
  • the sliding guide portion 3322 may also include at least one sliding rail (or sliding rod) disposed parallel to the diameter direction of the second rotatable member 332, and the sliding block 3341 is slidably disposed on the sliding rail, for example, the sliding block 3341 and the sliding block 3341 are slidably disposed on the sliding rail.
  • the rails can be fitted with grooves.
  • the first driving gear 3351 drives the first driven gear 3311 located on the lower layer to rotate and the second driving gear 3361 located on the upper layer remains stationary, it drives the first driven gear 3311 to rotate.
  • the fixedly connected meshing gear 3312 rotates, thereby driving the gear rack 3331 meshing with the meshing gear 3312 to linearly move.
  • the slider 3341 fixedly connected with the rack 3331 is driven by the rack 3331 to move in the chute of the second driven gear 3321, thereby driving the second proximal stop plate 1114 to move in the horizontal plane, so that the proximal base plate 1111 Dislocation occurs with the second proximal stop disk 1114, and the axes of the two are no longer coincident.
  • the plurality of proximal driving bones 1113 are driven to bend, so that the proximal continuum 111 is bent, so as to drive the first proximal stop plate 1112 to turn over, so as to counteract the plurality of bones whose ends are fixed on the first proximal stop plate 1112
  • the proximal structural bone 1116 generates push-pull, thereby driving the distal continuum 112 through the distal structural bone 1123 to generate a corresponding (eg, same, opposite, or angled) bend to the proximal continuum 111, so that the distal continuum can be achieved
  • the first driving gear 3351 drives the first driven gear 3311 to rotate
  • the second driven gear 3321 and the first driven gear 3311 are synchronized in the same direction (eg When rotating at a constant speed), the position of the slider 3341 on the second rotatable member 332 does not change, but the azimuth angle of the slider 3341 in the rotation plane of the driven gear changes (for example, the slider makes a circular motion in the plane). ), thereby changing the direction of the turning plane of the slider 3341.
  • the pushing and pulling of the proximal structural bone 1116 by the first proximal stop plate 1112 is transmitted to the distal continuum 112 through the distal structural bone 1123 , thereby realizing the space of the distal continuum 112 in the space.
  • the bending degree of the proximal continuum 111 in a specific bending plane and the bending in different bending planes can be adjusted, so as to realize the distal continuous The bending of the body 112 in any direction in space.
  • the proximal continuum 111 may further include at least one proximal retaining disc 1115 disposed between the proximal base disc 1111 and the second proximal stop disc 1114 , a plurality of proximal retaining discs 1115 .
  • the drive bone 1113 or proximal structural bone 1116 is in turn passed through at least one proximal retention disk 1115.
  • the distal continuum 112 may further include at least one piece of distal retention disk 1124 disposed between the distal base plate 1121 and the distal stop disk 1122 , a plurality of distal structural bones 1123 passes through at least one piece of distal retention disc 1124.
  • Proximal Retention Plate 1115 and Distal Retention Plate 1124 are used to radially support the structural bone from proximal drive bone 1113, proximal structural bone 1116 and distal structural bone 1123, respectively, such that proximal drive bone 1113, proximal structural bone 1113, The bone 1116 and the distal structural bone 1123 remain in a parallel state during the bending deformation process, which can prevent the proximal driving bone 1113, the proximal structural bone 1116 and the distal structural bone 1123 from destabilizing during the bending motion.
  • the structural bone guide tube bundle 113 is provided with at least one tube bundle holding plate (not shown in the figure), the proximal end of the structural bone guide tube bundle 113 is fixedly connected with the proximal base plate 1111 , and the distal end of the structural bone guide tube bundle 113 is fixedly connected.
  • the ends pass through at least one tube bundle holding plate and are fixedly connected to the distal base plate 1121 .
  • the proximal driving bone 1113, the proximal structural bone 1116, and the proximal structural bone 1116 may include elastic wires or tubes made of superelastic materials, such as high strength, high toughness, Made of elastic metal material.
  • Structural bone guide tube bundle 113 may include a plurality of thin tubes made of steel material to form a steel tube bundle.
  • the continuum instrument 20 may include at least two continuum instruments 10 as in the above-described embodiments.
  • the continuum device 20 includes at least two continuum devices 10 in series or parallel.
  • FIG. 17 shows a partial structural schematic diagram of a continuum instrument 20 according to some embodiments of the present disclosure.
  • the continuum device 20 further includes a stent 140 .
  • At least two proximal continuums 111, 111' are respectively disposed at the proximal end and the distal end of the bracket 140, and the proximal bases 1111, 1111' of the at least two proximal continuums 111, 111' are respectively fixedly connected to the bracket 140 or One piece.
  • the proximal ends of the at least two structural bone guide tube bundles 113, 113' are respectively fixedly connected to the proximal bases 1111, 1111' of the corresponding proximal continuum 111, 111'.
  • the distal end of the proximal structural bone guide tube bundle 113 passes through the stent 140, the second proximal stop 1114', the first proximal stop 1112', the proximal base of the proximal continuum 111' at the distal end 1111 ′, and converges with the proximal continuum 111 ′ at the distal end at the same distal base 1121 , and the distal base 1121 is fixedly connected with the bracket 140 or integrally formed.
  • the distal ends of the two structural bone guide tube bundles 113, 113&apos are distributed circumferentially in a bundle or in a circle at the distal base 1121. It should be understood that the distal ends of the two structural bone guide tube bundles 113, 113' may also be distributed in a bundle along the periphery of the rectangle at the distal base 1121 or distributed within the rectangle. In some embodiments, the proximal base 1111, 1111' or the distal base 1121 may directly become part of the stent 140. In some embodiments, as shown in FIG.
  • At least two driving transmission mechanisms 130 and 130 ′ are respectively disposed at the proximal end and the distal end of the bracket 140 , and the output ends of each driving transmission mechanism 130 and 130 ′ are respectively connected with the corresponding The second proximal stop 1114, 1114' is connected.
  • the at least two drive transmission mechanisms 130, 130' drive the second proximal stop discs 1114, 1114' of the at least two proximal end continuums 111, 111' to move, so as to drive the first proximal stop discs 1112, 1112' to turn over, Pushing and pulling of the proximal structural bones 1116 , 1116 ′ of the at least two proximal continuums 111 , 111 ′ is realized, so as to realize the bending of the at least two distal continuums 112 , 112 ′ in different directions in space.
  • FIG. 18 shows a partial structural schematic diagram of a continuum instrument 30 according to some embodiments of the present disclosure.
  • at least two proximal continuum 111 , 111 ′ are respectively disposed at the proximal end and the distal end of the stent 140 , and the distal end of the structural bone guide tube bundle 113 located at the proximal end passes through the stent 140, bypassing the proximal continuum 111' and merging with the proximal continuum 111' at the distal end at the same distal base 1121.
  • FIG. 18 shows a partial structural schematic diagram of a continuum instrument 30 according to some embodiments of the present disclosure.
  • at least two proximal continuum 111 , 111 ′ are respectively disposed at the proximal end and the distal end of the stent 140 , and the distal end of the structural bone guide tube bundle 113 located at the proximal end passes through the stent 140, bypassing the proximal continuum 111'
  • the structural bone guide tube bundle 113 at the proximal end is distributed along the circumference of the stent 140 to form a receiving space, and the proximal end continuum 111 ′ and the structural bone guide tube bundle 113 ′ at the distal end are both located at in this accommodation space.
  • At least two driving transmission mechanisms 230, 230' are respectively disposed at the proximal end and the distal end of the bracket 140, and the output end of each driving transmission mechanism 230, 230' is respectively connected with the corresponding second proximal end stop disk 1114, 1114'.
  • the at least two drive transmission mechanisms 230, 230' drive the second proximal stop discs 1114, 1114' of the at least two proximal end continuums 111, 111' to move, so as to drive the first proximal stop discs 1112, 1112' to turn over, In order to realize the turning of at least two distal continuums 112, 112' in different directions in space.
  • FIG. 19 shows a partial structural schematic diagram of a continuum instrument 40 according to some embodiments of the present disclosure.
  • at least two proximal continuums 111 , 111 ′ are respectively disposed at the proximal end and the distal end of the stent 140 , and the proximal ends of the at least two structural bone guide tube bundles 113 , 113 ′ are respectively disposed Fixedly connected to the proximal bases 1111, 1111' of the corresponding proximal continuum 111, 111'.
  • the distal end of the proximal structural bone guide tube bundle 113 passes through the stent 140, the second proximal stop 1114', the first proximal stop 1112', the proximal base of the proximal continuum 111' at the distal end 1111', and merge with the proximal continuum 111' at the distal end at the same distal base 1121.
  • At least two driving transmission mechanisms 330, 330' are respectively disposed at the proximal end and the distal end of the bracket 140, and the output end of each driving transmission mechanism 330, 330' is respectively connected with the corresponding second proximal end stop disk 1114, 1114'.
  • the turning of the at least two distal continuums 112, 112' in different directions in space is achieved by at least two drive transmission mechanisms 330, 330'.
  • the lengths of the distal continuum 112 in the at least two flexible continuum structures 110 of the continuum device 20 may be the same or different. It will be appreciated that the distal ends of the at least two structural bone guide bundles 113 meet at the distal base 1121. At least two distal continuums 112 can be connected in series. For example, the proximal end of the first distal continuum extends distally from the distal base 1121 and is fixedly connected to the distal stop, and the distal base of the second distal continuum is connected to the first distal continuum. The distal end stop is connected or the same, and the distal end of the second distal continuum can be fixedly connected with the distal end stop.
  • At least two second proximal stop disks 1114 are respectively driven to move by at least two drive transmission mechanisms 130 (or 230 , 330 ), and at least two proximal continuums 111 are respectively driven to move, so as to realize distal continuum 112
  • the bending of the continuum increases the degree of freedom of the distal continuum 112, thereby increasing the flexibility of the continuum instrument.
  • the present disclosure also provides a surgical robot comprising at least one continuum instrument 10 (or 20, 30, 40) as in the above-described embodiments.
  • FIG. 20 shows a schematic structural diagram of a surgical robot 1 according to some embodiments of the present disclosure.
  • the surgical robot 1 may further include at least one surgical trolley 2 , at least one positioning arm 3 and at least one surgical instrument 4 .
  • At least one positioning arm 3 is movably arranged on at least one operating trolley 2
  • at least one surgical instrument 4 is respectively arranged at the distal end of at least one positioning arm 3 .
  • Surgical instrument 4 includes continuum instrument 10 (or continuum instrument 20 , 30 , or 40 ) and end device 5 disposed at the distal end of continuum instrument 10 .
  • the end device 5 may comprise an end effector or an endoscope.
  • the position of the continuum device can be adjusted by adjusting the positioning arm 3, and the posture of the end device 5 can be adjusted through the continuum device.
  • Continuum instruments are compact, with high reliability and flexibility, which can improve the safety of surgical robots.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Manipulator (AREA)
  • Surgical Instruments (AREA)

