WO2020004514A1 - 回転往復駆動アクチュエータ - Google Patents

回転往復駆動アクチュエータ Download PDF

Info

Publication number
WO2020004514A1
WO2020004514A1 PCT/JP2019/025505 JP2019025505W WO2020004514A1 WO 2020004514 A1 WO2020004514 A1 WO 2020004514A1 JP 2019025505 W JP2019025505 W JP 2019025505W WO 2020004514 A1 WO2020004514 A1 WO 2020004514A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable magnet
drive actuator
reciprocating drive
movable
rotary reciprocating
Prior art date
Application number
PCT/JP2019/025505
Other languages
English (en)
French (fr)
Inventor
高橋 勇樹
泰隆 北村
雅春 加賀美
稲本 繁典
Original Assignee
ミツミ電機株式会社
高橋 勇樹
泰隆 北村
雅春 加賀美
稲本 繁典
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社, 高橋 勇樹, 泰隆 北村, 雅春 加賀美, 稲本 繁典 filed Critical ミツミ電機株式会社
Priority to KR1020207038096A priority Critical patent/KR102581631B1/ko
Priority to JP2020527610A priority patent/JP7108211B2/ja
Priority to CN201980037890.4A priority patent/CN112243563A/zh
Priority to US17/255,227 priority patent/US11909291B2/en
Priority to EP19825399.9A priority patent/EP3817204A4/en
Publication of WO2020004514A1 publication Critical patent/WO2020004514A1/ja
Priority to JP2022112473A priority patent/JP7421140B2/ja
Priority to JP2024002555A priority patent/JP2024028459A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • H02K33/14Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems wherein the alternate energisation and de-energisation of the two coil systems are effected or controlled by movement of the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • H02K41/033Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type with armature and magnets on one member, the other member being a flux distributor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • H02K1/143Stator cores with salient poles consisting of C-shaped cores of the horse-shoe type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/18Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having horse-shoe armature cores
    • H02K21/185Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having horse-shoe armature cores with the axis of the rotor perpendicular to the plane of the armature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present invention relates to a rotary reciprocating drive actuator.
  • a galvano motor that changes a reflection angle of a mirror that reflects a laser beam and irradiates a scanning target in a multifunction peripheral, a laser beam printer, or the like is known.
  • a galvano motor there are known various types such as a type in which a coil is attached to a mirror to form a coil movable structure (referred to as a “coil movable type”) and a structure disclosed in Patent Document 1.
  • Patent Document 1 four permanent magnets are provided on a rotating shaft to which a mirror is attached so as to be magnetized in a radial direction of the rotating shaft, and a core having a magnetic pole around which a coil is wound sandwiches the rotating shaft. Is disclosed.
  • the coil movable type heat generated by the coil during driving may adversely affect the surface state of the mirror, the state of the mirror joined to the rotating shaft, the shape of the mirror including warpage, and the like.
  • the coil movable type has a problem that it is difficult to increase the input current to the coil in consideration of the heat generated by the coil when energized, and it is difficult to increase the size and the amplitude of the movable mirror.
  • the wiring to the coil needs to be drawn out to the fixed body side with respect to the mirror which is a movable body, so that the assembling property is poor.
  • Patent Document 1 since the magnet is disposed on the movable body side, the above-described problem of the movable coil type can be solved, but the magnet is stopped at a neutral position with respect to the core, that is, switching of the magnetic pole of the magnet is performed. In order to position the part at the center of the core, two pole magnets per pole of the core, and conveniently four pole magnets, are required.
  • An object of the present invention is to provide a rotary reciprocating drive actuator that has high manufacturability, high assembly accuracy, and can be driven with high amplitude even when a movable object is a large mirror.
  • the rotary reciprocating drive actuator of the present invention comprises: A movable body having a shaft portion to which a movable object is connected and a movable magnet fixed to the shaft portion; A fixed body that has a coil and a core around which the coil is wound and has an even number of magnetic poles, and that rotatably supports the shaft portion, and that is provided by electromagnetic interaction between the coil and the movable magnet that are energized.
  • a rotary reciprocating drive actuator that drives the movable body to reciprocate around the shaft with respect to the fixed body
  • the movable magnet has a ring shape, and is configured such that an even number of magnetic poles forming an S pole and an N pole are alternately magnetized on the outer periphery of the shaft portion, The number of magnetic poles of the core and the number of magnetic poles of the movable magnet are equal, The even-numbered magnetic poles of the core are arranged opposite to each other with the movable magnet and an air gap interposed therebetween on the outer peripheral side of the shaft portion,
  • the fixed body is disposed to face the movable magnet with an air gap therebetween, and has a rotation angle position holding unit that holds the rotation angle position of the movable magnet by magnetic attraction generated between the movable magnet and the fixed magnet.
  • manufacturability is high, assembling accuracy is high, and even when a movable object is a large mirror, it can be driven with high amplitude.
  • FIG. 1 is an external perspective view of a rotary reciprocating drive actuator according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the rotary reciprocating drive actuator according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing a main configuration of the rotary reciprocating drive actuator according to the first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view showing a damping portion of the rotary reciprocating drive actuator according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating a damping portion of the rotary reciprocating drive actuator according to the first embodiment of the present invention.
  • FIG. 6A is a diagram illustrating a waveform without ringing due to the function of the attenuation unit, and FIG.
  • FIG. 6B is a diagram illustrating a waveform with ringing. It is a figure showing the modification of an attenuation part.
  • FIG. 4 is a diagram illustrating an operation of the rotary reciprocating drive actuator by the magnetic circuit of the rotary reciprocating drive actuator according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an operation of the rotary reciprocating drive actuator by the magnetic circuit of the rotary reciprocating drive actuator according to the first embodiment of the present invention.
  • FIG. 9 is an exploded perspective view of a rotary reciprocating drive actuator according to Embodiment 2 of the present invention.
  • FIG. 13 is an external perspective view of a rotary reciprocating drive actuator according to Embodiment 3 of the present invention.
  • FIG. 13 is a longitudinal sectional view illustrating a main configuration of a rotary reciprocating drive actuator according to Embodiment 3 of the present invention.
  • FIG. 14 is an external perspective view of a rotary reciprocating drive actuator according to Embodiment 4 of the present invention.
  • FIG. 3 is a block diagram illustrating a main configuration of a first example of a scanner system having a rotary reciprocating drive actuator.
  • FIG. 10 is a block diagram illustrating a main configuration of a second example of the scanner system having the rotary reciprocating drive actuator.
  • FIG. 1 is an external perspective view of the rotary reciprocating drive actuator 1 according to Embodiment 1 of the present invention
  • FIG. 2 is an exploded perspective view of the rotary reciprocating drive actuator 1 according to Embodiment 1 of the present invention
  • FIG. 3 is a plan view showing a main configuration of the rotary reciprocating drive actuator 1 according to Embodiment 1 of the present invention.
  • the rotary reciprocating drive actuator 1 drives the movable body 10 to which the movable object is connected to reciprocally rotate around the shaft 13.
  • the rotary reciprocating drive actuator 1 includes, for example, a mirror 16 as a movable object on the movable body 10, and scans the mirror 16 with a mirror 16 such as a lidar (“light detection and measurement” LIDAR: Laser Imaging Detection and Ranging). It is used as an optical scanner that irradiates a laser beam or the like, acquires reflected light thereof, and acquires information on a scanning target.
  • the rotary reciprocating drive actuator 1 is applicable to a scanning device such as a multifunction machine or a laser beam printer.
