WO2020008870A1 - 計測制御装置及び流量計測装置 - Google Patents

計測制御装置及び流量計測装置 Download PDF

Info

Publication number
WO2020008870A1
WO2020008870A1 PCT/JP2019/024196 JP2019024196W WO2020008870A1 WO 2020008870 A1 WO2020008870 A1 WO 2020008870A1 JP 2019024196 W JP2019024196 W JP 2019024196W WO 2020008870 A1 WO2020008870 A1 WO 2020008870A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulsation
value
output value
frequency
flow rate
Prior art date
Application number
PCT/JP2019/024196
Other languages
English (en)
French (fr)
Inventor
昇 北原
健悟 伊藤
輝明 海部
周 東
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019108845A external-priority patent/JP2020012814A/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019003406.5T priority Critical patent/DE112019003406T9/de
Publication of WO2020008870A1 publication Critical patent/WO2020008870A1/ja
Priority to US17/132,292 priority patent/US20210108952A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • G01F15/043Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
    • G01F15/046Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means involving digital counting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/185Circuit arrangements for generating control signals by measuring intake air flow using a vortex flow sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the disclosure of this specification relates to a measurement control device and a flow measurement device.
  • Patent Literature 1 discloses a configuration in which an ECU that controls an internal combustion engine calculates an air flow based on an output value of an air flow sensor. This ECU receives a detection signal of a crank angle sensor for detecting an engine speed in addition to a detection signal of an air flow sensor. The ECU calculates the pulsation frequency of the air flow using the engine speed detected by the crank angle sensor, and uses the pulsation frequency to reduce the pulsation error that is an error caused by the pulsation of the air flow. Is corrected.
  • Patent Literature 1 since the ECU performs the correction process of the air flow rate in addition to the control process of the internal combustion engine, it is assumed that the processing load on the ECU is excessively increased. Therefore, a configuration is conceivable in which a measurement control device independent of the ECU executes the correction processing of the air flow rate, and the measurement control device outputs a correction result of the air flow rate to the ECU. With this configuration, the ECU can obtain the correction result of the air flow rate, and can further reduce the processing load on the ECU. However, even in this configuration, if the measurement control device uses the engine speed when calculating a pulsation state such as a pulsation frequency, the ECU needs to output rotation speed information indicating the engine speed to the measurement control device. There is. As described above, when the measurement control device uses the rotation speed information from the ECU to correct the air flow rate, there is a concern that the correction accuracy of the air flow rate may be reduced due to the noise included in the rotation speed information. .
  • a main object of the present disclosure is to provide a measurement control device and a flow measurement device capable of improving the correction accuracy of an air flow.
  • the measurement control device measures an air flow rate using an output value of a sensing unit that outputs a signal corresponding to the air flow rate, and outputs a measurement result of the air flow rate to a predetermined external device.
  • a measurement control device that outputs A pulsation state that is a pulsation state that occurs in the air flow rate is not obtained from an external device, but is calculated using an output value, and a pulsation state calculation unit, A flow rate correction unit that corrects the air flow rate using the pulsation state calculated by the pulsation state calculation unit.
  • the pulsation state calculation unit uses the pulsation state calculated using the output value of the sensing unit for correction of the air flow rate.
  • the flow measurement device is a flow measurement device that measures an air flow, A measurement channel having a measurement inlet into which air flows in and a measurement outlet through which air flows out, A sensing unit that outputs a signal corresponding to the flow rate of air in the measurement flow path, A measurement control unit that measures an air flow rate using an output value of the sensing unit, and outputs a measurement result of the air flow rate to a predetermined external device, The measurement control unit A pulsation state that is a pulsation state that occurs in the air flow rate, is not obtained from an external device, but is calculated using an output value, and a pulsation state calculation unit, A flow rate correction unit that corrects the air flow rate using the pulsation state calculated by the pulsation state calculation unit.
  • the measurement control device measures an air flow rate using an output value of a sensing unit that outputs a signal corresponding to a flow rate of the air taken into the internal combustion engine, and determines a measurement result of the air flow rate to a predetermined value.
  • a measurement control device that outputs to an external device, A pulsation state calculation unit that calculates a pulsation state that is a state of pulsation occurring in the air flow rate using the output value, A flow rate correction unit that corrects the air flow rate using the pulsation state calculated by the pulsation state calculation unit, A filter section for removing a component of a predetermined cutoff frequency from a waveform representing a time change of the output value, The frequency of the waveform representing the time change of the rotation speed of the internal combustion engine is taken as the rotation fluctuation frequency, The cutoff frequency is set to a positive real number multiple of the rotation fluctuation frequency.
  • the same effect as in the first aspect can be obtained. Further, since noise is removed at a cutoff frequency set to a positive multiple of the rotation fluctuation frequency, the correction accuracy of the air flow rate can be further improved.
  • FIG. 2 is a perspective view of the air flow meter according to the first embodiment as viewed from the upstream outer surface side. The perspective view which looked at the air flow meter from the downstream outer surface side.
  • FIG. 3 is a longitudinal sectional view of the air flow meter attached to an intake pipe.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a sectional view taken along line VV of FIG. 3.
  • FIG. 2 is a block diagram showing a schematic configuration of an air flow meter.
  • FIG. 2 is a block diagram illustrating a schematic configuration of a correction circuit. The figure for demonstrating the calculation method of an upper pole interval. The figure for demonstrating the calculation method of an average air amount.
  • FIG. 9 is a block diagram illustrating a schematic configuration of a correction circuit according to a second embodiment. The figure for illustrating the noise contained in an output value. The figure for demonstrating the method of cutting the negative value of an output value.
  • FIG. 13 is a block diagram illustrating a schematic configuration of a correction circuit according to a third embodiment. The figure for demonstrating the calculation method of a lower pole interval.
  • FIG. 14 is a block diagram illustrating a schematic configuration of a correction circuit according to a fourth embodiment.
  • FIG. 13 is a block diagram illustrating a schematic configuration of a correction circuit according to a fifth embodiment.
  • FIG. 9 is a vertical cross-sectional view of an air flow meter attached to an intake pipe according to a first modification.
  • 20 is a flowchart showing a processing procedure for noise removal in a seventh embodiment.
  • FIG. 21 is a block diagram illustrating a schematic configuration of a correction circuit according to a twelfth embodiment.
  • FIG. 21 is a block diagram illustrating a schematic configuration of a correction circuit according to a thirteenth embodiment.
  • 28 is a flowchart illustrating a frequency calculation processing procedure in the fourteenth embodiment.
  • 28 is a flowchart illustrating a frequency calculation processing procedure in the fifteenth embodiment.
  • the air flow meter 10 shown in FIGS. 1 and 2 is included in a combustion system having an internal combustion engine such as a gasoline engine. This combustion system is mounted on a vehicle. As shown in FIG. 3, the air flow meter 10 is provided in an intake passage 12 that supplies intake air to an internal combustion engine in a combustion system, and a flow rate of a fluid such as a gas or a gas such as intake air flowing through the intake passage 12. Measure physical quantities such as temperature, humidity, and pressure. In this case, the air flow meter 10 corresponds to a flow measurement device.
  • the air flow meter 10 is attached to an intake pipe 12a such as an intake duct forming the intake passage 12.
  • the intake pipe 12a is provided with an airflow insertion hole 12b as a through-hole penetrating the outer peripheral portion.
  • An annular pipe flange 12c is attached to the airflow insertion hole 12b, and the pipe flange 12c is included in the intake pipe 12a.
  • the airflow meter 10 enters the intake passage 12 by being inserted into the pipe flange 12c and the airflow insertion hole 12b, and is fixed to the intake pipe 12a and the pipe flange 12c in this state.
  • the width direction X, the height direction Y, and the depth direction Z of the air flow meter 10 are orthogonal to each other.
  • the air flow meter 10 extends in the height direction Y, and the intake passage 12 extends in the depth direction Z.
  • the air flow meter 10 has an entry portion 10a that has entered the intake passage 12, and an extension portion 10b that has protruded from the pipe flange 12c without entering the intake passage 12, and has the entry portion 10a and the extension portion 10b.
  • the one included in the entry portion 10a is referred to as an airflow front end surface 10c
  • the one included in the protruding portion 10b is referred to as an airflow base end surface 10d.
  • the airflow front end face 10c and the airflow base end face 10d are arranged in the height direction Y.
  • the airflow front end face 10c and the airflow base end face 10d are orthogonal to the height direction Y.
  • the distal end face of the pipe flange 12c is also orthogonal to the height direction Y.
  • the air flow meter 10 has a housing 21 and a sensing unit 22 (see FIGS. 3 and 6) for detecting a flow rate of intake air.
  • the sensing unit 22 is provided in an internal space 24a of the housing body 24.
  • the housing 21 is formed of, for example, a resin material.
  • the sensing unit 22 can come into contact with the intake air flowing through the intake passage 12.
  • the housing 21 has a housing main body 24, a ring holding section 25, a flange section 27, and a connector section 28, and an O-ring 26 (see FIG. 3) is attached to the ring holding section 25.
  • the housing body 24 is formed in a cylindrical shape as a whole, and in the housing 21, the ring holding section 25, the flange section 27 and the connector section 28 are provided integrally with the housing body 24.
  • the ring holding portion 25 is included in the entering portion 10a, and the flange portion 27 and the connector portion 28 are included in the protruding portion 10b.
  • the ring holding portion 25 is provided inside the pipe flange 12c, and holds the O-ring 26 so as not to be displaced in the height direction Y.
  • the O-ring 26 is a sealing member that seals the intake passage 12 inside the pipe flange 12c, and is in close contact with both the outer peripheral surface of the ring holding portion 25 and the inner peripheral surface of the pipe flange 12c.
  • a fixing hole such as a screw hole for fixing a fixing tool such as a screw for fixing the air flow meter 10 to the intake pipe 12a is formed in the flange portion 27.
  • the connector section 28 is a protection section for protecting a connector terminal electrically connected to the sensing section 22.
  • the housing main body 24 forms a bypass passage 30 into which a part of the intake air flowing through the intake passage 12 flows.
  • the bypass flow path 30 is arranged at the entrance 10 a of the air flow meter 10.
  • the bypass passage 30 has a passage passage 31 and a measurement passage 32, and the passage passage 31 and the measurement passage 32 are formed by the internal space 24 a of the housing main body 24.
  • the intake passage 12 may be referred to as a main passage
  • the bypass passage 30 may be referred to as a sub passage. 3, the illustration of the O-ring 26 is omitted.
  • the passage 31 penetrates the housing body 24 in the depth direction Z.
  • the passage 31 has an inlet 33 at the upstream end and an outlet 34 at the downstream end.
  • the inflow port 33 and the outflow port 34 are arranged in the depth direction Z, and the depth direction Z corresponds to the arrangement direction.
  • the measurement channel 32 is a branch channel branched from an intermediate portion of the passage channel 31, and the sensing section 22 is provided in the measurement channel 32.
  • the measurement channel 32 has a measurement inlet 35 at the upstream end and a measurement outlet 36 at the downstream end.
  • the portion where the measurement channel 32 branches off from the passage channel 31 is the boundary between the passage channel 31 and the measurement channel 32, and the boundary includes the measurement inlet 35.
  • the measurement outlet 36 corresponds to a branch outlet.
  • the sensing unit 22 has a circuit board and a detection element mounted on the circuit board, and is a chip-type flow sensor.
  • the detecting element has a heater section such as a heating resistor and a temperature detecting section for detecting the temperature of the air heated by the heater section.
  • the sensing section 22 detects a change in temperature due to heat generated by the detecting element. And outputs an output signal corresponding to.
  • the sensing unit 22 can also be referred to as a flow detection unit.
  • the air flow meter 10 has a sensor subassembly including the sensing unit 22, and this sensor subassembly is referred to as a sensor SA40.
  • the sensor SA40 is housed in the housing body 24.
  • the sensor SA40 has, in addition to the sensing unit 22, a circuit chip 41 electrically connected to the sensing unit 22, and a mold unit 42 for protecting the sensing unit 22 and the circuit chip 41.
  • the circuit chip 41 has a digital circuit for performing various processes, and is a rectangular parallelepiped chip component.
  • the sensing unit 22 and the circuit chip 41 are supported by a lead frame, and the circuit chip 41 is electrically connected to the sensing unit 22 and the lead frame via a bonding wire or the like.
  • the mold portion 42 is a mold resin such as a polymer resin molded by molding, and has a higher insulating property than a lead frame or a bonding wire.
  • the mold section 42 protects the circuit chip 41 and the sensing section 22 while sealing the circuit chip 41 and the bonding wires.
  • the sensing unit 22 and the circuit chip 41 are mounted in one package by the mold unit 42.
  • the sensor SA40 corresponds to a sensing unit
  • the mold part 42 corresponds to a body. Note that the sensor SA40 may be referred to as a detection unit or a sensor unit.
  • the sensing unit 22 outputs an output signal corresponding to the air flow rate in the measurement flow path 32 to the circuit chip, and the circuit chip calculates the flow rate using the output signal of the sensing unit 22.
  • the calculation result of the circuit chip is the flow rate of the air measured by the air flow meter 10.
  • an inlet 33 and an outlet 34 of the air flow meter 10 are arranged at a center position of the intake passage 12 in the height direction Y.
  • the intake air flowing through the center position of the intake passage 12 in the height direction Y flows along the depth direction Z.
  • the direction in which the intake air flows in the intake passage 12 and the direction in which the intake air flows in the passage 31 are substantially the same.
  • the sensing unit 22 is not limited to a thermal flow sensor, and may be an ultrasonic flow sensor, a Karman vortex flow sensor, or the like.
  • the outer peripheral surface of the housing body 24 forming the outer peripheral surface of the housing 21 has an upstream outer surface 24b, a downstream outer surface 24c, and a pair of intermediate outer surfaces 24d.
  • the upstream outer surface 24b faces the upstream side of the intake passage 12
  • the downstream outer surface 24c faces the downstream side of the intake passage 12.
  • the pair of intermediate outer surfaces 24d are opposite to each other in the width direction X, and are flat surfaces extending in the depth direction Z.
  • the upstream outer surface 24b is an inclined surface inclined with respect to the intermediate outer surface 24d.
  • the upstream outer surface 24b is an inclined surface that is curved so that the width dimension of the housing body 24 in the width direction X gradually decreases toward the upstream side in the intake passage 12.
  • the intermediate outer surface 24d is provided between the upstream outer surface 24b and the downstream outer surface 24c in the depth direction Z.
  • the upstream outer surface 24b and the intermediate outer surface 24d are arranged in the depth direction Z, and the surface boundary 24e, which is the boundary between the upstream outer surface 24b and the intermediate outer surface 24d, extends in the height direction Y.
  • the upstream outer surface 24b and the downstream outer surface 24c are a pair of end surfaces facing each other in the depth direction Z.
  • the inflow port 33 is provided on the upstream outer surface 24b, and the outflow port 34 is provided on the downstream outer surface 24c.
  • the inflow port 33 and the outflow port 34 are opened in opposite directions.
  • the measurement outlet 36 is provided on both the upstream outer surface 24 b and the intermediate outer surface 24 d by being arranged at a position straddling the surface boundary 24 e in the depth direction Z.
  • a portion arranged on the upstream outer surface 24b is open toward the same side as the inlet 33, and a portion arranged on the intermediate outer surface 24d is open in the width direction X.
  • the measurement outlet 36 faces the direction inclined toward the inlet 33 with respect to the width direction X.
  • the measurement outlet 36 is not opened toward the outlet 34 side. That is, the measurement outlet 36 is not open to the downstream side in the intake passage 12.
  • the measurement outlet 36 has a vertically elongated flat shape extending along the surface boundary 24e.
  • the measurement outlet 36 is disposed at a position closer to the intermediate outer surface 24d with respect to the surface boundary 24e in the depth direction Z.
  • the area of the portion arranged on the intermediate outer surface 24d is larger than the area of the portion arranged on the upstream outer surface 24b.
  • the separation distance between the downstream end of the measurement outlet 36 and the surface boundary 24e is larger than the separation distance between the upstream end of the measurement outlet 36 and the surface boundary 24e.
  • the inner peripheral surface of the measurement flow path 32 has forming surfaces 38 a to 38 c forming the measurement outlet 36.
  • a through hole that forms the measurement outlet 36 is provided in the outer peripheral portion of the housing body 24, and the forming surfaces 38a to 38c are included in the inner peripheral surface of the through hole.
  • the upstream forming surface 38a forms the upstream end 36a of the measurement outlet 36
  • the downstream forming surface 38b forms the downstream end 36b of the measurement outlet 36.
  • the connection forming surface 38c connects the upstream forming surface 38a and the downstream forming surface 38b, and is provided in a pair with the forming surfaces 38a and 38b interposed therebetween.
  • the upstream forming surface 38a is orthogonal to the depth direction Z, and extends in the width direction X from the upstream end 36a of the measurement outlet 36 toward the inside of the housing main body 24.
  • the downstream forming surface 38b is inclined with respect to the depth direction Z, and is an inclined surface that extends straight from the downstream end 36b of the measurement outlet 36 toward the inside of the housing main body 24 toward the upstream outer surface 24b.
  • the air that flows through the measurement flow path 32 and flows out of the measurement outlet 36 into the intake passage 12 flows along the downstream forming surface 38b that is the inclined surface, so that the air easily flows toward the downstream side in the intake passage 12. .
  • the air flowing out of the measurement outlet 36 along the downstream forming surface 38 b merges with the intake air flowing through the intake passage 12, turbulence of the airflow such as a vortex is less likely to occur. The flow velocity of the gas becomes easier to stabilize.
  • the measurement flow path 32 has a folded shape folded between the measurement inlet 35 and the measurement outlet 36.
  • the measurement flow path 32 includes a branch path 32a branched from the passage flow path 31, a guide path 32b for guiding the air flowing from the branch path 32a toward the sensing unit 22, and a detection path 32c provided with the sensing unit 22. And a discharge path 32d for discharging air from the measurement outlet 36.
  • the branch path 32a, the guide path 32b, the detection path 32c, and the discharge path 32d are arranged in this order from the upstream side.
  • the detection path 32c extends in the depth direction Z so as to be parallel to the passage channel 31, and is provided at a position separated from the passage channel 31 toward the protruding portion 10b.
  • the branch path 32a, the guide path 32b, and the discharge path 32d are provided between the detection path 32c and the passage path 31.
  • the guide path 32b and the discharge path 32d are parallel to each other by extending in the height direction Y from the detection path 32c toward the passage path 31.
  • the branch path 32a is provided between the guide path 32b and the passage 31 and corresponds to an inclined branch inclined with respect to the passage 31.
  • the branch passage 32a extends from the measurement inlet 35 toward the outlet 34 in the depth direction Z, and is a straight flow passage.
  • the discharge path 32d is provided closer to the inflow port 33 than the guide path 32b in the depth direction Z, and extends from the measurement outlet 36 toward the detection path 32c.
  • the sensor SA40 is disposed at a position where the sensing unit 22 enters the detection path 32c.
  • the sensing unit 22 is disposed between the pair of intermediate outer surfaces 24d in the width direction X, and extends in the depth direction Z and the height direction Y.
  • the sensing unit 22 is in a state where the detection path 32c is partitioned in the width direction X.
  • the housing 21 has a detection diaphragm 37 that gradually narrows the detection path 32c toward the sensing unit 22 in the depth direction Z.
  • the detection throttle section 37 gradually reduces the cross-sectional area of the detection path 32c from the end of the detection path 32c on the downstream outer surface 24c side toward the sensing section 22.
  • the detection throttle unit 37 gradually reduces the cross-sectional area of the detection path 32c from the end on the upstream outer surface 24b side to the sensing unit 22 in the detection path 32c.
  • a cross-sectional area in a direction orthogonal to the depth direction Z is defined as a cross-sectional area.
  • the detection throttle unit 37 can adjust the direction of air flow by gradually narrowing the detection path 32c, and corresponds to a rectifying mechanism. .
  • the detection diaphragm 37 corresponds to the diaphragm.
  • the detection diaphragm 37 is provided at a position facing the sensing unit 22 on the inner peripheral surface of the detection path 32c.
  • the detection diaphragm 37 protrudes from the inner peripheral surface of the housing body 24 toward the sensing unit 22.
  • the depth dimension D1 of the detection diaphragm 37 in the depth direction Z is the depth dimension of the sensing unit 22 in the depth direction Z. It is larger than D2. Further, in a region where the sensing unit 22 exists in the height direction Y, the depth dimension D3 of the mold unit 42 in the depth direction Z is larger than the depth dimension D1 of the detection diaphragm unit 37.
  • the detection diaphragm 37 has a tapered shape in the width direction X. Specifically, the base end of the detection diaphragm 37 projecting from the inner wall of the housing body 24 in the width direction X is the widest part, and the distal end is the narrowest part.
  • the width dimension of the base end of the detection diaphragm 37 is the above-described depth dimension D1.
  • the detection diaphragm unit 37 has a curved surface that bulges toward the sensing unit 22.
  • the detection diaphragm 37 may have a tapered shape bulging toward the sensing unit 22.
  • the bottom surface of the detection path 32c is formed by the housing body 24, The surface is formed by the sensor SA40.
  • the detection diaphragm 37 extends from the bottom surface of the detection path 32c toward the ceiling surface.
  • the outer peripheral surface of the detection diaphragm 37 extends straight in the height direction Y.
  • the distance between the mold part 42 and the detection stop part 37 gradually decreases in the depth direction Z as it approaches the sensing part 22.
  • the flow velocity of the intake air tends to increase as approaching the sensing section 22.
  • the output of the sensing unit 22 is easily stabilized, and the detection accuracy can be improved.
  • the pulsation causes the forward flow from the upstream side and the forward flow from the downstream side.
  • Backflow that flows in the opposite direction may occur.
  • the inflow port 33 is open toward the upstream side, so that the forward flow easily flows into the inflow port 33.
  • the outlet 34 is opened toward the downstream side, so that the reverse flow easily flows into the outlet 34.
  • the measurement outlet 36 is not open toward the downstream side, and it is difficult for the backflow to flow into the measurement outlet 36. For this reason, even when the backflow flows in from the measurement outlet 36, the inflow of the backflow into the measurement outlet 36 is not stable, and the air flow rate in the measurement flow path 32 tends to be unstable.
  • a part of the outer peripheral surface of the housing main body 24 is a step surface facing the downstream side, and in a configuration in which the measurement outlet 36 is formed on the step surface, the step surface is formed in the intake passage 12. It is considered that the turbulence of the airflow such as a vortex easily occurs in the passing air.
  • the measurement outlet 36 is not formed on the step surface, turbulence of the airflow is hardly generated around the measurement outlet 36, and the ease of entry of the backflow into the measurement outlet 36 is reduced. Variations are less likely to occur. As described above, since an unstable backflow does not easily occur in the measurement flow path 32, stable pulsation measurement can be realized in the air flow meter 10.
  • the air flow meter 10 has a processing unit 45 that processes an output signal of the sensing unit 22.
  • the processing unit 45 is provided in the circuit chip 41 and is electrically connected to an ECU (Electronic Control Unit) 46.
  • the ECU 46 corresponds to an internal combustion engine control device, and is an engine control device having a function of controlling the engine based on a measurement signal from the air flow meter 10 and the like. This measurement signal is an electric signal indicating the air flow rate corrected by the pulsation error correction unit 61 described later.
  • One-way communication with the processing unit 45 and the ECU 46 is enabled, and while signal input from the processing unit 45 to the ECU 46 is performed, signal input from the ECU 46 to the processing unit 45 is not performed.
  • the ECU 46 is provided independently of the processing unit 45 and the air flow meter 10, and corresponds to an external device.
  • the ECU 46 is electrically connected to engine sensors such as a crank angle sensor and a cam angle sensor.
  • the ECU 46 obtains engine parameters such as the rotation angle, the rotation speed, and the number of rotations of the engine using the detection signal of the engine sensor, and performs engine control using the engine parameters.
  • the pulsation generated in the intake air in the intake passage 12 is correlated with the engine parameters.
  • the ECU 46 of the present embodiment does not output the engine parameters to the processing unit 45, and the processing unit 45 does not use the engine parameters when performing processing such as correction on the output signal of the sensing unit 22.
  • the engine parameters correspond to external information.
  • the sensing unit 22 outputs to the processing unit 45 an output signal corresponding to the air flow rate flowing through the measurement flow path 32.
  • the output signal is an electric signal, a sensor signal, or a detection signal output from the sensing unit 22, and an output value corresponding to the value of the air flow rate is included in the output signal.
  • the sensing unit 22 detects the air flow rate of the air flowing in the measurement channel 32 in the forward direction from the measurement inlet 35 to the measurement outlet 36 and the air flowing in the reverse direction from the measurement outlet 36 to the measurement inlet 35. It is possible.
  • the output value of the sensing unit 22 has a positive value when air flows in the measurement flow path 32 in the forward direction, and has a negative value when air flows in the reverse direction.
  • the sensing unit 22 When pulsation occurs in the flow of air in the intake passage 12, the sensing unit 22 is affected by the pulsation, causing an error in the output value with respect to the true air flow rate.
  • the pulsation amplitude and the pulsation rate of the sensing unit 22 tend to increase when the throttle valve is fully opened.
  • the error due to the pulsation is also referred to as a pulsation error Err.
  • the true air flow rate is an air flow rate that is not affected by pulsation. Note that the pulsation rate is a value obtained by dividing the pulsation amplitude by the average value.
  • the processing unit 45 detects the air flow rate based on the output value of the sensing unit 22, and outputs the detected air flow rate to the ECU 46.
  • the processing unit 45 includes a driving circuit 49 that drives a heater unit of the sensing unit 22, a correction circuit 50 that corrects an output value of the sensing unit 22, and an output circuit 62 that outputs a correction result of the correction circuit 50 to the ECU 46. have.
  • the drive circuit 49 supplies power used for driving the heater unit and the like to the sensing unit 22 in addition to drive control of the heater unit.
  • the drive circuit 49 performs preprocessing such as amplifying the output signal of the sensing unit 22 before the correction circuit 50 performs the correction processing.
  • the processing unit 45 corresponds to a measurement control device and a measurement control unit that measure the air flow rate.
  • the processing unit 45 includes an arithmetic processing device such as a CPU, and a storage device that stores programs and data.
  • the processing unit 45 is realized by a microcomputer including a storage device that can be read by a computer.
  • the processing unit 45 calculates the air flow rate by performing various calculations by executing the program stored in the storage device by the arithmetic processing unit, and outputs the calculated air flow rate to the ECU 46.
  • the storage device is a non-transitional substantive storage medium for non-temporarily storing a computer-readable program and data.
  • the storage medium is realized by a semiconductor memory or the like. This storage device can also be called a storage medium.
  • the processing unit 45 may include a volatile memory for temporarily storing data.
  • the processing unit 45 has a function of correcting the output value in which the pulsation error Err has occurred. In other words, the processing unit 45 corrects the air flow rate of the output signal so as to approach the true air flow rate. Therefore, the processing unit 45 outputs the air flow rate in which the pulsation error Err is corrected to the ECU 46 as a measurement signal.
  • the measurement signal includes a measurement value that is a correction result of the output value.
  • the processing unit 45 operates as a plurality of functional blocks by executing a program.
  • the drive circuit 49, the correction circuit 50, and the output circuit 62 are all functional blocks.
  • the correction circuit 50 has an A / D conversion unit 51, a sampling unit 52, a variation adjustment unit 53, and a conversion table 54 as functional blocks.
  • the A / D converter 51 A / D converts an output value input from the sensing unit 22 to the correction circuit 50 via the drive circuit 49.
  • the sampling unit 52 samples the A / D-converted output value and acquires the sampled value at each timing. These sampling values are included in the output value.
  • the variation adjustment unit 53 adjusts the variation in the output value of the sensing unit 22 so that the measurement value does not vary due to the individual difference of the air flow meter 10 such as the individual difference of the sensing unit 22. Specifically, the variation adjusting unit 53 reduces individual variations in a flow rate output characteristic indicating a relationship between an output value and an actual air flow rate, and a temperature characteristic indicating a relationship between a flow rate output characteristic and a temperature.
  • the conversion table 54 converts the sampling value obtained by the sampling unit 52 into an air flow rate.
  • the value converted by the conversion table 54 may be referred to as a sampling value or an output value instead of the air flow rate.
  • the conversion table 54 is a conversion table that uses the flow rate output characteristics.
  • the correction circuit 50 includes, as functional blocks, an upper extreme value determination unit 56, an average air amount calculation unit 57, a pulsation amplitude calculation unit 58, a frequency calculation unit 59, a pulsation error calculation unit 60, a correction amount calculation unit 60a, and a pulsation error correction unit. 61.
  • the upper extreme value determination unit 56 determines whether the sampling value converted by the conversion table 54 is the upper extreme value Ea.
  • the upper extreme value Ea is a sampling value at the timing when the output value switches from increasing to decreasing.
  • the upper extreme value determination unit 56 acquires the timing at which the sampling value has reached the upper extreme value Ea as the upper extreme timing ta, and stores the timing in the storage device of the processing unit 45. Then, the upper extreme value determination unit 56 outputs information including the upper pole timing ta to the average air amount calculation unit 57, the pulsation amplitude calculation unit 58, and the frequency calculation unit 59 as timing information indicating a pulsation cycle.
  • the output of information on the output value of the sensing unit 22 is illustrated by a solid line, and the output of the timing information is illustrated by a broken line.
  • the upper extreme value determining unit 56 corresponds to a condition determining unit
  • the upper extreme timing ta indicates that the output value corresponds to the specific condition. This corresponds to the timing that has been performed.
  • the frequency calculation unit 59 calculates the interval at which the sampling value becomes the upper extreme value Ea as the upper pole interval Wa using the timing information from the upper extreme value determination unit 56, and uses the upper pole interval Wa to calculate the pulsation frequency F. Is calculated. For example, as shown in FIG. 8, when the sampling value becomes the upper extreme value Ea after the sampling value becomes the upper extreme value Ea, the previous upper extreme value Ea is set to the first upper extreme value Ea1. The next upper extreme Ea is referred to as a second upper extreme Ea2. In this case, the frequency calculation unit 59 uses the first upper pole timing ta1 at which the sampling value has become the first upper extreme value Ea1 and the second upper pole timing ta2 at which the sampling value has become the second upper extreme value Ea2.
  • a pulsation maximum value Gmax (see FIG. 10) which is a maximum value of the air flow rate when the air is pulsating is a first upper extreme value Ea1.
  • the second upper extremum Ea2 When these upper extreme values Ea1 and Ea2 are the same value, that value becomes the maximum pulsation value Gmax.
  • the average value of the first upper extreme value Ea1 and the second upper extreme value Ea2 may be set as the maximum pulsation value Gmax.
  • the average air amount calculation unit 57 uses the sampling value converted by the conversion table 54 and the timing information from the upper extreme value determination unit 56 to calculate the average air amount Gave (see FIG. 10) that is the average value of the air flow rate. calculate.
  • the average air amount calculation unit 57 sets a target period for calculating the average air amount Gave as a measurement period using the determination result of the upper extreme value determination unit 56, and calculates the average air amount Gave for this measurement period. . For example, in FIG. 8, when a period from the first upper pole timing ta1 to the second upper pole timing ta2 is set as a measurement period, the average air amount Gave is calculated for the measurement period.
  • the average air amount calculation unit 57 calculates the average air amount Gave using, for example, an integrated average.
  • the measurement period is from the timing t1 to the timing tn
  • the air flow rate at the timing t1 is G1
  • the air flow rate at the timing tn is Gn.
  • the average air amount calculation unit 57 calculates the average air amount Gave using Expression 1 in FIG.
  • the average air amount Gave in which the influence of the pulsation minimum value Gmin having relatively low detection accuracy is reduced can be calculated when the number of samplings is larger than when the number of samplings is small.
  • the pulsation minimum value Gmin has a relatively low detection accuracy of the sensing unit 22.
  • the pulsation amplitude calculation unit 58 calculates the pulsation amplitude Pa, which is the magnitude of the pulsation generated in the air flow rate, using the sampling value converted by the conversion table 54 and the timing information from the upper extreme value determination unit 56.
  • the pulsation amplitude calculation unit 58 calculates the pulsation amplitude Pa of the air flow rate by calculating the difference between the pulsation maximum value Gmax and the average air amount Gave as shown in FIG. That is, the pulsation amplitude calculation unit 58 obtains not one amplitude of the air flow but one amplitude of the air flow. This is to reduce the influence of the pulsation minimum value Gmin whose detection accuracy is relatively low as described above.
  • the pulsation amplitude calculation unit 58 may calculate the total amplitude, which is the difference between the pulsation maximum value Gmax and the pulsation minimum value, as the pulsation amplitude.
  • the upper extremum Ea, the pulsation frequency F, the pulsation amplitude Pa, and the average air amount Gave indicate a pulsation state that is a pulsation state, and correspond to a pulsation parameter.
  • the upper extreme value determination unit 56, the average air amount calculation unit 57, the pulsation amplitude calculation unit 58, and the frequency calculation unit 59 correspond to a pulsation state calculation unit that calculates a pulsation state.
  • the pulsation error calculation unit 60 calculates a pulsation error Err correlated with the pulsation amplitude Pa for the air flow rate.
  • the pulsation error calculator 60 predicts the pulsation error Err of the air flow rate using, for example, a map in which the pulsation amplitude Pa and the pulsation error Err are associated. That is, when the pulsation amplitude Pa is obtained by the pulsation amplitude calculation unit 58, the pulsation error calculation unit 60 extracts a pulsation error Err correlated with the obtained pulsation amplitude Pa from the map. It can also be said that the pulsation error calculation unit 60 acquires the pulsation error Err correlated with the pulsation amplitude Pa for the measurement period. Note that the pulsation error calculator 60 corresponds to the error calculator.
  • the air flow meter 10 is attached to the intake pipe 12a that forms the intake passage 12. Therefore, due to the influence of the shape of the intake pipe 12a, the airflow meter 10 not only increases the pulsation error Err as the pulsation amplitude Pa increases, but also decreases the pulsation error Err as the pulsation amplitude Pa increases. It can be. For this reason, the air flow meter 10 may not be able to express the relationship between the pulsation amplitude Pa and the pulsation error Err as a function. Therefore, the air flow meter 10 is preferable because the pulsation error Err can be accurately predicted by using the map as described above.
  • the map may be associated with a plurality of pulsation amplitudes Pa and a correction amount Q correlated with each pulsation amplitude Pa.
  • the airflow meter 10 may be able to express the relationship between the pulsation amplitude Pa and the pulsation error Err as a function, for example, when the sensing unit 22 is directly disposed in the main air passage. In this case, the airflow meter 10 may calculate the pulsation error Err using this function. Since the air flow meter 10 does not need to have a map by calculating the pulsation error Err using a function, the capacity of the storage device can be reduced. This is the same in the following embodiments. That is, in the following embodiment, the pulsation error Err may be obtained by using a function instead of the map.
  • the pulsation error Err is the difference between the uncorrected air flow obtained from the output value and the true air flow. That is, the pulsation error Err corresponds to the difference between the air flow rate whose output value is converted by the conversion table 54 and the true air flow rate. Therefore, the correction amount Q for bringing the air amount before correction closer to the true air flow rate can be obtained by knowing the pulsation error Err.
  • the pulsation error calculator 60 includes an average air amount Gave calculated by the average air amount calculator 57, a pulsation amplitude Pa calculated by the pulsation amplitude calculator 58, and a frequency calculator 59.
  • the calculated pulsation frequency F is input.