Abstract

一种连续体器械(10,20,30,40),涉及医疗器械领域,包括至少一个近端连续体(111,111')和至少一个远端连续体(112,112')。近端连续体(111,111')包括近端基盘(1111,1111')、第一近端止盘(1112,1112')、第二近端止盘(1114,1114')、多根近端结构骨(1116,1116')以及多根近端驱动骨(1113),多根近端驱动骨(1113)的近端与第二近端止盘(1114,1114')固定连接,多根近端驱动骨(1113)穿过第一近端止盘(1112,1112'),远端与近端基盘(1111,1111')固定连接。远端连续体(112,112')包括远端止盘(1122)和多根远端结构骨(1123),多根远端结构骨(1123)与多根近端结构骨(1116,1116')连接或一体成型,多根远端结构骨(1123)的远端与远端止盘(1122)固定连接。通过驱动第二近端止盘(1114,1114')运动,以驱动近端结构骨(1116,1116')和远端结构骨(1123)弯转,以驱动远端连续体(112,112')弯转。从而可以避免对结构骨进行直接的推拉。

Description

连续体器械及手术机器人
相关申请的交叉引用
本申请要求于2020年6月30日提交的、申请号为2020106174040、发明名称为“一种可整体驱动的柔性连续体结构及柔性机械臂”,2020年6月30日提交的、申请号为2020106187515、发明名称为“基于平面运动机构的手术工具驱动传动系统及手术机器人”,2020年6月30日提交的、申请号为2020106233706、发明名称为“手术工具驱动系统及手术机器人”,2020年6月30日提交的、申请号为2020106187479、发明名称为“一种手术工具驱动传动系统及包含该系统的手术机器人”的中国专利申请的优先权,这些申请的全文以引用方式整体结合于此。
技术领域
本公开涉及医疗器械领域,尤其涉及一种连续体器械及手术机器人。
背景技术
微创术式对病人创伤更小、术后恢复更快,已经在外科手术中占据了重要的地位。在微创术式中,包括手术工具以及视觉照明模块在内的手术器械均通过切口或者自然腔道进入人体中,到达手术部位进行手术。现有手术器械的远端结构主要为多杆件的串联铰接,采用钢丝绳拉力驱动,使手术器械在铰接关节处实现弯转。由于钢丝绳须通过滑轮保持持续的张紧状态,因此该驱动方式难以实现手术器械的进一步小型化,亦难以进一步提升器械的运动性能。
相较传统的通过在关节处相互转动从而实现弯转运动的刚性运动链,柔性 连续体结构可以实现连续弯转变形,因而柔性连续体结构被广泛应用于柔性操作臂、内窥镜、可控导管等医疗器械,以及工业用深腔探测内窥镜、柔性机械臂等新型特种装备的研发。
现有的连续体结构一般通过驱动机构对连续体结构中的驱动丝进行直接推拉,从而实现连续体结构向任意方向弯转,但是随着对连续体结构提出的精度高、响应快、弯转灵活性高、稳定性好等更严格的要求,现有的驱动结构已逐渐不能满足上述要求,且现有的驱动方式为直接推拉驱动丝进行运动,故当驱动丝的数量较多时,驱动机构的数量也会相应的增加,使得结构复杂。
发明内容
在一些实施例中,本公开提供了一种,连续体器械,包括:至少一个近端连续体,包括近端基盘、第一近端止盘、第二近端止盘、多根近端结构骨以及多根近端驱动骨,多根近端驱动骨的近端与第二近端止盘固定连接,多根近端驱动骨穿过第一近端止盘,远端与近端基盘固定连接;至少一个远端连续体,包括远端止盘和多根远端结构骨,多根远端结构骨与多根近端结构骨连接或一体成型,多根远端结构骨的远端与远端止盘固定连接。
在一些实施例中,本公开提供了一种手术机器人,包括至少一个手术台车、至少一个定位臂和至少一个手术器械;至少一个手术器械包括至少一个如上所述的连续体器械以及设置在连续体器械远端的末端装置;至少一个定位臂可活动设置在至少一个手术台车上,至少一个手术器械分别设置在至少一个定位臂的远端。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅示出本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本公开实施例的内容和这些附图获得其他的实施例。
图1示出根据本公开一些实施例的连续体器械的结构示意图;
图2示出根据本公开一些实施例的另一连续体器械的部分结构示意图;
图3示出根据本公开一些实施例的驱动传动机构的结构示意图;
图4示出根据本公开一些实施例的图3所示驱动传动机构的俯视图;
图5示出根据本公开一些实施例的图3所示驱动传动机构的第三连接杆的结构示意图;
图6示出根据本公开一些实施例的图3所示驱动传动机构的第四连接杆的结构示意图;
图7示出根据本公开一些实施例的另一连续体器械的部分结构示意图;
图8示出根据本公开一些实施例的图7所示连续体器械的部分结构示意图;
图9示出根据本公开一些实施例的图7所示的驱动传动机构的结构示意图;
图10示出根据本公开一些实施例的图9所示驱动传动机构的部分结构示意图;
图11示出根据本公开一些实施例的图9所示驱动传动机构的部分结构示意图;
图12示出根据本公开一些实施例的另一连续体器械的部分结构示意图;
图13示出根据本公开一些实施例的图11所示驱动传动机构的结构示意图;
图14示出根据本公开一些实施例的图12所示驱动传动机构的部分结构示意图;
图15示出根据本公开一些实施例的图12所示驱动传动机构的部分结构示意图;
图16示出根据本公开一些实施例的图12所示驱动传动机构的部分结构示意图;
图17示出根据本公开一些实施例的另一连续体器械的部分结构示意图;
图18示出根据本公开一些实施例的另一连续体器械的部分结构示意图;
图19示出根据本公开一些实施例的另一连续体器械的部分结构示意图;
图20示出根据本公开一些实施例的手术机器人的部分结构示意图。
具体实施方式
为使本公开解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本公开实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本公开示例性实施例,而不是全部的实施例。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“耦合”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体 情况理解上述术语在本公开中的具体含义。在本公开中,定义靠近操作者(例如医生)的一端为近端、近部或后端、后部,靠近手术患者的一端为远端、远部或前端、前部。本领域技术人员可以理解,本公开的实施例可以用于医疗器械或手术机器人,也可以用于其他非医疗装置。
图1示出根据本公开一些实施例的连续体器械10。如图1所示,连续体器械10可以包括柔性连续体结构110。柔性连续体结构110可以包括至少一个位于近端的近端连续体111和至少一个位于远端的远端连续体112。近端连续体111可以包括近端基盘1111、第一近端止盘1112、近端驱动骨1113、第二近端止盘1114以及近端结构骨1116。近端基盘1111、第一近端止盘1112和第二近端止盘1114,三者间隔布置。多根近端驱动骨1113的近端与第二近端止盘1114固定连接。多根近端驱动骨1113穿过所述第一近端止盘1112,并且远端与近端基盘1111固定连接。多根近端结构骨1116的近端与第一近端止盘1112固定连接。