  • the rotary reciprocating drive actuator 1 can suitably function even in a situation where it receives an external force, and is preferably applied to a device that may receive an impact during traveling, for example, a scanner device that can be mounted on a vehicle.
  • the rotary reciprocating drive actuator 1 rotatably supports the movable body 10 having the movable magnet 30 and the shaft 13 and the shaft 13, and includes a coil 43 and a rotation angle position holding unit (hereinafter, “magnet position”) of the movable magnet 30. And a fixed body 20 having a holding portion 24).
  • the movable body 10 In the rotary reciprocating drive actuator 1, by a magnetic attraction force between the magnet position holding unit 24 and the movable magnet 30, that is, a so-called magnetic spring, the movable body 10 is rotatable so as to be located at the operation reference position in a normal state. Is held. Here, in the normal state, the coil 43 is not energized.
  • the position of the movable body 10 at the operation reference position means that, in the present embodiment, the movable magnet 30 is located at a neutral position with respect to the magnetic poles 412a and 412b to be excited by the coil 43. It is a position where the same rotation can be performed in both the direction and the other direction (forward rotation and reverse rotation when viewed from the shaft portion 13 side).
  • a magnetic pole switching part (also referred to as a “magnetic pole switching part”) 34 that is a part of the movable magnet 30 at which the magnetic pole switches is located at a position facing the magnetic pole on the coil 43 side.
  • the magnetic pole switching portions 34 are provided at two locations on the outer peripheral portion of the movable magnet 30.
  • the operation reference position is a position where the movable magnet 30 can be rotated clockwise and counterclockwise with the same torque when the movable magnet 30 is driven to rotate and reciprocate around the shaft portion 13.
  • the movable body 10 has a shaft portion 13, a movable magnet 30 fixed to the shaft portion 13, and an encoder disk 72 of a rotation angle position detecting unit 70 described later.
  • the mirror 16 is fixed.
  • the mirror 16 reflects and emits laser light, which is incident light, to scan.
  • the mirror 16 is attached to the movable body 10 of the present embodiment, and the mirror is a movable object, the reciprocating rotational vibration can be made around the shaft 13.
  • the movable object need not be the mirror 16. Of course.
  • the shaft 13 is supported rotatably about the axis with respect to the fixed body 20.
  • the shaft portion 13 may be supported in any manner as long as it is movably supported by the fixed body 20. In the present embodiment, the shaft portion 13 is supported via the bearings 23a and 23b.
  • the shaft 13 is made of a durable metal (for example, SUS420J2) or the like, and is connected to a movable object.
  • the movable object is a member to be reciprocally driven to rotate, and may be the movable body 10 itself.
  • the shaft portion 13 is supported by the fixed body 20 via bearings 23a and 23b at positions separated in the axial direction.
  • a mirror 16 as a movable object is fixed via a mirror holder 15 to a portion (here, a center portion) between the bearings 23a and 23b. Focusing on the position of the bearing 23a, the bearing 23a is disposed on the shaft portion 13 between the movable magnet 30 and the mirror 16 as a movable object.
  • the mirror 16 is mounted such that the reflection surface 16a is positioned in the tangential direction of the shaft 13, and the rotation of the shaft 13 allows the angle of the reflection surface 16a to be changed.
  • the mirror 16 attached to the shaft portion 13 may be attached to a position (displaced position) closer to one of the two end portions 13a and 13b in the entire length of the shaft portion 13.
  • the shaft 13 is supported by the base 22 via the bearings 23a and 23b at both ends 13a and 13b so as to sandwich the mirror 16.
  • the mirror 16 is held more firmly than when the mirror 16 is fixed with a cantilever, and the shock resistance and vibration resistance are increased.
  • the movable magnet 30 is fixed to one end 13 a of the shaft portion 13, and the other end 13 b is connected to an attenuator 60, which is an example of an attenuator, attached to the fixed body 20. Have been.
  • the movable magnet 30 has an even number of magnetic poles alternately magnetized with S poles and N poles on the outer periphery of the shaft portion 13 in a direction orthogonal to the rotation axis direction of the shaft portion 13.
  • the movable magnet 30 is magnetized in two poles in the present embodiment, but may be magnetized in two or more poles according to the amplitude at the time of movement.
  • the movable magnet 30 has a ring shape.
  • an even number of magnetic poles 31 and 32 forming an S pole and an N pole are alternately magnetized on the outer periphery of the shaft portion 13.
  • the movable magnet 30 has the even-numbered magnetic poles 31 and 32 each having magnetized surfaces of different polarities facing each other with the shaft portion 13 interposed therebetween.
  • the magnetic poles 31 and 32 have different polarities with respect to a plane along the axial direction of the shaft 13.
  • the even-numbered magnetic poles 31 and 32 are configured to be magnetized at equal intervals on the outer periphery of the shaft portion 13 in the movable magnet 30.
  • the even-numbered magnetic poles 31 and 32 forming the S-pole and the N-pole are alternately arranged on the outer periphery of the shaft portion 13, and the respective magnetic poles 31 and 32 are arranged at equal intervals. .
  • the movable magnet 30 forms magnetic poles 31 and 32 having different semicircular portions when viewed in a plan view.
  • the arcuate curved surfaces of the semicircular portions are the magnetized surfaces of the different magnetic poles 31 and 32 and are configured to extend in the circumferential direction around the axis.
  • the magnetized surfaces of the magnetic poles 31 and 32 are arranged in a direction orthogonal to the axial direction of the shaft portion 13 and can rotate to face the magnetic poles 412a and 412b of the first core 41a and the second core 41b, respectively. Be placed.
  • the number of magnetic poles of the movable magnet 30 is equal to the number of magnetic poles of the core.
  • the magnetic pole switching portion 34 of the magnetic poles 31 and 32 of the movable magnet 30 is located at a position facing the center position in the width direction of the magnetic poles 412a and 412b of the first core 41a and the second core 41b when the coil 43 is not energized. I do.
  • the magnetic pole switching unit 34 is disposed at a position where the region in the rotation direction is symmetric with respect to each of the magnetic poles 412a and 412b.
  • the magnetic poles 31, 32 and the magnetic pole switching part 34 are movable in the circumferential direction around the axis by the rotation of the shaft part 13.
  • the fixed body 20 supports the movable body 10 movably by pivotally supporting the shaft portion 13.
  • the fixed body 20 includes a base 22, bearings 23a and 23b, a magnet position holding unit 24, a core fixing plate 27, and a core unit 40 having a coil 43.
  • the base 22 rotatably supports the shaft portion 13 of the movable body 10 in the rotary reciprocating drive actuator 1.
  • the base 22 is separated in the axial direction of the shaft portion 13, that is, in the Z direction, and each one side portion of the one end surface portion 222 and the other end surface portion 224 (here, the ⁇ Y side).
  • the main body surface portion 226 extending in the axial direction. More specifically, the base 22 has one end surface 222, the other end surface 224, and the main body surface 226 each formed in a planar shape, and the main body surface 226 includes one end surface portion from each of both ends separated in the axial direction of the shaft portion 13. 222 and the other end surface portion 224 have a protruding shape so as to face each other. That is, the base 22 is formed substantially in a U-shape in a side view as a whole.
  • the one end face portion 222 and the other end face portion 224 that are separated in the axial direction have notched holes 222a and 224a that face each other and pass through in the axial direction (Z direction).
  • the shaft portion 13 is inserted into each of these notched holes 222a and 224a via bearings 23a and 23b.
  • the mirror 16 is rotatably arranged between the one end surface portion 222 and the other end surface portion 224, and the mirror 16 is rotatable inside the base 22.