  • the pulsation error calculator 60 calculates the pulsation error Err using the average air amount Gave, the pulsation amplitude Pa, and the pulsation frequency F.
  • the pulsation amplitude Pa tends to increase as the average air amount Gave increases.
  • the pulsation characteristic indicating the relationship between the pulsation amplitude Pa and the pulsation error Err when the pulsation amplitude Pa and the pulsation error Err are substantially proportional, an approximate line of the pulsation characteristic is indicated by a straight line as shown in FIG. be able to.
  • Equation 2 For the approximation line of the pulsation characteristic, the relationship of the above equation 2 holds.
  • This relational expression is an error prediction expression for predicting the pulsation error Err using the pulsation amplitude Pa.
  • Ann is the slope of the approximate line
  • Bnn is the intercept.
  • the pulsation error Err corresponds to a correction parameter.
  • an approximate line of the pulsation characteristic may be indicated by a curve.
  • the expression indicating the approximate line of the pulsation characteristic includes a function of second or higher order such as a quadratic function and a cubic function.
  • the pulsation characteristics are set for each combination of the average air amount Gave and the pulsation frequency F.
  • a slope Ann and an intercept Bnn indicating a pulsation characteristic are set in each of the windows indicating the combination of the average air amount Gave and the pulsation frequency F.
  • this reference map is a two-dimensional map and is stored in the storage device of the processing unit 45.
  • the pulsation characteristic is set for each of the average air amount Gave and the pulsation frequency F with respect to a predetermined value.
  • the reference map may be a three-dimensional map or a three-dimensional map such as a three-dimensional map or a four-dimensional map.
  • a three-dimensional map indicating the relationship between the average air amount Gave, the pulsation frequency F, and the pulsation amplitude Pa may be used as the reference map.
  • map values of the average air amount Gave set in the reference map are shown as G1 to Gn, and map values of the pulsation frequency F are shown as F1 to Fn.
  • the pulsation characteristics correspond to the correction characteristics
  • the reference map corresponds to the reference information.
  • the reference map may be referred to as a correction map, and the reference information may be referred to as correction information.
  • the reference map can be created by confirming the relationship between the pulsation amplitude Pa and the pulsation error Err correlated to the pulsation amplitude Pa by an experiment or simulation using an actual machine. That is, the pulsation error Err can be said to be a value obtained for each pulsation amplitude Pa when an experiment or simulation using an actual machine is performed while changing the value of the pulsation amplitude Pa. Note that other maps in the embodiment can be created by experiments, simulations, and the like using actual machines, similarly to the reference maps.
  • the correction amount calculation unit 60a calculates the correction amount Q using the pulsation error Err calculated by the pulsation error calculation unit 60.
  • the correction amount calculating unit 60a calculates the correction amount Q using correlation information such as a map indicating a correlation between the pulsation error Err and the correction amount Q, with the measurement period being a calculation target.
  • the correction amount Q is a value indicating the ratio of correction to the output value. For example, when the output value is corrected so that the air flow rate increases, the correction amount Q becomes a value larger than 1, and when the output value is corrected so that the air flow rate decreases, the correction amount Q is smaller than 1. Value. Note that the correction ratio may be referred to as a gain.
  • the pulsation error correction unit 61 corrects the air flow rate using the sampling value converted by the conversion table 54 and the correction amount Q calculated by the correction amount calculation unit 60a so that the pulsation error Err becomes small. That is, the pulsation error correction unit 61 corrects the air flow rate so that the air flow rate affected by the pulsation approaches the true air flow rate.
  • an average air amount Gave is adopted as a correction target of the air flow rate.
  • the pulsation error correction unit 61 corrects the output value S1 before correction by the correction amount Q to calculate the corrected output value S2.
  • the output value S2 after correction is calculated by multiplying the output value S1 before correction by the correction amount Q.
  • the output value S1 before correction includes at least the upper extreme value Ea and the lower extreme value Eb.
  • the corrected output value S2 of the air flow corresponds to the measurement result.
  • the pulsation error correction unit 61 corresponds to a flow rate correction unit.
  • the correction circuit 50 outputs the corrected output value S2 calculated by the pulsation error correction unit 61 to the output circuit 62.
  • the output circuit 62 outputs the corrected output value S2 to the ECU 46.
  • the ECU 46 uses the corrected output value S2 input from the output circuit 62, the ECU 46 calculates an average value of the corrected output value S2 as a corrected average air amount Gave2. For example, when the correction amount Q is larger than 1, as shown in FIG. 13, the average air amount Gave2 after correction becomes larger than the average air amount Gave1 before correction.
  • the correction circuit 50 does not use the engine parameters acquired by the ECU 46 to correct the air flow rate, but instead uses the pulsation frequency F or the like calculated using the output value of the sensing unit 22.
  • the state is used for air flow correction.
  • the processing unit 45 does not need to receive the signal output from the ECU 46. Therefore, the processing unit 45 only needs to have a circuit and a program for performing one-way communication, and does not need to have a circuit and a program for performing two-way communication. Therefore, it is possible to reduce the storage capacity of the memory and the like, reduce the cost of the processing unit 45, and simplify the configuration of the processing unit 45 by the circuits and programs for performing the bidirectional communication.
  • the processing load on the ECU 46 can be reduced. Further, the processing load on the ECU 46 is reduced even when the ECU 46 does not output a signal to the processing unit 45. Based on these facts, it is not necessary to mount a memory for storing a program for calculating the pulsation state or a temporary memory for temporarily storing data used during the calculation in the ECU 46. The capacity can be reduced.
  • the processing unit 45 When the processing unit 45 receives a signal including information such as engine parameters from the ECU 46, a time delay occurs by the time required for communication. For this reason, at the timing when the processing unit 45 receives the signal from the ECU 46, the information included in the signal is information that is already past for a very short time, and if the processing unit 45 corrects the air flow rate using this information, The current air flow rate is corrected with the past information. That is, there is a concern that the correction result of the air flow rate includes a correction delay, and the correction accuracy is reduced by the correction delay. On the other hand, according to the present embodiment, since the processing unit 45 does not use the information from the ECU 46 to correct the air flow rate, it is possible to suppress a decrease in the correction accuracy by the time delay or the correction delay.
  • the pulsation error correction unit 61 uses the output value S1 before correction and the correction amount Q to calculate the output value S1 after correction as a measurement result.
  • the calculation accuracy of the corrected output value S2 and the calculation accuracy of the corrected average air amount Gave2 calculated by the ECU 46 are improved. be able to.
  • the average air amount Gave2 after correction is made smaller than the average air amount Gave1 before correction. Is assumed.
  • the pulsation frequency F of the pulsation parameters is calculated using the output value of the sensing unit 22.
  • the pulsation frequency F is particularly susceptible to the noise of the engine parameters among the pulsation parameters. Therefore, calculating the pulsation frequency F without using the engine parameters from the ECU 46 is effective in increasing the calculation accuracy of the pulsation frequency F.
  • the correction value can be determined in the circuit of the air flow meter 10 using the pulsation frequency F as an argument, and as a result, the correction accuracy can be improved.
  • the pulsation generated in the intake air in the intake passage 12 may be different from the engine speed.
  • the pulsation of n times the engine speed may be the main component due to the influence of the intake system and the intake valve.
  • the pulsation error correction unit 61 needs to multiply the engine rotation speed included in the engine parameters by n times to use the corrected air flow rate.
  • the frequency calculation unit 59 can calculate the pulsation frequency F corresponding to n times the engine speed by using the output value of the sensing unit 22. Therefore, the pulsation error correction unit 61 can increase the correction accuracy when correcting the air flow rate using the pulsation frequency F.
  • the pulsation frequency F is calculated using the upper pole interval Wa.
  • the upper extreme value determination unit 56 reads out the two upper extreme timings ta1 and ta2 from the storage device as long as the upper extreme timing ta corresponding to the upper extreme value Ea is stored in the storage device during the measurement period.
  • the upper pole interval Wa can be calculated. In this case, since it is not necessary to store the timings corresponding to all the output values in the measurement period in the storage device, it is possible to reduce the capacity and size of the storage device.
  • the pulsation frequency F can be acquired by calculating the reciprocal of the upper pole interval Wa, the pulsation frequency F is different from the configuration in which the pulsation frequency F is calculated using, for example, the rate of change or the change mode of the output value. There is no need to use a function or map when calculating F. In this case, since it is not necessary to store these functions and maps in the storage device, it is possible to more reliably reduce the capacity and size of the storage device.
  • the upper pole interval Wa and the pulsation frequency F can be calculated as long as the output value that increases or decreases with the pulsation includes only the upper extreme value Ea that switches from increasing to decreasing.
  • the pulsation frequency F is calculated using the timing interval at which the output value that repeats increase and decrease exceeds a predetermined threshold while increasing is repeated, the output value is repeatedly increased and decreased with a value smaller than the threshold. In such a case, the calculation accuracy of the pulsation frequency F may be reduced.
  • the pulsation frequency F is calculated using the result of determination as to whether or not the output value has reached the upper extreme value Ea. Can be calculated more accurately.
  • the calculation parameter used for calculating the pulsation frequency F is the upper extreme value Ea.
  • the detection accuracy of the output value when the actual air flow rate in the measurement flow path 32 is sufficiently large by the sensing unit 22 is high. Therefore, in the present embodiment, for example, the calculation accuracy of the pulsation frequency F can be improved because the upper extreme value Ea having higher detection accuracy than the lower extreme value Eb is used as the calculation parameter.
  • the measurement channel 32 provided with the sensing unit 22 is a branch channel branched from the passage channel 31.
  • the bypass flow path 30 has a foreign matter separating function of separating foreign matter from air flowing into the measurement flow path 32. For this reason, it is possible to prevent the foreign matter from adhering to the sensing unit 22 in the measurement channel 32 and the correction circuit 50 from erroneously correcting the magnitude of the pulsation detected by the sensing unit 22 due to the attached foreign matter. . That is, it is possible to suppress a decrease in the correction accuracy of the pulsation error correction unit 61 due to the attachment of a foreign substance to the sensing unit 22.
  • the measurement channel 32 is gradually narrowed by the detection throttle unit 37 from the measurement inlet 35 side toward the sensing unit 22.
  • the air flowing from the measurement inlet 35 to the sensing unit 22 in the measurement flow path 32 is rectified by the detection throttle unit 37, it is unlikely that the flow of the air reaching the sensing unit 22 is disturbed. Has become. That is, the output of the sensing unit 22 can be stabilized. For this reason, it is possible to suppress the pulsation waveform detected by the sensing unit 22 from being distorted, causing the detection of the upper extreme value Ea to be erroneous, and causing the error in the pulsation frequency F to be erroneously corrected by the correction circuit 50. That is, it is possible to suppress the correction accuracy of the pulsation error correction unit 61 from being lowered due to the unstable state of the air that has reached the sensing unit 22.
  • the sensor SA40 includes the circuit chip 41 having the processing unit 45, the sensing unit 22, and the mold unit 42 that protects the circuit chip 41 and the sensing unit 22.
  • the circuit chip 41 and the sensing unit 22 are packaged by a mold unit 42. In this configuration, since the distance of wiring such as bonding wires connecting the circuit chip 41 and the sensing unit 22 can be reduced, it is possible to reduce the occurrence of electric noise on the signal input from the sensing unit 22 to the processing unit 45.
  • the correction circuit 50 may erroneously detect the noise as the pulsation amplitude and erroneously correct the pulsation frequency F, thereby erroneously detecting the upper extremum Ea and causing an error in the pulsation frequency F. , Etc. can be suppressed. Furthermore, by forming the circuit chip 41 and the sensing unit 22 into one package, the size of the sensor SA40 can be reduced, and the cost can be reduced by downsizing.
  • the correction circuit 50 converts the output value converted by the conversion table 54 into the first path 70 a that is input to the pulsation amplitude calculation unit 58 and the output value before conversion by the conversion table 54. And a second path 70b input to the pulsation amplitude calculator 58.
  • a part of the first path 70a is omitted by a symbol A.
  • the correction circuit 50 includes, in addition to the same functional blocks as those in the first embodiment, a disturbance elimination unit 71, a response compensation unit 72, an amplitude reduction filter unit 73, a conversion table 74, a disturbance elimination filter unit 75, a sampling number increasing unit 76, It has a switch part 77 and a minus cut part 78.
  • the conversion table 54 is called a first conversion table 54
  • the conversion table 74 is called a second conversion table 74.
  • the disturbance removing unit 71 is provided between the variation adjusting unit 53 and the first conversion table 54, and is a functional block to which an output value processed by the variation adjusting unit 53 is input.
  • the disturbance removing unit 71 is a sudden change limiting unit that limits a sudden change of an output value that increases as the rate of change from the previous output value exceeds a predetermined reference value.
  • the disturbance removing unit 71 limits the amount of change to a predetermined value. For example, when the noise shown in FIG. 15 is included in the output value, the noise is removed by the disturbance removing unit 71.
  • the response compensator 72 is provided between the disturbance remover 71 and the first conversion table 54, and is a functional block to which an output value processed by the disturbance remover 71 is input.
  • the response compensating unit 72 is a filter that faithfully reproduces an abrupt change in the air flow rate actually detected by the sensing unit 22 according to the output value, and is formed by, for example, a high-pass filter.
  • the output value compensated by the response compensator 72 has a time-dependent response and a wider frequency range than the output value before compensation.
  • the amplitude reduction filter unit 73 is provided between the first conversion table 54 and the pulsation error correction unit 61, and is a functional block to which an output value processed by the first conversion table 54 is input.
  • the amplitude reduction filter unit 73 is a filter unit that smoothes and reduces the pulsation amplitude Pa of the output value, and is formed by, for example, a low-pass filter. Since the processing of the amplitude reduction filter unit 73 is performed after the processing of the first conversion table 54, the average air amount Gave calculated using the output value does not change.
  • the first path 70a is connected between the first conversion table 54 and the pulsation error correction unit 61
  • the second path 70b is connected between the disturbance elimination unit 71 and the response compensation unit 72.
  • Both of the paths 70a and 70b are connected to the pulsation amplitude calculator 58 via the switch 77.
  • the switch unit 77 is a switching unit that connects the first path 70a and the second path 70b to the pulsation amplitude calculation unit 58 alternatively.
  • the switch unit 77 is in the first state, the pulsation amplitude calculation unit 58 is connected to the first path 70a while being blocked from the second path 70b.
  • the switch unit 77 is in the second state, the pulsation amplitude calculation unit 58 is connected to the second path 70b while being blocked from the first path 70a.
  • the switch unit 77 is set to one of the first state and the second state when the air flow meter 10 is manufactured, and basically keeps the state after being mounted on the vehicle. Note that the state of the switch unit 77 may be switched according to the engine operation state or the like after being mounted on the vehicle.
  • the second conversion table 74 is a functional block that is provided between the disturbance elimination unit 71 and the switch unit 77 on the second path 70b and receives an output value processed by the disturbance elimination unit 71. Unlike the first conversion table 54, the second conversion table 74 converts the sampling value obtained by the sampling unit 52 into an air flow rate at a stage before the processing of the response compensation unit 72 is performed.
  • the disturbance removal filter unit 75 is provided between the second conversion table 74 and the upper extreme value determination unit 56 on a path branched from the second path 70b, and outputs the processed output value of the second conversion table 74.
  • the disturbance elimination filter unit 75 is a filter unit that smoothes and removes the output value included in the higher-order component that is a harmonic component, and is formed by, for example, a low-pass filter.
  • the disturbance elimination filter unit 75 can variably set a filter constant.
  • the sampling number increasing unit 76 is provided between the disturbance elimination filter unit 75 and the upper extreme value determination unit 56, and is a functional block to which an output value processed by the disturbance elimination filter unit 75 is input.
  • the sampling number increasing unit 76 is an up-sampling unit that increases the sampling value acquired by the sampling unit 52, and has a higher time resolution than the sampling unit 52.
  • the sampling number increasing unit 76 is formed by a filter such as a variable filter or a CIC filter.
  • the frequency calculation section 59 adds the calculated pulsation frequency F to the pulsation error calculation section 60 and outputs it to the disturbance elimination filter section 75.
  • the disturbance elimination filter unit 75 performs feedback control of the optimum filter constant using the pulsation frequency F from the frequency calculation unit 59.
  • the minus cut unit 78 cuts the negative output value S2 from the corrected output value S2, and calculates the post-cut output value S3.
  • the negative value is cut by the negative cut unit 78 to be zero, so that the output after the cut is reduced.
  • the value S3 does not include a negative value.
  • the output value S2 after the correction and the output value S3 after the cut are the same value.
  • the measurement outlet 36 is provided at a position where the backflow generated in the intake passage 12 does not easily flow from the measurement outlet 36, but the inflow of the backflow from the measurement outlet 36 becomes zero. Not necessarily. In this case, the backflow air flow entering from the measurement outlet 36 becomes unstable, and it becomes difficult to accurately measure the air flow. Therefore, by performing the processing of the minus cut section 78, the measurement accuracy of the air flow rate can be improved.
  • the correction circuit 50 outputs the post-cut output value S3 calculated by the minus cut unit 78 to the output circuit 62, in addition to the corrected average air amount Gave2 and the corrected output value S2 calculated by the pulsation error correction unit 61. Output to Then, the output circuit 62 outputs the corrected average air amount Gave2, the corrected output value S2, and the cut output value S3 to the ECU 46.
  • the correction circuit 50 has the upper extreme value determination unit 56, but in the third embodiment, the correction circuit 50 has the lower extreme value determination unit 81.
  • the correction circuit 50 has the upper extreme value determination unit 56, but in the third embodiment, the correction circuit 50 has the lower extreme value determination unit 81.
  • a description will be given focusing on differences from the first embodiment.
  • the lower extreme value judging section 81 is provided between the conversion table 54 and the frequency calculating section 59 in the correction circuit 50.
  • the lower extreme value determining unit 81 determines whether or not the sampling value processed by the conversion table 54 is the lower extreme value Eb.
  • the lower extreme value Eb is a sampling value at the timing when the output value switches from decreasing to increasing.
  • the lower extreme value determining unit 81 acquires the timing at which the sampling value has reached the lower extreme value Eb as the lower extreme timing tb, and stores the timing in the storage device of the processing unit 45.
  • the lower extreme value determining section 81 outputs information including the lower pole timing tb to the average air amount calculating section 57, the pulsating amplitude calculating section 58, and the frequency calculating section 59 as timing information indicating a pulsation cycle. It should be noted that the output value has reached the lower extreme value Eb, which corresponds to the specific condition, the lower extreme value determining unit 81 corresponds to the pulsation state calculating unit and the condition determining unit, and the lower extreme timing tb indicates that the output value corresponds to the specific condition. This corresponds to the corresponding timing.
  • the frequency calculation unit 59 calculates the interval at which the sampling value becomes the lower extreme value Eb as the lower pole interval Wb using the timing information from the lower extreme value determination unit 81, and uses the lower pole interval Wb to calculate the pulsation frequency F Is calculated. For example, as shown in FIG. 18, when the sampling value becomes the lower extreme value Eb after the sampling value becomes the lower extreme value Eb, the previous lower extreme value Eb is set to the first lower extreme value Eb1. The next lower extreme value Eb is referred to as a second lower extreme value Eb2.
  • the frequency calculation unit 59 uses the first lower pole timing tb1 at which the sampling value becomes the first lower extreme value Eb1 and the second lower pole timing tb2 at which the sampling value becomes the second lower extreme value Eb2,
  • the lower pole interval Wb which is the interval between the lower pole timings tb1 and tb2, is calculated.
  • the pulsation minimum value Gmin is the smaller one of the first lower pole value Eb1 and the second lower pole value Eb2.
  • the average value of the first lower extreme value Eb1 and the second lower extreme value Eb2 may be the pulsation minimum value Gmin.
  • the pulsation frequency F is calculated using the lower pole interval Wb.
  • the lower extreme value determination unit 81 reads out the two lower extreme timings tb1 and tb2 from the storage device as long as the lower extreme timing tb corresponding to the lower extreme value Eb is stored in the storage device during the measurement period.
  • the lower pole interval Wb can be calculated. Therefore, similarly to the first embodiment, it is possible to reduce the capacity and the size of the storage device.
  • the pulsation frequency F can be obtained by calculating the reciprocal of the lower pole interval Wb, unlike the configuration in which the pulsation frequency F is calculated using, for example, a change rate or a change mode of the output value, the pulsation frequency F There is no need to use a function or map when calculating F. Therefore, similarly to the first embodiment, it is possible to more reliably reduce the capacity and the size of the storage device.
  • the lower pole interval Wb and the pulsation frequency F can be calculated as long as the output value that increases and decreases with the pulsation includes only the lower extreme value Eb that switches from decreasing to increasing. Therefore, similarly to the first embodiment, the calculation accuracy of the pulsation frequency F can be improved regardless of the magnitude of the output value.
  • the correction circuit 50 has the upper extreme value determination unit 56, but in the fourth embodiment, the correction circuit 50 has the increase threshold value determination unit 82. In the present embodiment, a description will be given focusing on differences from the first embodiment.
  • the increase threshold value judgment section 82 is provided between the conversion table 54 and the frequency calculation section 59 in the correction circuit 50.
  • the increase threshold determining unit 82 determines whether or not the output value processed by the conversion table 54 exceeds a predetermined increase threshold Ec so as to straddle the increase side.
  • the increase threshold determination unit 82 acquires the timing at which the output value reaches the increase threshold Ec as the increase timing tc and stores the timing in the storage device of the processing unit 45. .
  • the increase threshold determination unit 82 outputs information including the increase timing tc to the average air amount calculation unit 57, the pulsation amplitude calculation unit 58, and the frequency calculation unit 59 as timing information indicating a pulsation cycle. It should be noted that the output value during the increase exceeds the increase threshold value Ec on the increase side, which corresponds to the specific condition, the increase threshold value determination unit 82 corresponds to the pulsation state calculation unit, the condition determination unit and the increase determination unit, and the increase timing tc Corresponds to the timing at which the output value meets the specific condition.
  • the frequency calculation unit 59 calculates an interval in which the increasing output value exceeds the increase threshold Ec as an increase interval Wc, and calculates the pulsation frequency F using the increase interval Wc. calculate. For example, as shown in FIG. 20, it is assumed that after the output value during the increase exceeds the increase threshold value Ec, the output value during the increase next exceeds the increase threshold value Ec.
  • the timing at which the output value has exceeded the increase threshold value Ec before is referred to as a first increase timing tc1
  • the timing at which the output value has exceeded the increase threshold value Ec is referred to as the second increase timing tc2.
  • the pulsation frequency F is calculated using the increase interval Wc that is the interval between the increase timings tc1 and tc2 when the output value during the increase exceeds the increase threshold value Ec.
  • the increase threshold determination unit 82 can read out the two increase timings tc1 and tc2 from the storage device and calculate the increase interval Wc. it can. Therefore, similarly to the first embodiment, it is possible to reduce the capacity and the size of the storage device.
  • the pulsation frequency F can be obtained by calculating the reciprocal of the increase interval Wc, the pulsation frequency F is different from the configuration in which the pulsation frequency F is calculated using, for example, the rate of change or the change mode of the output value. It is not necessary to use a function or a map when calculating. Therefore, similarly to the first embodiment, it is possible to more reliably reduce the capacity and the size of the storage device.
  • the output value repeatedly repeats a small increase or decrease due to noise or the like and a large increase or decrease as a whole due to a change in the actual air flow rate.
  • a large increase or decrease of the output value increases as the output value becomes closer to the middle between the upper extreme value Ea and the lower extreme value Eb.
  • the rate of change of the output value does not change significantly regardless of whether it is a value close to the upper extreme value Ea or the lower extreme value Eb.
  • the increase threshold value Ec aiming at a value near the middle between the upper extreme value Ea and the lower extreme value Eb.
  • the rate of change associated with a large increase or decrease in the output value tends to be greater than the rate of change associated with a small increase or decrease in the output value.
  • the phenomenon that the output value repeatedly exceeds the increase threshold value Ec with increase or decrease is less likely to occur. Therefore, the increase timing tc at which the output value exceeds the increase threshold value Ec can be accurately acquired with the change in the actual air flow rate regardless of the manner in which the output value increases or decreases. As a result, the calculation accuracy of the pulsation frequency F can be obtained. Can be increased.
  • the rate of change associated with a large increase or decrease in the output value tends to be smaller than the rate of change associated with a small increase or decrease in the output value. Therefore, when the increase threshold value Ec is set to a value close to the upper extreme value Ea or the lower extreme value Eb, an event that the output value repeatedly exceeds the increase threshold value Ec with a small increase or decrease of the output value is likely to occur. Conceivable. In this case, there is a concern that the calculation accuracy of the increase timing tc and the increase interval Wc is reduced, and as a result, the calculation accuracy of the pulsation frequency F is reduced. Thus, there is room for improvement in setting the increase threshold value Ec to an appropriate value.
  • the correction circuit 50 has the upper extreme value determination unit 56, but in the fifth embodiment, the correction circuit 50 has the decrease threshold value determination unit 83. In the present embodiment, a description will be given focusing on differences from the first embodiment.
  • the decrease threshold value judgment unit 83 is provided between the conversion table 54 and the frequency calculation unit 59 in the correction circuit 50.
  • the decrease threshold determination unit 83 determines whether or not the output value processed by the conversion table 54 exceeds a predetermined decrease threshold Ed so as to straddle the decrease side.
  • the decrease threshold determination unit 83 acquires the timing at which the output value reaches the decrease threshold Ed as the decrease timing td, and stores the acquired timing in the storage device of the processing unit 45. .
  • the decrease threshold determination unit 83 outputs information including the decrease timing td to the average air amount calculation unit 57, the pulsation amplitude calculation unit 58, and the frequency calculation unit 59 as timing information indicating a pulsation cycle. It is to be noted that the output value during the decrease exceeding the decrease threshold Ed on the decrease side corresponds to the specific condition, the decrease threshold determination unit 83 corresponds to the pulsation state calculation unit, the condition determination unit, and the decrease determination unit, and the decrease timing td Corresponds to the timing at which the output value meets the specific condition.
  • the frequency calculation unit 59 calculates an interval in which the output value during the decrease exceeds the decrease threshold Ed as the decrease interval Wd, and calculates the pulsation frequency F using the decrease interval Wd. calculate. For example, as shown in FIG. 22, it is assumed that after the output value during the decrease exceeds the decrease threshold value Ed, the output value during the decrease next exceeds the decrease threshold value Ed.
  • the timing at which the output value has exceeded the reduction threshold value Ed before is referred to as a first reduction timing td1
  • the timing at which the output value has exceeded the reduction threshold value Ed is referred to as the second reduction timing td2.
  • the pulsation frequency F is calculated using the decrease interval Wd which is the interval between the decrease timings td1 and td2 when the output value during the decrease exceeds the decrease threshold Ed.
  • the decrease threshold determination unit 83 can read out the two decrease timings td1 and td2 from the storage device and calculate the decrease interval Wd. it can. Therefore, similarly to the first embodiment, it is possible to reduce the capacity and the size of the storage device.
  • the pulsation frequency F can be obtained by calculating the reciprocal of the decrease interval Wd. Therefore, unlike the configuration in which the pulsation frequency F is calculated using, for example, the change rate or the change mode of the output value, the pulsation frequency F It is not necessary to use a function or a map when calculating. Therefore, similarly to the first embodiment, it is possible to more reliably reduce the capacity and the size of the storage device.
  • the decrease threshold Ed aiming at a value close to the middle between the upper extreme value Ea and the lower extreme value Eb.
  • the rate of change associated with a large increase or decrease in the output value tends to be greater than the rate of change associated with a small increase or decrease in the output value.
  • the phenomenon that the output value repeatedly exceeds the decrease threshold value Ed with the increase or decrease is less likely to occur. Therefore, it is possible to accurately acquire the decrease timing td at which the output value exceeds the decrease threshold Ed with the change in the actual air flow rate, regardless of the manner in which the output value increases or decreases. As a result, the calculation accuracy of the pulsation frequency F can be obtained. Can be increased.
  • the rate of change associated with a large increase or decrease in the output value tends to be smaller than the rate of change associated with a small increase or decrease in the output value. Therefore, when the decrease threshold value Ed is set to a value close to the upper extreme value Ea or the lower extreme value Eb, an event that the output value repeatedly exceeds the decrease threshold value Ed with a small increase or decrease of the output value is likely to occur. Conceivable. In this case, there is a concern that the calculation accuracy of the decrease timing td and the decrease interval Wd is reduced, and as a result, the calculation accuracy of the pulsation frequency F is reduced. Thus, there is room for improvement in setting the reduction threshold value Ed to an appropriate value.
  • the ECU 46 calculates the corrected average air amount Gave2, but in the sixth embodiment, the pulsation error correction unit 61 calculates the corrected average air amount Gave3. In the present embodiment, a description will be given focusing on differences from the first embodiment.
  • the pulsation error correction unit 61 does not calculate the corrected output value S2 using the output value S1 before correction, but calculates the average air amount Gave1 before correction using the output value S1 before correction.
  • the average air amount Gave1 is corrected by the correction amount Q, and the corrected average air amount Gave3 is calculated.
  • the corrected average air amount Gave3 is calculated by multiplying the average air amount Gave1 before correction by the correction amount Q.
  • the correction amount Q calculated by the correction amount calculation unit 60a is set to a different value between the present embodiment and the first embodiment. That is, the correction amount Q is set according to whether or not to use the average air amount Gave1 before correction as a parameter used by the pulsation error correction unit 61 to calculate the average air amount Gave3 after correction.
  • the correction amount Q may be set irrespective of a parameter used for calculating the average air amount Gave3. Further, with respect to the air flow rate, the corrected average air amount Gave3 corresponds to the average value and the measurement result.
  • the pulsation error correction unit 61 calculates the corrected average air amount Gave3 using the uncorrected average air amount Gave1.
  • the configuration is such that all values larger than a predetermined reference value for the output value S1 before correction are deleted, and the average air amount Gave1 before correction is calculated using the remaining output value S1.
  • the output value S1 larger than the reference value does not contribute to the average air amount Gave1 before correction and the average air amount Gave3 after correction. Therefore, for example, when the detection accuracy of the output value S1 larger than the reference value is relatively high, there is a concern that the calculation accuracy of the average air amount Gave1 before the correction and the average air amount Gave3 after the correction may decrease. Is done.
  • the correction amount calculation unit 60a calculates the corrected output value S2 using the output value S1 before correction and the average value after correction using this output value S2, similarly to the ECU 46 of the first embodiment.
  • the air amount Gave2 may be calculated.
  • the ECU 46 may perform a process of calculating the average air amount Gave2 after correction using the average air amount Gave1 before correction.
  • what the correction amount calculation unit 60a and the like calculate using the output value S1 before correction may not be the average air amount Gave1 before correction. For example, a specific air amount that is larger or smaller than the average air amount Gave1 before correction is calculated. In this case, the correction amount calculation unit 60a and the like calculate the corrected specific air amount using the specific air amount before correction.
  • the extreme value Ean due to noise may occur in the waveform representing the time change of the output value of the sensing unit 22 or the converted value of the conversion table 54.
  • This noise is not electrical noise but is caused by air turbulence.
  • the flow rate (air flow rate) of the intake air flowing through the intake passage 12 is changed due to switching of each stroke of the combustion cycle, such as switching of an arbitrary cylinder of the internal combustion engine from the intake stroke to the compression stroke.
  • the upper extreme value determination unit 56 makes a negative determination that the upper extreme value Ean caused by noise is not the upper extreme value used for calculating the upper pole interval Wa, and cancels it. Specifically, during the period from the upper extreme timing ta1 at which the upper extreme Ea1 previously appeared to the timing at which the present upper extreme Ean appeared, it is determined whether or not the output value has fallen below the predetermined lower threshold Ee. The upper extreme value determination unit 56 makes the determination. If it is determined that the value is not lower than or equal to the lower threshold value Ee, the current upper extreme value Ean is regarded as being caused by noise, and is canceled as described above.
  • the lower threshold value Ee is set to the average air amount Gave calculated immediately before by the average air amount calculation unit 57.
  • the lower threshold Ee may be set based on the pulsation frequency F calculated immediately before by the frequency calculator 59 in addition to the average air amount Gave.
  • a map indicating the correspondence between the average air amount Gave and the pulsation frequency F and the lower threshold value Ee is stored in a memory in advance, and the lower threshold value is determined based on the average air amount Gave and the pulsation frequency F with reference to the map. Ee may be set.
  • the lower threshold Ee may be set based on the pulsation frequency F.
  • the lower threshold Ee may be set to a smaller value as the pulsation frequency F is larger, and the lower threshold Ee may be set to a smaller value as the average air amount Gave is larger.
  • the lower threshold Ee may be set to a larger value as the pulsation frequency F is larger, and the lower threshold Ee may be set to a larger value as the average air amount Gave is larger.
  • the upper extreme value determination unit 56 detects the upper extreme value Ea2 that appears next time, and sets the detection timing as the second upper extreme timing ta2.
  • the detection timing of the upper extreme value Ea1 that appeared last time corresponds to the first upper extreme timing ta1.
  • the fact that the output value has reached the first upper extreme value Ea1 or the second upper extreme value Ea2 corresponds to a predetermined specific condition.
  • the fact that the output value becomes the upper extreme value Ean caused by noise is canceled as described above, and does not correspond to the specific condition.
  • the frequency calculator 59 calculates the interval between the upper pole timings ta1 and ta2 as the upper pole interval Wa in the same manner as in FIG. That is, since the upper extreme value Ean caused by noise is canceled as described above, it is not used in the calculation of the upper pole interval Wa by the frequency calculator 59.