远端连续体112可以包括远端基盘1121、远端止盘1122和远端结构骨1123。远端基盘1121和远端止盘1122间隔布置,远端基盘1121与近端基盘1111相邻。多根远端结构骨1123与多根近端结构骨1116连接或一体成型,穿过近端基盘1111和远端基盘1121。
如图1所示,在一些实施例中,柔性连续体结构110还可以包括结构骨引导管束113。结构骨引导管束113的近端固定连接在近端基盘1111上,结构骨引导管束113的远端固定连接在远端基盘1121上。多根远端结构骨1123或多根近端结构骨1116依次穿过近端基盘1111、结构骨引导管束113和远端基盘1121。结构骨引导管束113可以引导和约束位于近端基盘1111和远端基盘1121之间的多根远端结构骨1123或多根近端结构骨1116。
在一些实施例中,连续体器械10还可以包括驱动连接部120。驱动连接部120的远端与第二近端止盘1114连接,驱动连接部120的近端包括输入端。输入端用于由驱动传动机构驱动而带动第二近端止盘1114运动,以驱动第一近端止盘1112翻转,实现对近端结构骨1116和远端结构骨1123的推拉,从而实现远端连续体112在空间中沿着不同方向的弯转。在一些实施例中,驱动连接部120可以包括至少一个活动关节(图中未示)。至少一个活动关节可以包括圆柱副、移动副和旋转副中的至少一个。至少一个活动关节的远端与第二近端止盘1114以圆柱副、移动副、旋转副和固定连接中的至少一个连接。至少一个活动关节的近端形成输入端,输入端与驱动传动机构的输出端可以通过圆柱副、移动副、旋转副和固定连接中的至少一个连接。应当理解,在本公开中,圆柱副可以旋转也可移动,移动副只能移动,并且旋转副只能旋转。第二近端止盘1114可相对于驱动连接部120或者驱动连接部120相对于驱动传动机构的输出端上下滑移或旋转,从而允许近端连续体111在弯转过程中产生沿着轴线方向滑动的寄生运动(上下滑移),以及向任意方向的弯转运动(旋转)。寄生运动可避免远端连续体112在弯转的过程中,产生沿轴向的伸缩运动,导致包覆在远端连续体112外周的封皮起皱或者过度拉伸,影响封皮的使用寿命。
在一些实施例中,连续体器械10可以包括驱动传动机构。驱动传动机构的输出端与第二近端止盘1114连接,输出端用于驱动第二近端止盘1114运动,以驱动第一近端止盘1112翻转,以通过近端驱动骨1113、近端结构骨1116和远端结构骨1123,驱动远端连续体112弯转。在一些实施例中,驱动传动机构的输出端可以包括滑动销,第二近端止盘1114可以包括导孔。滑动销设置在导孔中,并与第二近端止盘1114以圆柱副、移动副和旋转副中的至少一个连接。在一些实施例中,驱动传动机构的输出端可以包括环状轴,环状轴套设在第二 近端止盘1114的外周,并与第二近端止盘1114以圆柱副、移动副和旋转副中的至少一个连接。
在一些实施例中,连续体器械10可以包括驱动传动机构。驱动传动机构的输出端可以进行平面运动。图2示出根据本公开一些实施例的包括驱动传动机构130的连续体器械10的部分结构示意图。图3和图4分别示出根据本公开一些实施例的驱动传动机构130的结构示意图和俯视图。在一些实施例中,如图2-图4所示,驱动传动机构130可以包括平面连杆机构。平面连杆机构可以包括第一连接杆131、第二连接杆132、第三连接杆133、第四连接杆134、第五连接杆135、第一输入轴137和第二输入轴138。第一连接杆131固定设置,第一输入轴137和第二输入轴138可旋转地设置在第一连接杆131上。第二连接杆132的一端与第一输入轴137固定连接,第二连接杆132的另一端与第三连接杆133的一端铰接。第五连接杆135的一端与第二输入轴138固定连接,第五连接杆135的另一端与第四连接杆134的一端铰接。第四连接杆134的另一端与第三连接杆133的另一端活动连接。第三连接杆133或第四连接杆134的另一端形成驱动传动机构的输出端,输出端与第二近端止盘1114连接,例如通过圆柱副连接,以使驱动传动机构130的输出端与第二近端止盘1114能够沿输出端的轴向滑动和旋转。通过平面连杆机构可以使第二近端止盘1114在水平面内任意方向移动。在一些实施例中,驱动传动机构130的输出端也可以与驱动连接部120的输入端连接。
在一些实施例中,如图3和图4所示,第一连接杆131可以包括由基座形成的弧形连杆,第二连接杆132和第五连接杆135可以呈直线,第二连接杆132和第五连接杆135一端分别与第一输入轴137和第二输入轴138固定连接,由此可随第一输入轴137和第二输入轴138的旋转而转动。图5和图6分别示出 根据本公开一些实施例的驱动传动机构130的第三连接杆和第四连接杆的结构示意图。在一些实施例中,如图5和图6所示,第三连接杆133的一端可以包括直杆,另一端包括圆环形轴。圆环形轴沿周向设有弧形凹槽1331。第四连接杆134的一端可以包括直杆,另一端包括圆环,圆环的尺寸与弧形凹槽1331的尺寸相对应。第四连接杆134的圆环嵌合于弧形凹槽1331中,彼此可相互转动。第三连接杆133的圆环形轴和第四连接杆134的圆环配合,以形成驱动传动机构130的输出端(例如环状轴)。圆环形轴和圆环套设在第二近端止盘1114的外周(或输入端的外周),例如,通过圆柱副连接,以使驱动传动机构130的输出端与第二近端止盘1114能够沿输出端的轴向滑动和旋转。在一些实施例中,驱动传动机构130的输出端也可以包括滑动销,第二近端止盘1114可以包括导孔。滑动销设置在导孔中,并与第二近端止盘1114能够沿滑动销的轴向滑动和旋转。
如图3所示,第二连接杆132可以包括开口1321,第五连接杆135可以包括开口1351。第三连接杆133的一端位于开口1321中并与第二连接杆132的另一端铰接。第四连接杆134的一端位于弧形开口1351中并与第五连接杆135的另一端铰接。设置开口,可以便于第三连接杆133和第四连接杆134转动。应当理解,各连接杆也可以彼此铰接于连接杆的表面或外部,也可以实现连接杆的转动。
由此,如图2-图6所示,当驱动第一输入轴137和/或第二输入轴138旋转时,带动第二连接杆132和第五连接杆135转动,从而带动第三连接杆133和第四连接杆134转动,进而带动平面五杆机构的输出端(例如第三连接杆133的圆环形轴和第四连接杆134的圆环)在平面内移动。通过输出端,可以带动第二近端止盘1114在平面内运动,使近端基盘1111和第二近端止盘1114产生 错位,两者轴线不再重合。这样,可以驱动多根近端驱动骨1113弯转,使近端连续体111弯转,以驱动第一近端止盘1112产生翻转,从而对端部固定在第一近端止盘1112上的多根近端结构骨1116产生推拉,由此推拉固定在第一近端止盘1112上(例如均匀分布)的多根远端结构骨1123。由于各近端结构骨1116和远端结构骨1123的总长基本不变,从而导致各远端结构骨1123位于远端连续体112中的长度发生相应的变化,从而驱动远端连续体112产生与近端连续体111相对应(例如同向、反向或成角度)的弯转。通过驱动第二近端止盘1114运动,从而驱动近端驱动骨1113弯转,带动第一近端止盘1112翻转实现对近端结构骨1116和远端结构骨1123的推拉,以代替对近端结构骨1113和远端结构骨1123进行直接的推拉。在驱动数量较多的结构骨时,可以不受限于驱动传动机构的数量,结构紧凑,具有很高的可靠性和灵活性。