  • a core unit 40 that faces the movable magnet 30 with an air gap G therebetween is disposed on the outer surface (here, the left surface) of the one end surface portion 222 of the base 22 in the axial direction.
  • the core unit 40 is fixed to the core fixing plate 27, and the core fixing plate 27 is fixed to the left side of the one end face portion 222 via the fastening member 28.
  • a rotation angle position detection unit 70 that detects the rotation angle of the shaft 13 is provided on the other end surface 224 side.
  • the rotation angle position detector 70 in the present embodiment is a so-called optical encoder sensor, and together with an encoder disk 72 attached to the shaft 13, an optical sensor 74 that detects the rotation angle of the shaft 13 using the encoder disk 72. Are mounted on the substrate 76 for sensors.
  • a sensor substrate 76 on which the optical sensor 74 is mounted is disposed on the other end surface portion 224.
  • the sensor substrate 76 is fixed to the other end surface 224 by the fastening material 28 such as a screw.
  • the rotation angle position detection unit 70 detects the rotation angle of the shaft unit 13, that is, the rotation angle of the mirror 16 by receiving the light reflected from the encoder disk 72 by the optical sensor 74.
  • the swing range when the shaft 13 and the mirror 16 are reciprocally driven (oscillated) can be controlled by, for example, the control unit provided on the fixed body 20 side.
  • the core unit 40 includes a coil 43 and a core 41 including a first core 41a, a second core 41b, and a bridge core 41c around which the coil 43 is wound.
  • the magnet position holding unit 24 is provided on the bridge core 41c of the core unit 40.
  • the coil 43 excites the core when energized.
  • the coil 43 includes coils 43a and 43b, and is wound around a bobbin 44, respectively.
  • the bobbin 44 is extrapolated to the core 411a of the first core 41a and the core 411b of the second core 41b.
  • each of the coils 43 a and 43 b is disposed on both of the cores disposed at the position sandwiching the movable magnet 30, the dimensions of the coil 43 can be reduced, and the magnetic force generated by the coil 43 can be reduced. Can be improved.
  • the first core 41a, the second core 41b, and the bridge core 41c are each a laminated core, and are formed by, for example, laminating ferritic magnetic stainless steel sheets.
  • the first core 41a and the second core 41b have an even number (here, two) of different magnetic poles 412a and 412b that are excited when the coil 43 is energized.
  • the number of magnetic poles of the core 41 is an even number, and the magnetic poles 31 and 32 of the movable magnet 30 may have two or more magnetic poles as long as they have the same number.
  • the first core 41a and the second core 41b are core portions arranged so as to sandwich the movable magnet 30 in a direction orthogonal to the rotation axis direction and in parallel in a direction orthogonal to the rotation axis direction. (411a, 411b).
  • a bobbin 44 around which a coil 43 is wound is extrapolated to each of the cores (411a, 411b).
  • An installation core 41c is provided between one ends of the cores (411a, 411b), and magnetic poles 412a, 412b are formed continuously at the other end of the cores (411a, 411b).
  • the two magnetic poles 412a and 412b are arranged so as to be aligned in the rotation direction of the movable magnet 30.
  • the two magnetic poles 412a and 412b are separated from the outer periphery (corresponding to the magnetic poles 31 and 32) of the movable magnet 30 in a direction perpendicular to the rotation axis of the movable magnet 30 with an air gap G therebetween. Are arranged to face each other.
  • each of the magnetic poles 412a and 412b the centers of the lengths along the rotation direction of the movable magnet 30 (hereinafter, referred to as “center positions” of the magnetic poles 412a and 412b) are opposed to each other with the axis of the shaft part interposed therebetween.
  • the magnetic pole switching portion 34 of the movable magnet 30 is arranged to face each of the center positions of the magnetic poles 412a and 412b.
  • the center positions of the magnetic poles 412a and 412b and the axis of the shaft 13 are arranged on the same straight line when viewed in plan.
  • the magnetic poles 412a and 412b are formed in an arc shape corresponding to the outer peripheral surface of the movable magnet 30, and are arranged so as to surround the movable magnet 30 in the X direction.
  • the bridging core 41c together with the first core 41a and the second core 41b, is arranged so as to surround the movable magnet 30 in a direction orthogonal to the rotation axis.
  • the magnet position holding unit 24 functions as a magnetic spring together with the movable magnet 30 by magnetic attraction generated between the movable magnet 30 and the movable position of the movable magnet 30 to the operation reference position (predetermined rotation angle position). Position and hold.
  • the magnet position holding unit 24 is a magnet or a magnetic material.
  • the magnet position holding unit 24 is a magnet magnetized toward the movable magnet 30 and increases the magnetic attraction between the movable magnet 30 and the case where the magnet position holding unit 24 is made of a magnetic material. Let me. In the present embodiment, a magnet having the movable magnet 30 side as the magnetizing direction is applied.
  • the magnet position holding unit 24 is a magnet.
  • the magnetic pole switching unit 34 of the movable magnet 30 is located at a position facing the magnetic poles 412a and 412b in the operation reference position.
  • the magnet position holding unit 24 attracts the movable magnet 30 to each other, and can position the movable magnet 30 at the operation reference position.
  • the magnetic pole switching part 34 of the movable magnet 30 faces the center positions of the magnetic poles 412a and 412b of the first core 41a and the second core 41b.
  • the movable magnet 30 is stabilized at the operation reference position, and at that position, the coil 43 (43a, 43b) is energized and generates the maximum torque to drive the movable body 10.
  • the movable magnet 30 is magnetized in two poles, the amplitude can be easily increased in cooperation with the coil 43, and the vibration performance can be improved.
  • the magnet position holding unit 24 has a facing surface that faces the outer circumferential surface of the movable magnet 30 with an air gap G therebetween.
  • the facing surface is a curved surface corresponding to the shape of the outer peripheral surface of the movable magnet 30.
  • the magnet position holding part 24 is formed in a convex shape protruding from the erection core 41c toward the movable magnet 30, and has a tip end surface as an opposing surface.
  • the magnet position holding unit 24 is, for example, a magnet whose opposite surface is magnetized to an N pole (see FIGS. 8 and 9).
  • the opposing surface serving as the magnetic pole of the magnet position holding unit 24 is a portion along the rotation direction of the movable magnet 30, and the outer peripheral surface of the movable magnet 30 facing the magnetic poles 412a and 412b of the first core 41a and the second core 41b. Are opposed radially outside the movable magnet 30.
  • the magnet position holding unit 24 When the magnet position holding unit 24 is made of a magnetic material, it may be formed integrally with the bridge core 41c. Thereby, the function as a magnetic spring can be suitably realized with a small number of parts.
  • the magnetic pole switching unit 34 of the magnetic pole of the movable magnet 30 includes the magnetic poles 412a of the first core 41a and the second core 41b. , 412b.
  • the core 41 to be excited by the coil 43 is connected to the first core 41a having the magnetic pole 412a, the second core 41b having the magnetic pole 412b, and the respective magnetic poles 412a and 412b of the first core 41a and the second core 41b.
  • an installation core 41c installed between the opposite ends. That is, the core 41 is constituted by three divided bodies. Among these divided bodies, the magnet position holding unit 24 is provided on the bridge core 41c.
  • the magnet position holding portion 24 is compared with a case where the magnet position holding portion 24 is integrally formed with the core including the portion around which the coil 43 is wound.
  • the coil 43, the core 41, and the movable magnet 30 can be easily assembled to each other, and the assemblability can be improved.