  • the pulsation amplitude calculation unit 58 calculates the pulsation amplitude Pa using the sampling value converted by the conversion table 54 and the timing information from the upper extreme value determination unit 56 in the same manner as in FIG.
  • the timing information used for calculating the pulsation amplitude Pa does not include the appearance timing of the upper extreme value Ean caused by noise.
  • the average air amount calculation unit 57 calculates the average air amount Gave using the sampling values converted by the conversion table 54 and the timing information from the upper extremum value determination unit 56 in the same manner as in FIG.
  • the timing information used for calculating the average air amount Gave does not include the appearance timing of the upper extreme value Ean caused by noise.
  • FIG. 26 is a flowchart showing a procedure of a process performed by the upper extreme value determining unit 56. 26 is repeatedly executed by the microcomputer while the output value is being input to the correction circuit 50. First, in step S10, it is determined whether or not the current sampling value in the waveform of the sampling value converted by the conversion table 54 is increasing the flow rate.
  • step S11 determines whether the flow rate has changed from increasing to decreasing. If it is determined that it has not changed to a decrease, the process of step S11 is repeated. If it is determined that the number has decreased, the process of the next step S12 is executed. That is, the process in step S12 is on standby until the flow rate is switched from increase to decrease.
  • step S12 the current sampling value is detected as the upper extreme value Ea.
  • step S13 it is determined whether the flow rate has changed from decreasing to increasing. When it is determined that it has not changed to the increase, the process of step S13 is repeated. If it is determined that it has increased, it is determined in the next step S14 whether or not the current sampling value has become equal to or less than a predetermined lower threshold value Ee.
  • step S10 If it is determined that the difference is not smaller than the lower threshold value Ee, the process returns to the step S13. If it is determined that the difference is equal to or smaller than the lower threshold value Ee, the execution is restarted from the process of step S10. Therefore, when step S10 is restarted in this manner, since it is immediately after the flow rate is switched to increase, it is determined that the flow rate is increased in step S10. Then, the flow waits until the flow rate is switched from increase to decrease (step S11), and the next upper extreme value Ea is detected (step S12).
  • the process waits until switching to the increase, and after switching to the increase, waits for detection of the next upper extreme value Ea.
  • the process does not shift to the state of waiting for the detection of the next upper extreme value Ea, but is switched to the increase. Continue waiting until
  • the upper extreme value determination unit 56 determines whether or not the value has fallen below the predetermined lower threshold value Ee. If the value does not fall below the lower threshold value Ee, the upper extreme value determination unit 56 makes a negative determination on the upper extreme value Ean that appears this time and cancels the determination. Therefore, it is possible to prevent the correction circuit 50 from using the upper extreme value Ean that appears due to the turbulence (noise) of the air due to the switching of each step of the combustion cycle. Therefore, it is possible to suppress the accuracy of the correction of the air flow rate by the correction circuit 50 from being reduced due to the turbulence of the air.
  • the pulsation that appears in the waveform due to this kind of air turbulence has a long wavelength unlike electrical noise. Therefore, although the wavelength of the pulsation due to the electric noise is significantly different from the fluctuation wavelength when the air flow actually fluctuates, the wavelength of the pulsation due to the air turbulence is close to the fluctuation wavelength. Therefore, it is extremely difficult to remove the pulsation caused by the air turbulence by the filter circuit, as compared with the case where the pulsation caused by the electric noise is removed by the filter circuit. In order to solve such a problem, according to the present embodiment, as described above, the upper extreme value Ean caused by the air turbulence can be canceled, so that the correction accuracy of the air flow rate can be improved.
  • the lower threshold value Ee is set based on at least one of the average air amount Gave and the pulsation frequency F
  • the following effects are also exerted. That is, even when the average air amount Gave and the pulsation frequency F dynamically change, it is possible to improve the certainty of canceling the upper extreme value Ean caused by the air turbulence.
  • a lower extreme value Ebn due to noise may occur in a waveform representing a time change of the output value of the sensing unit 22 or the converted value of the conversion table 54.
  • This noise is also caused by the disturbance of the intake air, which is caused by the switching of each stroke of the combustion cycle, similarly to FIG. Due to such air turbulence, the lower extreme value Ebn due to noise appears immediately after the lower extreme value Eb1 in the waveform shown in FIG. That is, a portion that slightly repeats increase and decrease appears in the waveform.
  • the lower extreme value determination unit 81 makes a negative determination that the lower extreme value Ebn due to noise is not the lower extreme value used for calculating the lower pole interval Wb, and cancels it. Specifically, during a period from the lower pole timing tb1 at which the lower extreme value Eb1 previously appeared to the timing at which the present lower extreme value Ebn appears, it is determined whether or not the output value has risen to or above a predetermined upper threshold value Ef. The lower extreme value determining unit 81 makes the determination. If it is determined that the value is not higher than the upper threshold value Ef, the current lower extreme value Ebn is regarded as being caused by noise, and is canceled as described above.
  • the upper threshold Ef is set to the average air amount Gave calculated immediately before by the average air amount calculation unit 57. Note that the upper threshold value Ef may be set based on at least one of the average air amount Gave and the pulsation frequency F, as in the seventh embodiment.
  • the lower extreme value determination unit 81 detects the lower extreme value Eb2 that appears next time, and sets the detection timing as the second lower extreme timing tb2.
  • the detection timing of the lower extreme value Eb1 that appeared last time corresponds to the first lower extreme timing tb1.
  • the fact that the output value has reached the first lower extreme value Eb1 or the second lower extreme value Eb2 corresponds to a predetermined specific condition.
  • the fact that the output value has become the lower extreme value Ebn due to noise is canceled as described above, and does not correspond to a specific condition.
  • the frequency calculator 59 calculates the interval between the lower pole timings tb1 and tb2 as the lower pole interval Wb in the same manner as in FIG. That is, since the lower extreme value Ebn caused by noise is canceled as described above, the lower extreme value Ebn is not used for calculating the lower pole interval Wb by the frequency calculating unit 59.
  • the pulsation amplitude calculation unit 58 calculates the pulsation amplitude Pa using the sampling value converted by the conversion table 54 and the timing information from the lower extreme value determination unit 81 in the same manner as in FIG.
  • the timing information used for calculating the pulsation amplitude Pa does not include the appearance timing of the lower extreme value Ebn due to noise.
  • the average air amount calculation unit 57 calculates the average air amount Gave using the sampling values converted by the conversion table 54 and the timing information from the lower extreme value determination unit 81 in the same manner as in FIG.
  • the timing information used for calculating the average air amount Gave does not include the appearance timing of the lower extreme value Ebn due to noise.
  • the lower extreme value determining unit 81 determines that the lower extreme value Ebn that appears this time is negative and cancels it. Therefore, the lower extreme value Ebn that appears due to air turbulence (noise) due to switching of each step of the combustion cycle can be prevented from being used for correction by the correction circuit 50. Therefore, it is possible to suppress the accuracy of the correction of the air flow rate by the correction circuit 50 from being reduced due to the turbulence of the air.
  • the lower extreme value Ebn caused by the air turbulence can be canceled, so that the correction accuracy of the air flow rate can be improved.
  • the upper threshold Ef is set based on at least one of the average air amount Gave and the pulsation frequency F
  • the following effects are also exerted. That is, even when the average air amount Gave and the pulsation frequency F dynamically change, it is possible to improve the certainty of canceling the lower extreme value Ebn caused by the air turbulence.
  • a noise pulsating part that repeats a slight increase and decrease due to air turbulence may appear in a waveform representing a time change of the output value of the sensing unit 22 or the converted value of the conversion table 54. is there.
  • the output value during the increase may exceed the increase threshold value Ec at a timing different from the pulsation cycle of the actual air flow rate.
  • the increase threshold reached value Ecn is a value of the air flow rate when the increase threshold value Ec exceeds the increase threshold Ec due to noise pulsation.
  • This noise pulsation is also caused by the turbulence of the intake air caused by the switching of each stroke of the combustion cycle, as in FIG.
  • the increase threshold value determination unit 82 makes a negative determination that the timing of the noise-induced increase threshold value Ecn is not a value used for calculating the increase interval Wc and cancels the timing. Specifically, it is determined whether the output value has reached the predetermined upper threshold value Eg during a period from the timing tc1 at which the arrival value of the increase threshold appears last time to the timing at which the arrival value of the increase threshold appears this time. The determination unit 82 makes a determination. When it is determined that the threshold value does not reach the upper threshold value Eg, the present increase threshold value Ecn is regarded as being caused by noise, and is canceled as described above.
  • the upper threshold Eg is set based on at least one of the average air amount Gave and the pulsation frequency F.
  • the average air amount Gave used for this setting the value calculated immediately before by the average air amount calculation unit 57 is used.
  • the pulsation frequency F used for this setting the value calculated immediately before by the frequency calculation unit 59 is used.
  • the upper threshold Eg may be set to a larger value as the pulsation frequency F is larger, and the upper threshold Eg may be set to a larger value as the average air amount Gave is larger.
  • the upper threshold value Eg may be set to a smaller value as the pulsation frequency F is larger, and the upper threshold value Eg may be set to a smaller value as the average air amount Gave is larger.
  • the increase threshold determining unit 82 detects the next increase threshold arrival value that appears next time, and sets the detection timing as the second increase timing tc2. Note that the detection timing of the increase threshold arrival value that appeared last time corresponds to the first increase timing tc1.
  • the fact that the output value has reached the increase threshold value corresponds to a predetermined specific condition.
  • the fact that the output value has reached the increase threshold reached value Ecn due to noise is canceled as described above, and does not correspond to a specific condition.
  • the frequency calculator 59 calculates the interval between the increase timings tc1 and tc2 as the increase interval Wc in the same manner as in FIG. That is, since the noise-induced increase threshold value Ecn is canceled as described above, it is not used for calculating the increase interval Wc by the frequency calculation unit 59.
  • the pulsation amplitude calculation unit 58 calculates the pulsation amplitude Pa using the sampling value converted by the conversion table 54 and the timing information from the increase threshold value determination unit 82 in the same manner as in FIG.
  • the timing information used for calculating the pulsation amplitude Pa does not include the appearance timing of the noise-induced increase threshold arrival value Ecn.
  • the average air amount calculation unit 57 calculates the average air amount Gave using the sampling values converted by the conversion table 54 and the timing information from the increase threshold value determination unit 82 in the same manner as in FIG.
  • the timing information used for calculating the average air amount Gave does not include the appearance timing of the noise-increased arrival threshold value Ecn.
  • the determination unit 82 makes a determination. If the upper threshold value Eg has not been reached, the increase threshold value determining section 82 makes a negative determination on the timing exceeding this time and cancels it. Therefore, the timing of the increase threshold reaching value Ecn that appears due to air turbulence (noise) due to the switching of each stroke of the combustion cycle can be prevented from being used for correction by the correction circuit 50. Therefore, it is possible to suppress the accuracy of the correction of the air flow rate by the correction circuit 50 from being reduced due to the turbulence of the air.
  • the timing of the increase threshold reaching value Ecn due to the air turbulence can be canceled, so that the correction accuracy of the air flow rate can be improved.
  • the upper threshold Eg is set based on at least one of the average air amount Gave and the pulsation frequency F
  • the following effects are also exerted. That is, even when the average air amount Gave and the pulsation frequency F dynamically change, it is possible to improve the certainty of canceling the timing of the increase threshold reaching value Ecn due to the air turbulence.
  • the output value during the reduction may exceed the reduction threshold Ed at a timing different from the pulsation cycle of the actual air flow rate. is there.
  • the reduction threshold reached value Edn is the value of the air flow rate when the reduction threshold Ed is exceeded due to noise pulsation.
  • the reduction threshold value determination unit 83 makes a negative determination that the timing of the noise-induced reduction threshold value Edn is not a value used for calculating the reduction interval Wd and cancels the timing. Specifically, it is determined whether or not the output value has reached the predetermined lower threshold value Eh during a period from the timing td1 at which the decreasing threshold reached value last appeared to the timing at which the current decreasing threshold reaching value appears. The threshold determination unit 83 makes the determination. If it is determined that the lower threshold value Eh has not been reached, the present decrease threshold reaching value Edn is regarded as being caused by noise, and the cancellation is performed as described above.
  • the lower threshold value Eh is set based on at least one of the average air amount Gave and the pulsation frequency F in the same manner as in the ninth embodiment.
  • the decrease threshold determination unit 83 detects the decrease threshold arrival value that appears next time, and sets the detection timing as the second decrease timing td2.
  • the detection timing of the decrease threshold reaching value that appeared last time corresponds to the first decrease timing td1.
  • the fact that the output value has reached the decrease threshold value corresponds to a predetermined specific condition.
  • the fact that the output value has reached the reduction threshold reaching value Edn due to noise is canceled as described above, and does not correspond to a specific condition.
  • the frequency calculation unit 59 calculates the interval between the reduction timings td1 and td2 as the reduction interval Wd in the same manner as in FIG. That is, since the reduction threshold reached value Edn due to noise is canceled as described above, it is not used for the calculation of the reduction interval Wd by the frequency calculation unit 59.
  • the pulsation amplitude calculation unit 58 calculates the pulsation amplitude Pa using the sampling value converted by the conversion table 54 and the timing information from the decrease threshold determination unit 83 in the same manner as in FIG.
  • the timing information used for the calculation of the pulsation amplitude Pa does not include the appearance timing of the reduction threshold reached value Edn due to noise.
  • the average air amount calculation unit 57 calculates the average air amount Gave using the sampling values converted by the conversion table 54 and the timing information from the decrease threshold value determination unit 83 in the same manner as in FIG.
  • the timing information used for calculating the average air amount Gave does not include the appearance timing of the noise-reducing reaching threshold Edn.
  • the threshold determination unit 83 makes the determination. If the lower threshold value Eh has not been reached, the decrease threshold value determination unit 83 makes a negative determination on the timing exceeding this time and cancels it. Therefore, it is possible to prevent the correction circuit 50 from using the timing of the reduction threshold reaching value Edn that appears due to the air turbulence (noise) due to the switching of each stroke of the combustion cycle. Therefore, it is possible to suppress the accuracy of the correction of the air flow rate by the correction circuit 50 from being reduced due to the turbulence of the air.
  • the timing of the reduction threshold reaching value Edn due to the air turbulence can be canceled, so that the correction accuracy of the air flow rate can be improved.
  • the lower threshold value Eh is set based on at least one of the average air amount Gave and the pulsation frequency F
  • the following effects are also exerted. That is, even when the average air amount Gave and the pulsation frequency F dynamically change, it is possible to improve the certainty of canceling the timing of the decrease threshold reaching value Edn due to the air turbulence.
  • an electrical noise value En that fluctuates greatly instantaneously due to electrical noise appears.
  • the electric noise value En is generated between the upper extreme value Ean caused by the air turbulence and the first upper extreme value Ea1. Therefore, in step S14 of FIG. 26, it is determined that it has become equal to or smaller than the lower threshold value Ee, and the next upper extreme value Ean is detected in step S12. That is, when the electric noise value En appears, there is a concern that the upper extreme value En due to air turbulence cannot be canceled.
  • the interval between the first upper extreme value Ea1 and the upper extreme value Ean is calculated as the upper extreme interval Wa1. Further, the interval between the upper extreme value Ean and the second upper extreme value Ea2 is calculated as the upper extreme interval Wa2.
  • the air flow rate is corrected by the upper pole intervals Wa1 and Wa2 using the upper extreme value Ean caused by air turbulence, and there is a concern that the correction accuracy of the air flow rate by the correction circuit 50 may be reduced.
  • the correction by the pulsation error correction section 61 (flow rate correction section) is prohibited.
  • the upper pole interval Wa1 used for calculating the pulsation frequency F is shorter than the predetermined interval threshold, the correction by the pulsation error correction unit 61 is prohibited.
  • the above-mentioned frequency threshold value may be a fixed value or a value variably set based on at least one of the average air amount Gave and the pulsation frequency F.
  • the correction amount calculated by the correction amount calculation unit 60a may be forcibly set to zero instead of the pulsation error correction unit 61 prohibiting the correction.
  • the pulsation error calculated by the pulsation error calculation unit 60 may be forcibly set to zero.
  • the pulsation frequency F calculated by the frequency calculation unit 59 is larger than the predetermined frequency threshold, the correction by the pulsation error correction unit 61 is prohibited. Therefore, it is possible to reduce the above-mentioned concern that the upper extreme value Ean caused by air turbulence cannot be canceled.
  • such correction prohibition is applied to control for calculating the pulsation frequency F from the timing of the upper extreme value Ea.
  • the pulsation amplitude calculation unit 58 described above with reference to FIG. 7 calculates the pulsation amplitude Pa using the sampling value converted by the conversion table 54 and the timing information from the upper extreme value determination unit 56.
  • the pulsation amplitude Pa of the air flow rate is calculated by taking the difference between the pulsation maximum value Gmax and the average air amount Gave.
  • the pulsation amplitude calculator 58 uses the upper extreme value Ean caused by noise described above with reference to FIG. 25 to calculate the pulsation amplitude Pa, the pulsation amplitude Pa becomes an extremely small value. As a result, the correction accuracy of the air flow rate by the correction circuit 50 decreases.
  • the pulsation amplitude Pa calculated by the pulsation amplitude calculation unit 58 is smaller than a predetermined pulsation amplitude threshold
  • the correction by the pulsation error correction unit 61 (flow rate correction unit) is performed.
  • Ban The above-described pulsation amplitude threshold value may be a fixed value or a value variably set based on at least one of the average air amount Gave and the pulsation frequency F.
  • a pulsation amplitude threshold calculator 60b described below is added to the functional blocks shown in FIG. Note that a minus cut portion 61a having the same function as the minus cut portion 78 shown in FIG. 14 is also added in the present embodiment.
  • the pulsation amplitude threshold calculator 60b acquires the pulsation frequency F calculated by the frequency calculator 59 and the average air amount Gave calculated by the average air amount calculator 57.
  • the pulsation amplitude threshold calculator 60b calculates the pulsation amplitude threshold described above based on the acquired pulsation frequency F and the average air amount Gave.
  • the pulsation amplitude threshold may be set to a smaller value as the pulsation frequency F increases, and the pulsation amplitude threshold may be set to a smaller value as the average air amount Gave increases.
  • the pulsation amplitude threshold may be set to a larger value as the pulsation frequency F is larger, and the pulsation amplitude threshold may be set to a larger value as the average air amount Gave is larger.
  • the pulsation error calculation unit 60 obtains the pulsation amplitude threshold from the pulsation amplitude threshold calculation unit 60b, and obtains the pulsation amplitude Pa from the pulsation amplitude calculation unit 58.
  • the pulsation error Err calculated by the pulsation error calculation unit 60 is forcibly set to zero.
  • the correction by the pulsation error correction unit 61 (flow rate correction unit) is prohibited.
  • the pulsation error correction unit 61 flow rate correction unit
  • the pulsation amplitude threshold is set based on at least one of the average air amount Gave and the pulsation frequency F. Therefore, even when the average air amount Gave and the pulsation frequency F dynamically change, it is possible to improve the certainty of executing the prohibition of the correction due to the air turbulence.
  • the pulsation error calculator 60 acquires the pulsation amplitude threshold calculated by the pulsation amplitude threshold calculator 60b.
  • the pulsation error calculation unit 60 forcibly sets the pulsation error Err to zero, thereby realizing the prohibition of the correction by the pulsation error correction unit 61.
  • the pulsation error correction unit 61 acquires a pulsation amplitude threshold. Then, the pulsation error correction unit 61 determines whether or not the pulsation amplitude Pa is smaller than the pulsation amplitude threshold. If determined to be smaller, the pulsation error corrector 61 prohibits the correction of the air flow rate. As described above, according to the present embodiment, the same effects as those of the fourteenth embodiment are exerted.
  • the correction amount calculation unit 60a may acquire the pulsation amplitude threshold and determine whether the pulsation amplitude Pa is smaller than the pulsation amplitude threshold. If it is determined that the pulsation error is small, the correction amount calculation unit 60a forcibly sets the correction amount Q to zero, and the correction inhibition by the pulsation error correction unit 61 may be realized.
  • the function of prohibition of correction according to the present embodiment and the twelfth embodiment is applied to control for calculating the pulsation frequency F from the timing of the upper extreme value Ea.
  • the function of prohibiting correction may be applied to control for calculating the pulsation frequency F from the timing of the lower extreme value Eb.
  • the present invention may be applied to control for calculating the pulsation frequency F from the timing exceeding the increase threshold Ec.
  • the present invention may be applied to control for calculating the pulsation frequency F from the timing exceeding the decrease threshold Ed.
  • the frequency calculation unit 59 calculates the pulsation frequency by excluding frequencies higher than the upper limit and frequencies lower than the lower limit. That is, the frequency calculation unit 59 calculates a frequency within an allowable range less than the upper limit value and equal to or greater than the lower limit value as a pulsation frequency.
  • Frequency calculation unit 59 further calculates the pulsation frequency by excluding the frequency whose change rate is equal to or higher than the upper limit change rate and the frequency whose change rate is lower than the lower limit change rate. That is, the frequency calculator 59 calculates a frequency when the rate of change is within the allowable range of less than the upper limit value and equal to or greater than the lower limit value as the pulsation frequency.
  • the “change rate” is a change amount of the frequency changed per unit time. That is, in the waveform representing the time change of the output value of the sensing unit 22 or the conversion value of the conversion table 54, the “change rate” corresponds to the slope of the waveform.
  • FIG. 33 shows a procedure of a process repeatedly executed by the microcomputer so that the above-described function is exerted while the output value is being input to the correction circuit 50.
  • step S20 the value of the pulsation frequency calculated by the frequency calculation unit 59 by the method of each embodiment described above is set as a provisional value.
  • step S21 it is determined whether or not the provisional value set in the step S20 is within an allowable range.
  • a change rate of the provisional value set in the step S20 is calculated. Specifically, the change rate is calculated from the difference between the previously obtained frequency and the currently obtained frequency. In a succeeding step S23, it is determined whether or not the change rate calculated in the step S22 is within an allowable range.
  • the provisional value set in step S20 is set as the determined value of the pulsation frequency.
  • the provisional value outside the allowable range and the provisional value having a change rate outside the allowable range are excluded from the determined value of the pulsation frequency.
  • a predicted value of the pulsation frequency is calculated in step S25.
  • a predicted value of the current pulsation frequency is calculated using the determined value of the past pulsation frequency.
  • the determination value of the previous pulsation frequency is calculated as the predicted value of the current pulsation frequency.
  • the predicted value calculated in step S25 is set as the pulsation frequency determination value.
  • the frequency calculation unit 59 determines the pulsation frequency while excluding frequencies outside the allowable range. Therefore, it is avoided to determine a frequency outside the allowable range due to the influence of noise as the pulsation frequency.
  • the frequency calculation unit 59 calculates the pulsation frequency excluding the frequency whose change rate is outside the allowable range. Therefore, it is possible to avoid determining a frequency that largely changes or slightly changes beyond the allowable range under the influence of noise as the pulsation frequency.
  • the following functions are added to the disturbance elimination filter unit 75 described above. That is, the frequency of the waveform representing the time change of the engine speed is set as the rotation fluctuation frequency. Note that the engine speed is the number of times the output shaft of the engine has rotated per predetermined time, and corresponds to the engine speed.
  • the disturbance elimination filter unit 75 is set so as to remove a component of a predetermined cutoff frequency from the waveform of the sampling value.
  • the cutoff frequency is set to a positive real number multiple of the rotation fluctuation frequency. This real number may or may not be an integer.
  • the disturbance removal filter unit 75 has a function of variably setting the cutoff frequency to a larger value as the engine speed is larger.
  • a variable setting function is not essential, and when it is fixedly set, the cutoff frequency is set to a positive real multiple of the rotation fluctuation frequency in a specific operation state. .
  • a low-pass filter is used in the disturbance elimination filter unit 75, and the waveform of the sampling value is smoothed and output as described in the second embodiment. Then, the higher the cutoff frequency is, the smaller the time constant representing the degree of blunting becomes. Therefore, variably setting the cutoff frequency means variably setting the time constant. Therefore, it can be said that the disturbance removal filter unit 75 variably sets the time constant to a smaller value as the engine speed is larger.
  • FIG. 34 shows a procedure of processing repeatedly executed by the microcomputer so that the above-described function is exerted while the output value is being input to the correction circuit 50.
  • step S30 it is determined whether the time constant has been set in step S32 described below. For example, at the initial stage when the ECU 46 is activated to operate the correction circuit 50, it is determined that the time constant is not set. In that case, in step S34, the time constant is set to an initial value stored in advance.
  • the time constant is variably set based on the pulsation frequency acquired in step S31. Specifically, the time constant is set to a smaller value as the pulsation frequency is higher. Note that the higher the pulsation frequency is, the higher the engine speed (rotation fluctuation frequency) is. Therefore, it can be said that the time constant is set to a smaller value as the rotation fluctuation frequency becomes higher.
  • the disturbance removal filter unit 75 executes a filtering process using the time constant set in step S32 or step S34.
  • the disturbance removal filter unit 75 removes frequency noise (harmonic noise) caused by the pulsation frequency of the engine speed from the sampling waveform.
  • the disturbance removing unit 71 shown in FIG. 14 and the like removes instantaneous noise illustrated in FIG.
  • the cutoff frequency of the disturbance elimination unit 71 is set higher than the cutoff frequency of the disturbance elimination filter unit 75.
  • the time constant of the disturbance elimination unit 71 is set to a value smaller than the time constant of the disturbance elimination filter unit 75.
  • a high-pass filter is used for the response compensator 72 shown in FIG. 14 and the like, and the filter that reproduces a rapid change in the air flow rate faithfully to the output value is described in the second embodiment described above. It is as expected. As a result, the waveform that is distorted due to the detection response delay by the sensing unit 22 is corrected to an actual suddenly changing waveform.
  • the amplitude reduction filter unit 73 shown in FIG. 14 and the like executes a filter process for reducing the amplitude that has increased in this manner.
  • the average air amount calculation unit 57 illustrated in FIG. 14 and the like calculates the average air amount Gave using the value converted by the second conversion table 74 instead of the first conversion table 54. That is, the average air amount calculation unit 57 calculates the average air amount Gave using the values that have not been subjected to the filtering process of the response compensation unit 72 and the amplitude reduction filter unit 73. Thereby, the calculation accuracy of the average air amount Gave is improved.
  • the cutoff frequency used in the disturbance elimination filter unit 75 is set to a positive real multiple of the rotation fluctuation frequency related to the engine rotation. Therefore, frequency noise (harmonic noise) caused by the pulsation frequency of the engine speed can be removed from the sampling waveform. Therefore, the measurement accuracy of the air flow rate can be improved.
  • the cutoff frequency used in the disturbance elimination filter unit 75 is variably set to a larger value as the engine rotation speed increases. Therefore, the cutoff frequency can be variably set in accordance with the frequency of the harmonic noise generated due to the change in the engine rotation speed. Therefore, the measurement accuracy of the air flow rate can be further improved.
  • the pulsation state calculation unit calculates the pulsation state using the output value instead of acquiring the pulsation state from the external device, there is a concern that the following noise is likely to be attached. For example, it is a sudden change in the detection value caused by the attachment of water to the sensing unit 22. Such noise can be removed by the disturbance removal filter unit 75.
  • the measurement outlet 36 may face the opposite side to the inlet 33 similarly to the outlet 34.
  • the measurement outlet 36 is provided between the inlet 33 and the outlet 34 in the depth direction Z.
  • the measurement outlet 36 is formed at a convex portion protruding in the width direction X from the outer peripheral surface of the housing 21, so that the measurement outlet 36 is opened toward the downstream side of the intake passage 12 similarly to the outlet 34.
  • the air flowing in the forward direction along the outer peripheral surface of the housing 21 passes through the measurement outlet 36, so that turbulence of the airflow such as a vortex is likely to occur around the measurement outlet 36. For this reason, even if the measurement outlet 36 faces the side opposite to the inflow port 33, it is considered that when a backflow of air occurs in the intake passage 12, the backflow does not easily flow into the measurement outlet 36.
  • the pulsation error Err is calculated using the pulsation amplitude Pa.
  • the measurement outlet 36 may be provided on the downstream outer surface 24c, and may be opened toward the side opposite to the inlet 33.
  • a part of the measurement outlet 36 is provided on the upstream outer surface 24b and the remaining part is not provided on the intermediate outer surface 24d, but the entire measurement outlet 36 is provided on the upstream outer surface 24b or the intermediate outer surface 24d. 24d.
  • the entire measurement outlet 36 is provided on the upstream outer surface 24b, a configuration in which the measurement outlet 36 is opened toward the side opposite to the outlet 34 is realized.
  • the entire measurement outlet 36 is provided on the intermediate outer surface 24d, a configuration in which the measurement outlet 36 is opened in the width direction X is realized. In this configuration, the opening direction of the measurement outlet 36 is different from both the opening direction of the inlet 33 and the opening direction of the outlet 34.
  • the bypass flow path 30 may have the measurement flow path 32 but may not have the passage flow path 31.
  • the measurement inlet 35 is formed on the outer surface of the housing 21 similarly to the measurement outlet 36, and the air flowing through the intake passage 12 flows from the measurement inlet 35 into the bypass passage 30.
  • the throttle section such as the detection throttle section 37 may be provided in the branch path 32a or the guide path 32b as long as at least a part of the throttle section in the measurement flow path 32 is provided upstream of the sensing section 22.
  • the detection diaphragm 37 has a pair of extending surfaces extending from the inner wall surface of the housing main body 24 in the width direction X toward the sensing unit 22, and a flat surface extending over these extending surfaces and extending straight in the depth direction Z. May be provided.
  • the extending surface may be a surface extending straight in the width direction X or a surface extending straight in a direction inclined with respect to the width direction X.
  • extension surface may be a curved surface curved so as to bulge outward, or may be a curved surface curved so as to be concave inward.
  • detection diaphragm 37 may have only the upstream extension surface of the pair of extension surfaces. In this configuration, the flat surface extends to the downstream side of the detection path 32c.
  • the correction amount calculation unit 60a may calculate the correction amount Q in the same unit as the output value S1 before correction such as the offset amount, instead of the correction amount Q indicating the correction ratio such as the gain amount.
  • the pulsation error correction unit 61 calculates the corrected output value S2 by adding the correction amount Q to the output value S1 before correction.
  • the correction amount calculation unit 60a may calculate the correction amount Q in the same unit as the average air amount Gave1 before correction. In this case, the pulsation error correction unit 61 calculates the corrected average air amount Gave3 by adding the correction amount Q to the average air amount Gave1 before correction.
  • the correction circuit 50 includes an upper extreme value determining unit 56 of the first embodiment, a lower extreme value determining unit 81 of the third embodiment, and an increase threshold value determining unit 82 of the fourth embodiment. , And at least two with the decrease threshold value determination unit 83 of the fifth embodiment.
  • the frequency calculation unit 59 calculates a pulsation frequency for each of at least two determination results of the upper extreme value determination unit 56, the lower extreme value determination unit 81, the increase threshold value determination unit 82, and the decrease threshold value determination unit 83.
  • the pulsation frequency F is calculated by, for example, averaging the pulsation frequencies.
  • the average air amount calculation unit 57 may calculate the average air amount Gave by averaging the pulsation minimum value and the pulsation maximum value that are the minimum values of the air flow rate during the measurement period. Further, the average air amount calculation unit 57 calculates the average air amount Gave without using the pulsation minimum value whose detection accuracy is lower than the maximum value of the air flow rate, or the several pulsation minimum value and the air amount before and after the pulsation minimum value. It may be calculated.
  • the processing unit 45 may calculate the pulsation frequency F by processing the output value from the sensing unit 22 using a map, a function, a fast Fourier transform FFT, or the like.
  • the ECU 46 and the processing unit 45 may be capable of bidirectional communication.
  • the ECU 46 may output external information such as engine parameters to the processing unit 45.
  • the processing unit 45 calculates the pulsation state such as the pulsation frequency F using the output value of the sensing unit 22 instead of the external information.
  • the function realized by the processing unit 45 may be realized by hardware and software, or a combination thereof.
  • the processing unit 45 may communicate with, for example, another control device, for example, the ECU 46, and the other control device may execute part or all of the processing.
  • the processing unit 45 is realized by an electronic circuit, the processing unit 45 can be realized by a digital circuit including many logic circuits or an analog circuit.
  • the air flow meter 10 may correspond to an example of the flow measurement device.
  • the detection diaphragm unit 37 may correspond to an example of the diaphragm unit.
  • the sensor subassembly 40 may correspond.
  • the mold part 42 may correspond.
  • the processing unit 45 may correspond to an example of the measurement control device and the measurement control unit.
  • the ECU 46 may correspond to an example of the external device.
  • the upper extremum determination unit 56 may correspond to an example of the pulsation state calculation unit and the condition determination unit.
  • the average air amount calculation unit 57 may correspond to an example of the pulsation state calculation unit.
  • the pulsation amplitude calculation unit 58 may correspond to an example of the pulsation state calculation unit.
  • the frequency calculating section 59 may correspond to an example of the pulsation state calculating section.
  • the pulsation error calculator 60 may correspond to an example of the error corrector.
  • the pulsation error correction unit 61 may correspond to an example of the flow rate correction unit.
  • the lower extreme value determination unit 81 may correspond to an example of the pulsation state calculation unit and the condition determination unit.
  • the increase threshold determination unit 82 may correspond to the pulsation state calculation unit, the condition determination unit, and the increase determination unit.
  • the decrease threshold determination unit 83 may correspond.
  • the average value the average air amount Gave1 before correction may correspond.
  • the corrected average air amount Gave3 may correspond.
  • the corrected output value S2 may correspond.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)