需要说明的是,近端连续体111和远端连续体112的弯转比例与对应的近端结构骨1116和远端结构骨1123分别在两者中的分布半径(在本实施例中,近端连续体111和远端连续体112中的近端结构骨1116和远端结构骨1123分别沿周向分布,其可以分布在圆周上,也可以分布在矩形、多边形、椭圆或者其他形状的周向上,并且可以均匀分布或者非均匀分布)呈反比,因此在应用时可通过调整近端结构骨1116和远端结构骨1123分别在近端连续体111和远端连续体112中的分布半径,以满足实际弯转比例需求。
图7和图8分别示出根据本公开一些实施例的包括驱动传动机构230的连续体器械10的部分结构示意图,图9示出根据本公开一些实施例的驱动传动机构230的结构示意图。图10和图11分别示出根据本公开一些实施例的驱动传动机构230的部分结构示意图。在一些实施例中,如图7-图10所示,驱动传动机构230可以包括齿轮滑槽机构,齿轮滑槽机构可以包括第一可转动件231、运 动件233、第二可转动件232和滑动组件234。第一可转动件231可以用于在第一驱动件235的驱动下绕自身的旋转中心转动。运动件233可以用于在第一可转动件231的旋转驱动下绕自身的旋转中心转动,且运动件233的旋转中心与第一可转动件231的旋转中心偏移。运动件233上设有第一滑动导向部2332,如图10所示。第二可转动件232与第一可转动件231同轴设置,可以用于在第二驱动件236的驱动下相对于第一可转动件231转动,第二可转动件232设有第二滑动导向部2322,如图9所示。如图9和图10所示,滑动组件234与第一滑动导向部2332和第二滑动导向部2322滑动连接以沿第一滑动导向部2332和第二滑动导向部2322滑动。滑动组件234与第二近端止盘1114连接,例如通过圆柱副连接,以使驱动传动机构230的滑动组件234与第二近端止盘1114能够沿输出端的轴向滑动和旋转。在一些实施例中,滑动组件234也可以与驱动连接部120的输入端连接。
在一些实施例中,如图9所示,第二可转动件232可以重叠布置在第一可转动件231的上方,二者可相对于彼此转动。如图9所示,在一些实施例中,第一可转动件231可以包括例如第一从动齿轮2311,第一驱动件235可以包括第一主动齿轮2351。第二可转动件232可以包括例如第二从动齿轮2321,第二驱动件236可以包括第二主动齿轮2361。第一主动齿轮2351和第一从动齿轮2311啮合,第二主动齿轮2361和第一从动齿轮2311啮合,且第二从动齿轮2321重叠布置于第一从动齿轮2311上方。第一主动齿轮2351可以在驱动电机的驱动下驱动第一从动齿轮2311转动。第二主动齿轮2361可以在驱动电机的驱动下驱动第二从动齿轮2321转动,且第一从动齿轮2311和第二从动齿轮2321可相对于彼此转动。在一些实施例中,第一可转动件231和第二可转动件232可以分别包括第一齿轮和第二齿轮,第一驱动件235和第二驱动件236可以包括 驱动电机(或马达),第一齿轮和第二齿轮可以分别在驱动电机的驱动下相对于彼此转动。在一些实施例中,第一可转动件231和第二可转动件232的传动方式也可以包括其他传动方式,例如皮带轮传动或链轮传动等。
在一些实施例中,如图10所示,运动件233可以包括啮合部2331,啮合部2331用于与第一可转动件231啮合。在一些实施例中,运动件233可以为连杆,其至少一个端部呈圆弧形。啮合部2331可以包括设置在该圆弧形端部外周面的齿。第一可转动件231(例如第一从动齿轮2311)的内周面设有内圈齿2312,圆弧形端部外周面的齿与第一可转动件231的内圈齿2312啮合,以使第一可转动件231在转动时驱动运动件233随第一可转动件231转动。需要说明的是,在一些实施例中,第一可转动件231内可设有另外的齿轮(图中未示出),该另外的齿轮与第一可转动件231同轴同步转动,运动件233的外周面的齿与该另外的齿轮相啮合,也可以实现运动件233由第一可转动件231的驱动而转动。
在一些实施例中,如图9-图11所示,运动件233上设有第一滑动导向部2332,第一滑动导向部2332可以包括沿运动件233长度方向设置的第一滑槽。第二可转动件232(例如第二从动齿轮2321)上设有第二滑动导向部2322,第二滑动导向部2322可以包括沿第二可转动件232的直径设置的第二滑槽。滑动组件234可以包括滑动销2341,滑动销2341可滑动地设置在第一滑槽和第二滑槽中,从而可以实现滑动销2341沿第一滑槽和/或第二滑槽运动。滑动销2341的远端形成驱动传动机构230的输出端,与第二近端止盘1114连接,例如,通过圆柱副连接,以使滑动销2341与第二近端止盘1114能够沿滑动销2341的轴向滑动和旋转。在一些实施例中,如图9所示,滑动组件234还可以包括与滑动销2341固定连接或一体成型的滑块2342。第二可转动件232上可以设有与第二滑槽平行的滑轨2323,滑块2342可滑动设置在滑轨2323上。例如,滑块2342 与滑轨2323可采取槽型配合。滑动销2341近端滑动设置在第一滑槽中,远端穿过第一滑槽和第二滑槽与滑块2342固定连接。滑动销2341的远端可以穿过滑块2342与第二近端止盘1114连接或者通过滑块2342与第二近端止盘1114连接。通过滑块2342和滑轨2323的配合,可以对滑动销2341的运动进行导向,以便于滑动销2341更加平稳的运动。
在一些实施例中,第一滑动导向部2332可以包括沿运动件233长度方向设置的第一滑轨(图中未示),第二滑动导向部2322包括沿第二可转动件232的直径设置的第二滑轨。滑动组件234可以包括第一滑动块、第二滑动块和滑动销。第一滑动块滑动设置在第一滑轨上,第二滑动块滑动设置在第二滑轨上,第一滑动块和第二滑动块中的一个设置成与滑动销活动连接,第一滑动块和第二滑动块中的另一个设置成与滑动销固定连接或一体成型。也可以实现滑动销沿第一滑轨和/或第二滑轨滑动。还应当理解,第一滑动导向部2332和第二滑动导向部2322中的一个可以包括滑轨,第一滑动导向部2332和第二滑动导向部2322中的另一个可以包括滑槽,而滑动组件234可以包括滑块和与该滑块固定连接或一体成型的滑动销,滑动销设置在该滑槽中,滑块滑动设置在滑轨上。
在一些实施例中,如图10所示,驱动传动机构230还可以包括旋转轴237。旋转轴237的近端可以与运动件233固定连接或者一体成型,旋转轴237可以位于靠近圆弧形端部的一端,旋转轴237的远端可转动地设置在第二可转动件232上,从而使旋转轴237可以相对于第二可转动件232转动,且旋转轴237的旋转轴线与第二可转动件232的旋转中心偏置,从而使第一从动齿轮2311任何角度旋转时,第二滑槽与第一滑槽均能相交,而使滑动销2341位于两者的交点处。