  • FIG. 4 is a longitudinal sectional view showing a damping portion of the rotary reciprocating drive actuator according to Embodiment 1 of the present invention
  • FIG. 5 shows an attenuator of the rotary reciprocating drive actuator according to Embodiment 1 of the present invention. It is an exploded perspective view.
  • the attenuating unit attenuates the sharp resonance when the coil 43 is energized and the movable body 10 generates a sharp resonance when the movable body 10 reciprocally rotates.
  • the attenuator 60 is provided between the shaft 13 and the base 22 as a damping unit, and attenuates resonance by applying a load to the rotation of the shaft 13.
  • the attenuator 60 includes, for example, a case 62 fixed to the base 22, a magnet 63, a rotating body 64 rotatably disposed in the case 62 and fixed to the shaft 13, an upper lid 65, And a lid 66.
  • the case 62 is a cylindrical body, and a ring-shaped magnet 63 is attached to the inner peripheral surface along the circumferential direction.
  • a rotating body 64 is disposed inside the magnet 63 with an air gap G2 therebetween.
  • the rotating body 64 has a disk portion 641, a concave portion 642 protruding from the center of the disk portion 641, and an outer cylindrical portion 644 protruding from the outer edge side of the disk portion 641 and arranged concentrically on the outer peripheral side of the concave portion 642. It is a magnetic material.
  • the other end 13b of the shaft 13 is inserted and fixed in the recess 642 of the rotating body 64.
  • the outer cylindrical portion 644 is arranged in the case 62 so as to be movable in the circumferential direction between the magnet 63 and the inner cylindrical portion 652 of the upper lid 65.
  • the lower surface of the case 62 is closed by a lower lid 66, and the upper surface of the case 62 is opened by a concave portion 642 provided at the center of the rotary member 64 so that the rotary member 64 does not come out of the case 62. With the end exposed, it is closed by a ring-shaped upper lid 65.
  • the attenuator 60 is a flange on the upper surface side of the case 62, and is fixed to the other end surface portion 224 via a fastening material 29 such as a screw (see FIG. 2).
  • the case 62 is fixed to a boss (not shown) projecting to the outer surface side at the other end surface portion 224 via the fastening member 29, and the attenuator 60 has a rotation angle with the other end surface portion 224. It is arranged so as to sandwich the position detection unit 70.
  • the magnetic fluid R is filled in the case 62 between the magnet 63 and the rotating body 64 and between the inner cylinder 652 of the upper lid 65 and the rotating body 64.
  • the attenuator 60 contacts the magnetic fluid R in the case 62 with the rotating body 64 fixed to the other end 13 b of the shaft 13, thereby causing the magnetic attraction force of the magnet 63.
  • the reciprocating rotation is performed while applying a load by the magnetic fluid R. This suppresses the ringing shown in FIG. 6B that occurs when the movable body 10 moves when the resonance is sharp, and drives with a suitable waveform without ringing, that is, a so-called sawtooth wave as shown in FIG. Vibration can be realized.
  • the attenuator 60 of the present embodiment has a configuration in which the magnetic fluid R is interposed between the rotating body 64 and the case 62 side, and the magnetic fluid R leaks out of the attenuator 60 by the magnet 63. Therefore, the reliability of the attenuator 60 can be improved.
  • the attenuator 60 as a damping unit is a rotary damper in which a magnetic fluid R is interposed between a so-called rotating body 64 and a case 62 on the fixed body side.
  • a fluid that attenuates the rotational force of the rotating body 64 with respect to the case 62 may be used. That is, the attenuator 60 may have any configuration as long as it attenuates the rotation of the rotating body 64 connected to the movable body 10 and attenuates the sharp resonance generated when the movable body 10 is driven to reciprocate. May be.
  • the magnet 63 may be removed, and the sealing with the case 62, the upper lid 65, and the lower lid 66 may be enhanced by sealing or the like, and oil may be used instead of the magnetic fluid R. Good.
  • the magnet 63 is not required in the attenuator 60, and the size of the attenuator itself can be reduced, and the assemblability can be improved.
  • the damping portion may be a magnetic fluid itself, and may be disposed in an air gap G between the movable magnet 30 and the magnetic poles 412a and 412b or in an air gap G between the movable magnet 30 and the magnet position holding portion 24. According to this configuration, it is not necessary to use a rotary damper such as the attenuator 60 of the present embodiment as a separate component.
  • the magnetic fluid is applied. A magnetic fluid can be easily arranged between the air gaps G, and a damping function for damping resonance can be realized at low cost and in a small space.
  • a low-pass filter is provided between a power supply unit (drive signal supply unit 77) that supplies a drive signal to the rotary reciprocating drive actuator 1 and the rotary reciprocal drive actuator 1.
  • An electric filter 78 such as a band elimination filter or a notch filter may be provided to remove a frequency component in which ringing occurs.
  • the electric filter 78 is mounted on a drive board (not shown) that drives the coil 43, and the drive board is provided on the fixed body 20.
  • FIG. 8 and 9 are diagrams showing the operation of the rotary reciprocating drive actuator by the magnetic circuit of the rotary reciprocating drive actuator according to the first embodiment of the present invention.
  • FIG. 8 and 9 The operation of the rotary reciprocating drive actuator in the case of the direction is shown.
  • the movable magnet 30 is moved by the magnetic attraction between the magnet position holding unit 24 and the movable magnet 30, that is, by the magnetic spring. (A predetermined rotation angle position).
  • one of the magnetic poles 31 and 32 of the movable magnet 30 is attracted to the magnet position holding unit 24, and the magnetic pole switching unit 34 is driven by the magnetic poles 412a of the first core 41a and the second core 41b. 412b is located at a position facing the center position.
  • the magnetic pole 32 magnetized to the S-pole of the movable magnet 30 is A magnetic spring torque (indicated by an arrow FM in FIG. 8) that rotates the movable magnet 30 so as to attract each other is generated.
  • the rotary reciprocating drive actuator 1 operates in the normal state, that is, when the movable magnet 30 is located at the operation reference position, the magnetic pole switching part 34 (specifically, the linear magnetic pole) of the movable magnet 30. Both ends of the switching portion 34) are arranged at positions facing the magnetic poles 412a and 412b of the first core 41a and the second core 41b.
  • the coil 43 when the coil 43 is energized, the coil 43 (43a, 43b) excites the first core 41a and the second core 41b, and the magnetic poles 412a and 412b of the first core 41a and the second core 41b. Are wound so as to have different polarities.
  • the coil 43 (43a, 43b) when the coil 43 (43a, 43b) is energized in the direction shown in FIG. 8, the coil 43 (43a, 43b) excites the first core 41a and the second core 41b, and the magnetic pole 412a Is magnetized to the north pole, and the magnetic pole 412b is magnetized to the south pole.
  • the energized coils 43a and 43b magnetize the cores (411a and 411b) respectively wound.
  • the magnetic flux is emitted from the magnetic pole 412a, which is the N pole, to the movable magnet 30, flows sequentially through the movable magnet 30, the magnet rotation position holding unit 24, and the bridge core 41c, and the magnetic flux incident on the core 411a is formed. Is done.
  • the magnetic flux is emitted from the core portion 411b to the erected core 41c, flows sequentially through the erected core 41c, the magnet rotation position holding unit 24, and the movable magnet 30, and enters the magnetic pole 412b.
  • the magnetic pole 412a magnetized to the N pole attracts the S pole of the movable magnet 30
  • the magnetic pole 412b magnetized to the S pole attracts the N pole of the movable magnet 30
  • the movable magnet 30 has the shaft 13
  • a torque is generated in the F direction around the axis, and the motor rotates in the F direction. Accordingly, the shaft 13 rotates, and the mirror 16 fixed to the shaft 13 also rotates.