Abstract

計測制御装置は、空気の流量に応じた信号を出力するセンシング部(22)の出力値を用いて空気流量を計測し、空気流量の計測結果(S2,Gave3)を所定の外部装置(46)に対して出力する。計測制御装置は、空気流量に生じる脈動の状態である脈動状態を、外部装置から取得するのではなく出力値を用いて算出する脈動状態算出部(56,57,58,59,81,82,83)と、脈動状態算出部により算出された脈動状態を用いて空気流量の補正を行う流量補正部(61)と、を備えている。

Description

計測制御装置及び流量計測装置 関連出願の相互参照
 本出願は、2018年7月5日に出願された日本特許出願2018-128497号と2019年6月11日に出願された日本特許出願2019-108845号に基づくもので、ここにその記載内容を援用する。
 この明細書による開示は、計測制御装置及び流量計測装置に関する。
 空気流量を計測する構成として、例えば特許文献1には、内燃機関の制御を行うECUがエアフローセンサの出力値に基づいて空気流量を算出するという構成が開示されている。このECUには、エアフローセンサの検出信号に加えて、機関回転数を検出するクランク角センサの検出信号が入力される。ECUは、クランク角センサにより検出された機関回転数を用いて空気流量の脈動周波数を算出し、この脈動周波数を用いて、空気流量の脈動により生じる誤差である脈動誤差が小さくなるように空気流量の補正を行う。
特開2014-20212号公報
 しかしながら、上記特許文献1では、ECUが、内燃機関の制御処理に加えて空気流量の補正処理を行うため、ECUの処理負担が過剰に増加することが想定される。そこで、空気流量の補正処理をECUから独立した計測制御装置に実行させ、この計測制御装置が空気流量の補正結果をECUに対して出力する、という構成が考えられる。この構成では、ECUが空気流量の補正結果を取得でき、しかも、ECUの処理負担を低減することができる。ところが、この構成でも、計測制御装置が脈動周波数等の脈動状態を算出する場合に機関回転数を用いるのであれば、ECUは機関回転数を示す回転数情報を計測制御装置に対して出力する必要がある。このように、計測制御装置が空気流量の補正にECUからの回転数情報を用いる場合、回転数情報にノイズが含まれていることなどにより、空気流量の補正精度が低下することが懸念される。
 本開示の主な目的は、空気流量の補正精度を高めることができる計測制御装置及び流量計測装置を提供することにある。
 開示された第1の態様において、計測制御装置は、空気の流量に応じた信号を出力するセンシング部の出力値を用いて空気流量を計測し、空気流量の計測結果を所定の外部装置に対して出力する計測制御装置であって、
 空気流量に生じる脈動の状態である脈動状態を、外部装置から取得するのではなく出力値を用いて算出する脈動状態算出部と、
 脈動状態算出部により算出された脈動状態を用いて空気流量の補正を行う流量補正部と、を備えている。
 第1の態様によれば、外部装置から取得する脈動状態を空気流量の補正に用いるのではなく、脈動状態算出部がセンシング部の出力値を用いて算出した脈動状態を空気流量の補正に用いる。この構成では、外部装置から取得した脈動状態にノイズ等が含まれていることに起因して空気流量の補正精度が低下する、ということを回避できる。したがって、流量補正部による空気流量の補正精度を高めることができる。
 第2の態様において、流量計測装置は、空気流量を計測する流量計測装置であって、
 空気が流入する計測入口及び空気が流出する計測出口を有する計測流路と、
 計測流路において空気の流量に応じた信号を出力するセンシング部と、
 センシング部の出力値を用いて空気流量を計測し、空気流量の計測結果を所定の外部装置に対して出力する計測制御部と、を備え、
 計測制御部は、
 空気流量に生じる脈動の状態である脈動状態を、外部装置から取得するのではなく出力値を用いて算出する脈動状態算出部と、
 脈動状態算出部により算出された脈動状態を用いて空気流量の補正を行う流量補正部と、を備えている。
 第2の態様によれば、上記第1の態様と同様の効果を奏することができる。
 第3の態様においては、計測制御装置は、内燃機関へ吸入される空気の流量に応じた信号を出力するセンシング部の出力値を用いて空気流量を計測し、空気流量の計測結果を所定の外部装置に対して出力する計測制御装置であって、
 空気流量に生じる脈動の状態である脈動状態を、出力値を用いて算出する脈動状態算出部と、
 脈動状態算出部により算出された脈動状態を用いて空気流量の補正を行う流量補正部と、
 出力値の時間変化を表す波形から、所定のカットオフ周波数の成分を除去するフィルタ部と、を備え、
 内燃機関の回転速度の時間変化を表す波形の周波数を回転変動周波数とし、
 カットオフ周波数は、回転変動周波数の正の実数倍に設定されている。
 第3の態様によっても、上記第1の態様と同様の効果を奏することができる。また、回転変動周波数の正の実数倍に設定されたカットオフ周波数でノイズ除去されるので、空気流量の補正精度をより一層高めることができる。
第1実施形態におけるエアフロメータを上流外面側から見た斜視図。 エアフロメータを下流外面側から見た斜視図。 吸気管に取り付けられた状態のエアフロメータの縦断面図。 図3のIV-IV線断面図。 図3のV-V線断面図。 エアフロメータの概略構成を示すブロック図。 補正回路の概略構成を示すブロック図。 上極間隔の算出方法を説明するための図。 平均空気量の算出方法を説明するための図。 脈動振幅の算出方法を説明するための図。 脈動特性と近似値との関係を示す図。 参照マップを示す図。 補正後の平均空気量の算出方法を説明するための図。 第2実施形態における補正回路の概略構成を示すブロック図。 出力値に含まれるノイズを例示するための図。 出力値のマイナス値をカットする方法を説明するための図。 第3実施形態における補正回路の概略構成を示すブロック図。 下極間隔の算出方法を説明するための図。 第4実施形態における補正回路の概略構成を示すブロック図。 増加間隔の算出方法を説明するための図。 第5実施形態における補正回路の概略構成を示すブロック図。 減少間隔の算出方法を説明するための図。 第6実施形態における補正後の平均空気量の算出方法を説明するための図。 変形例1における吸気管に取り付けられた状態のエアフロメータの縦断面図。 第7実施形態において、上極間隔を算出する際のノイズ除去機能を説明する図。 第7実施形態において、ノイズ除去のための処理手順を示すフローチャート。 第8実施形態において、下極間隔を算出する際のノイズ除去機能を説明する図。 第9実施形態において、増加間隔を算出する際のノイズ除去機能を説明する図。 第10実施形態において、減少間隔を算出する際のノイズ除去機能を説明する図。 第11実施形態において、上極間隔を算出する際のノイズ除去機能を説明する図。 第12実施形態における補正回路の概略構成を示すブロック図。 第13実施形態における補正回路の概略構成を示すブロック図。 第14実施形態において、周波数算出の処理手順を示すフローチャート。 第15実施形態において、周波数算出の処理手順を示すフローチャート。
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施例の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
 (第1実施形態)
 図1、図2に示すエアフロメータ10は、ガソリンエンジン等の内燃機関を有する燃焼システムに含まれている。この燃焼システムは車両に搭載されている。図3に示すように、エアフロメータ10は、燃焼システムにおいて、内燃機関に吸入空気を供給する吸気通路12に設けられており、吸気通路12を流れる吸入空気等の気体やガスといった流体の流量や温度、湿度、圧力等の物理量を計測する。この場合、エアフロメータ10が流量計測装置に相当する。
 エアフロメータ10は、吸気通路12を形成する吸気ダクト等の吸気管12aに取り付けられている。吸気管12aには、その外周部を貫通する貫通孔としてエアフロ挿入孔12bが設けられている。このエアフロ挿入孔12bには円環状の管フランジ12cが取り付けられており、この管フランジ12cは吸気管12aに含まれている。エアフロメータ10は、管フランジ12c及びエアフロ挿入孔12bに挿入されることで吸気通路12に入り込んだ状態になっており、この状態で吸気管12aや管フランジ12cに固定されている。
 本実施形態では、エアフロメータ10について、幅方向X、高さ方向Y及び奥行き方向Zが互いに直交している。エアフロメータ10は高さ方向Yに延びており、吸気通路12は奥行き方向Zに延びている。エアフロメータ10は、吸気通路12に入り込んだ入り込み部分10aと、吸気通路12に入り込まずに管フランジ12cから外部にはみ出したはみ出し部分10bとを有しており、これら入り込み部分10aとはみ出し部分10bとは高さ方向Yに並んでいる。エアフロメータ10においては、一対の端面10c,10dのうち、入り込み部分10aに含まれた方をエアフロ先端面10cと称し、はみ出し部分10bに含まれた方をエアフロ基端面10dと称する。この場合、エアフロ先端面10cとエアフロ基端面10dとが高さ方向Yに並んでいる。なお、エアフロ先端面10c及びエアフロ基端面10dは高さ方向Yに直交している。また、管フランジ12cの先端面も高さ方向Yに直交している。
 図1、図2に示すように、エアフロメータ10は、ハウジング21と、吸入空気の流量を検出するセンシング部22(図3、図6参照)とを有している。センシング部22はハウジング本体24の内部空間24aに設けられている。ハウジング21は、例えば樹脂材料等により形成されている。エアフロメータ10においては、ハウジング21が吸気管12aに取り付けられていることで、センシング部22が、吸気通路12を流れる吸入空気と接触可能な状態になる。ハウジング21は、ハウジング本体24、リング保持部25、フランジ部27及びコネクタ部28を有しており、リング保持部25に対してOリング26(図3参照)が取り付けられている。
 ハウジング本体24は全体として筒状に形成され、ハウジング21においては、リング保持部25、フランジ部27及びコネクタ部28がハウジング本体24に一体的に設けられた状態になっている。リング保持部25は入り込み部分10aに含まれ、フランジ部27及びコネクタ部28ははみ出し部分10bに含まれている。
 リング保持部25は、管フランジ12cの内部に設けられており、Oリング26を高さ方向Yに位置ずれしないように保持している。Oリング26は、管フランジ12cの内部において吸気通路12を密閉するシール部材であり、リング保持部25の外周面と管フランジ12cの内周面との両方に密着している。フランジ部27には、エアフロメータ10を吸気管12aに固定するネジ等の固定具を固定するネジ孔等の固定孔が形成されている。コネクタ部28は、センシング部22に電気的に接続されたコネクタターミナルを保護する保護部である。
 図3に示すように、ハウジング本体24は、吸気通路12を流れる吸入空気の一部が流れ込むバイパス流路30を形成している。バイパス流路30は、エアフロメータ10の入り込み部分10aに配置されている。バイパス流路30は、通過流路31及び計測流路32を有しており、これら通過流路31及び計測流路32は、ハウジング本体24の内部空間24aにより形成されている。なお、吸気通路12を主通路と称し、バイパス流路30を副通路と称することもできる。また、図3においては、Oリング26の図示を省略している。
 通過流路31は、奥行き方向Zにハウジング本体24を貫通している。通過流路31は、その上流端部である流入口33と、下流端部である流出口34とを有している。これら流入口33と流出口34とは奥行き方向Zに並べられており、この奥行き方向Zが並び方向に相当する。計測流路32は、通過流路31の中間部分から分岐した分岐流路であり、この計測流路32にセンシング部22が設けられている。計測流路32は、その上流端部である計測入口35と、下流端部である計測出口36とを有している。通過流路31から計測流路32が分岐した部分はこれら通過流路31と計測流路32との境界部になっており、この境界部に計測入口35が含まれていることになる。なお、計測出口36が分岐出口に相当する。
 センシング部22は、回路基板とこの回路基板に搭載された検出素子とを有しており、チップ式の流量センサである。検出素子は、発熱抵抗等のヒータ部と、このヒータ部により加熱された空気の温度を検出する温度検出部とを有しており、センシング部22は、検出素子での発熱に伴う温度の変化に応じた出力信号を出力する。なお、センシング部22を流量検出部と称することもできる。
 エアフロメータ10は、センシング部22を含んで構成されたセンササブアッセンブリを有しており、このセンササブアッセンブリをセンサSA40と称する。センサSA40はハウジング本体24に収容されている。センサSA40は、センシング部22に加えて、センシング部22に電気的に接続された回路チップ41と、センシング部22や回路チップ41を保護するモールド部42とを有している。回路チップ41は各種処理を行うデジタル回路を有しており、直方体状のチップ部品である。センサSA40においては、センシング部22及び回路チップ41がリードフレームにより支持されており、回路チップ41がボンディングワイヤ等を介してセンシング部22やリードフレームに電気的に接続されている。
 モールド部42は、モールド成型により成型された高分子樹脂等のモールド樹脂であり、リードフレームやボンディングワイヤに比べて高い絶縁性を有している。モールド部42は、回路チップ41やボンディングワイヤ等を封止した状態で回路チップ41やセンシング部22を保護している。センサSA40においては、モールド部42によりセンシング部22と回路チップ41とが1パッケージで実装されている。また、センサSA40がセンシングユニットに相当し、モールド部42がボデーに相当する。なお、センサSA40を検出ユニットやセンサ部と称することもできる。
 センシング部22は、計測流路32での空気流量に応じた出力信号を回路チップに対して出力し、回路チップは、センシング部22の出力信号を用いて流量を算出する。回路チップの算出結果が、エアフロメータ10が計測した空気の流量ということになる。なお、高さ方向Yにおいて吸気通路12の中央位置にエアフロメータ10の流入口33及び流出口34が配置されている。高さ方向Yにおいて吸気通路12の中央位置を流れる吸入空気は、奥行き方向Zに沿って流れている。吸気通路12において吸入空気が流れる向きと、通過流路31において吸入空気が流れる向きとはほぼ一致している。なお、センシング部22は、熱式の流量センサに限定されず、超音波式の流量センサやカルマン渦式の流量センサ等であってもよい。
 図4に示すように、ハウジング21の外周面を形成するハウジング本体24の外周面は、上流外面24b、下流外面24c及び一対の中間外面24dを有している。ハウジング本体24の外周面において、上流外面24bは吸気通路12の上流側を向いており、下流外面24cは吸気通路12の下流側を向いている。一対の中間外面24dは、幅方向Xにおいて互いに反対側を向いており、奥行き方向Zに延びた平坦面になっている。上流外面24bは、中間外面24dに対して傾斜した傾斜面になっている。この場合、上流外面24bは、幅方向Xにおいてハウジング本体24の幅寸法を吸気通路12での上流側に向けて徐々に小さくするように湾曲した傾斜面になっている。
 中間外面24dは、奥行き方向Zにおいて上流外面24bと下流外面24cとの間に設けられている。この場合、上流外面24bと中間外面24dとは奥行き方向Zに並べられており、これら上流外面24bと中間外面24dとの境界部である面境界部24eは、高さ方向Yに延びている。上流外面24bと下流外面24cとは、奥行き方向Zにおいて互いに反対を向いた一対の端面である。
 図3に示すように、流入口33は上流外面24bに設けられており、流出口34は下流外面24cに設けられている。この場合、流入口33と流出口34とは互いに反対向きに開放されている。図4に示すように、計測出口36は、面境界部24eを奥行き方向Zに跨ぐ位置に配置されていることで、上流外面24b及び中間外面24dの両方に設けられている。計測出口36においては、上流外面24bに配置された部分が流入口33と同じ側に向けて開放されており、中間外面24dに配置された部分が幅方向Xに開放されている。この場合、計測出口36は、幅方向Xに対して流入口33側に傾斜した方向を向いている。また、この場合、計測出口36は、流出口34側に向けては開放されていない。すなわち、計測出口36は、吸気通路12において下流側に向けては開放されていない状態になっている。
 計測出口36は、面境界部24eに沿って延びた縦長の偏平形状になっている。計測出口36は、奥行き方向Zにおいて面境界部24eを基準にすると、中間外面24d寄りの位置に配置されている。計測出口36においては、中間外面24dに配置された部分の面積が、上流外面24bに配置された部分の面積より大きくなっている。この場合、奥行き方向Zにおいて、計測出口36の下流端部と面境界部24eとの離間距離が、計測出口36の上流端部と面境界部24eとの離間距離より大きくなっている。
 計測流路32の内周面は、計測出口36を形成する形成面38a~38cを有している。ハウジング本体24の外周部には、計測出口36を形成する貫通孔が設けられており、形成面38a~38cはこの貫通孔の内周面に含まれている。形成面38a~38cのうち上流形成面38aは計測出口36の上流端部36aを形成しており、下流形成面38bは計測出口36の下流端部36bを形成している。接続形成面38cは、上流形成面38aと下流形成面38bとを接続しており、これら形成面38a,38bを挟んで一対設けられている。
 上流形成面38aは、奥行き方向Zに直交しており、計測出口36の上流端部36aからハウジング本体24の内部に向けて幅方向Xに延びている。下流形成面38bは、奥行き方向Zに対して傾斜しており、計測出口36の下流端部36bからハウジング本体24の内部に向けて上流外面24b側に真っ直ぐに延びた傾斜面になっている。
 吸気通路12においてハウジング本体24の外周側で生じる吸入空気の流れについて簡単に説明する。吸気通路12を下流側に向けて流れる空気のうち、ハウジング本体24の上流外面24bに到達した空気は、傾斜面である上流外面24bに沿って進むことで向きを徐々に変えつつ計測出口36に到達する。このように、上流外面24bにより空気の向きが滑らかに変わるため、計測出口36の近傍で空気の剥離が生じにくくなっている。このため、計測流路32を流れる空気が計測出口36から流出しやすくなり、計測流路32内の流速が安定しやすくなる。
 また、計測流路32を流れて計測出口36から吸気通路12に流出する空気は、傾斜面である下流形成面38bに沿って流れることで、吸気通路12での下流側に向けて流れやすくなる。この場合、下流形成面38bに沿って計測出口36から流出した空気が、吸気通路12を流れる吸入空気に合流する際に渦流など気流の乱れが発生しにくくなっているため、計測流路32内の流速が安定しやすくなる。
 図3に示すように、計測流路32は、計測入口35と計測出口36との間にて折り返された折り返し形状になっている。計測流路32は、通過流路31から分岐した分岐路32aと、分岐路32aから流れ込んできた空気をセンシング部22に向けて案内する案内路32bと、センシング部22が設けられた検出路32cと、計測出口36から空気を排出する排出路32dとを有する。計測流路32においては、上流側から分岐路32a、案内路32b、検出路32c、排出路32d、の順で並べられている。
 検出路32cは、奥行き方向Zに延びていることで通過流路31と平行になっており、通過流路31からはみ出し部分10b側に離間した位置に設けられている。分岐路32a、案内路32b及び排出路32dは、検出路32cと通過流路31との間に設けられている。案内路32b及び排出路32dは、検出路32cから通過流路31に向けて高さ方向Yに延びていることで互いに平行になっている。分岐路32aは、案内路32bと通過流路31との間に設けられており、通過流路31に対して傾斜した傾斜分岐路に相当する。分岐路32aは、計測入口35から奥行き方向Zに対して流出口34側に向けて延びており、真っ直ぐな流路になっている。排出路32dは、奥行き方向Zにおいて案内路32bよりも流入口33側に設けられており、計測出口36から検出路32cに向けて延びている。
 図5に示すように、センサSA40はセンシング部22が検出路32cに入り込んだ位置に配置されている。センシング部22は、幅方向Xにおいて一対の中間外面24dの間に配置されており、奥行き方向Z及び高さ方向Yに延びている。センシング部22は、検出路32cを幅方向Xに仕切った状態になっている。
 ハウジング21は、奥行き方向Zにおいてセンシング部22に向けて徐々に検出路32cを絞る検出絞り部37を有している。検出絞り部37は、検出路32cにおいて下流外面24c側の端部からセンシング部22に向けて検出路32cの断面積を徐々に小さくしている。また、検出絞り部37は、検出路32cにおいて上流外面24b側の端部からセンシング部22に向けて検出路32cの断面積を徐々に小さくしている。検出路32cにおいては、奥行き方向Zに直交する方向における断面の面積を断面積としている。検出路32cを空気がセンシング部22に向けて順方向に流れている場合、検出絞り部37は、検出路32cを徐々に絞ることで空気の流れる向きを整えることができ、整流機構に相当する。なお、検出絞り部37が絞り部に相当する。
 検出絞り部37は、検出路32cの内周面においてセンシング部22に対向する位置に設けられている。検出絞り部37は、ハウジング本体24の内周面からセンシング部22に向けて突出しており、奥行き方向Zでの検出絞り部37の奥行き寸法D1は、奥行き方向Zでのセンシング部22の奥行き寸法D2より大きくなっている。また、高さ方向Yにおいてセンシング部22が存在する領域においては、奥行き方向Zでのモールド部42の奥行き寸法D3は、検出絞り部37の奥行き寸法D1より大きくなっている。
 検出絞り部37は、幅方向Xにおいて先細りした形状になっている。具体的には、ハウジング本体24の内壁より幅方向Xに突出する検出絞り部37の基端部が最も幅の広い部分になっており、その先端部が最も幅の狭い部分になっている。検出絞り部37の基端部の幅寸法を上記の奥行き寸法D1としている。検出絞り部37は、センシング部22に向けて膨らんだ湾曲面を有している。なお、検出絞り部37は、センシング部22に向けて膨らんだテーパ形状であってもよい。
 検出路32cの内周面のうちハウジング先端側の面を底面と称し、ハウジング基端側の面を天井面と称すると、検出路32cの底面はハウジング本体24により形成されている一方で、天井面はセンサSA40により形成されている。検出絞り部37は、検出路32cの底面から天井面に向けて延びている。検出絞り部37の外周面は高さ方向Yにおいて真っ直ぐに延びている。
 検出路32cにおいては、モールド部42と検出絞り部37との離間距離が、奥行き方向Zにおいてセンシング部22に近付くにつれて徐々に小さくなっていく。この構成では、案内路32bから検出路32cに流れ込んだ吸入空気がモールド部42と検出絞り部37との間を通る場合、センシング部22に近付くにつれて吸入空気の流速が大きくなりやすい。この場合、センシング部22には適度な流速で吸入空気が付与されるため、センシング部22の出力が安定しやすくなり、検出精度を高めることができる。
 吸気通路12において、エンジンの運転状態などに起因して吸入空気の流れに吸気脈動等の脈動が生じた場合、この脈動に伴って、上流側から流れる順流に加えて、下流側から順流とは逆向きに流れる逆流が発生することがある。吸気通路12においては流入口33が上流側に向けて開放されており、流入口33には順流が流入しやすくなっている。また、流出口34が下流側に向けて開放されており、流出口34には逆流が流入しやすくなっている。さらに、吸気通路12においては計測出口36が下流側に向けては開放されておらず、計測出口36には逆流が流入しにくくなっている。このため、計測出口36から逆流が流入した場合でも、計測出口36への逆流の流入態様が安定せず、計測流路32での空気流量が不安定になりやすい。
 本実施形態とは異なり、例えば、ハウジング本体24において外周面の一部が下流側を向いた段差面であり、この段差面に計測出口36が形成された構成では、吸気通路12において段差面を通過する空気に渦流等の気流の乱れが発生しやすいと考えられる。これに対して、本実施形態では、計測出口36が段差面に形成された構成ではないため、計測出口36の周辺において気流の乱れが生じにくく、計測出口36への逆流の進入しやすさが変動するということが生じにくくなっている。このように、計測流路32にて不安定な逆流が発生しにくいため、エアフロメータ10において安定した脈動計測を実現できる。
 図6に示すように、エアフロメータ10は、センシング部22の出力信号を処理する処理部45を有している。処理部45は、回路チップ41に設けられており、ECU(Electronic Control Unit)46に電気的に接続されている。ECU46は、内燃機関制御装置に相当し、エアフロメータ10からの計測信号などに基づいてエンジンを制御する機能を備えたエンジン制御装置である。この計測信号は、後程説明する脈動誤差補正部61によって補正された空気流量を示す電気信号である。処理部45とECU46片方向通信が可能になっており、処理部45からECU46への信号入力が行われる一方で、ECU46から処理部45への信号入力が行われない。なお、ECU46は、処理部45やエアフロメータ10から独立して設けられており、外部装置に相当する。
 ECU46は、クランク角センサやカム角センサなどのエンジンセンサに電気的に接続されている。ECU46は、エンジンセンサの検出信号を用いて、エンジンの回転角度や回転速度、回転数等のエンジンパラメータを取得し、このエンジンパラメータを用いてエンジン制御を行う。吸気通路12にて吸入空気に発生する脈動は、エンジンパラメータに相関している。ただし、本実施形態のECU46は、エンジンパラメータを処理部45に対して出力せず、処理部45はセンシング部22の出力信号について補正等の処理を行う場合にエンジンパラメータを使用しない。なお、エンジンパラメータが外部情報に相当する。
 センシング部22は、計測流路32を流れる空気流量に対応した出力信号を処理部45に対して出力する。この出力信号は、センシング部22から出力される電気信号やセンサ信号、検出信号であり、空気流量の値に対応する出力値がこの出力信号に含まれている。センシング部22は、計測流路32を計測入口35から計測出口36に向けて順方向に流れる空気、及び計測出口36から計測入口35に向けて逆方向に流れる空気のいずれについても空気流量を検出可能になっている。センシング部22の出力値は、計測流路32において空気が順方向に流れている場合は正の値になり、逆方向に流れている場合には負の値になる。
 吸気通路12において空気の流れに脈動が発生した場合、センシング部22は、脈動の影響を受けて、出力値に真の空気流量に対する誤差が生じる。特に、センシング部22は、スロットル弁が全開側に操作されると脈動振幅や脈動率が大きくなりやすい。以下においては、この脈動による誤差を脈動誤差Errとも称する。また、真の空気流量とは、脈動の影響を受けていない空気流量である。なお、脈動率は、脈動振幅を平均値で割った値である。
 処理部45は、センシング部22の出力値に基づいて空気流量を検出して、検出した空気流量をECU46へ出力する。処理部45は、センシング部22のヒータ部を駆動させる駆動回路49と、センシング部22の出力値を補正する補正回路50と、補正回路50の補正結果をECU46に対して出力する出力回路62とを有している。駆動回路49は、ヒータ部の駆動制御に加えて、ヒータ部の駆動などに用いられる電力をセンシング部22に供給する。また、駆動回路49は、補正回路50が補正処理を行う前の段階でセンシング部22の出力信号を増幅するなどの前処理を行う。
 処理部45は、空気流量を計測する計測制御装置及び計測制御部に相当する。処理部45は、CPU等の演算処理装置と、プログラムとデータとを記憶する記憶装置とを有する。例えば、処理部45は、コンピュータによって読み取り可能な記憶装置を備えるマイクロコンピュータで実現される。処理部45は、記憶装置に記憶されているプログラムを演算処理装置が実行することで各種演算を行って空気流量を算出して、算出した空気流量をECU46へ出力する。
 記憶装置は、コンピュータによって読み取り可能なプログラム及びデータを非一時的に格納する非遷移的実体的記憶媒体である。記憶媒体は、半導体メモリなどによって実現される。この記憶装置は、記憶媒体と言い換えることもできる。また、処理部45は、データを一時的に格納する揮発性メモリを備えていてもよい。
 また、処理部45は、脈動誤差Errが生じた出力値を補正する機能を有している。言い換えると、処理部45は、出力信号の空気流量を、真の空気流量に近づけるように補正する。よって、処理部45は、脈動誤差Errを補正した空気流量を計測信号としてECU46へ出力する。計測信号には、出力値の補正結果である計測値が含まれている。