由此,如图7-图11所示,当第一主动齿轮2351带动位于下层的第一从动 齿轮2311旋转而位于上层的第二主动齿轮2361保持静止时,驱动与第一从动齿轮2311啮合的运动件233绕旋转轴237转动,从而带动位于第一滑槽和第二滑槽中的滑动销2341运动。通过第二滑槽与第一滑槽的限位配合,使滑动销2341可以沿第二滑槽做直线运动,从而通过滑动销2341带动第二近端止盘1114运动,以使近端基盘1111和第二近端止盘1114产生错位,两者轴线不再重合。多根近端驱动骨1113被驱动弯转,使近端连续体111弯转,以驱动第一近端止盘1112产生翻转,从而对端部固定在第一近端止盘1112上的多根近端结构骨1116产生推拉,从而通过远端结构骨1123,驱动远端连续体112产生与近端连续体111相对应(例如同向、反向或成角度)的弯转,可以实现远端连续体112在空间中沿着特定弯转平面的弯转。可以通过调节滑动销2341或滑块2342沿第二滑槽移动的距离,从而调节近端连续体111的弯转程度,以调节远端连续体112的弯转程度。当第二主动齿轮2361带动第二从动齿轮2321旋转,第一主动齿轮2351带动第一从动齿轮2311旋转,且在第二从动齿轮2321齿轮和第一从动齿轮2311同向同步(例如等速)旋转时,滑动销2341在第一滑槽和第二滑槽中的位置不发生改变,但是滑动销2341在从动齿轮的旋转平面内的方位角发生改变(例如滑动销2341进行圆周运动),从而改变滑动销2341的弯转平面指向。当近端连续体111弯转后,通过第一近端止盘1112对近端结构骨1116产生的推拉通过远端结构骨1123传递到远端连续体112的远端,从而实现远端连续体112在空间中沿不同弯转平面的弯转。通过协同驱动第二从动齿轮2321和第一从动齿轮2311,从而可以调整近端连续体111在特定弯转平面的弯转程度以及在不同弯转平面内的弯转,以实现远端连续体112在空间任意方向的弯转。
图12示出根据本公开一些实施例的包括另一驱动传动机构330的连续体器 械10的部分结构示意图。图13示出根据本公开一些实施例的驱动传动机构330的结构示意图。图14-图16分别示出根据本公开一些实施例的驱动传动机构330的部分结构示意图。在一些实施例中,如图12和图13所示,驱动传动机构330可以包括齿轮齿条机构,齿轮齿条机构可以包括:第一可转动件331、第二可转动件332和运动组件。第一可转动件331可以用于在第一驱动件335的驱动下转动,第二可转动件332与第一可转动件331同轴设置,可以用于在第二驱动件336的驱动下相对于第一可转动件331转动。第二可转动件332上设有滑动导向部3322,如图13所示。运动组件的至少一部分滑动设置在滑动导向部3322上,运动组件的至少另一部分设置成能随第一可转动件331的转动而做直线运动,运动组件的远端形成驱动传动机构330的输出端,输出端与第二近端止盘1114连接,例如通过圆柱副连接,以使驱动传动机构330的输出端与第二近端止盘1114能够沿输出端的轴向滑动和旋转。在一些实施例中,运动组件的远端也可以与驱动连接部120连接,通过驱动连接部120驱动第二近端止盘1114运动。
在一些实施例中,如图13所示,第二可转动件332可以重叠布置在第一可转动件331的上方,二者可相对于彼此转动。如图14和图15所示,在一些实施例中,第一可转动件331可以包括彼此同轴固定连接的啮合齿轮3312和第一从动齿轮3311,啮合齿轮3312位于第一从动齿轮3311的远侧。第一驱动件335可以包括第一主动齿轮3351。第二可转动件332可以包括例如第二从动齿轮3321,第二驱动件336可以包括第二主动齿轮3361。第一主动齿轮3351和第一从动齿轮3311啮合,第二主动齿轮3361和第二从动齿轮3321啮合,且第二从动齿轮3321重叠布置于啮合齿轮3312上方。第一主动齿轮3351可以由驱动电机的驱动而带动第一从动齿轮3311转动,第二主动齿轮3361可以由驱动电机 的驱动而带动第二从动齿轮3321转动,且第一从动齿轮3311和第二从动齿轮3321可相对于彼此转动。在一些实施例中,第一可转动件331可以包括彼此同轴固定连接的啮合齿轮3312和第一齿轮,第二可转动件332可以包括第二齿轮,第一驱动件335和第二驱动件336可以包括驱动电机(或马达),第一齿轮和第二齿轮可以分别在驱动电机的驱动下相对于彼此转动。在一些实施例中,第一可转动件331和第二可转动件332的传动方式也可以包括其他传动方式,例如皮带轮传动或链轮传动等。
如图13和图14所示,在一些实施例中,运动组件可以包括彼此固定连接或一体成型的滑动部334和啮合部333。滑动部334滑动设置在滑动导向部3322上,以由滑动导向部3322引导以相对于第二可转动件332(例如第二从动齿轮3321)直线滑动,啮合部333被设置成与第一可转动件331(例如第一从动齿轮3311)啮合,以由第一可转动件331的转动而直线运动。如图15和图16所示,在一些实施例中,啮合部333可以包括齿条3331,齿条3331可以与啮合齿轮3312啮合。应当理解,齿条3331可以为直齿齿条,啮合齿轮3312为直齿齿轮,此外,齿条3331也可以是斜齿齿条,啮合齿轮3312为斜齿齿轮。在一些实施例中,滑动部334可以包括滑块3341,滑动导向部3322可以包括沿平行于第二可转动件332的直径方向设置的至少一个滑槽,滑块3341滑动设置在滑槽中,滑块3341的一侧穿过滑槽与齿条3331固定连接。齿条3331可以在啮合齿轮3312的驱动下线性运动,以带动滑块3341沿滑槽运动。在一些实施例中,如图13所示,滑动导向部3322可以包括沿第二可转动件332的直径对称设置的一对滑槽。如图15所示,滑块3341可以包括滑块主体3342以及从滑块主体3342两端向近端延伸的滑块侧翼3343a和3343b。滑块侧翼3343a和3343b的内侧设有卡合阶梯,用于与滑槽配合。滑块侧翼3343b穿过滑槽与齿条3331固定连接。 如图16所示,滑块主体3342上设有连接槽3345,连接槽3345套设在第二近端止盘1114的外周(或近端外周),例如,通过圆柱副连接,以使滑块主体3342与第二近端止盘1114能够沿连接槽3345的轴向滑动和旋转。在一些实施例中,连接槽3345可以呈圆形,与第二近端止盘1114的形状相对应。在一些实施例中,连接槽3345还可以呈其他形状,例如矩形、多边形等。第二近端止盘1114的外周形状与连接槽3345的内周形状相匹配,两者可以通过移动副连接。应当理解,滑动导向部3322也可以包括沿平行于第二可转动件332的直径方向设置的至少一个滑轨(或滑杆),滑块3341滑动设置在滑轨上,例如滑块3341与滑轨可采取槽型配合。
由此,如图12-图16所示,当第一主动齿轮3351带动位于下层的第一从动齿轮3311旋转而位于上层的第二主动齿轮3361保持静止时,带动与第一从动齿轮3311固定连接的啮合齿轮3312转动,从而驱动与啮合齿轮3312啮合的齿条3331线性运动。与齿条3331固定连接的滑块3341在齿条3331的带动下,在第二从动齿轮3321的滑槽中移动,从而带动第二近端止盘1114在水平面内运动,使得近端基盘1111和第二近端止盘1114产生错位,两者轴线不再重合。多根近端驱动骨1113被驱动弯转,使近端连续体111弯转,以驱动第一近端止盘1112产生翻转,从而对端部固定在第一近端止盘1112上的多根近端结构骨1116产生推拉,从而通过远端结构骨1123驱动远端连续体112产生与近端连续体111相对应(例如同向、相反或成角度)的弯转,从而可以实现远端连续体112在空间中沿着特定弯转平面的弯转。当第二主动齿轮3361带动第二从动齿轮3321旋转,第一主动齿轮3351带动第一从动齿轮3311旋转,且在第二从动齿轮3321齿轮和第一从动齿轮3311同向同步(例如等速)旋转时,滑块3341在第二可转动件332上的位置不发生改变,但是滑块3341在从动齿轮的旋转平 面内的方位角发生改变(例如滑块在平面内做圆周运动),从而改变滑块3341的弯转平面指向。当近端连续体111弯转后,通过第一近端止盘1112对近端结构骨1116产生的推拉通过远端结构骨1123传递到远端连续体112,从而实现远端连续体112在空间中沿不同弯转平面的弯转。通过协同驱动第二从动齿轮3321和第一从动齿轮3311,从而可以调整近端连续体111在特定弯转平面的弯转程度以及在不同弯转平面内的弯转,以实现远端连续体112在空间任意方向的弯转。