  • the magnetic poles 412 a and 412 b of the first core 41 a and the second core 41 b that are excited by the coil 43 Wear with different magnetic poles. Specifically, when power is supplied in a direction different from the power supply direction shown in FIG. 8 (see FIG. 9), the magnetic pole 412a is magnetized to the S pole, the magnetic pole 412b is magnetized to the N pole, and the flow of magnetic flux is also reversed. .
  • a magnetic spring torque FM is generated by a magnetic attraction force between the magnet rotation position holding unit 24 and the movable magnet 30, that is, a magnetic spring, and the movable magnet 30 moves to the operation reference position.
  • the magnetic pole 412a magnetized to the S pole attracts the N pole of the movable magnet 30
  • the magnetic pole 412b magnetized to the N pole attracts the S pole of the movable magnet 30
  • the movable magnet At 30 a torque is generated in a direction opposite to the F direction around the axis of the shaft portion 13, and the movable magnet 30 rotates in a direction opposite to the F direction ( ⁇ F direction).
  • the shaft 13 also rotates in the opposite direction ( ⁇ F direction)
  • the mirror 16 fixed to the shaft 13 also rotates in the opposite direction ( ⁇ F direction) to the previous movement direction. By repeating this, the mirror 16 is driven to reciprocate.
  • the rotary reciprocating drive actuator 1 is driven by an AC wave input to the coil 43 from a power supply unit (for example, a power supply unit having the same function as the drive signal supply unit 77 in FIG. 7). That is, the energizing direction of the coil 43 is periodically switched, and the thrust in the F direction due to the torque in the F direction around the axis and the thrust in the direction opposite to the F direction ( ⁇ F direction) are applied to the movable body 10. Act alternately. Thereby, the movable body 10 is reciprocally driven to rotate around the shaft portion 13, that is, vibrates.
  • a power supply unit for example, a power supply unit having the same function as the drive signal supply unit 77 in FIG. 7
  • the moment of inertia of the movable body 10 is set to J [kg ⁇ m 2 ], and the springs in the torsion direction of the magnetic springs (the magnetic poles 412a and 412b, the magnet position holding unit 24 and the movable magnet 30).
  • the constant is Ksp
  • the movable body 10 vibrates with respect to the fixed body 20 at the resonance frequency Fr [Hz] calculated by the following equation (1).
  • the movable body 10 constitutes a mass part in a spring-mass system vibration model
  • the movable body 10 enters a resonance state. Become. That is, the coil 43 from the power supply unit, by inputting an AC wave of a frequency substantially equal to the resonance frequency F r of the movable member 10, thereby the movable member 10 efficiently vibrated.
  • the equations of motion and the circuit equations showing the driving principle of the rotary reciprocating drive actuator 1 are shown below.
  • the rotary reciprocating drive actuator 1 is driven based on a motion equation represented by the following equation (2) and a circuit equation represented by the following equation (3).
  • the moment of inertia J [kg ⁇ m 2 ] of the movable body 10 in the rotary reciprocating drive actuator 1, the rotation angle ⁇ (t) [rad], the torque constant K t [N ⁇ m / A], and the current i (t) [ A], the spring constant K sp [N ⁇ m / rad], the damping coefficient D [N ⁇ m / (rad / s)], the load torque T Loss [N ⁇ m], etc. are within the range satisfying the expression (2).
  • the voltage e (t) [V], the resistance R [ ⁇ ], the inductance L [H], and the back electromotive force constant K e [V / (rad / s)] are appropriately set within a range satisfying the expression (3). Can be changed.
  • the back-and-forth rotating drive actuator 1 when performing the energization of the coil 43 by the AC wave corresponding to the resonance frequency F r which is determined by the moment of inertia J and the magnetic spring the spring constant K sp of the movable member 10, the efficiency A large vibration output can be obtained.
  • torque generation efficiency is high, heat is hardly transmitted to the mirror to be moved, and the accuracy of the flatness of the reflection surface 16a of the mirror 16 can be secured.
  • manufacturability is high, the assembling accuracy is good, and even if the movable object is a large mirror, it can be driven with high amplitude.
  • the rotary reciprocating drive actuator 1 of the first embodiment and the rotary reciprocal drive actuators 1A, 1B, and 1C described later can be driven by resonance, but can be driven by non-resonance. Also, ringing can be suppressed by increasing the damping coefficient using the damping unit.
  • FIG. 10 is an external perspective view of the rotary reciprocating drive actuator 1A according to Embodiment 2 of the present invention
  • FIG. 11 is an exploded perspective view of the rotary reciprocating drive actuator 1A according to Embodiment 2 of the present invention.
  • the rotary reciprocating drive actuator 1A shown in FIGS. 10 and 11 has a configuration in which a magnetic sensor is used instead of the optical sensor that is the rotation angle position detecting unit 70 in the configuration of the rotary reciprocating drive actuator 1, and the other configuration is This is the same as the reciprocating drive actuator 1. Therefore, in the description of the rotary reciprocating drive actuator 1A, the same components as those of the rotary reciprocating drive actuator 1 are given the same names and the same reference numerals, and the description is omitted.
  • the rotary reciprocating drive actuator 1A has a movable body 10A having a movable magnet 30A and a shaft 13A, and a fixed body 20A rotatably supporting the shaft 13A and having a coil 43 and a magnet position holding unit 24.
  • the movable magnet 30A in the movable body 10A has a ring shape, and an even number of magnetic poles forming an S pole and an N pole are alternately magnetized on the outer periphery of the shaft portion 13A.
  • the two even-numbered magnetic poles 412a and 412b of the core 41 in the fixed body 20A are arranged to face the movable magnet 30A and the air gap G on the outer peripheral side of the shaft 13A.
  • the number of magnetic poles of the core 41 is equal to the number of magnetic poles of the movable magnet 30A.
  • the movable body 10A In the rotary reciprocating drive actuator 1A, due to the magnetic attraction between the magnet position holding unit 24 and the movable magnet 30A, a so-called magnetic spring, the movable body 10A is fixed to the fixed body 20A so as to be located at the operation reference position in a normal state. It is held rotatably. Here, in the normal state, the coil 43 is not energized.
  • the state where the movable body 10A is located at the operation reference position is a state where the movable magnet 30A is located at a neutral position with respect to the magnetic pole to be excited by the coil 43, and the magnetic pole switching part 34 of the movable magnet 30A is This is a position facing the magnetic pole of FIG.
  • the movable body 10A has a shaft portion 13A, a movable magnet 30A fixed to the shaft portion 13A, and a magnetic sensor magnet 72A sensed by the magnetic sensor 74A of the rotation angle position detecting section 70A.
  • the mirror 16 is fixed to the shaft portion 13A via a mirror holder 15A.
  • the fixed body 20A has a base 22A, bearings 23a and 23b, a magnet position holding unit 24, a core fixing plate 27A, and a core unit 40 having a coil 43.
  • the base 22A has a shape in which one end surface portion 222A and the other end surface portion 224A which are arranged to face each other while being spaced apart in the axial direction (Z direction) are joined by a main body surface portion 226A extending in the axial direction.
  • a core fixing plate 27A to which the core unit 40 is fixed is fixed to one end surface 222A of the base 22A via a fastening material 28A such as a screw.
  • the bearings 23a and 23b are fitted into the cutouts of the one end face 222A and the other end face 224A.