 処理部45は、プログラムを実行することによって、複数の機能ブロックとして動作する。駆動回路49、補正回路50及び出力回路62はいずれも機能ブロックである。図7に示すように、補正回路50は、機能ブロックとして、A/D変換部51、サンプリング部52、ばらつき調整部53、変換テーブル54を有している。
 A/D変換部51は、センシング部22から駆動回路49を介して補正回路50に入力された出力値をA/D変換する。サンプリング部52は、A/D変換された出力値をサンプリングして、都度のタイミングでサンプリング値を取得する。これらサンプリング値は出力値に含まれている。ばらつき調整部53は、センシング部22の個体差などエアフロメータ10の個体差によって計測値にばらつきが生じないように、センシング部22の出力値のばらつきを調整する。具体的には、ばらつき調整部53は、出力値と実際の空気流量との関係を示す流量出力特性や、流量出力特性と温度との関係を示す温度特性について個体ばらつきを低減する。
 変換テーブル54は、サンプリング部52で取得したサンプリング値を空気流量に変換する。本実施形態では、変換テーブル54にて変換された値を、空気流量ではなくサンプリング値や出力値と称することがある。変換テーブル54は、流量出力特性を用いる変換テーブルである。
 補正回路50は、機能ブロックとして、上極値判定部56、平均空気量算出部57、脈動振幅算出部58、周波数算出部59、脈動誤差算出部60、補正量算出部60a、脈動誤差補正部61を有している。
 上極値判定部56は、変換テーブル54で変換されたサンプリング値が上極値Eaであるか否かを判定する。上極値Eaは、出力値が増加から減少に切り替わるタイミングでのサンプリング値である。上極値判定部56は、サンプリング値が上極値Eaになったタイミングを上極タイミングtaとして取得し、処理部45の記憶装置に記憶させる。そして、上極値判定部56は、上極タイミングtaを含む情報を脈動周期を示すタイミング情報として、平均空気量算出部57や脈動振幅算出部58、周波数算出部59に対して出力する。図7においては、センシング部22の出力値に関する情報の出力を実線で図示し、タイミング情報の出力を破線で図示している。なお、出力値が上極値Eaになったことがあらかじめ定められた特定条件に相当し、上極値判定部56が条件判定部に相当し、上極タイミングtaは出力値が特定条件に該当したタイミングに相当する。
 周波数算出部59は、上極値判定部56からのタイミング情報を用いて、サンプリング値が上極値Eaになる間隔を上極間隔Waとして算出し、この上極間隔Waを用いて脈動周波数Fを算出する。例えば、図8に示すように、サンプリング値が上極値Eaになった後、サンプリング値が次に上極値Eaになった場合について、前の上極値Eaを第1上極値Ea1と称し、次の上極値Eaを第2上極値Ea2と称する。この場合、周波数算出部59は、サンプリング値が第1上極値Ea1になった第1上極タイミングta1と、第2上極値Ea2になった第2上極タイミングta2とを用いて、これら上極タイミングta1,ta2の間隔である上極間隔Waを算出する。そして、例えばF[Hz]=1/Wa[s]という関係を用いて脈動周波数Fを算出する。なお、上極間隔Waが時間間隔に相当する。
 第1上極タイミングta1から第2上極タイミングta2までの期間について、空気が脈動している際の空気流量の最大値である脈動最大値Gmax(図10参照)は、第1上極値Ea1及び第2上極値Ea2のうち大きい方の値になる。これら上極値Ea1,Ea2が同じ値である場合は、その値が脈動最大値Gmaxになる。なお、第1上極値Ea1と第2上極値Ea2との平均値を脈動最大値Gmaxとしてもよい。
 第1上極値Ea1と第2上極値Ea2との間には、出力値が減少から増加に切り替わるタイミングでのサンプリング値である下極値Ebが存在している。第1上極タイミングta1と第2上極タイミングta2との間においては、下極値Ebが1つしかないため、この下極値Ebが脈動最小値Gmin(図10参照)になる。
 平均空気量算出部57は、変換テーブル54で変換したサンプリング値と、上極値判定部56からのタイミング情報とを用いて、空気流量の平均値である平均空気量Gave(図10参照)を算出する。平均空気量算出部57は、上極値判定部56の判定結果を用いて、平均空気量Gaveを算出する場合の対象期間を計測期間として設定し、この計測期間について平均空気量Gaveを算出する。例えば、図8においては、第1上極タイミングta1から第2上極タイミングta2までの期間を計測期間として設定した場合、この計測期間について平均空気量Gaveを算出する。
 平均空気量算出部57は、例えば、積算平均を用いて平均空気量Gaveを算出する。ここでは、一例として、図9に示す波形を用いた平均空気量Gaveの算出に関して説明する。この例では、タイミングt1からタイミングtnを計測期間とし、タイミングt1の空気流量をG1、タイミングtnの空気流量をGnとしている。そして、平均空気量算出部57は、図9の式1を用いて、平均空気量Gaveを算出する。この場合、サンプリング数が少ない場合よりも、多い場合の方が、検出精度が比較的低い脈動最小値Gminの影響が低減された平均空気量Gaveを算出できる。
 計測流路32においては、実際の空気流量が十分に多いと空気が計測出口36に向けて進む際に流線がゆらぎにくく、センシング部22を通過する空気の進行方向や流量が安定しやすいと考えられる。このため、実際の空気流量が十分に多いことでセンシング部22の検出精度が高くなりやすい。これに対して、実際の空気流量が少ないほど空気の進行方向や流量が不安定になりやすい。例えば、計測流路32において実際の空気流量が逆流が発生しない範囲で最も少ない場合、空気が計測出口36に向けて蛇行しながら進むことなどにより、空気の進行方向や流量が安定しないと考えられる。このため、実際の空気流量が少ないほどセンシング部22の検出精度が低下しやすい。したがって、出力値のうち脈動最小値Gminは、センシング部22の検出精度が比較的低くなってしまう。
 脈動振幅算出部58は、変換テーブル54で変換したサンプリング値と、上極値判定部56からのタイミング情報とを用いて、空気流量にて生じる脈動の大きさである脈動振幅Paを算出する。脈動振幅算出部58は、計測期間を算出対象としており、図10に示すように、脈動最大値Gmaxと平均空気量Gaveとの差を取ることで空気流量の脈動振幅Paを算出する。つまり、脈動振幅算出部58は、空気流量の全振幅ではなく、空気流量の片振幅を求める。これは、上記のように検出精度が比較的低い脈動最小値Gminの影響を小さくするためである。なお、脈動振幅算出部58は、脈動最大値Gmaxと脈動最小値との差である全振幅を脈動振幅として算出してもよい。
 センシング部22の出力値については、上極値Eaや脈動周波数F、脈動振幅Pa、平均空気量Gaveが、脈動の状態である脈動状態を示しており、脈動パラメータに相当する。この場合、上極値判定部56、平均空気量算出部57、脈動振幅算出部58及び周波数算出部59は、脈動状態を算出する脈動状態算出部に相当する。
 脈動誤差算出部60は、空気流量について脈動振幅Paに相関した脈動誤差Errを算出する。脈動誤差算出部60は、例えば、脈動振幅Paと脈動誤差Errとが関連付けられたマップなどを用いて、空気流量の脈動誤差Errを予測する。つまり、脈動誤差算出部60は、脈動振幅算出部58によって脈動振幅Paが得られると、得られた脈動振幅Paに相関する脈動誤差Errをマップから抽出する。また、脈動誤差算出部60は、計測期間を対象として、脈動振幅Paに相関する脈動誤差Errを取得するとも言える。なお、脈動誤差算出部60が誤差算出部に相当する。
 上述したように、エアフロメータ10は、吸気通路12を形成する吸気管12aに取り付けられている。よって、エアフロメータ10は、吸気管12aの形状の影響などによって、脈動振幅Paが大きくなるに連れて脈動誤差Errが大きくなるだけでなく、脈動振幅Paが大きくなるに連れて脈動誤差Errが小さくなることもありうる。このため、エアフロメータ10では、脈動振幅Paと脈動誤差Errとの関係を関数で表すことができない場合がある。したがって、エアフロメータ10は、上記のようにマップを用いることで、正確な脈動誤差Errを予測することができるので好ましい。なお、マップは、複数の脈動振幅Paと、各脈動振幅Paに相関した補正量Qとが関連付けられていてもよい。
 しかしながら、エアフロメータ10は、センシング部22が直接、主空気通路に配置されている場合など、脈動振幅Paと脈動誤差Errとの関係を関数で表すことができる場合もある。この場合、エアフロメータ10は、この関数を用いて脈動誤差Errを算出してもよい。エアフロメータ10は、関数を用いて脈動誤差Errを算出することで、マップを持つ必要がないため、記憶装置の容量を減らすことができる。この点は、以下の実施形態でも同様である。つまり、以下の実施形態では、マップのかわりに関数を用いて脈動誤差Errを得てもよい。
 なお、脈動誤差Errは、出力値によって得られた補正していない空気流量と、真の空気流量との差である。つまり、脈動誤差Errは、出力値が変換テーブル54によって変換された空気流量と、真の空気流量との差に相当する。よって、補正前の空気量を真の空気流量に近づけるための補正量Qは、脈動誤差Errがわかれば得ることができる。
 図7に示すように、脈動誤差算出部60には、平均空気量算出部57で算出された平均空気量Gaveと、脈動振幅算出部58で算出された脈動振幅Paと、周波数算出部59で算出された脈動周波数Fとが入力される。脈動誤差算出部60は、これら平均空気量Gave、脈動振幅Pa及び脈動周波数Fを用いて脈動誤差Errを算出する。
 空気の流れに脈動が生じた場合、平均空気量Gaveが大きくなるほど脈動振幅Paが大きくなりやすい。脈動振幅Paと脈動誤差Errとの関係を示す脈動特性において、脈動振幅Paと脈動誤差Errとがほぼ比例関係になっている場合、図11に示すように、脈動特性の近似線を直線で示すことができる。
 Err=Ann×Pa+Bnn…(式2)
 脈動特性の近似線については、上記式2の関係が成り立つ。この関係式は、脈動振幅Paを用いて脈動誤差Errを予測する誤差予測式であり、この誤差予測式においては、Annが近似線の傾きであり、Bnnが切片である。脈動特性においては、脈動誤差Errが補正パラメータに相当する。なお、脈動特性の近似線を曲線で示してもよい。この場合、脈動特性の近似線を示す式には、2次関数や3次関数など2次以上の関数が含まれることになる。
 脈動特性は、平均空気量Gaveと脈動周波数Fとの組み合わせごとに設定されている。図12においては、平均空気量Gaveと脈動周波数Fとの組み合わせを示す各窓のそれぞれに、脈動特性を示す傾きAnn及び切片Bnnが設定されている。このような、平均空気量Gaveや脈動周波数Fと脈動特性との関係を示すマップを参照マップと称すると、この参照マップは2次元マップであり、処理部45の記憶装置に記憶されている。参照マップにおいては、平均空気量Gave及び脈動周波数Fのそれぞれについて、あらかじめ定められた所定の値に対して脈動特性が設定されている。なお、参照マップは、3次元マップや4次元マップなど3次元以上のマップでもよい。例えば、平均空気量Gaveと脈動周波数Fと脈動振幅Paとの関係を示す3次元マップを参照マップとしてもよい。
 図12では、参照マップにおいて設定された平均空気量Gaveのマップ値をG1~Gnとして示し、脈動周波数Fのマップ値をF1~Fnとして示している。なお、脈動特性が補正特性に相当し、参照マップが参照情報に相当する。また、参照マップを補正マップと称し、参照情報を補正情報と称してもよい。
 参照マップは、実機を用いた実験やシミュレーションなどによって、脈動振幅Paと、その脈動振幅Paに相関した脈動誤差Errとの関係を確認しておくことで作成できる。つまり、脈動誤差Errは、脈動振幅Paの値を変えて、実機を用いた実験やシミュレーションを行った場合に、脈動振幅Pa毎に得られた値と言える。なお、実施形態におけるその他のマップも、参照マップと同様に、実機を用いた実験やシミュレーションなどによって作成できる。
 補正量算出部60aは、脈動誤差算出部60により算出された脈動誤差Errを用いて補正量Qを算出する。補正量算出部60aは、計測期間を算出対象としており、脈動誤差Errと補正量Qとの相関を示すマップ等の相関情報を用いて補正量Qを算出する。補正量Qは、出力値に対する補正の比率を示す値になっている。例えば、空気流量が大きくなるように出力値を補正する場合には補正量Qが1より大きい値になり、空気流量が小さくなるように出力値を補正する場合には補正量Qが1より小さい値になる。なお、補正の比率をゲインと称することもできる。
 脈動誤差補正部61は、変換テーブル54で変換したサンプリング値と、補正量算出部60aで算出した補正量Qとを用いて、脈動誤差Errが小さくなるように空気流量を補正する。つまり、脈動誤差補正部61は、脈動の影響を受けた空気流量を、真の空気流量に近づけるように空気流量を補正する。ここでは、空気流量の補正対象として、平均空気量Gaveを採用する。
 脈動誤差補正部61は、補正前の出力値S1を補正量Qで補正して補正後の出力値S2を算出する。本実施形態では、補正前の出力値S1に補正量Qを掛けることで補正後の出力値S2を算出する。この場合、S2=S1×Qという関係が成り立つ。例えば、補正量Qが1より大きい場合、図13に示すように、補正後の出力値S2が補正前の出力値S1より大きくなる。脈動誤差補正部61は計測期間を算出対象としており、補正前の出力値S1には、少なくとも上極値Ea及び下極値Ebが含まれている。なお、空気流量について、補正後の出力値S2が計測結果に相当する。また、脈動誤差補正部61が流量補正部に相当する。
 補正回路50は、脈動誤差補正部61が算出した補正後の出力値S2を出力回路62に対して出力する。出力回路62は、補正後の出力値S2をECU46に対して出力する。ECU46は、出力回路62から入力された補正後の出力値S2を用いて、補正後の出力値S2の平均値を補正後の平均空気量Gave2として算出する。例えば、補正量Qが1より大きい場合、図13に示すように、補正後の平均空気量Gave2は補正前の平均空気量Gave1より大きくなる。
 ここまで説明した本実施形態によれば、補正回路50は、ECU46が取得するエンジンパラメータを空気流量の補正に用いるのではなく、センシング部22の出力値を用いて算出した脈動周波数F等の脈動状態を空気流量の補正に用いる。この構成では、エンジンパラメータに含まれているノイズにより空気流量の補正精度が低下するということを回避できる。したがって、補正回路50による空気流量の補正精度を高めることができる。
 また、この構成では、ECU46から出力された信号を処理部45が受信する必要がない。このため、処理部45は、片方向通信を行うための回路やプログラムを有していればよく、双方向通信を行うための回路やプログラムを有している必要がない。したがって、双方向通信を行うための回路やプログラムの分だけ、メモリなどの記憶容量を削減することや、処理部45のコストを低減すること、処理部45の構成を簡易化することができる。
 さらに、脈動周波数F等の脈動状態を算出する処理がECU46ではなくエアフロメータ10の処理部45にて行われるため、ECU46の処理負担を低減できる。また、ECU46が処理部45への信号出力を行わないことでも、ECU46の処理負担が低減されている。これらのことからして、脈動状態を算出するためのプログラムを記憶するメモリや、演算中に用いるデータを一時的に記憶する仮メモリなどをECU46に搭載する必要がないため、ECU46のメモリなど記憶容量を削減することができる。
 処理部45がエンジンパラメータ等の情報を含む信号をECU46から受信する場合、通信に要する時間の分だけ時間遅れが生じる。このため、処理部45がECU46から信号を受信したタイミングでは、この信号に含まれる情報は既に微小時間だけ過去の情報であり、処理部45がこの情報を用いて空気流量の補正を行うと、現在の空気流量を過去の情報で補正することになる。すなわち、空気流量の補正結果が補正遅れを含んでおり、補正遅れの分だけ補正精度が低下することが懸念される。これに対して、本実施形態によれば、処理部45が空気流量の補正にECU46からの情報を用いないため、時間遅れや補正遅れの分だけ補正精度が低下するということを抑制できる。
 本実施形態によれば、脈動誤差補正部61が、補正前の出力値S1と補正量Qとを用いて補正後の出力値S1を計測結果として算出する。この構成では、計測期間において補正前の出力値S1の全てについて補正を行っているため、補正後の出力値S2の算出精度や、ECU46が算出する補正後の平均空気量Gave2の算出精度を高めることができる。本実施形態とは異なり、例えば、補正前の出力値S1について所定の基準値より大きい値を全て削除することで、補正前の平均空気量Gave1に比べて補正後の平均空気量Gave2を小さくする、という構成を想定する。この構成では、基準値より大きい出力値S1が補正後の平均空気量Gave2に寄与しないため、例えば基準値より大きい出力値S1の検出精度が比較的高くなっている場合には、補正後の平均空気量Gave2の算出精度が低下するということが懸念される。
 本実施形態によれば、脈動パラメータのうち脈動周波数Fがセンシング部22の出力値を用いて算出される。この場合、エンジンパラメータを用いて脈動周波数Fを算出する構成とは異なり、エンジンパラメータに含まれるノイズにより脈動周波数Fの算出精度が低下するということを回避できる。エンジンパラメータを用いて脈動周波数Fを算出する構成では、脈動パラメータの中でも特に脈動周波数Fがエンジンパラメータのノイズの影響を受けやすい。このため、ECU46からのエンジンパラメータを用いずに脈動周波数Fを算出することは、脈動周波数Fの算出精度を高める上で効果的である。また、エアフロメータ10の回路内で脈動周波数Fを引数に補正値を決定することができ、その結果、補正精度を向上することができる。
 ここで、吸気通路12にて吸入空気に生じる脈動とエンジン回転数とは異なることがある。例えば、吸入空気においては、吸気系や吸気バルブなどの影響によりエンジン回転数のn倍の脈動が主成分になる場合がある。このため、脈動誤差補正部61は、エンジンパラメータを用いて空気流量の補正を行う場合に、エンジンパラメータに含まれるエンジン回転数をn倍して空気流量の補正に用いる必要がある。これに対して、本実施形態によれば、周波数算出部59は、センシング部22の出力値を用いることでエンジン回転数のn倍に当たる脈動周波数Fを算出することができる。このため、脈動誤差補正部61は、この脈動周波数Fを用いて空気流量の補正を行う際の補正精度を高めることができる。
 本実施形態によれば、出力値が第1上極値Ea1になった第1上極タイミングta1と、出力値が第2上極値Ea2になった第2上極タイミングta2との間隔である上極間隔Waを用いて脈動周波数Fが算出される。この構成では、上極値判定部56は、計測期間において上極値Eaに対応した上極タイミングtaさえ記憶装置に記憶させておけば、2つの上極タイミングta1,ta2を記憶装置から読み出して上極間隔Waを算出することができる。この場合、計測期間での全ての出力値に対応するタイミングを記憶装置に記憶させる必要がないため、記憶装置について容量の低減や小型化を実現することができる。
 また、この構成では、上極間隔Waの逆数を算出することで脈動周波数Fを取得できるため、例えば出力値の変化率や変化態様を用いて脈動周波数Fを算出する構成とは異なり、脈動周波数Fを算出する場合に関数やマップを用いる必要がない。この場合、これら関数やマップを記憶装置に記憶させておく必要がないため、記憶装置について容量の低減や小型化をより確実に実現することができる。
 さらに、この構成では、脈動に伴って増減する出力値に、増加から減少に切り替わる上極値Eaさえ存在すれば、上極間隔Waや脈動周波数Fを算出することができる。例えば、本実施形態とは異なり、増減を繰り返す出力値が増加中に所定の閾値を越えたタイミングの間隔を用いて脈動周波数Fを算出する構成では、出力値が閾値より小さい値で増減を繰り返している場合には脈動周波数Fの算出精度が低下することが懸念される。これに対して、本実施形態によれば、出力値が上極値Eaになったか否かの判定結果を用いて脈動周波数Fが算出されるため、出力値の大きさに関係なく脈動周波数Fの算出精度を高めることができる。
 加えて、この構成では、脈動周波数Fの算出に用いる算出パラメータが上極値Eaである。上述したように、計測流路32での実際の空気流量が十分に多い場合の出力値はセンシング部22による検出精度が高くなっている。そこで、本実施形態では、例えば下極値Ebに比べて検出精度の高い上極値Eaを算出パラメータとしているため、脈動周波数Fの算出精度を高めることができる。
 本実施形態によれば、センシング部22が設けられた計測流路32は通過流路31から分岐した分岐流路である。この構成では、ダスト等の異物が空気と共に流入口33から通過流路31に流れ込んだとしても、異物は計測入口35から計測流路32に進入せずに流出口34から外部に流出しやすくなっている。この場合、バイパス流路30は、計測流路32に流れ込む空気から異物を分離させる異物分離機能を有している。このため、計測流路32においてセンシング部22に異物が付着し、センシング部22にて検出される脈動の大きさが付着した異物によって変化して補正回路50が誤補正する、ということを抑制できる。すなわち、センシング部22への異物の付着によって脈動誤差補正部61の補正精度が低下するということを抑制できる。
 本実施形態によれば、計測入口35側からセンシング部22に向けて検出絞り部37により計測流路32が徐々に絞られている。この構成では、計測流路32を計測入口35からセンシング部22に向けて流れる空気が検出絞り部37により整流されるため、センシング部22に到達した空気の流れが乱れているということが生じにくくなっている。すなわち、センシング部22の出力を安定させることができる。このため、センシング部22により検出された脈動波形がくずれて上極値Eaの検出を誤り、脈動周波数Fに誤差が生じて補正回路50が誤補正する、ということを抑制できる。すなわち、センシング部22に到達した空気が不安定な状態になっていることで脈動誤差補正部61の補正精度が低下するということを抑制できる。
 本実施形態によれば、センサSA40が、処理部45を有する回路チップ41と、センシング部22と、これら回路チップ41及びセンシング部22を保護するモールド部42とを有している。このセンサSA40においては、回路チップ41とセンシング部22とがモールド部42により1パッケージ化されている。この構成では、回路チップ41とセンシング部22とを接続するボンディングワイヤ等の配線の距離を短縮できるため、センシング部22から処理部45に入力される信号に電気ノイズが乗ることを低減できる。このため、補正回路50がノイズを脈動振幅として誤検出して誤補正することや、ノイズにより脈動波形がくずれて上極値Eaの検出を誤って脈動周波数Fに誤差が生じて誤補正すること、などを抑制できる。さらに、回路チップ41とセンシング部22とを1パッケージ化することで、センサSA40の小型化や、小型化によるコストダウンを実現できる。
 (第2実施形態)
 上記第1実施形態では、補正回路50においてセンシング部22の出力値を脈動振幅算出部58に入力する経路が1つだけ設けられていたが、第2実施形態では、出力値を脈動振幅算出部58に入力する経路が2つ設けられている。本実施形態では、上記第1実施形態との相違点を中心に説明する。
 図14に示すように、補正回路50は、変換テーブル54にて変換された出力値を脈動振幅算出部58に入力する第1経路70aと、変換テーブル54にて変換される前の出力値を脈動振幅算出部58に入力する第2経路70bとを有している。なお、図14では、第1経路70aの一部の図示を記号Aで省略している。
 補正回路50は、上記第1実施形態と同じ機能ブロックに加えて、外乱除去部71、応答補償部72、振幅低減フィルタ部73、変換テーブル74、外乱除去フィルタ部75、サンプリング数増加部76、スイッチ部77、マイナスカット部78を有している。本実施形態では、変換テーブル54を第1変換テーブル54と称し、変換テーブル74を第2変換テーブル74と称する。
 外乱除去部71は、ばらつき調整部53と第1変換テーブル54との間に設けられ、ばらつき調整部53の処理が施された出力値が入力される機能ブロックである。外乱除去部71は、前回の出力値に対する変化率が所定の基準値を越えるほどに大きい出力値の急変を制限する急変制限部であり、例えば変化量を所定値に制限する。例えば図15に示すノイズが出力値に含まれている場合に、このノイズが外乱除去部71により除去される。
 応答補償部72は、外乱除去部71と第1変換テーブル54との間に設けられ、外乱除去部71の処理が施された出力値が入力される機能ブロックである。応答補償部72は、実際にセンシング部22が検出した空気流量の急激な変化を出力値に忠実に再現させるフィルタであり、例えばハイパスフィルタにより形成されている。応答補償部72により補償された出力値は、補償される前の出力値に比べて、応答が時間的に進んだ状態になり且つ周波数域が広くなっている。
 振幅低減フィルタ部73は、第1変換テーブル54と脈動誤差補正部61との間に設けられ、第1変換テーブル54の処理が施された出力値が入力される機能ブロックである。振幅低減フィルタ部73は、出力値の脈動振幅Paをなまらせて低減するフィルタ部であり、例えばローパスフィルタにより形成されている。振幅低減フィルタ部73の処理は、第1変換テーブル54の処理の後に行われるため、出力値を用いて算出される平均空気量Gaveに変化は生じない。
 第1経路70aは、第1変換テーブル54と脈動誤差補正部61との間に接続されており、第2経路70bは、外乱除去部71と応答補償部72との間に接続されている。これら経路70a,70bはいずれもスイッチ部77を介して脈動振幅算出部58に接続されている。スイッチ部77は、第1経路70a及び第2経路70bを択一的に脈動振幅算出部58に接続する切替部である。スイッチ部77が第1状態にある場合に、脈動振幅算出部58が第1経路70aに接続されている一方で第2経路70bに対しては遮断されている。スイッチ部77が第2状態にある場合に、脈動振幅算出部58が第2経路70bに接続されている一方で第1経路70aに対しては遮断されている。
 スイッチ部77は、エアフロメータ10の製造時に第1状態及び第2状態のうち一方に設定され、車両に搭載された後は基本的に状態を保持する。なお、スイッチ部77は、車両に搭載された後にエンジン運転状態などに応じて状態が切り替えられてもよい。
 第2変換テーブル74は、第2経路70bにおいて外乱除去部71とスイッチ部77との間に設けられ、外乱除去部71の処理が施された出力値が入力される機能ブロックである。第2変換テーブル74は、第1変換テーブル54とは異なり応答補償部72の処理が施される前の段階で、サンプリング部52で取得したサンプリング値を空気流量に変換する。
 外乱除去フィルタ部75は、第2経路70bから分岐した経路において、第2変換テーブル74と上極値判定部56との間に設けられ、第2変換テーブル74の処理が施された出力値が入力される機能ブロックである。外乱除去フィルタ部75は、高調波成分である高次成分に含まれる出力値をなまらせて除去するフィルタ部であり、例えばローパスフィルタにより形成されている。外乱除去フィルタ部75は、フィルタ定数を可変設定可能になっている。
 サンプリング数増加部76は、外乱除去フィルタ部75と上極値判定部56との間に設けられ、外乱除去フィルタ部75の処理が施された出力値が入力される機能ブロックである。サンプリング数増加部76は、サンプリング部52により取得されたサンプリング値を増加させるアップサンプリング部であり、サンプリング部52に比べて高い時間分解能を有している。サンプリング数増加部76は、可変フィルタやCICフィルタ等のフィルタにより形成されている。
 周波数算出部59は、算出した脈動周波数Fを脈動誤差算出部60に加えて外乱除去フィルタ部75に対して出力する。外乱除去フィルタ部75は、周波数算出部59からの脈動周波数Fを用いて最適フィルタ定数をフィードバック制御する。
 マイナスカット部78は、補正後の出力値S2のうちマイナスの出力値S2をカットし、カット後の出力値S3を算出する。図16に示すように、補正後の出力値S2に負の値であるマイナス値が含まれている場合、マイナスカット部78によりマイナス値がカットされてゼロにされることで、カット後の出力値S3にはマイナス値が含まれていない。その一方で、正の値であるプラス値については、補正後の出力値S2とカット後の出力値S3とが同じ値になっている。上述したように、ハウジング21においては、吸気通路12にて発生した逆流が計測出口36から流入しにくくなる位置に計測出口36が設置されているが、計測出口36からの逆流の進入がゼロになるとは限らない。この場合、計測出口36から進入した逆流の空気流量が不安定になり、その空気流量を精度良く計測することが困難になる。そこで、マイナスカット部78の処理を行うことで、空気流量の計測精度を高めることができる。