如图1所示,在一些实施例中,近端连续体111还可以包括设置在近端基盘1111和第二近端止盘1114之间的至少一片近端保持盘1115,多根近端驱动骨1113或近端结构骨1116依次穿过至少一片近端保持盘1115。如图1所示,在一些实施例中,远端连续体112还可以包括设置在远端基盘1121和远端止盘1122之间的至少一片远端保持盘1124,多根远端结构骨1123穿过至少一片远端保持盘1124。近端保持盘1115和远端保持盘1124用于分别从近端驱动骨1113、近端结构骨1116和远端结构骨1123的径向支撑结构骨,从而使得近端驱动骨1113、近端结构骨1116和远端结构骨1123在弯转变形的过程中仍然保持平行状态,可以防止近端驱动骨1113、近端结构骨1116和远端结构骨1123在弯转运动时失稳。在一些实施例中,结构骨引导管束113上设置有至少一片管束保持盘(图种未示),结构骨引导管束113的近端与近端基盘1111固定连接,结构骨引导管束113的远端穿过至少一片管束保持盘,与远端基盘1121固定连接。
在一些实施例中,近端驱动骨1113、近端结构骨1116和近端结构骨1116可以包括由超弹性材料制成的弹性丝或管,例如可以采用镍钛合金等高强度、高韧性、具有弹性的金属材料制造。结构骨引导管束113可以包括由钢材料制 成的多根细管,以形成钢管束。
在一些实施例中,连续体器械20可以包括至少两个如上述实施例中的连续体器械10。在一些实施例中,连续体器械20包括至少两个连续体器械10串联或者并联。
图17示出根据本公开一些实施例的连续体器械20的部分结构示意图。如图17所示,在一些实施例中,连续体器械20还包括支架140。至少两个近端连续体111、111’分别设置在支架140的近端和远端,至少两个近端连续体111、111’的近端基盘1111、1111’分别与支架140固定连接或一体成型。至少两个结构骨引导管束113、113’的近端分别与相应的近端连续体111、111’的近端基盘1111、1111’固定连接。位于近端的结构骨引导管束113的远端穿过支架140、位于远端的近端连续体111’的第二近端止盘1114’、第一近端止盘1112’、近端基盘1111’,并与位于远端的近端连续体111’在同一远端基盘1121处汇成一束,远端基盘1121与支架140固定连接或一体成型。例如,两个结构骨引导管束113、113’的远端在远端基盘1121处沿圆周分布成一束或者分布在圆形内。应当理解,两个结构骨引导管束113、113’的远端还可以在远端基盘1121处沿矩形的四周分布成一束或者分布在矩形内。在一些实施例中,近端基盘1111、1111’或远端基盘1121可以直接成为支架140的一部分。在一些实施例中,如图17所示,至少两个驱动传动机构130、130’分别设置在支架140的近端和远端,每一驱动传动机构130、130’的输出端分别与相应的第二近端止盘1114、1114’连接。至少两个驱动传动机构130、130’通过驱动至少两个近端连续体111、111’的第二近端止盘1114、1114’运动,以驱动第一近端止盘1112、1112’翻转,实现对至少两个近端连续体111、111’的近端结构骨1116、1116’的推拉,从而实现至少两个远端连续体112、112’在空间中沿着不同方向的弯转。
图18示出根据本公开一些实施例的连续体器械30的部分结构示意图。在一些实施例中,如图18所示,至少两个近端连续体111、111’分别设置在支架140的近端和远端,位于近端的结构骨引导管束113的远端穿过支架140,绕过近端连续体111’,并与位于远端的近端连续体111’在同一远端基盘1121处汇成一束。在一些实施例中,如图18所示,位于近端的结构骨引导管束113沿支架140周向分布形成容纳空间,位于远端的近端连续体111’和结构骨引导管束113’均位于该容纳空间内。至少两个驱动传动机构230、230’分别设置在支架140的近端和远端,每一驱动传动机构230、230’的输出端分别与相应的第二近端止盘1114、1114’连接。至少两个驱动传动机构230、230’通过驱动至少两个近端连续体111、111’的第二近端止盘1114、1114’运动,以驱动第一近端止盘1112、1112’翻转,以实现至少两个远端连续体112、112’在空间中沿着不同方向的弯转。
图19示出根据本公开一些实施例的连续体器械40的部分结构示意图。在一些实施例中,如图19所示,至少两个近端连续体111、111’分别设置在支架140的近端和远端,至少两个结构骨引导管束113、113’的近端分别与相应的近端连续体111、111’的近端基盘1111、1111’固定连接。位于近端的结构骨引导管束113的远端穿过支架140、位于远端的近端连续体111’的第二近端止盘1114’、第一近端止盘1112’、近端基盘1111’,并与位于远端的近端连续体111’在同一远端基盘1121处汇成一束。至少两个驱动传动机构330、330’分别设置在支架140的近端和远端,每一驱动传动机构330、330’的输出端分别与相应的第二近端止盘1114、1114’连接。通过至少两个驱动传动机构330、330’实现至少两个远端连续体112、112’在空间中沿着不同方向的弯转。
在一些实施例中,连续体器械20(或30、40)的至少两个柔性连续体结构110中的远端连续体112的长度可以相同或者不同。应当理解,至少两个结构骨 引导管束113的远端在远端基盘1121汇合。至少两个远端连续体112可以串联。例如,第一远端连续体的近端从远端基盘1121处向远端延伸,并且与远端止盘固定连接,第二远端连续体的远端基盘与第一远端连续体的远端止盘连接或者相同,并且第二远端连续体的远端可以与远端止盘固定连接。由此,通过至少两个的驱动传动机构130(或230、330)分别驱动至少两个第二近端止盘1114运动,分别带动至少两个近端连续体111运动,实现远端连续体112的弯转,进而增加远端连续体112的自由度,从而增加连续体器械的灵活性。
在一些实施例中,本公开还提供一种手术机器人,该手术机器人包括至少一个如上述实施例中的连续体器械10(或20、30、40)。图20示出根据本公开一些实施例的手术机器人1的结构示意图。如图20所示,在一些实施例中,手术机器人1还可以包括至少一个手术台车2、至少一个定位臂3和至少一个手术器械4。至少一个定位臂3可活动设置在至少一个手术台车2上,至少一个手术器械4分别设置在至少一个定位臂3的远端。手术器械4包括连续体器械10(或连续体器械20、30、或40)以及设置在连续体器械10的远端的末端装置5。应当理解,末端装置5可以包括末端手术执行器或内窥镜。通过调节定位臂3可以调整连续体器械的位置,通过连续体器械可以调整末端装置5的位姿。连续体器械结构紧凑,具有高的可靠性和灵活性,从而可以提高手术机器人的安全性。
注意,上述仅为本公开的示例性实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而 本公开的范围由所附的权利要求范围决定。