  • the shaft portion 13A is inserted into the bearings 23a and 23b, and the shaft portion 13A is rotatably supported by the base 22A via the bearings 23a and 23b.
  • the other end surface portion 224A rotatably supports the shaft portion 13A outward in the axial direction.
  • a rotation angle position detection unit 70A is disposed axially outside the other end surface portion 224A.
  • the rotation angle position detection unit 70A has a magnet 72A for a magnetic sensor, a magnetic sensor 74A, and a sensor substrate 76A on which the magnetic sensor 74A is mounted.
  • the magnetic sensor magnet 72A is integrally fixed via a holder 73A to the end surface of the other end 13b of the shaft 13A protruding outward in the axial direction from the other end 224A.
  • the magnetic sensor 74A senses the magnetic sensor magnet 72A that rotates together with the shaft 13A when driven, and detects the rotation angle of the shaft 13A and thus the mirror 16.
  • the sensor substrate 76A is fixed to a fixing member 75A via a fastening material 28A such as a screw.
  • the fixing member 75A is fixed to the other end 224A via a fastening material 29A such as a screw.
  • the magnetic sensor 74A is disposed at a position opposite to the magnetic sensor magnet 72A in the axial direction on the other end surface portion 224A.
  • the sensor substrate 76A drives the magnetic sensor 74A, and determines the rotation angle of the shaft portion 13A acquired by the magnetic sensor 74A, that is, the position corresponding to the rotation angle with the power supply unit (for example, the drive signal supply unit 77 in FIG. Feedback can be made to a power supply unit having a similar function.
  • the same basic operation and effect as those of the rotary reciprocating drive actuator 1 can be obtained, the structure becomes simpler than the case where the optical sensor is used, and the product cost can be reduced. it can.
  • FIG. 12 is an external perspective view of a rotary reciprocating drive actuator 1B according to Embodiment 3 of the present invention
  • FIG. 13 is a longitudinal cross-sectional view showing a main configuration of the rotary reciprocating drive actuator 1B according to Embodiment 3 of the present invention.
  • the rotary reciprocating drive actuator 1B shown in FIGS. 12 and 13 has the same magnetic circuit configuration as the rotary reciprocating drive actuator 1, and fixes the mirror 16B to one end of the shaft 13B, and the other end of the shaft 13B. It is supported by the base 22B on the 13b side.
  • the ring-shaped movable magnet 30 of the movable body 10B is configured such that an even number of magnetic poles forming an S pole and an N pole are alternately magnetized on the outer periphery of the shaft portion 13B, and is fixed.
  • the two even-numbered magnetic poles 412a and 412b of the body 20B are equal to the number of magnetic poles of the movable magnet 30, and are arranged to face the movable magnet 30 on the outer peripheral side of the shaft portion 13B with the air gap G interposed therebetween.
  • the rotary reciprocating drive actuator 1B is configured to be able to reciprocally rotate the mirror 16B in a so-called pivot structure.
  • the encoder disk 72 and the scanning mirror 16B are fixed to the shaft portion 13B.
  • the scanning mirror 16B is fixed to the shaft 13B via a mirror holder 15B.
  • the bearings 232, 234 are fitted adjacently to the through portion formed in the base 22B, and are inserted through the bearings 232, 234.
  • the base 22B is a plate-shaped base arranged on the XY plane, and the core unit 40 is fixed to the one end surface (left side) of the base 22B via the core fixing plate 27.
  • the rotation angle position detection unit 70 is disposed on the other end surface (right side surface) of the base 22B, that is, on the surface of the base 22B opposite to the surface on which the core unit 40 is provided.
  • An encoder disk 72 attached to the shaft portion 13B and a sensor substrate 76 are arranged on the other end surface (right side surface) of the base 22B, and the rotation angle of the shaft portion 13B is set by an optical sensor 74 facing the encoder disk 72. It can be detected.
  • On the right side of the base 22B there is provided an attenuator 60 located on the right side of the rotation angle position detection unit 70.
  • the shaft portion 13B fixes the mirror 16B at one end and is supported by the base 22B at the other end so as to be able to reciprocate.
  • the movable magnet 30 is fixed to one end surface side of the base 22B, and the encoder disk 72 of the rotation angle position detection unit 70 is mounted on the other end surface side of the base 22B via bearings 234 and 232.
  • the rotating body of the attenuator 60 is fixed.
  • the encoder disk 72 is disposed adjacent to the bearing 234, and the rotary reciprocating drive actuator 1B adjusts the length of the shaft 13B fixed to the mirror 16B by the shaft of the rotary reciprocating drive actuator 1 of the first embodiment. 13, the mirror 16B can be driven to rotate reciprocally.
  • the rotary reciprocating drive actuator 1B has a mirror 16B fixed to one end 13a of the shaft 13B, and is supported by two bearings 232, 234 at the other end 13b of the shaft 13B.
  • the mirror 16B, the movable magnet 30, and the bearings 232, 234, which are arranged along the shaft portion 13B, can be arranged adjacent to each other in order, and compared with the configuration in which the bearings 232, 234 are arranged separately.
  • the size of the rotary reciprocating drive actuator 1B itself can be reduced.
  • the rotary reciprocating drive actuator 1B like the rotary reciprocating drive actuator 1, has high torque generation efficiency, does not easily transmit heat to the mirror that is the movable object, and can secure the accuracy of the flatness of the reflection surface of the mirror 16B. In addition, the manufacturability is high, the assembly accuracy is good, and the mirror 16B can be driven with a high amplitude.
  • FIG. 14 is an external perspective view of a rotary reciprocating drive actuator according to Embodiment 4 of the present invention.
  • the rotary reciprocating drive actuator 1C shown in FIG. 14 has a magnetic circuit configuration similar to that of the rotary reciprocal drive actuator 1.
  • a two-axis There is an application of a mirror 16C driven in a direction. Therefore, in the rotary reciprocating drive actuator 1C, the same components as those of the rotary reciprocal drive actuator 1 are given the same reference numerals and the same names, and the description is omitted.
  • a mirror 16C having a reflecting mirror portion 162 that reciprocally rotates in two axes by a driving source including a core unit 40 using electromagnetic interaction and a movable magnet 30 is moved in the axial direction of the shaft portion 13. It is provided so as to be reciprocally rotatable in a direction perpendicular to the direction.
  • the mirror 16C includes another drive unit that drives the reflection mirror unit 162 of the mirror 16C with respect to the shaft unit 13 in a direction orthogonal to the rotation direction of the shaft unit 13.
  • the mirror 16C having the separate driving unit is, for example, a micro electro mechanical system (MEMS) mirror, and for example, is a reflection mirror of the mirror 16C based on a driving signal supplied by a vertical driving signal supply unit 207 (see FIG. 16).
  • the portion 162 is configured to be rotatable at high speed about one axis orthogonal to the shaft portion 13.
  • the reflection mirror portion 162 of the mirror 16C is reciprocally driven to rotate about the shaft portion 13 by the driving of the core unit 40 and the movable magnet 30, and is also driven to reciprocate in a direction perpendicular to the axial direction by another driving portion.
  • the rotary reciprocating drive actuator 1C has a high torque generation efficiency, does not easily transmit heat to the mirror 16C that is a movable object, and can secure the accuracy of the flatness of the reflection mirror portion 162 that is a reflection surface. Further, the manufacturability is high, the assembling accuracy is good, and even if the mirror 16C is a large mirror, it can be driven with a high amplitude.
  • FIG. 15 is a block diagram showing a main part configuration of a first example of a scanner system 200A having a rotary reciprocating drive actuator.