 補正回路50は、脈動誤差補正部61が算出した補正後の平均空気量Gave2や補正後の出力値S2に加えて、マイナスカット部78が算出したカット後の出力値S3を、出力回路62に対して出力する。そして、これら補正後の平均空気量Gave2や補正後の出力値S2、カット後の出力値S3を、出力回路62がECU46に対して出力する。
 (第3実施形態)
 上記第1実施形態では、補正回路50が上極値判定部56を有していたが、第3実施形態では、補正回路50が下極値判定部81を有している。本実施形態では、上記第1実施形態との相違点を中心に説明する。
 図17に示すように、下極値判定部81は、補正回路50において変換テーブル54と周波数算出部59との間に設けられている。下極値判定部81は、変換テーブル54の処理が施されたサンプリング値が下極値Ebであるか否かを判定する。上述したように下極値Ebは、出力値が減少から増加に切り替わるタイミングでのサンプリング値である。下極値判定部81は、サンプリング値が下極値Ebになったタイミングを下極タイミングtbとして取得し、処理部45の記憶装置に記憶させる。そして、下極値判定部81は、下極タイミングtbを含む情報を脈動周期を示すタイミング情報として、平均空気量算出部57や脈動振幅算出部58、周波数算出部59に対して出力する。なお、出力値が下極値Ebになったことが特定条件に相当し、下極値判定部81が脈動状態算出部及び条件判定部に相当し、下極タイミングtbは出力値が特定条件に該当したタイミングに相当する。
 周波数算出部59は、下極値判定部81からのタイミング情報を用いて、サンプリング値が下極値Ebになる間隔を下極間隔Wbとして算出し、この下極間隔Wbを用いて脈動周波数Fを算出する。例えば、図18に示すように、サンプリング値が下極値Ebになった後、サンプリング値が次に下極値Ebになった場合について、前の下極値Ebを第1下極値Eb1と称し、次の下極値Ebを第2下極値Eb2と称する。この場合、周波数算出部59は、サンプリング値が第1下極値Eb1になった第1下極タイミングtb1と、第2下極値Eb2になった第2下極タイミングtb2とを用いて、これら下極タイミングtb1,tb2の間隔である下極間隔Wbを算出する。そして、例えばF[Hz]=1/Wb[s]という関係を用いて脈動周波数Fを算出する。なお、下極間隔Wbが時間間隔に相当する。
 第1下極タイミングtb1から第2下極タイミングtb2までの期間について、脈動最小値Gminは、第1下極値Eb1及び第2下極値Eb2のうち小さい方の値になる。これら下極値Eb1,Eb2が同じ値である場合は、その値が脈動最小値Gminになる。なお、第1下極値Eb1と第2下極値Eb2との平均値を脈動最小値Gminとしてもよい。
 本実施形態によれば、出力値が第1下極値Eb1になった第1下極タイミングtb1と、出力値が第2下極値Eb2になった第2下極タイミングtb2との間隔である下極間隔Wbを用いて脈動周波数Fが算出される。この構成では、下極値判定部81は、計測期間において下極値Ebに対応した下極タイミングtbさえ記憶装置に記憶させておけば、2つの下極タイミングtb1,tb2を記憶装置から読み出して下極間隔Wbを算出することができる。したがって、上記第1実施形態と同様に、記憶装置について容量の低減や小型化を実現することができる。
 また、この構成では、下極間隔Wbの逆数を算出することで脈動周波数Fを取得できるため、例えば出力値の変化率や変化態様を用いて脈動周波数Fを算出する構成とは異なり、脈動周波数Fを算出する場合に関数やマップを用いる必要がない。したがって、上記第1実施形態と同様に、記憶装置について容量の低減や小型化をより確実に実現することができる。
 さらに、この構成では、脈動に伴って増減する出力値に、減少から増加に切り替わる下極値Ebさえ存在すれば、下極間隔Wbや脈動周波数Fを算出することができる。したがって、上記第1実施形態と同様に、出力値の大きさに関係なく脈動周波数Fの算出精度を高めることができる。
 (第4実施形態)
 上記第1実施形態では、補正回路50が上極値判定部56を有していたが、第4実施形態では、補正回路50が増加閾値判定部82を有している。本実施形態では、上記第1実施形態との相違点を中心に説明する。
 図19に示すように、増加閾値判定部82は、補正回路50において変換テーブル54と周波数算出部59との間に設けられている。増加閾値判定部82は、変換テーブル54の処理が施された出力値があらかじめ定められた増加閾値Ecを増加側に跨ぐように越えたか否かを判定する。増加閾値判定部82は、増加中の出力値が増加閾値Ecより大きくなった場合に、出力値が増加閾値Ecに到達したタイミングを増加タイミングtcとして取得し、処理部45の記憶装置に記憶させる。そして、増加閾値判定部82は、増加タイミングtcを含む情報を脈動周期を示すタイミング情報として、平均空気量算出部57や脈動振幅算出部58、周波数算出部59に対して出力する。なお、増加中の出力値が増加閾値Ecを増加側に越えたことが特定条件に相当し、増加閾値判定部82が脈動状態算出部、条件判定部及び増加判定部に相当し、増加タイミングtcは出力値が特定条件に該当したタイミングに相当する。
 周波数算出部59は、増加閾値判定部82からのタイミング情報を用いて、増加中の出力値が増加閾値Ecを越える間隔を増加間隔Wcとして算出し、この増加間隔Wcを用いて脈動周波数Fを算出する。例えば、図20に示すように、増加中の出力値が増加閾値Ecを越えた後、増加中の出力値が次に増加閾値Ecを越えた場合を想定する。そして、前に出力値が増加閾値Ecを越えたタイミングを第1増加タイミングtc1と称し、次に出力値が増加閾値Ecを越えたタイミングを第2増加タイミングtc2と称する。この場合、周波数算出部59は、第1増加タイミングtc1と第2増加タイミングtc2とを用いて、これら増加タイミングtc1,tc2の間隔である増加間隔Wcを算出する。そして、例えばF[Hz]=1/Wc[s]という関係を用いて脈動周波数Fを算出する。なお、増加間隔Wcが時間間隔に相当する。
 本実施形態によれば、増加中の出力値が増加閾値Ecを越えた増加タイミングtc1,tc2の間隔である増加間隔Wcを用いて脈動周波数Fが算出される。この構成では、増加閾値判定部82は、計測期間において増加タイミングtc1,tc2さえ記憶装置に記憶させておけば、2つの増加タイミングtc1,tc2を記憶装置から読み出して増加間隔Wcを算出することができる。したがって、上記第1実施形態と同様に、記憶装置について容量の低減や小型化を実現することができる。
 また、この構成では、増加間隔Wcの逆数を算出することで脈動周波数Fを取得できるため、例えば出力値の変化率や変化態様を用いて脈動周波数Fを算出する構成とは異なり、脈動周波数Fを算出する場合に関数やマップを用いる必要がない。したがって、上記第1実施形態と同様に、記憶装置について容量の低減や小型化をより確実に実現することができる。
 ここで、出力値がノイズ等による微小な増減を繰り返しながら実際の空気流量の変化に伴う全体としての大きな増減を繰り返している場合を想定する。この場合、出力値の大きな増減は、上極値Eaと下極値Ebとの真ん中に近い値の出力値ほど変化率が大きくなると考えられる。一方、出力値の微小な増減は、上極値Eaや下極値Ebに近い値であるか否かに関係なく変化率は大きくは変わらないと考えられる。
 これに対して、本実施形態によれば、上極値Eaと下極値Ebとの真ん中に近い値を狙って増加閾値Ecを設定することが可能である。上述したように、極値Ea,Ebの真ん中に近い値では、出力値の大きな増減に伴う変化率が出力値の微小な増減に伴う変化率に比べて大きくなりやすいため、出力値の微小な増減に伴って出力値が増加閾値Ecを繰り返し越えるという事象が生じにくくなっている。したがって、出力値の増減態様に関係なく、実際の空気流量の変化に伴って出力値が増加閾値Ecを越えた増加タイミングtcを精度良く取得することができ、その結果、脈動周波数Fの算出精度を高めることができる。
 なお、上極値Eaや下極値Ebに近い値では、出力値の大きな増減に伴う変化率が出力値の微小な増減に伴う変化率に比べて小さくなりやすい。このため、増加閾値Ecが上極値Eaや下極値Ebに近い値に設定された場合は、出力値の微小な増減に伴って出力値が増加閾値Ecを繰り返し越えるという事象が生じやすいと考えられる。この場合、増加タイミングtcや増加間隔Wcの算出精度が低下し、その結果、脈動周波数Fの算出精度が低下することが懸念される。このように、増加閾値Ecを適正な値に設定することについて改善の余地がある。
 (第5実施形態)
 上記第1実施形態では、補正回路50が上極値判定部56を有していたが、第5実施形態では、補正回路50が減少閾値判定部83を有している。本実施形態では、上記第1実施形態との相違点を中心に説明する。
 図21に示すように、減少閾値判定部83は、補正回路50において変換テーブル54と周波数算出部59との間に設けられている。減少閾値判定部83は、変換テーブル54の処理が施された出力値があらかじめ定められた減少閾値Edを減少側に跨ぐように越えたか否かを判定する。減少閾値判定部83は、減少中の出力値が減少閾値Edより小さくなった場合に、出力値が減少閾値Edに到達したタイミングを減少タイミングtdとして取得し、処理部45の記憶装置に記憶させる。そして、減少閾値判定部83は、減少タイミングtdを含む情報を脈動周期を示すタイミング情報として、平均空気量算出部57や脈動振幅算出部58、周波数算出部59に対して出力する。なお、減少中の出力値が減少閾値Edを減少側に越えたことが特定条件に相当し、減少閾値判定部83が脈動状態算出部、条件判定部及び減少判定部に相当し、減少タイミングtdは出力値が特定条件に該当したタイミングに相当する。
 周波数算出部59は、減少閾値判定部83からのタイミング情報を用いて、減少中の出力値が減少閾値Edを越える間隔を減少間隔Wdとして算出し、この減少間隔Wdを用いて脈動周波数Fを算出する。例えば、図22に示すように、減少中の出力値が減少閾値Edを越えた後、減少中の出力値が次に減少閾値Edを越えた場合を想定する。そして、前に出力値が減少閾値Edを越えたタイミングを第1減少タイミングtd1と称し、次に出力値が減少閾値Edを越えたタイミングを第2減少タイミングtd2と称する。この場合、周波数算出部59は、第1減少タイミングtd1と第2減少タイミングtd2とを用いて、これら減少タイミングtd1,td2の間隔である減少間隔Wdを算出する。そして、例えばF[Hz]=1/Wd[s]という関係を用いて脈動周波数Fを算出する。なお、減少間隔Wdが時間間隔に相当する。
 本実施形態によれば、減少中の出力値が減少閾値Edを越えた減少タイミングtd1,td2の間隔である減少間隔Wdを用いて脈動周波数Fが算出される。この構成では、減少閾値判定部83は、計測期間において減少タイミングtd1,td2さえ記憶装置に記憶させておけば、2つの減少タイミングtd1,td2を記憶装置から読み出して減少間隔Wdを算出することができる。したがって、上記第1実施形態と同様に、記憶装置について容量の低減や小型化を実現することができる。
 また、この構成では、減少間隔Wdの逆数を算出することで脈動周波数Fを取得できるため、例えば出力値の変化率や変化態様を用いて脈動周波数Fを算出する構成とは異なり、脈動周波数Fを算出する場合に関数やマップを用いる必要がない。したがって、上記第1実施形態と同様に、記憶装置について容量の低減や小型化をより確実に実現することができる。
 本実施形態によれば、上極値Eaと下極値Ebとの真ん中に近い値を狙って減少閾値Edを設定することが可能である。上述したように、極値Ea,Ebの真ん中に近い値では、出力値の大きな増減に伴う変化率が出力値の微小な増減に伴う変化率に比べて大きくなりやすいため、出力値の微小な増減に伴って出力値が減少閾値Edを繰り返し越えるという事象が生じにくくなっている。したがって、出力値の増減態様に関係なく、実際の空気流量の変化に伴って出力値が減少閾値Edを越えた減少タイミングtdを精度良く取得することができ、その結果、脈動周波数Fの算出精度を高めることができる。
 なお、上極値Eaや下極値Ebに近い値では、出力値の大きな増減に伴う変化率が出力値の微小な増減に伴う変化率に比べて小さくなりやすい。このため、減少閾値Edが上極値Eaや下極値Ebに近い値に設定された場合は、出力値の微小な増減に伴って出力値が減少閾値Edを繰り返し越えるという事象が生じやすいと考えられる。この場合、減少タイミングtdや減少間隔Wdの算出精度が低下し、その結果、脈動周波数Fの算出精度が低下することが懸念される。このように、減少閾値Edを適正な値に設定することについて改善の余地がある。
 (第6実施形態)
 上記第1実施形態では、ECU46が補正後の平均空気量Gave2を算出したが、第6実施形態では、脈動誤差補正部61が補正後の平均空気量Gave3を算出する。本実施形態では、上記第1実施形態との相違点を中心に説明する。
 脈動誤差補正部61は、補正前の出力値S1を用いて補正後の出力値S2を算出するのではなく、補正前の出力値S1を用いて補正前の平均空気量Gave1を算出し、この平均空気量Gave1を補正量Qで補正して補正後の平均空気量Gave3を算出する。本実施形態では、補正前の平均空気量Gave1に補正量Qを掛けて、補正後の平均空気量Gave3を算出する。この場合、Gave3=Gave1×Qという関係が成り立つ。例えば、補正量Qが1より大きい場合、図23に示すように、補正後の平均空気量Gave3が補正前の平均空気量Gave1より大きくなる。
 補正量算出部60aにより算出される補正量Qは、本実施形態と上記第1実施形態とで異なる値に設定される。すなわち、補正量Qは、脈動誤差補正部61が補正後の平均空気量Gave3の算出に用いるパラメータとして補正前の平均空気量Gave1を用いるか否かに応じて設定される。なお、補正量Qは、平均空気量Gave3の算出に用いるパラメータに関係なく設定されてもよい。また、空気流量について、補正後の平均空気量Gave3が平均値及び計測結果に相当する。
 本実施形態によれば、脈動誤差補正部61が、補正前の平均空気量Gave1を用いて補正後の平均空気量Gave3を算出する。この構成では、計測期間において補正前の平均空気量Gave1の算出に出力値S1の全てを用いることが可能であるため、補正前の平均空気量Gave1及び補正後の平均空気量Gave3の算出精度を高めることができる。本実施形態とは異なり、例えば、補正前の出力値S1について所定の基準値より大きい値を全て削除し、残りの出力値S1を用いて補正前の平均空気量Gave1を算出する、という構成を想定する。この構成では、基準値より大きい出力値S1が補正前の平均空気量Gave1及び補正後の平均空気量Gave3に寄与しない。このため、例えば基準値より大きい出力値S1の検出精度が比較的高くなっている場合には、補正前の平均空気量Gave1及び補正後の平均空気量Gave3の算出精度が低下するということが懸念される。
 なお、補正量算出部60aは、上記第1実施形態のECU46と同様に、補正前の出力値S1を用いて補正後の出力値S2を算出し、この出力値S2を用いて補正後の平均空気量Gave2を算出してもよい。また、本実施形態では、補正前の平均空気量Gave1を用いて補正後の平均空気量Gave2を算出する処理をECU46が行ってもよい。さらに、補正量算出部60a等が補正前の出力値S1を用いて算出するのは補正前の平均空気量Gave1でなくてもよい。例えば、補正前の平均空気量Gave1より大きかったり小さかったりする特定空気量を算出する。この場合、補正量算出部60a等は、補正前の特定空気量を用いて補正後の特定空気量を算出する。
 (第7実施形態)
 本実施形態は、以下に説明するノイズ除去機能を、上記第1実施形態に係る計測制御装置に追加したものである。
 例えば、図25に示すように、センシング部22の出力値または変換テーブル54の変換値の時間変化を表す波形に、ノイズに起因した上極値Eanが生じる場合がある。このノイズは、電気的なノイズではなく、空気の乱れにより生じたものである。具体的には、内燃機関の任意の気筒が吸気行程から圧縮行程に切り替わる等、燃焼サイクルの各行程の切り替わりに起因して、吸気通路12を流れる吸入空気の流量(空気流量)が、その切り替わり時に不安定になる。このような空気の乱れに起因して、図25に示す波形において、上極値Ea1の直後にノイズ起因の上極値Eanが出現する。つまり、僅かに増減を繰り返す部分が波形中に現れる。
 上極値判定部56は、ノイズ起因の上極値Eanについては、上極間隔Waの算出に用いる上極値ではないと否定判定してキャンセルする。具体的には、上極値Ea1が前回出現した上極タイミングta1から、今回の上極値Eanが出現したタイミングまでの期間に、出力値が所定の下閾値Ee以下に下がったか否かを、上極値判定部56は判定する。下閾値Ee以下に下がっていないと判定された場合には、今回の上極値Eanをノイズ起因のものであるとみなして、上述の如くキャンセルする。
 下閾値Eeは、平均空気量算出部57で直前に算出された平均空気量Gaveに設定されている。なお、下閾値Eeは、平均空気量Gaveに加えて、周波数算出部59で直前に算出された脈動周波数Fに基づき設定されてもよい。例えば、平均空気量Gaveおよび脈動周波数Fと、下閾値Eeとの対応関係を示すマップを予めメモリに記憶させておき、そのマップを参照して、平均空気量Gaveおよび脈動周波数Fに基づき下閾値Eeを設定すればよい。或いは、下閾値Eeは、脈動周波数Fに基づき設定されてもよい。
 例えば、脈動周波数Fが大きいほど下閾値Eeを小さい値に設定し、平均空気量Gaveが大きいほど下閾値Eeを小さい値に設定すればよい。或いは、脈動周波数Fが大きいほど下閾値Eeを大きい値に設定し、平均空気量Gaveが大きいほど下閾値Eeを大きい値に設定してもよい。
 上述の如くキャンセルした後、上極値判定部56は、次回に出現する上極値Ea2を検出し、その検出タイミングを、第2上極タイミングta2とする。なお、前回に出現した上極値Ea1の検出タイミングは、第1上極タイミングta1に相当する。また、出力値が第1上極値Ea1または第2上極値Ea2になったことが、あらかじめ定められた特定条件に相当する。出力値がノイズ起因の上極値Eanになったことは、上述の如くキャンセルされるため、特定条件には相当しない。
 周波数算出部59は、図7と同様にして、これら上極タイミングta1,ta2の間隔を上極間隔Waとして算出する。つまり、ノイズ起因の上極値Eanは、上述の如くキャンセルされるため、周波数算出部59による上極間隔Waの算出には用いられない。
 脈動振幅算出部58は、図7と同様にして、変換テーブル54で変換したサンプリング値と、上極値判定部56からのタイミング情報とを用いて、脈動振幅Paを算出する。この脈動振幅Pa算出に用いられるタイミング情報には、ノイズ起因の上極値Eanの出現タイミングは含まれない。
 平均空気量算出部57は、図7と同様にして、変換テーブル54で変換したサンプリング値と、上極値判定部56からのタイミング情報とを用いて、平均空気量Gaveを算出する。この平均空気量Gave算出に用いられるタイミング情報には、ノイズ起因の上極値Eanの出現タイミングは含まれない。
 図26は、上極値判定部56による処理の手順を示すフローチャートである。図26に示す処理は、補正回路50に出力値が入力されている期間中、マイコンにより繰り返し実行される。先ず、ステップS10において、変換テーブル54で変換されたサンプリング値の波形において、現時点でのサンプリング値が流量増加中であるか否かを判定する。
 増加中であると判定された場合、次のステップS11において、流量が増加から減少に変化したか否かを判定する。減少に変化していないと判定された場合にはステップS11の処理を繰り返す。減少に変化したと判定された場合には次のステップS12の処理を実行する。つまり、流量が増加から減少に切り替わるまで、ステップS12の処理を待機する。
 続くステップS12では、現時点でのサンプリング値を上極値Eaとして検出する。ステップS12の処理の後、或いはステップS10にて増加中でないと判定された場合には、次のステップS13の処理を実行する。ステップS13では、流量が減少から増加に変化したか否かを判定する。増加に変化していないと判定された場合にはステップS13の処理を繰り返す。増加に変化したと判定された場合には、次のステップS14において、現時点でのサンプリング値が、所定の下閾値Ee以下になったか否かを判定する。
 下閾値Ee以下になっていないと判定された場合には、ステップS13の処理に戻る。下閾値Ee以下になっていると判定された場合には、ステップS10の処理から実行を再開する。したがって、このようにステップS10を再開する際には、流量が増加に切り替わった直後であるため、ステップS10にて流量増加と判定されることになる。そして、流量が増加から減少に切り替わるまで待機して(ステップS11)、次の上極値Eaを検出する(ステップS12)こととなる。
 要するに、上極値Eaを検出した後、増加に切り替わるまで待機して、増加に切り替わった後、次の上極値Eaの検出を待機する。但し、増加に切り替わった場合であっても、その時点でのサンプリング値が下閾値Ee以下になっていなければ、次の上極値Eaの検出を待機する状態には移行せず、増加に切り替わるまでの待機を継続する。
 したがって、図26の処理によれば、前回の上極タイミングta1から今回の上極タイミングまでの期間に、出力値が所定の下閾値Ee以下に下がっていない場合には、今回の上極値EanはステップS12で検出されなくなる。これにより、ノイズ起因の上極値Eanは、実際の波形には出現するものの、ステップS12では検出されずにキャンセルされることとなる。
 以上により、本実施形態によれば、上極値Ea1が前回出現した上極タイミングta1から、今回の上極値Eanが出現したタイミングまでの期間に、所定の下閾値Ee以下に下がったか否かを、上極値判定部56は判定する。そして、下閾値Ee以下に下がらなかった場合には、上極値判定部56は、今回出現の上極値Eanを否定判定してキャンセルする。そのため、燃焼サイクルの各行程の切り替わりに起因した空気の乱れ(ノイズ)に起因して出現する上極値Eanを、補正回路50による補正に用いないようにできる。よって、補正回路50による空気流量の補正精度が、空気の乱れに起因して低下することを抑制できる。
 なお、この種の空気の乱れ(ノイズ)により波形に出現する脈動は、電気的なノイズとは異なり波長が長い。そのため、電気ノイズによる脈動の波長は、実際に空気流量が変動する際の変動波長とは大きく異なるものの、空気乱れによる脈動の波長は、変動波長に近い。よって、空気乱れに起因した脈動をフィルタ回路で除去することは、電気ノイズに起因した脈動をフィルタ回路で除去することに比べて、極めて困難である。このような課題に対し、本実施形態によれば、上述の如く、空気乱れに起因した上極値Eanをキャンセルできるので、空気流量の補正精度向上を実現可能である。
 さらに本実施形態において、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき下閾値Eeが設定された場合、以下の効果も発揮される。すなわち、平均空気量Gaveや脈動周波数Fが動的に変化した場合であっても、空気乱れに起因した上極値Eanをキャンセルすることの確実性を向上できる。
 (第8実施形態)
 本実施形態は、以下に説明するノイズ除去機能を、上記第3実施形態に係る計測制御装置に追加したものである。
 例えば、図27に示すように、センシング部22の出力値または変換テーブル54の変換値の時間変化を表す波形に、ノイズに起因した下極値Ebnが生じる場合がある。このノイズも図25と同様にして、燃焼サイクルの各行程の切り替わりに起因して生じる、吸入空気の乱れによって生じたものである。このような空気の乱れに起因して、図27に示す波形において、下極値Eb1の直後にノイズ起因の下極値Ebnが出現する。つまり、僅かに増減を繰り返す部分が波形中に現れる。
 下極値判定部81は、ノイズ起因の下極値Ebnについては、下極間隔Wbの算出に用いる下極値ではないと否定判定してキャンセルする。具体的には、下極値Eb1が前回出現した下極タイミングtb1から、今回の下極値Ebnが出現したタイミングまでの期間に、出力値が所定の上閾値Ef以上に上がったか否かを、下極値判定部81は判定する。上閾値Ef以上に上がっていないと判定された場合には、今回の下極値Ebnをノイズ起因のものであるとみなして、上述の如くキャンセルする。
 上閾値Efは、平均空気量算出部57で直前に算出された平均空気量Gaveに設定されている。なお、上閾値Efは、上記第7実施形態と同様にして、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき設定されてもよい。
 上述の如くキャンセルした後、下極値判定部81は、次回に出現する下極値Eb2を検出し、その検出タイミングを、第2下極タイミングtb2とする。なお、前回に出現した下極値Eb1の検出タイミングは、第1下極タイミングtb1に相当する。また、出力値が第1下極値Eb1または第2下極値Eb2になったことが、あらかじめ定められた特定条件に相当する。出力値がノイズ起因の下極値Ebnになったことは、上述の如くキャンセルされるため、特定条件には相当しない。
 周波数算出部59は、図17と同様にして、これら下極タイミングtb1,tb2の間隔を下極間隔Wbとして算出する。つまり、ノイズ起因の下極値Ebnは、上述の如くキャンセルされるため、周波数算出部59による下極間隔Wbの算出には用いられない。
 脈動振幅算出部58は、図17と同様にして、変換テーブル54で変換したサンプリング値と、下極値判定部81からのタイミング情報とを用いて、脈動振幅Paを算出する。この脈動振幅Pa算出に用いられるタイミング情報には、ノイズ起因の下極値Ebnの出現タイミングは含まれない。
 平均空気量算出部57は、図17と同様にして、変換テーブル54で変換したサンプリング値と、下極値判定部81からのタイミング情報とを用いて、平均空気量Gaveを算出する。この平均空気量Gave算出に用いられるタイミング情報には、ノイズ起因の下極値Ebnの出現タイミングは含まれない。
 以上により、本実施形態によれば、下極値Eb1が前回出現した下極タイミングtb1から、今回の下極値Ebnが出現したタイミングまでの期間に、所定の上閾値Ef以上に上がったか否かを、下極値判定部81は判定する。そして、上閾値Ef以上に上がらなかった場合には、下極値判定部81は、今回出現の下極値Ebnを否定判定してキャンセルする。そのため、燃焼サイクルの各行程の切り替わりに起因した空気の乱れ(ノイズ)に起因して出現する下極値Ebnを、補正回路50による補正に用いないようにできる。よって、補正回路50による空気流量の補正精度が、空気の乱れに起因して低下することを抑制できる。
 なお、空気乱れに起因した脈動をフィルタ回路で除去することは、電気ノイズに起因した脈動を除去することに比べて困難であることは、先述した通りである。このような課題に対し、本実施形態によれば、上述の如く、空気乱れに起因した下極値Ebnをキャンセルできるので、空気流量の補正精度向上を実現可能である。
 さらに本実施形態において、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき上閾値Efが設定された場合、以下の効果も発揮される。すなわち、平均空気量Gaveや脈動周波数Fが動的に変化した場合であっても、空気乱れに起因した下極値Ebnをキャンセルすることの確実性を向上できる。
 (第9実施形態)
 本実施形態は、以下に説明するノイズ除去機能を、上記第4実施形態に係る計測制御装置に追加したものである。
 例えば、図28に示すように、センシング部22の出力値または変換テーブル54の変換値の時間変化を表す波形中に、空気の乱れに起因して僅かに増減を繰り返すノイズ脈動部が現れる場合がある。そして、このようなノイズ脈動部が増加閾値Ecの近傍で出現すると、実際の空気流量の脈動周期とは異なるタイミングで、増加中の出力値が増加閾値Ecを越える場合がある。図28の例では、増加閾到達値Ecnが、ノイズ脈動に起因して増加閾値Ecを越えた時の空気流量の値である。このノイズ脈動も図25と同様にして、燃焼サイクルの各行程の切り替わりに起因して生じる、吸入空気の乱れによって生じたものである。
 増加閾値判定部82は、ノイズ起因の増加閾到達値Ecnのタイミングについては、増加間隔Wcの算出に用いる値ではないと否定判定してキャンセルする。具体的には、増加閾到達値が前回出現したタイミングtc1から、今回の増加閾到達値が出現したタイミングまでの期間に、出力値が所定の上側閾値Egに達したか否かを、増加閾値判定部82は判定する。上側閾値Egに達していないと判定された場合には、今回の増加閾到達値Ecnをノイズ起因のものであるとみなして、上述の如くキャンセルする。
 上側閾値Egは、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき設定されている。この設定に用いられる平均空気量Gaveには、平均空気量算出部57で直前に算出された値が用いられる。この設定に用いられる脈動周波数Fには、周波数算出部59で直前に算出された値が用いられる。