Claims (20)

  1. 一种连续体器械,包括:
    至少一个近端连续体,包括近端基盘、第一近端止盘、第二近端止盘、多根近端结构骨以及多根近端驱动骨,所述多根近端驱动骨的近端与所述第二近端止盘固定连接,所述多根近端驱动骨穿过所述第一近端止盘,远端与所述近端基盘固定连接;
    至少一个远端连续体,包括远端止盘和多根远端结构骨,所述多根远端结构骨与所述多根近端结构骨连接或一体成型,所述多根远端结构骨的远端与所述远端止盘固定连接。
  2. 根据权利要求1所述的连续体器械,其特征在于,还包括:
    驱动传动机构,所述驱动传动机构的输出端与所述第二近端止盘连接并且用于驱动所述第二近端止盘运动,以通过所述近端驱动骨驱动所述第一近端止盘翻转,以通过所述近端结构骨和远端结构骨,驱动所述远端连续体弯转。
  3. 根据权利要求2所述的连续体器械,其特征在于,所述驱动传动机构的输出端包括滑动销,所述第二近端止盘包括导孔,所述滑动销设置在所述导孔中,并与所述第二近端止盘以圆柱副、移动副和旋转副中的至少一个连接;或者
    所述驱动传动机构的输出端包括环状轴,所述环状轴套设在所述第二近端止盘的外周,并与所述第二近端止盘以圆柱副、移动副和旋转副中的至少一个连接。
  4. 根据权利要求1所述的连续体器械,其特征在于,还包括:
    驱动连接部,所述驱动连接部包括至少一个关节,所述至少一个关节包括圆柱副、移动副和旋转副中的至少一个,所述至少一个关节的远端与所述第二 近端止盘以圆柱副、移动副、旋转副和固定连接中的至少一个连接,所述至少一个关节的近端形成输入端。
  5. 根据权利要求3所述的连续体器械,其特征在于,
    所述驱动传动机构包括平面连杆机构,所述平面连杆机构包括:第一连接杆、第二连接杆、第三连接杆、第四连接杆、第五连接杆、第一输入轴和第二输入轴;
    所述第一连接杆固定设置,且所述第一输入轴和第二输入轴可旋转地设置在所述第一连接杆上,所述第二连接杆的一端与所述第一输入轴固定连接,所述第二连接杆的另一端与所述第三连接杆的一端铰接,所述第五连接杆的一端与所述第二输入轴固定连接,所述第五连接杆的另一端与所述第四连接杆的一端铰接,所述第四连杆的另一端与所述第三连杆的另一端活动连接以形成所述驱动传动机构的所述输出端。
  6. 根据权利要求5所述的连续体器械,其特征在于,所述第三连接杆的所述另一端包括所述环状轴,所述环状轴沿周向设有凹槽;
    所述第四连接杆的所述另一端设置于所述凹槽中,以使所述第四连杆和所述第三连杆彼此转动连接。
  7. 根据权利要求3所述的连续体器械,其特征在于,所述驱动传动机构包括齿轮滑槽机构,所述齿轮滑槽机构包括:
    第一可转动件,用于在第一驱动件的驱动下转动;
    运动件,用于在所述第一可转动件的驱动下转动,且所述运动件的旋转中心与所述第一可转动件的旋转中心偏移,所述运动件上设有第一滑动导向部;
    第二可转动件,与所述第一可转动件同轴设置,用于在第二驱动件的驱动下相对于第一可转动件转动,所述第二可转动件设有第二滑动导向部;
    滑动组件,与所述第一滑动导向部和所述第二滑动导向部滑动连接以沿所述第一滑动导向部和所述第二滑动导向部滑动,所述滑动组件包括所述输出端,所述输出端与所述第二近端止盘连接。
  8. 根据权利要求7所述的连续体器械,其特征在于,所述运动件包括啮合部,所述啮合部用于与所述第一可转动件啮合;
    所述第一可转动件的内周面设有内圈齿,所述啮合部包括设置在所述运动件外周面的齿,所述运动件外周面的齿与所述第一可转动件的内圈齿相啮合,以驱动所述运动件转动。
  9. 根据权利要求8所述的连续体器械,其特征在于,所述齿轮滑槽机构还包括:旋转轴,其近端与所述运动件固定连接,远端与所述第二可转动件转动连接。
  10. 根据权利要求7所述的连续体器械,其特征在于,所述第一滑动导向部为第一滑槽,所述第二滑动导向部为垂直于所述第二可转动件的旋转轴线延伸的第二滑槽;
    所述滑动组件包括滑动销,所述滑动销活动穿设在所述第一滑槽和所述第二滑槽中,所述滑动销的远端与所述第二近端止盘以圆柱副、移动副和旋转副中的至少一个连接。
  11. 根据权利要求10所述的连续体器械,其特征在于,所述滑动组件还包括与所述滑动销固定连接的滑块,所述第二可转动件上设有与所述第二滑槽平行的滑轨,所述滑块可滑动设置在所述滑轨上。
  12. 根据权利要求7所述的连续体器械,其特征在于,所述第一滑动导向部为第一滑轨,所述第二滑动导向部为第二滑轨;
    所述滑动组件包括第一滑动块、第二滑动块和滑动销,所述第一滑动块滑 动设置在所述第一滑轨上,所述第二滑动块滑动设置在所述第二滑轨上,所述第一滑动块和所述第二滑动块中的一个设置成与所述滑动销活动连接,所述第一滑动块和所述第二滑动块中的另一个设置成与所述滑动销固定连接。
  13. 根据权利要求3所述的连续体器械,其特征在于,所述驱动传动机构包括齿轮齿条机构,所述齿轮齿条机构包括:
    第一可转动件,用于在第一驱动件的驱动下转动;
    第二可转动件,与所述第一可转动件同轴设置,用于在第二驱动件的驱动下相对于第一可转动件转动,所述第二可转动件上设有滑动导向部;
    运动组件,至少一部分滑动设置在所述滑动导向部上,所述运动组件的至少另一部分设置成能随所述第一可转动件的转动而做直线运动,所述运动组件的远端形成所述输出端,与所述第二近端止盘连接。
  14. 根据权利要求13所述的连续体器械,其特征在于,所述运动组件包括彼此连接的滑动部和啮合部,所述滑动部滑动设置在所述滑动导向部上,以由所述滑动导向部引导以相对于所述第二可转动件直线滑动,所述啮合部被设置成与所述第一可转动件啮合,以由所述第一可转动件的转动而直线运动。
  15. 根据权利要求14所述的连续体器械,其特征在于,所述第一可转动件包括彼此同轴固定连接的啮合齿轮和第一从动齿轮,所述啮合齿轮位于所述第一从动齿轮的远侧,所述啮合部包括齿条,所述齿条与所述啮合齿轮相互啮合。
  16. 根据权利要求15所述的连续体器械,其特征在于,所述滑动部包括滑块,所述齿条设置在所述滑块的近端,所述滑动导向部包括设置在所述第二可转动件上的滑槽,所述滑块滑动设置在所述滑槽中,且所述滑块的近侧穿过所述滑槽与所述齿条固定连接,所述滑块包括所述输出端,所述输出端与所述第二近端止盘连接。
  17. 根据权利要求1所述的连续体器械,其特征在于,所述远端连续体还包括远端基盘,并且所述连续体器械还包括:结构骨引导管束,连接在所述近端基盘和所述远端基盘之间,所述近端结构骨或所述远端结构骨穿过所述近端基盘、所述结构骨引导管束。
  18. 根据权利要求17所述的连续体器械,其特征在于,包括:至少两个近端连续体、至少两个远端连续体、至少两个结构骨引导管束和至少两个驱动传动机构,所述至少两个近端连续体串联或者并联。
  19. 根据权利要求18所述的连续体器械,其特征在于,还包括:支架;
    所述至少两个近端连续体的近端基盘分别与所述支架固定连接或一体成型,所述至少两个结构骨引导管束的近端分别与相应的所述近端连续体的近端基盘固定连接,
    所述至少两个近端连续体包括位于所述支架的近端的近端连续体和位于所述支架的远端的近端连续体,与位于所述支架近端的近端连续体对应的结构骨引导管束穿过所述支架、位于所述支架远端的近端连续体的第二近端止盘、第一近端止盘、近端基盘,并与位于所述支架远端的近端连续体对应的结构骨引导管束在同一远端基盘处汇成一束;或者,与位于所述支架近端的近端连续体对应的结构骨引导管束穿过所述支架、绕过位于所述支架远端的近端连续体,并与位于所述支架远端的近端连续体对应的结构骨引导管束在同一远端基盘处汇成一束;
    所述远端基盘与所述支架固定连接或一体成型;
    所述至少两个驱动传动机构分别设置在所述支架的近端和远端,每一所述驱动传动机构的输出端分别与相应的所述近端连续体的第二近端止盘连接,以驱动所述近端连续体的第一近端止盘翻转,从而实现驱动相应的所述远端连续 体的弯转。
  20. 一种手术机器人,包括至少一个手术台车、至少一个定位臂和至少一个手术器械;
    所述至少一个手术器械包括至少一个如权利要求1所述的连续体器械以及设置在所述连续体器械远端的末端装置;
    所述至少一个定位臂可活动设置在至少一个手术台车上,所述至少一个手术器械分别设置在所述至少一个定位臂的远端。
PCT/CN2021/080946 2020-06-30 2021-03-16 连续体器械及手术机器人 WO2022001186A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/010,066 US20230225758A1 (en) 2020-06-30 2021-03-16 Continuum instrument and surgical robot
CN202180034500.5A CN115605140A (zh) 2020-06-30 2021-03-16 连续体器械及手术机器人
EP21832207.1A EP4173576A1 (en) 2020-06-30 2021-03-16 Continuous body instrument and surgical robot