  • FIG. 16 is a block diagram showing a main part configuration of a second example of a scanner system 200B having a rotary reciprocating drive actuator. It is a block diagram shown.
  • a scanner system 200A shown in FIG. 15 includes a laser emission unit 201, a laser control unit 202, an actuator 203, a drive signal supply unit 204, and a position control signal calculation unit 205.
  • an object is scanned by using a rotary reciprocating drive actuator 203 capable of reciprocally rotating a mirror in one axis.
  • the rotary reciprocating drive actuator 203 includes, for example, the rotary reciprocating drive actuator according to the present embodiment. 1 to 1B can be applied.
  • the laser control unit 202 drives the laser emission unit 201 to control the laser to be irradiated.
  • the laser light emitting unit 201 is, for example, an LD (laser diode) serving as a light source and a lens for converging an output laser.
  • the laser beam from the light source is emitted to the mirror 16 of the actuator 203 via the lens system.
  • the position control signal calculation unit 205 refers to the actual angular position of the shaft 13 (mirror 16) acquired by the rotation angle position detection unit 70 and the target angular position, and moves the shaft 13 (mirror 16) to the target angle.
  • a drive signal for controlling the position is generated and output.
  • the position control signal calculation unit 205 converts the actual angular position of the shaft 13 (mirror 16) and the target converted using the sawtooth waveform (see FIG. 6A) data stored in a waveform memory (not shown).
  • a position control signal is generated based on the signal indicating the angular position and output to the drive signal supply unit 204.
  • the drive signal supply unit 204 supplies a desired drive signal to the coil 43 of the actuator 203 to rotate and reciprocate the actuator 203 to scan an object.
  • a scanner system 200B shown in FIG. 16 includes a laser emission unit 201 and a laser control unit 202 similar to the scanner system 200A, an actuator 203A, a horizontal scanning angle position detection unit 702 provided in the actuator 203A, a horizontal drive signal supply unit 204A, It has a control signal calculation unit 205, a vertical scanning angle position detection unit 206, a vertical drive signal supply unit 207, and a position control signal calculation unit 208.
  • an object is scanned by using an actuator 203A capable of driving a mirror (specifically, a reflection mirror section 162) in a bi-axial manner.
  • the actuator 203A is the same as that of the present embodiment.
  • the rotary reciprocating drive actuator 1C can be applied.
  • the rotary reciprocating drive actuator 1C as the actuator 203A drives the reciprocating rotation about the shaft portion 13 to horizontally emit the laser light reflected by the reflection mirror portion 162 of the mirror 16C.
  • the reflection mirror unit 162 is driven to reciprocate around an axis extending in a direction orthogonal to the shaft unit 13.
  • the horizontal scanning angle position detection unit 702 has the same function as the rotation angle position detection unit 70, detects the rotation angle position of the shaft 13, and thus the reflection mirror unit 162 around the shaft 13, and calculates the position control signal. Output to the unit 205.
  • the position control signal calculation unit 205 calculates the actual angular position of the shaft unit 13 (angle position in the horizontal scanning of the mirror 16) acquired by the horizontal scanning angle position detection unit 702 and the sawtooth waveform (FIG. 6A), using the data and the like, generates a position control signal for controlling the target angular position so as to reach the target angular position, and outputs the generated position control signal to the horizontal drive signal supply unit 204A.
  • the horizontal drive signal supply unit 204A has the same function as the drive signal supply unit 204, outputs a drive signal to the coil 43 of the actuator 203A, and drives the reflection mirror unit 162 of the actuator 203 to reciprocate in the horizontal scanning direction. Then, the object is horizontally scanned.
  • the vertical scanning angle position detection unit 206 detects a rotation angle position where the reflection mirror unit 162 rotates around an axis (here, the X axis) orthogonal to the axis unit 13 and outputs the rotation angle position to the position control signal calculation unit 208. .
  • the position control signal calculator 208 calculates the actual axis 13 obtained by the vertical scanning angle position detector 206, that is, the angular position of the mirror 16 in the actual vertical scanning, and the vertical scanning saw stored in a waveform memory (not shown). Based on the information indicating the target angle position converted using the waveform data and the like, a position control signal for controlling the target angle position is generated, and output to the vertical drive signal supply unit 207.
  • the vertical drive signal supply unit 207 outputs a drive signal to the actuator 203A, and rotates and reciprocates the reflection mirror unit 162 of the actuator 203A in the vertical scanning direction to vertically scan the object.
  • the configuration functioning as the damping unit in the present embodiment may be appropriately modified and applied to the rotary reciprocating drive actuators 1, 1A, 1B, and 1C of the embodiment, or may be applied in appropriate combination.
  • the attenuator 60 which is a rotary damper using the magnetic fluid R, the rotary damper using oil in place of the magnetic fluid in the attenuator 60, and an electric filter 78 such as a low-pass filter, a band elimination filter, or a notch filter. It may be provided in combination.
  • an electric filter 78 such as a low-pass filter, a band elimination filter, or a notch filter.
  • the coils 43 on the fixed bodies 20 and 20B are configured to be provided on the core unit 40.
  • the actuators 1, 1A, 1B, 1C may be configured.
  • a rotary reciprocating drive actuator that reciprocally drives the movable body 10 about the shaft 13 with respect to the fixed body by electromagnetic interaction between the coil 43 and the movable magnet 30.
  • the movable magnet has a ring shape, and is formed by alternately magnetizing even-numbered magnetic poles 31 and 32 forming an S pole and an N pole on the outer periphery of the shaft portion 13.
  • the coil is disposed in the fixed body at a position where a torque for rotating the movable magnet is generated by electromagnetic interaction with the movable magnet, similarly to the coil 43.
  • the coil is arranged at a position where a torque for reciprocatingly rotating the movable magnet is generated with each of the even-numbered magnetic poles by electromagnetic interaction with the movable magnet.
  • the movable magnet can obtain the same operation and effect as the movable magnet 30.
  • the number of magnetic poles magnetized by the coil 43 is equal to the number of magnetic poles of the movable magnet.
  • the even-numbered magnetic poles magnetized by the coil are arranged to face the movable magnet 30 with the air gap G therebetween in the radial direction of the shaft.
  • a rotation angle position holding unit that is disposed on the fixed body and faces the movable magnet 30 with the air gap G interposed therebetween and that holds the rotation angle position of the movable magnet 30 by magnetic attraction generated between the movable magnets 30. 24.
  • the rotary reciprocating drive actuator according to the present invention has a high manufacturability, a high assembling accuracy, and an effect of being able to be driven with a high amplitude even when the movable object is a large mirror. This is useful as a scanner used in a scanner.