 例えば、脈動周波数Fが大きいほど上側閾値Egを大きい値に設定し、平均空気量Gaveが大きいほど上側閾値Egを大きい値に設定すればよい。或いは、脈動周波数Fが大きいほど上側閾値Egを小さい値に設定し、平均空気量Gaveが大きいほど上側閾値Egを小さい値に設定してもよい。
 上述の如くキャンセルした後、増加閾値判定部82は、次回に出現する増加閾到達値を検出し、その検出タイミングを、第2増加タイミングtc2とする。なお、前回に出現した増加閾到達値の検出タイミングは、第1増加タイミングtc1に相当する。また、出力値が増加閾到達値になったことが、あらかじめ定められた特定条件に相当する。出力値がノイズ起因の増加閾到達値Ecnになったことは、上述の如くキャンセルされるため、特定条件には相当しない。
 周波数算出部59は、図19と同様にして、これら増加タイミングtc1,tc2の間隔を増加間隔Wcとして算出する。つまり、ノイズ起因の増加閾到達値Ecnは、上述の如くキャンセルされるため、周波数算出部59による増加間隔Wcの算出には用いられない。
 脈動振幅算出部58は、図19と同様にして、変換テーブル54で変換したサンプリング値と、増加閾値判定部82からのタイミング情報とを用いて、脈動振幅Paを算出する。この脈動振幅Pa算出に用いられるタイミング情報には、ノイズ起因の増加閾到達値Ecnの出現タイミングは含まれない。
 平均空気量算出部57は、図19と同様にして、変換テーブル54で変換したサンプリング値と、増加閾値判定部82からのタイミング情報とを用いて、平均空気量Gaveを算出する。この平均空気量Gave算出に用いられるタイミング情報には、ノイズ起因の増加閾到達値Ecnの出現タイミングは含まれない。
 以上により、本実施形態によれば、増加中の出力値が増加閾値Ecを前回越えたタイミングから今回越えたタイミングまでの期間に、出力値が上側閾値Egに達したか否かを、増加閾値判定部82は判定する。そして、上側閾値Egに達しなかった場合には、増加閾値判定部82は、今回越えたタイミングを否定判定してキャンセルする。そのため、燃焼サイクルの各行程の切り替わりに起因した空気の乱れ(ノイズ)に起因して出現する増加閾到達値Ecnのタイミングを、補正回路50による補正に用いないようにできる。よって、補正回路50による空気流量の補正精度が、空気の乱れに起因して低下することを抑制できる。
 なお、空気乱れに起因した脈動のフィルタ回路による除去が困難であることは、先述した通りである。このような課題に対し、本実施形態によれば、上述の如く、空気乱れに起因した増加閾到達値Ecnのタイミングをキャンセルできるので、空気流量の補正精度向上を実現可能である。
 さらに本実施形態において、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき上側閾値Egが設定された場合、以下の効果も発揮される。すなわち、平均空気量Gaveや脈動周波数Fが動的に変化した場合であっても、空気乱れに起因した増加閾到達値Ecnのタイミングをキャンセルすることの確実性を向上できる。
 (第10実施形態)
 本実施形態は、以下に説明するノイズ除去機能を、上記第5実施形態に係る計測制御装置に追加したものである。
 例えば、図29に示すように、先述したノイズ脈動部が減少閾値Edの近傍で出現すると、実際の空気流量の脈動周期とは異なるタイミングで、減少中の出力値が減少閾値Edを越える場合がある。図29の例では、減少閾到達値Ednが、ノイズ脈動に起因して減少閾値Edを越えた時の空気流量の値である。
 減少閾値判定部83は、ノイズ起因の減少閾到達値Ednのタイミングについては、減少間隔Wdの算出に用いる値ではないと否定判定してキャンセルする。具体的には、減少閾到達値が前回出現したタイミングtd1から、今回の減少閾到達値が出現したタイミングまでの期間に、出力値が所定の下側閾値Ehに達したか否かを、減少閾値判定部83は判定する。下側閾値Ehに達していないと判定された場合には、今回の減少閾到達値Ednをノイズ起因のものであるとみなして、上述の如くキャンセルする。
 下側閾値Ehは、上記第9実施形態と同様にして、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき設定されている。
 上述の如くキャンセルした後、減少閾値判定部83は、次回に出現する減少閾到達値を検出し、その検出タイミングを、第2減少タイミングtd2とする。なお、前回に出現した減少閾到達値の検出タイミングは、第1減少タイミングtd1に相当する。また、出力値が減少閾到達値になったことが、あらかじめ定められた特定条件に相当する。出力値がノイズ起因の減少閾到達値Ednになったことは、上述の如くキャンセルされるため、特定条件には相当しない。
 周波数算出部59は、図21と同様にして、これら減少タイミングtd1,td2の間隔を減少間隔Wdとして算出する。つまり、ノイズ起因の減少閾到達値Ednは、上述の如くキャンセルされるため、周波数算出部59による減少間隔Wdの算出には用いられない。
 脈動振幅算出部58は、図21と同様にして、変換テーブル54で変換したサンプリング値と、減少閾値判定部83からのタイミング情報とを用いて、脈動振幅Paを算出する。この脈動振幅Pa算出に用いられるタイミング情報には、ノイズ起因の減少閾到達値Ednの出現タイミングは含まれない。
 平均空気量算出部57は、図21と同様にして、変換テーブル54で変換したサンプリング値と、減少閾値判定部83からのタイミング情報とを用いて、平均空気量Gaveを算出する。この平均空気量Gave算出に用いられるタイミング情報には、ノイズ起因の減少閾到達値Ednの出現タイミングは含まれない。
 以上により、本実施形態によれば、減少中の出力値が減少閾値Edを前回越えたタイミングから今回越えたタイミングまでの期間に、出力値が下側閾値Ehに達したか否かを、減少閾値判定部83は判定する。そして、下側閾値Ehに達しなかった場合には、減少閾値判定部83は、今回越えたタイミングを否定判定してキャンセルする。そのため、燃焼サイクルの各行程の切り替わりに起因した空気の乱れ(ノイズ)に起因して出現する減少閾到達値Ednのタイミングを、補正回路50による補正に用いないようにできる。よって、補正回路50による空気流量の補正精度が、空気の乱れに起因して低下することを抑制できる。
 なお、空気乱れに起因した脈動のフィルタ回路による除去が困難であることは、先述した通りである。この課題に対し、本実施形態によれば、上述の如く、空気乱れに起因した減少閾到達値Ednのタイミングをキャンセルできるので、空気流量の補正精度向上を実現可能である。
 さらに本実施形態において、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき下側閾値Ehが設定された場合、以下の効果も発揮される。すなわち、平均空気量Gaveや脈動周波数Fが動的に変化した場合であっても、空気乱れに起因した減少閾到達値Ednのタイミングをキャンセルすることの確実性を向上できる。
 (第11実施形態)
 本実施形態は、以下に説明するノイズ除去機能を、上記第7実施形態に係る計測制御装置に追加したものである。
 例えば、図30に示す空気流量の波形には、電気的なノイズにより瞬時的に大きく変動した電気ノイズ値Enが出現している。この電気ノイズ値Enは、空気乱れ起因の上極値Eanと第1上極値Ea1との間に生じている。そのため、図26のステップS14において、下閾値Ee以下になったと判定されてしまい、次の上極値EanをステップS12で検出することとなる。つまり、電気ノイズ値Enが出現すると、空気乱れ起因の上極値Eanをキャンセルできないことが懸念される。
 この場合、第1上極値Ea1と上極値Eanとの間隔が、上極間隔Wa1として算出される。また、上極値Eanと第2上極値Ea2との間隔が、上極間隔Wa2として算出される。その結果、空気乱れ起因の上極値Eanを用いた上極間隔Wa1,Wa2により、空気流量が補正され、補正回路50による空気流量の補正精度低下が懸念される。
 この懸念に対し、本実施形態では、周波数算出部59により算出された脈動周波数Fが、所定の周波数閾値よりも大きい場合には、脈動誤差補正部61(流量補正部)による補正を禁止する。換言すると、脈動周波数Fの算出に用いられる上極間隔Wa1が所定の間隔閾値よりも短い場合には、脈動誤差補正部61による補正を禁止する。上述した周波数閾値は、固定された値であってもよいし、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき可変設定される値であってもよい。
 このように補正を禁止するにあたり、脈動誤差補正部61が補正を禁止することに替えて、補正量算出部60aにより算出される補正量を強制的にゼロにしてもよい。或いは、脈動誤差算出部60により算出される脈動誤差を強制的にゼロにしてもよい。
 以上により、本実施形態によれば、周波数算出部59により算出された脈動周波数Fが所定の周波数閾値よりも大きい場合には、脈動誤差補正部61による補正を禁止する。そのため、空気乱れ起因の上極値Eanをキャンセルできないといった上記懸念を軽減できる。
 なお、本実施形態では、このような補正禁止を、上極値Eaのタイミングから脈動周波数Fを算出する制御に適用させている。これに対し、下極値Ebのタイミングから脈動周波数Fを算出する制御に適用させてもよい。或いは、増加閾値Ecを越えたタイミングから脈動周波数Fを算出する制御に適用させてもよい。或いは、減少閾値Edを越えたタイミングから脈動周波数Fを算出する制御に適用させてもよい。
 (第12実施形態)
 本実施形態は、以下に説明するノイズ除去機能を、上記第1実施形態に係る計測制御装置に追加したものである。
 図7を用いて先述した脈動振幅算出部58は、変換テーブル54で変換したサンプリング値と、上極値判定部56からのタイミング情報とを用いて、脈動振幅Paを算出する。例えば、脈動最大値Gmaxと平均空気量Gaveとの差を取ることで空気流量の脈動振幅Paを算出する。そして、図25を用いて先述したノイズ起因の上極値Eanを、脈動振幅算出部58が脈動振幅Paの算出に用いた場合、脈動振幅Paが極端に小さい値になる。その結果、補正回路50による空気流量の補正精度が低下する。
 或いは、空気流量が安定しており、殆ど脈動が無い場合であっても、空気の乱れに起因して、僅かな脈動振幅Paが生じる場合がある。この場合には、空気乱れ起因の脈動振幅Paを空気流量の補正に反映させると、補正回路50による空気流量の補正精度が低下する。
 これらの課題に対し、本実施形態では、脈動振幅算出部58により算出された脈動振幅Paが、所定の脈動振幅閾値よりも小さい場合には、脈動誤差補正部61(流量補正部)による補正を禁止する。上述した脈動振幅閾値は、固定された値であってもよいし、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき可変設定される値であってもよい。
 具体的には、図31に示す本実施形態では、図7に記載の機能ブロックに、以下に説明する脈動振幅閾値算出部60bが追加されている。なお、図14に示すマイナスカット部78と同様の機能を有するマイナスカット部61aも、本実施形態では追加されている。
 脈動振幅閾値算出部60bは、周波数算出部59により算出された脈動周波数Fと、平均空気量算出部57により算出された平均空気量Gaveとを取得する。脈動振幅閾値算出部60bは、取得した脈動周波数Fと平均空気量Gaveに基づき、先述した脈動振幅閾値を算出する。
 例えば、脈動周波数Fが大きいほど脈動振幅閾値を小さい値に設定し、平均空気量Gaveが大きいほど脈動振幅閾値を小さい値に設定すればよい。或いは、脈動周波数Fが大きいほど脈動振幅閾値を大きい値に設定し、平均空気量Gaveが大きいほど脈動振幅閾値を大きい値に設定してもよい。
 脈動誤差算出部60は、脈動振幅閾値算出部60bから脈動振幅閾値を取得し、脈動振幅算出部58から脈動振幅Paを取得する。そして、取得した脈動振幅Paが脈動振幅閾値よりも小さい場合には、脈動誤差算出部60により算出される脈動誤差Errを強制的にゼロにする。これにより、脈動誤差補正部61(流量補正部)による補正が禁止される。
 以上により、本実施形態によれば、脈動振幅Paが脈動振幅閾値よりも小さい場合には、脈動誤差補正部61(流量補正部)による補正を禁止する。そのため、ノイズ起因の上極値Eanを脈動振幅Paの算出に用いた場合であっても、補正回路50による空気流量の補正精度が低下することを抑制できる。
 さらに本実施形態では、脈動振幅閾値は、平均空気量Gaveおよび脈動周波数Fの少なくとも一方に基づき設定される。よって、平均空気量Gaveや脈動周波数Fが動的に変化した場合であっても、空気乱れに起因した補正の禁止を実行することの確実性を向上できる。
 (第13実施形態)
 上記第12実施形態では、脈動振幅閾値算出部60bにより算出された脈動振幅閾値を脈動誤差算出部60が取得している。そして、脈動誤差算出部60が脈動誤差Errを強制的にゼロにすることで、脈動誤差補正部61による補正禁止を実現させている。これに対し本実施形態では、図32に示すように、脈動誤差補正部61が脈動振幅閾値を取得する。そして、脈動振幅Paが脈動振幅閾値よりも小さいか否かを脈動誤差補正部61が判定する。小さいと判定された場合には、脈動誤差補正部61が空気流量の補正を禁止する。以上により、本実施形態によっても上記第14実施形態と同様の効果が発揮される。
 なお、本実施形態の変形例として、補正量算出部60aが脈動振幅閾値を取得して、脈動振幅Paが脈動振幅閾値よりも小さいか否かを判定するようにしてもよい。小さいと判定された場合には、補正量算出部60aが補正量Qを強制的にゼロにすることで、脈動誤差補正部61による補正禁止を実現させればよい。
 本実施形態および上記第12実施形態に係る補正禁止の機能は、上極値Eaのタイミングから脈動周波数Fを算出する制御に適用されている。これに対し、上記補正禁止の機能は、下極値Ebのタイミングから脈動周波数Fを算出する制御に適用されてもよい。或いは、増加閾値Ecを越えたタイミングから脈動周波数Fを算出する制御に適用されてもよい。或いは、減少閾値Edを越えたタイミングから脈動周波数Fを算出する制御に適用されてもよい。
 (第14実施形態)
 本実施形態では、上述した周波数算出部59に以下の機能を追加させている。すなわち、周波数算出部59は、上限値以上の周波数と下限値未満の周波数を除外して、脈動周波数として算出する。つまり、周波数算出部59は、上限値未満かつ下限値以上の許容範囲内の周波数を、脈動周波数として算出する。
 さらに周波数算出部59は、変化率が上限変化率以上となっている周波数と下限変化率未満となっている周波数を除外して、脈動周波数として算出する。つまり、周波数算出部59は、変化率が上限値未満かつ下限値以上の許容範囲となっている時の周波数を、脈動周波数として算出する。なお、上記「変化率」とは、単位時間あたりに変化した周波数の変化量のことである。つまり、センシング部22の出力値または変換テーブル54の変換値の時間変化を表す波形において、その波形の傾きに「変化率」は相当する。
 図33は、補正回路50に出力値が入力されている期間中、上記機能を発揮させるようにマイコンにより繰り返し実行される処理の手順を示す。
 先ず、ステップS20において、先述した各実施形態の手法で周波数算出部59が算出した脈動周波数の値を、暫定値として設定する。続くステップS21では、ステップS20で設定した暫定値が許容範囲内であるか否かを判定する。
 許容範囲内と判定された場合、続くステップS22において、ステップS20で設定した暫定値の変化率を算出する。具体的には、前回取得の周波数と今回取得の周波数との差分から変化率を算出する。続くステップS23では、ステップS22で算出した変化率が許容範囲であるか否かを判定する。
 この変化率についても許容範囲内と判定された場合、続くステップS24において、ステップS20で設定した暫定値を、脈動周波数の決定値とする。換言すれば、許容範囲外の暫定値や許容範囲外の変化率となっている暫定値は、脈動周波数の決定値からは除外される。
 一方、暫定値が許容範囲外と判定された場合、或いは、変化率が許容範囲外と判定された場合には、ステップS25において、脈動周波数の予測値を算出する。例えば、過去の脈動周波数の決定値を用いて、今回の脈動周波数の予測値を算出する。或いは、前回の脈動周波数の決定値を、今回の脈動周波数の予測値として算出する。続くステップS26では、ステップS25で算出した予測値を、脈動周波数の決定値とする。
 以上により、本実施形態では、周波数算出部59は、許容範囲外の周波数を除外して脈動周波数を決定する。そのため、ノイズの影響を受けて許容範囲外となった周波数を脈動周波数として決定することが、回避される。
 さらに本実施形態では、周波数算出部59は、変化率が許容範囲外となっている周波数を除外して脈動周波数を算出する。そのため、ノイズの影響を受けて許容範囲を超えて大きく変化または小さく変化している周波数を脈動周波数として決定することが、回避される。
 (第15実施形態)
 本実施形態では、上述した外乱除去フィルタ部75に以下の機能を追加させている。すなわち、エンジン回転数の時間変化を表す波形の周波数を回転変動周波数とする。なお、エンジン回転数とは、エンジンの出力軸が所定時間当りに回転した回数のことであり、エンジン回転速度に相当する。そして、外乱除去フィルタ部75は、サンプリング値の波形から所定のカットオフ周波数の成分を除去するように設定されている。そのカットオフ周波数は、回転変動周波数の正の実数倍に設定されている。この実数は、整数であっても整数でなくてもよい。
 また、外乱除去フィルタ部75は、エンジン回転数が大きいほど、カットオフ周波数を大きい値に可変設定する機能を有する。但し、このような可変設定の機能は必須ではなく、固定して設定する場合には、特定の運転状態時の回転変動周波数に対して、その正の実数倍にカットオフ周波数は設定されている。
 ここで、外乱除去フィルタ部75にはローパスフィルタが用いられており、サンプリング値の波形をなまらせて出力することは、上記第2実施形態にて先述した通りである。そして、カットオフ周波数が高周波数であるほど、上記なまらせる度合いを表す時定数は小さくなる。したがって、カットオフ周波数を可変設定することは、時定数を可変設定することを意味する。したがって、外乱除去フィルタ部75は、エンジン回転数が大きいほど、時定数を小さい値に可変設定するとも言える。
 図34は、補正回路50に出力値が入力されている期間中、上記機能を発揮させるようにマイコンにより繰り返し実行される処理の手順を示す。
 先ず、ステップS30において、後述するステップS32による時定数の設定が為されているか否かを判定する。例えば、ECU46を起動させて補正回路50を作動させる初期時には、時定数の設定がないと判定される。その場合には、ステップS34において、時定数を、予め記憶させておいた初期値に設定する。
 一方、時定数の設定があると判定された場合、続くステップS31において、周波数算出部59で算出された脈動周波数の前回値を取得する。続くステップS32では、ステップS31で取得した脈動周波数に基づき時定数を可変設定する。具体的には、脈動周波数が高周波数であるほど時定数を小さい値に設定する。なお、脈動周波数が高周波数であるほど、エンジン回転数(回転変動周波数)が高周波数であることを意味する。よって、回転変動周波数高周波数であるほど時定数を小さい値に設定するとも言える。
 続くステップS33では、ステップS32またはステップS34で設定された時定数を用いて、外乱除去フィルタ部75によるフィルタ処理を実行する。外乱除去フィルタ部75は、エンジン回転数の脈動周波数に起因した周波数ノイズ(高調波ノイズ)を、サンプリング波形から除去する。
 なお、図14等に示す外乱除去部71は、図15に例示される瞬時的なノイズを除去する。外乱除去部71のカットオフ周波数は、外乱除去フィルタ部75のカットオフ周波数に比べて高周波数に設定されている。外乱除去部71の時定数は、外乱除去フィルタ部75の時定数に比べて小さい値に設定されている。
 ここで、図14等に示す応答補償部72にはハイパスフィルタが用いられており、空気流量の急激な変化を出力値に忠実に再現させるフィルタであることは、上記第2実施形態にて先述した通りである。これにより、センシング部22による検出応答遅れによりなまっている波形が、実際の急激な変化の波形に修正される。そして、このようなハイパスフィルタの処理を実行すると、図13に例示されるように振幅が大きくなってしまう。そこで、図14等に示す振幅低減フィルタ部73は、このように大きくなった振幅を低減させるフィルタ処理を実行する。
 但し、このように振幅を低減させた波形では、平均空気量Gaveが実際の平均値よりもプラス側にずれてしまう。そこで、図14等に示す平均空気量算出部57は、第1変換テーブル54ではなく第2変換テーブル74で変換された値を用いて平均空気量Gaveを算出している。つまり、平均空気量算出部57は、応答補償部72および振幅低減フィルタ部73のフィルタ処理が施されていない値を用いて、平均空気量Gaveを算出する。これにより、平均空気量Gaveの算出精度を向上させている。
 以上により、本実施形態では、外乱除去フィルタ部75で用いられるカットオフ周波数は、エンジン回転に係る回転変動周波数の正の実数倍に設定されている。そのため、エンジン回転数の脈動周波数に起因した周波数ノイズ(高調波ノイズ)を、サンプリング波形から除去できる。よって、空気流量の計測精度を向上できる。
 さらに本実施形態では、外乱除去フィルタ部75で用いられるカットオフ周波数は、エンジン回転速度が速いほど大きい値に可変設定される。そのため、エンジン回転速度の変化に伴い生じる高調波ノイズの周波数に合わせて、カットオフ周波数を可変設定できる。よって、空気流量の計測精度をより一層向上できる。
 また、サンプリング数増加部76によりサンプリング数を増加させることにより、サンプリング波形の分解能を高めることができる。よって、脈動周波数の算出に用いる極値の検出精度を向上でき、ひいては空気流量の計測精度を向上できる。
 さて、脈動状態算出部が、外部装置から取得するのではなく出力値を用いて脈動状態を算出するにあたり、以下のようなノイズがのりやすいことが懸念される。例えば、センシング部22に水が付着することに伴い生じる検出値の急激な変化である。このようなノイズは、外乱除去フィルタ部75により除去され得る。
 (他の実施形態)
 以上、本開示による複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
 変形例1として、計測出口36は流出口34と同様に流入口33とは反対側を向いていてもよい。例えば、図24に示すように、奥行き方向Zにおいて計測出口36が流入口33と流出口34との間に設けられた構成とする。この構成では、ハウジング21の外周面から幅方向Xに突出した凸部に計測出口36が形成されていることで、計測出口36が流出口34と同様に吸気通路12の下流側に向けて開放されている。吸気通路12において、ハウジング21の外周面に沿って順方向に流れる空気が計測出口36を通過することで、計測出口36の周辺で渦流等の気流の乱れが発生しやすくなっている。このため、計測出口36が流入口33と反対側を向いていても、吸気通路12において空気の逆流が発生した場合に、この逆流が計測出口36に流入しにくいと考えられる。
 これに対して、本変形例でも、脈動振幅Paを用いて脈動誤差Errが算出される。このため、逆流が計測出口36に流入しにくいことで空気流量の補正精度が低下しやすい状態になっていても、上記第1実施形態と同様に、その補正精度を高めることができる。また、上記第1実施形態において、計測出口36は、下流外面24cに設けられていることで、流入口33とは反対側に向けて開放されていてもよい。
 変形例2として、ハウジング21において、計測出口36の一部が上流外面24bに設けられ、残りの部分が中間外面24dに設けられているのではなく、計測出口36全体が上流外面24b又は中間外面24dに設けられていてもよい。計測出口36全体が上流外面24bに設けられていると、計測出口36が流出口34とは反対側に向けて開放された構成が実現される。計測出口36全体が中間外面24dに設けられていると、計測出口36が幅方向Xに開放された構成が実現される。この構成では、計測出口36の開放向きが流入口33の開放向き及び流出口34の開放向きのいずれとも異なることになる。
 変形例3として、バイパス流路30は計測流路32を有する一方で通過流路31は有していなくてもよい。この場合、計測入口35が計測出口36と同様にハウジング21の外面に形成され、吸気通路12を流れる空気が計測入口35からバイパス流路30に流れ込むことになる。
 変形例4として、検出絞り部37等の絞り部は、計測流路32において少なくとも一部がセンシング部22よりも上流に設けられていれば、分岐路32aや案内路32bに設けられていてもよい。また、検出絞り部37は、幅方向Xにおいてハウジング本体24の内壁面からセンシング部22に向けて延びた一対の延出面と、これら延出面にかけ渡され且つ奥行き方向Zに真っ直ぐに延びたフラット面とを有していてもよい。延出面は、幅方向Xに真っ直ぐに延びた面でもよく、幅方向Xに対して傾斜した方向に真っ直ぐに延びた面でもよい。また、延出面は、外側に向けて膨らむように湾曲した湾曲面でもよく、内側に向けて凹むように湾曲した湾曲面でもよい。また、検出絞り部37は、一対の延出面のうち上流側の延出面だけを有していてもよい。この構成では、フラット面が検出路32cよりも下流側まで延びている。
 変形例5として、補正量算出部60aは、ゲイン量等の補正割合を示す補正量Qではなく、オフセット量等の補正前の出力値S1と同じ単位の補正量Qを算出してもよい。この場合、脈動誤差補正部61は、補正前の出力値S1に補正量Qを加えることで補正後の出力値S2を算出する。上記第6実施形態においては、補正量算出部60aは、補正前の平均空気量Gave1と同じ単位の補正量Qを算出してもよい。この場合、脈動誤差補正部61は、補正前の平均空気量Gave1に補正量Qを加えることで補正後の平均空気量Gave3を算出する。
 変形例6として、補正回路50は、上記第1実施形態の上極値判定部56と、上記第3実施形態の下極値判定部81と、上記第4実施形態の増加閾値判定部82と、上記第5実施形態の減少閾値判定部83との少なくとも2つを有していてもよい。この場合、周波数算出部59は、上極値判定部56、下極値判定部81、増加閾値判定部82及び減少閾値判定部83の少なくとも2つの判定結果のそれぞれについて脈動周波数を算出し、これら脈動周波数の平均をとるなどして脈動周波数Fを算出する。
 変形例7として、平均空気量算出部57は、計測期間における空気流量の最小値である脈動最小値と脈動最大値との平均によって平均空気量Gaveを算出してもよい。また、平均空気量算出部57は、空気流量の最大値よりも検出精度が低い脈動最小値、又は脈動最小値と脈動最小値の前後数個の空気量を用いることなく、平均空気量Gaveを算出してもよい。
 変形例8として、処理部45は、センシング部22からの出力値をマップや関数、高速フーリエ変換FFTなどで処理して脈動周波数Fを算出してもよい。
 変形例9として、ECU46と処理部45とは双方向通信が可能になっていてもよい。例えば、ECU46はエンジンパラメータ等の外部情報を処理部45に対して出力してもよい。この場合でも、処理部45では、外部情報ではなくセンシング部22の出力値を用いて脈動周波数F等の脈動状態が算出される。
 変形例10として、処理部45によって実現されていた機能は、ハードウェア及びソフトウェア、又はこれらの組み合わせによって実現してもよい。処理部45は、たとえば他の制御装置、たとえばECU46と通信し、他の制御装置が処理の一部又は全部を実行してもよい。処理部45は、電子回路によって実現される場合、多数の論理回路を含むデジタル回路、又はアナログ回路によって実現することができる。
 流量計測装置の一例としてエアフロメータ10が対応してもよい。絞り部の一例として検出絞り部37が対応してもよい。センシングユニットの一例としてセンササブアッセンブリ40が対応してもよい。ボデーの一例としてモールド部42が対応してもよい。計測制御装置及び計測制御部の一例として処理部45が対応してもよい。外部装置の一例としてECU46が対応してもよい。脈動状態算出部及び条件判定部の一例として上極値判定部56が対応してもよい。脈動状態算出部の一例として平均空気量算出部57が対応してもよい。脈動状態算出部の一例として脈動振幅算出部58が対応してもよい。脈動状態算出部の一例として周波数算出部59が対応してもよい。誤差補正部の一例として脈動誤差算出部60が対応してもよい。流量補正部の一例として脈動誤差補正部61が対応してもよい。脈動状態算出部及び条件判定部の一例として下極値判定部81が対応してもよい。脈動状態算出部、条件判定部及び増加判定部として増加閾値判定部82が対応してもよい。脈動状態算出部、条件判定部及び減少判定部の一例として減少閾値判定部83が対応してもよい。平均値の一例として補正前の平均空気量Gave1が対応してもよい。計測結果及び平均値の一例として補正後の平均空気量Gave3が対応してもよい。計測結果の一例として補正後の出力値S2が対応してもよい。