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010623370.6A CN113855110A (zh) 2020-06-30 2020-06-30 手术工具驱动系统及手术机器人
CN202010618751.5A CN113855107A (zh) 2020-06-30 2020-06-30 基于平面运动机构的手术工具驱动传动系统及手术机器人
CN202010618751.5 2020-06-30
CN202010618747.9 2020-06-30
CN202010617404.0 2020-06-30
CN202010623370.6 2020-06-30
CN202010617404.0A CN113858260B (zh) 2020-06-30 2020-06-30 一种可整体驱动的柔性连续体结构及柔性机械臂
CN202010618747.9A CN113855105A (zh) 2020-06-30 2020-06-30 一种手术工具驱动传动系统以及包含该系统的手术机器人

Publications (1)

Publication Number Publication Date
WO2022001186A1 true WO2022001186A1 (zh) 2022-01-06

Family

ID=79315107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080946 WO2022001186A1 (zh) 2020-06-30 2021-03-16 连续体器械及手术机器人

Country Status (4)

Country Link
US (1) US20230225758A1 (zh)
EP (1) EP4173576A1 (zh)
CN (1) CN115605140A (zh)
WO (1) WO2022001186A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230225757A1 (en) * 2020-06-30 2023-07-20 Beijing Surgerii Technology Co., Ltd. Continuum instrument and surgical robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253327A1 (en) * 2011-03-29 2012-10-04 Tyco Healthcare Group Lp Dual Cable Triangulation Mechanism
CN103085083A (zh) * 2013-01-07 2013-05-08 汪雯 可弯转可伸缩的柔性连续体机械结构
CN106236269A (zh) * 2016-08-31 2016-12-21 北京术锐技术有限公司 一种多自由度的柔性手术工具
US20180243900A1 (en) * 2017-02-28 2018-08-30 Canon U.S.A. Inc. Apparatus of continuum robot
CN109431603A (zh) * 2018-10-09 2019-03-08 北京术锐技术有限公司 用于内窥镜治疗术式的柔性机器人手术系统及其使用方法
CN111319033A (zh) * 2018-12-14 2020-06-23 劳斯莱斯有限公司 连续体机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707322B (zh) * 2013-12-31 2016-04-20 汪雯 可弯转可伸缩的柔性连续体机械结构
CN106308936B (zh) * 2016-08-31 2018-12-07 北京术锐技术有限公司 一种包含驱动骨的柔性手术工具系统
CN108481307B (zh) * 2018-03-29 2021-01-08 燕山大学 一种面向大承载的连续型机器人
CN109431602A (zh) * 2018-10-09 2019-03-08 北京术锐技术有限公司 一种基于柔性手术臂的多孔微创机器人系统及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253327A1 (en) * 2011-03-29 2012-10-04 Tyco Healthcare Group Lp Dual Cable Triangulation Mechanism
CN103085083A (zh) * 2013-01-07 2013-05-08 汪雯 可弯转可伸缩的柔性连续体机械结构
CN106236269A (zh) * 2016-08-31 2016-12-21 北京术锐技术有限公司 一种多自由度的柔性手术工具
US20180243900A1 (en) * 2017-02-28 2018-08-30 Canon U.S.A. Inc. Apparatus of continuum robot
CN109431603A (zh) * 2018-10-09 2019-03-08 北京术锐技术有限公司 用于内窥镜治疗术式的柔性机器人手术系统及其使用方法
CN111319033A (zh) * 2018-12-14 2020-06-23 劳斯莱斯有限公司 连续体机器人

Also Published As

Publication number Publication date
EP4173576A1 (en) 2023-05-03
CN115605140A (zh) 2023-01-13
US20230225758A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
CN111437036B (zh) 一种应用于微创手术的蛇形手术机器人
EP3903715A1 (en) Flexible surgical tool system
EP3903711A1 (en) Double-curved flexible surgical tool system
US20130304084A1 (en) Mechanical manipulator for surgical instruments
JP6653044B2 (ja) 手術器具および手術システム
GB2531994A (en) Surgical articulation
US9227326B2 (en) Remote center of motion mechanism and method of use
JP2007260430A (ja) 向上した巧緻性および感度で最低侵襲性外科手術を行うための連結外科手術器具
CN113491580B (zh) 丝传动结构、手术器械及手术机器人
WO2022001188A1 (zh) 连续体器械及手术机器人
US20190159852A1 (en) Surgical tool, medical treatment instrument, and surgical system
WO2022001186A1 (zh) 连续体器械及手术机器人
CN114521967A (zh) 机械臂以及医疗台车
WO2022001187A1 (zh) 连续体器械及手术机器人
WO2022001185A1 (zh) 连续体器械及手术机器人
WO2018174227A1 (ja) 把持機構
CN113855110A (zh) 手术工具驱动系统及手术机器人
CN116407215A (zh) 一种穿戴式多自由度可弯曲的手术器械
RU2570939C1 (ru) Привод для инструмента эндоскопического хирургического аппарата
CN113855103A (zh) 基于回转-直线驱动的手术工具驱动传动系统及手术机器人
CN116058968A (zh) 手术器械组件、手术器械装置及手术机器人
CN113967076A (zh) 一种多关节机械臂组及含该臂组的手术机器人系统
CN113855106A (zh) 一种手术工具驱动传动系统及包含该系统的手术机器人
CN218305109U (zh) 一种远心不动机构、机械手及手术机器人
CN113855109A (zh) 柔性连续体驱动传动机构、手术工具驱动系统及机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021832207

Country of ref document: EP

Effective date: 20230130