 

Claims (27)

  1.  空気の流量に応じた信号を出力するセンシング部(22)の出力値を用いて空気流量を計測し、前記空気流量の計測結果(S2,Gave3)を所定の外部装置(46)に対して出力する計測制御装置(45)であって、
     前記空気流量に生じる脈動の状態である脈動状態を、前記外部装置から取得するのではなく前記出力値を用いて算出する脈動状態算出部(56,57,58,59,81,82,83)と、
     前記脈動状態算出部により算出された前記脈動状態を用いて前記空気流量の補正を行う流量補正部(61)と、
    を備えている計測制御装置。
  2.  内燃機関へ吸入される空気の流量に応じた信号を出力するセンシング部(22)の出力値を用いて空気流量を計測し、前記空気流量の計測結果(S2,Gave3)を所定の外部装置(46)に対して出力する計測制御装置(45)であって、
     前記空気流量に生じる脈動の状態である脈動状態を、前記出力値を用いて算出する脈動状態算出部(56,57,58,59,81,82,83)と、
     前記脈動状態算出部により算出された前記脈動状態を用いて前記空気流量の補正を行う流量補正部(61)と、
     前記出力値の時間変化を表す波形から、所定のカットオフ周波数の成分を除去するフィルタ部(75)と、
    を備え、
     前記内燃機関の回転速度の時間変化を表す波形の周波数を回転変動周波数とし、
     前記カットオフ周波数は、前記回転変動周波数の正の実数倍に設定されている計測制御装置。
  3.  前記カットオフ周波数は、前記回転速度が速いほど大きい値に可変設定される請求項2に記載の計測制御装置。
  4.  前記出力値に脈動が含まれることで前記空気流量に生じる誤差である脈動誤差(Err)を算出する誤差算出部(60)と、
     前記誤差算出部により算出された前記脈動誤差を用いて補正量(Q)を算出する補正量算出部(60a)と、
    を備え、
     前記流量補正部は、前記補正量で前記出力値を補正して補正後の出力値(S2)を前記計測結果として算出する、請求項1~3のいずれか1つに記載の計測制御装置。
  5.  前記出力値に脈動が含まれることで前記空気流量に生じる誤差である脈動誤差(Err)を算出する誤差算出部(60)と、
     前記誤差算出部により算出された前記脈動誤差を用いて補正量(Q)を算出する補正量算出部(60a)と、
    を備え、
     前記流量補正部は、前記出力値の平均値(Gave1)を算出し、前記平均値を前記補正量で補正した値(Gave3)を前記空気流量の補正結果として算出する、請求項1~3のいずれか1つに記載の計測制御装置。
  6.  前記脈動状態を示す脈動パラメータには、前記空気流量に生じる脈動の周波数である脈動周波数(F)が含まれており、
     前記脈動状態算出部は、
     前記出力値を用いて前記脈動周波数を算出する周波数算出部(59)を有している、請求項1~5のいずれか1つに記載の計測制御装置。
  7.  前記脈動状態算出部は、
     前記出力値があらかじめ定められた特定条件に該当したか否かを判定する条件判定部(56,81,82,83)を有しており、
     前記周波数算出部は、前記出力値が前記特定条件に該当したタイミング(ta1,tb1,tc1,td1)と、次に前記出力値が前記特定条件に該当したタイミング(ta2,tb2,tc2,td2)との時間間隔(Wa,Wb,Wc,Wd)を用いて前記脈動周波数を算出する、請求項6に記載の計測制御装置。
  8.  前記出力値の変化態様が増加から減少に切り替わる場合の前記出力値を上極値(Ea)と称すると、
     前記脈動状態算出部は、前記出力値が前記上極値になったか否かを判定する上極値判定部(56)を有しており、
     前記周波数算出部は、前記出力値が前記上極値になったタイミング(ta1)と、次に前記出力値が前記上極値になったタイミング(ta2)との時間間隔(Wa)を用いて前記脈動周波数を算出する、請求項6又は7に記載の計測制御装置。
  9.  前記出力値の時間変化を表す波形に前記上極値が前回出現したタイミングから今回出現したタイミングまでの期間に、前記出力値が所定の下閾値(Ee)以下に下がらなかった場合には、前記上極値判定部は、前記今回出現の前記上極値を否定判定してキャンセルする請求項8に記載の計測制御装置。
  10.  前記下閾値は、前記空気流量の平均値および前記脈動周波数の少なくとも一方に基づき設定される、請求項9に記載の計測制御装置。
  11.  前記出力値の変化態様が減少から増加に切り替わる場合の前記出力値を下極値(Eb)と称すると、
     前記脈動状態算出部は、前記出力値が前記下極値になったか否かを判定する下極値判定部(81)を有しており、
     前記周波数算出部は、前記出力値が前記下極値になったタイミング(tb1)と、次に前記出力値が前記下極値になったタイミング(tb2)との時間間隔(Wb)を用いて前記脈動周波数を算出する、請求項6~10のいずれか1つに記載の計測制御装置。
  12.  前記出力値の時間変化を表す波形に前記下極値が前回出現したタイミングから今回出現したタイミングまでの期間に、前記出力値が所定の上閾値(Ee)以上に上がらなかった場合には、前記下極値判定部は、前記今回出現の前記下極値を否定判定してキャンセルする請求項11に記載の計測制御装置。
  13.  前記上閾値は、前記空気流量の平均値および前記脈動周波数の少なくとも一方に基づき設定される、請求項12に記載の計測制御装置。
  14.  前記脈動状態算出部は、増加中の前記出力値があらかじめ定められた増加閾値(Ec)を越えたか否かを判定する増加判定部(82)を有しており、
     前記周波数算出部は、増加中の前記出力値が前記増加閾値を越えたタイミング(tc1)と、増加中の前記出力値が次に前記増加閾値を越えたタイミング(tc2)との時間間隔(Wc)を用いて前記脈動周波数を算出する、請求項6~13のいずれか1つに記載の計測制御装置。
  15.  増加中の前記出力値が前記増加閾値を前回越えたタイミングから今回越えたタイミングまでの期間に、前記出力値が所定の上側閾値(Eg)に達しなかった場合には、前記増加判定部は、前記今回越えたタイミングを否定判定してキャンセルする請求項14に記載の計測制御装置。
  16.  前記脈動状態算出部は、減少中の前記出力値があらかじめ定められた減少閾値(Ed)を越えたか否かを判定する減少判定部(83)を有しており、
     前記周波数算出部は、減少中の前記出力値が前記減少閾値を越えたタイミング(td1)と、減少中の前記出力値が次に前記減少閾値を越えたタイミング(td2)との時間間隔(Wd)を用いて前記脈動周波数を算出する、請求項6~15のいずれか1つに記載の計測制御装置。
  17.  減少中の前記出力値が前記減少閾値を前回越えたタイミングから今回越えたタイミングまでの期間に、前記出力値が所定の下側閾値(Eh)に達しなかった場合には、前記減少判定部は、前記今回越えたタイミングを否定判定してキャンセルする請求項16に記載の計測制御装置。
  18.  前記周波数算出部により算出された前記脈動周波数が、所定の周波数閾値よりも大きい場合には、前記流量補正部による補正を禁止する、請求項6~17のいずれか1つに記載の計測制御装置。
  19.  前記脈動状態を示す脈動パラメータには、前記空気流量に生じる脈動の振幅である脈動振幅(Pa)が含まれており、
     前記脈動状態算出部は、前記出力値を用いて前記脈動振幅を算出する脈動振幅算出部(58)を有している、請求項6~18のいずれか1つに記載の計測制御装置。
  20.  前記脈動振幅算出部により算出された前記脈動振幅が、所定の脈動振幅閾値よりも小さい場合には、前記流量補正部による補正を禁止する、請求項19に記載の計測制御装置。
  21.  前記脈動振幅閾値は、前記空気流量の平均値および前記脈動周波数の少なくとも一方に基づき設定される、請求項20に記載の計測制御装置。
  22.  前記周波数算出部は、上限周波数以上または下限周波数未満の周波数を除外して、前記脈動周波数を算出する請求項6~21のいずれか1つに記載の計測制御装置。
  23.  前記周波数算出部は、変化率が上限変化率以上または下限変化率未満となっている周波数を除外して、前記脈動周波数を算出する請求項6~22のいずれか1つに記載の計測制御装置。
  24.  空気流量を計測する流量計測装置(10)であって、
     空気が流入する計測入口(35)及び前記空気が流出する計測出口(36)を有する計測流路(32)と、
     前記計測流路において前記空気の流量に応じた信号を出力するセンシング部(22)と、
     前記センシング部の出力値を用いて前記空気流量を計測し、前記空気流量の計測結果(S2,Gave3)を所定の外部装置(46)に対して出力する計測制御部(45)と、を備え、
     前記計測制御部は、
     前記空気流量に生じる脈動の状態である脈動状態を、前記外部装置から取得するのではなく前記出力値を用いて算出する脈動状態算出部(56,57,58,59,81,82,83)と、
     前記脈動状態算出部により算出された前記脈動状態を用いて前記空気流量の補正を行う流量補正部(61)と、
    を備えている流量計測装置。
  25.  前記空気が流入する流入口(33)及び前記空気が流出する流出口(34)を有する通過流路(31)を備え、
     前記計測流路は、前記通過流路から分岐した分岐流路である、請求項24に記載の流量計測装置。
  26.  前記計測入口側から前記センシング部に向けて前記計測流路を徐々に絞る絞り部(37)を備えている、請求項24又は25に記載の流量計測装置。
  27.  前記センシング部と、前記計測制御部と、前記センシング部及び前記計測制御部を保護するボデー(42)とを有するセンシングユニット(40)と、
     前記計測流路を形成し、前記センシングユニットを収容したハウジング(21)と、
    を備えている請求項24~26のいずれか1つに記載の流量計測装置。

     
PCT/JP2019/024196 2018-07-05 2019-06-19 計測制御装置及び流量計測装置 WO2020008870A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019003406.5T DE112019003406T9 (de) 2018-07-05 2019-06-19 Messsteuerungsvorrichtung und Strömungsvolumenmessvorrichtung
US17/132,292 US20210108952A1 (en) 2018-07-05 2020-12-23 Measurement control device and flow volume measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018128497 2018-07-05
JP2018-128497 2018-07-05
JP2019108845A JP2020012814A (ja) 2018-07-05 2019-06-11 計測制御装置及び流量計測装置
JP2019-108845 2019-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/132,292 Continuation US20210108952A1 (en) 2018-07-05 2020-12-23 Measurement control device and flow volume measuring device

Publications (1)

Publication Number Publication Date
WO2020008870A1 true WO2020008870A1 (ja) 2020-01-09

Family

ID=69059563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024196 WO2020008870A1 (ja) 2018-07-05 2019-06-19 計測制御装置及び流量計測装置

Country Status (3)

Country Link
US (1) US20210108952A1 (ja)
DE (1) DE112019003406T9 (ja)
WO (1) WO2020008870A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128308A (ja) * 2018-01-26 2019-08-01 株式会社デンソー 空気流量測定装置
DE102019126783A1 (de) * 2019-10-04 2021-04-08 systec Controls Meß- und Regeltechnik GmbH Verfahren zur Bestimmung des Massenstroms in einem Verbrennungsmotor
CN113155214B (zh) * 2021-05-12 2023-04-07 郑州安然测控技术股份有限公司 一种超声波燃气表计量数据采样方法及装置
CN116858346B (zh) * 2023-09-05 2023-11-07 成都千嘉科技股份有限公司 基于超声波流量计的校准方法和校准装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119525A (ja) * 1993-10-18 1995-05-09 Aisan Ind Co Ltd 内燃機関の吸入空気量検出装置
DE19620435C1 (de) * 1996-05-21 1998-01-15 Siemens Ag Verfahren zur Kompensation eines Meßfehlers eines einen Luftmassenstrom repräsentierenden Meßsignals
JPH1183584A (ja) * 1997-09-11 1999-03-26 Hitachi Ltd 発熱抵抗体式空気流量測定装置および逆流判定方法および誤差補正方法
JP2012168005A (ja) * 2011-02-14 2012-09-06 Hitachi Automotive Systems Ltd エンジンの吸入空気量測定装置
JP2013160121A (ja) * 2012-02-03 2013-08-19 Hitachi Automotive Systems Ltd 内燃機関の空気量計測装置及び空気量計測方法
JP2014185861A (ja) * 2013-03-21 2014-10-02 Hitachi Automotive Systems Ltd 熱式流量計
US20170167422A1 (en) * 2015-12-15 2017-06-15 Robert Bosch Gmbh Method and device for ascertaining a gas-mass flow in a combustion engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933665A1 (de) * 1999-07-17 2001-01-18 Bosch Gmbh Robert Vorrichtung zur Erfassung einer pulsierenden Größe
JP6506681B2 (ja) * 2015-11-13 2019-04-24 日立オートモティブシステムズ株式会社 空気流量測定装置
JP6600755B2 (ja) * 2016-10-19 2019-10-30 日立オートモティブシステムズ株式会社 流量検出装置
JP6312885B1 (ja) * 2017-03-15 2018-04-18 三菱電機株式会社 熱式空気流量計
JP6540747B2 (ja) * 2017-04-14 2019-07-10 株式会社デンソー 空気流量測定装置
JP6531774B2 (ja) * 2017-04-14 2019-06-19 株式会社デンソー 空気流量測定装置
JP2019086439A (ja) * 2017-11-08 2019-06-06 株式会社デンソー 空気流量計測装置、及び空気流量計測システム
US11237035B2 (en) * 2017-12-27 2022-02-01 Hitachi Astemo, Ltd. Physical quantity detecting device
JP2019128308A (ja) * 2018-01-26 2019-08-01 株式会社デンソー 空気流量測定装置
JP2019191077A (ja) * 2018-04-27 2019-10-31 株式会社デンソー 計測制御装置及び流量計測装置
JP6970309B2 (ja) * 2018-09-26 2021-11-24 日立Astemo株式会社 内燃機関制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119525A (ja) * 1993-10-18 1995-05-09 Aisan Ind Co Ltd 内燃機関の吸入空気量検出装置
DE19620435C1 (de) * 1996-05-21 1998-01-15 Siemens Ag Verfahren zur Kompensation eines Meßfehlers eines einen Luftmassenstrom repräsentierenden Meßsignals
JPH1183584A (ja) * 1997-09-11 1999-03-26 Hitachi Ltd 発熱抵抗体式空気流量測定装置および逆流判定方法および誤差補正方法
JP2012168005A (ja) * 2011-02-14 2012-09-06 Hitachi Automotive Systems Ltd エンジンの吸入空気量測定装置
JP2013160121A (ja) * 2012-02-03 2013-08-19 Hitachi Automotive Systems Ltd 内燃機関の空気量計測装置及び空気量計測方法
JP2014185861A (ja) * 2013-03-21 2014-10-02 Hitachi Automotive Systems Ltd 熱式流量計
US20170167422A1 (en) * 2015-12-15 2017-06-15 Robert Bosch Gmbh Method and device for ascertaining a gas-mass flow in a combustion engine

Also Published As

Publication number Publication date
DE112019003406T9 (de) 2021-05-12
DE112019003406T5 (de) 2021-03-18
US20210108952A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2020008870A1 (ja) 計測制御装置及び流量計測装置
JP4957081B2 (ja) 流量測定装置
JP4140553B2 (ja) 空気流量測定装置
CN108351235B (zh) 空气流量测定装置
US11365996B2 (en) Measurement control device and flow measurement device
JP6531774B2 (ja) 空気流量測定装置
JP6814894B2 (ja) 物理量検出装置
US20150355009A1 (en) Airflow-rate detecting device capable of detecting humidity
JP2015049135A (ja) 熱式流量センサ
JP5387617B2 (ja) 流量測定装置の調整方法
JP4752472B2 (ja) 空気流量測定装置
JP6600755B2 (ja) 流量検出装置
JP2020012814A (ja) 計測制御装置及び流量計測装置
JP5454603B2 (ja) 流量測定装置
US10739213B2 (en) Temperature and humidity sensor
JP3985801B2 (ja) 空気流量測定装置
WO2021131673A1 (ja) 計測制御装置
KR20170056552A (ko) 채널 구조를 관류하는 유체 매체의 적어도 하나의 매개변수를 측정하기 위한 센서 장치
WO2012032617A1 (ja) 流量検出装置
JP7259787B2 (ja) 計測制御装置
JP7052230B2 (ja) 空気流量計測装置及び空気流量計測方法
WO2015004933A1 (ja) 温湿度測定装置
JP2019066430A (ja) 流量測定装置
GB2560573B (en) An apparatus, method and computer program for controlling an engine within a vehicle
JP2019132600A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829995

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19829995

Country of ref document: EP

Kind code of ref document: A1