Abstract

軸部及び軸部に固定された可動マグネットを有する可動体と、コイル及びコイルが巻回され、2つの磁極を有するコアを有し、軸部を回転自在に支持する固定体と、を備え、コイルと可動マグネットとの電磁相互作用により固定体に対して軸部を中心に可動体を往復回転駆動する回転往復駆動アクチュエータであって、可動マグネットは軸部の径方向に着磁され、2つの磁極は、可動マグネットと、軸部の径方向でエアギャップを挟みそれぞれ対向して配置され、固定体には、可動マグネットとエアギャップを挟み対向して配置され、可動マグネットとの間で発生する磁気吸引力により、可動マグネットの回転角度位置を保持する回転角度保持部を有する。

Description

回転往復駆動アクチュエータ
 本発明は、回転往復駆動アクチュエータに関する。
 従来、回転往復駆動アクチュエータとして、複合機、レーザービームプリンタ等においてレーザー光を反射して走査対象に照射するミラーの反射角度を変更するガルバノモータが知られている。
 ガルバノモータとしては、コイルをミラーに取り付けてコイル可動構造としたタイプ(「コイル可動タイプ」と称する)の他、特許文献1に開示の構造等の様々なタイプのものが知られている。
 特許文献1には、4つの永久磁石が、ミラーが取り付けられる回転軸に、回転軸径方向に着磁するように設けられ、コイルが巻回された磁極を有するコアが、回転軸を挟むように配置されたビーススキャナが開示されている。
特許第4727509号公報
 ところで、コイル可動タイプでは、駆動時のコイルの発熱により、ミラーの表面状態、回転軸へのミラーの接合状態、または反りを含むミラーの形状等に悪影響を与える恐れがある。また、コイル可動タイプでは、通電時のコイルの発熱を考慮するとコイルへの入力電流も大きくしにくく、可動体であるミラーの大型化や高振幅化が困難であるという問題がある。更に、可動体であるミラーに対して、コイルへの配線を固定体側に引き出す必要があり組み立て性が悪いという問題がある。
 また、特許文献1では、マグネットを可動体側に配置しているので、上述したコイル可動タイプでの問題を解消できるものの、マグネットをコアに対して中立位置に静止させる、つまり、マグネットの磁極の切り替わり部をコアのセンターに位置させるために、コア1極あたりに2極のマグネット、都合、4極のマグネットが必要となっている。
 これにより、例えば、2極のマグネットを用いて同様のスキャナを構成する場合と比較して、可動体の振幅が小さくなる、つまり、揺動範囲が減少するという問題がある。また、少なくとも4つのマグネットを用いるので、部品点数が多く複雑な構成であり組立が難しい。
 これらを踏まえ、近年、スキャナに用いられる回転往復駆動アクチュエータとして、可動体であるミラーの大型化等を想定して、剛性を備え、耐衝撃性、耐振動性を有するとともに、組み立て性の向上が図られ、高振幅化を実現可能な回転往復駆動アクチュエータが望まれている。
 本発明の目的は、製造性が高く、組立精度がよく、可動対象が大型ミラーであっても高振幅で駆動できる回転往復駆動アクチュエータを提供することである。
 本発明の回転往復駆動アクチュエータは、
 可動対象物が接続される軸部及び前記軸部に固定された可動マグネットを有する可動体と、
 コイル及び前記コイルが巻回され、偶数の磁極を有するコアを有し、前記軸部を回転自在に支持する固定体と、を備え、通電される前記コイルと前記可動マグネットとの電磁相互作用により前記固定体に対して前記軸部を中心に前記可動体を往復回転駆動する回転往復駆動アクチュエータであって、
 前記可動マグネットは、リング形状を成し、前記軸部の外周で、S極及びN極を成す偶数の磁極が交互に着磁されて構成され、
 前記コアの磁極数と前記可動マグネットの磁極数は、等しく、
 前記コアの偶数の磁極は、前記可動マグネットと、前記軸部の外周側でエアギャップを挟み各々対向して配置され、
 前記固定体は、前記可動マグネットとエアギャップを挟み対向して配置され、可動マグネットとの間で発生する磁気吸引力により、前記可動マグネットの回転角度位置を保持する回転角度位置保持部を有する。
 本発明によれば、製造性が高く、組立精度がよく、可動対象が大型ミラーであっても高振幅で駆動できる。
本発明の実施の形態1に係る回転往復駆動アクチュエータの外観斜視図である。 本発明の実施の形態1に係る回転往復駆動アクチュエータの分解斜視図である。 本発明の実施の形態1に係る回転往復駆動アクチュエータの要部構成を示す平面図である。 本発明の実施の形態1に係る回転往復駆動アクチュエータの減衰部を示す縦断面図である。 本発明の実施の形態1に係る回転往復駆動アクチュエータの減衰部を示す分解斜視図である。 図6Aは、減衰部による機能によりリンギングが無い波形を示す図であり、図6Bは、リンギングがある波形を示す図である。 減衰部の変形例を示す図である。 本発明の実施の形態1に係る回転往復駆動アクチュエータの磁気回路による回転往復駆動アクチュエータの動作を示す図である。 本発明の実施の形態1に係る回転往復駆動アクチュエータの磁気回路による回転往復駆動アクチュエータの動作を示す図である。 本発明の実施の形態2に係る回転往復駆動アクチュエータの外観斜視図である。 本発明の実施の形態2に係る回転往復駆動アクチュエータの分解斜視図である。 本発明の実施の形態3に係る回転往復駆動アクチュエータの外観斜視図である。 本発明の実施の形態3に係る回転往復駆動アクチュエータの要部構成を示す縦断面図である。 本発明の実施の形態4に係る回転往復駆動アクチュエータの外観斜視図である。 回転往復駆動アクチュエータを有するスキャナシステムの第1例の要部構成を示すブロック図である。 回転往復駆動アクチュエータを有するスキャナシステムの第2例の要部構成を示すブロック図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
(実施の形態1)
 以下、本実施形態の回転往復駆動アクチュエータ1を構成する各部については、回転往復駆動アクチュエータ1が駆動しておらず、非動作状態である通常状態時を基準として説明する。また、本実施形態の回転往復駆動アクチュエータ1の構造を説明するにあたり、直交座標系(X,Y,Z)を使用する。後述する図においても共通の直交座標系(X,Y,Z)で示している。なお、軸方向はZ方向とともに-Z方向も含む。
 図1は、本発明の実施の形態1に係る回転往復駆動アクチュエータ1の外観斜視図であり、図2は、本発明の実施の形態1に係る回転往復駆動アクチュエータ1の分解斜視図であり、図3は、本発明の実施の形態1に係る回転往復駆動アクチュエータ1の要部構成を示す平面図である。
 回転往復駆動アクチュエータ1は、可動対象物が接続される可動体10を軸部13周りに往復回転駆動させる。回転往復駆動アクチュエータ1は、例えば、可動体10に可動対象物としてのミラー16を備え、ライダー(「光検出と測拒」LIDAR:Laser Imaging Detection and Ranging)等において、走査対象に、ミラー16でレーザー光等を照射して、その反射光を取得して走査対象の情報を取得する光スキャナとして用いられる。なお、回転往復駆動アクチュエータ1は、複合機、レーザービームプリンタ等の走査装置に適用可能である。特に、回転往復駆動アクチュエータ1は、外力を受ける状況においても好適に機能することができ、走行時に衝撃を受ける可能性のある装置、例えば、車載可能なスキャナ装置に適用されることが好ましい。
 回転往復駆動アクチュエータ1は、可動マグネット30及び軸部13を有する可動体10と、軸部13を回転自在に支持し、コイル43、及び可動マグネット30の回転角度位置保持部(以下、「マグネット位置保持部」という)24を有する固定体20とを有する。
 回転往復駆動アクチュエータ1では、マグネット位置保持部24と可動マグネット30との磁気吸引力、所謂、磁気バネにより、常態時では、可動体10は、動作基準位置に位置するように、回動自在に保持されている。ここで、常態時は、コイル43に通電されていない状態である。可動体10が動作基準位置に位置することは、本実施の形態では、可動マグネット30がコイル43の励磁する磁極412a、412bに対して中立な位置に位置することを意味し、軸回りの一方向と他方向(軸部13側から見て正転及び逆転)の双方のいずれの方向にも同様な回転が可能な位置である。可動体10が動作基準位置に位置するとき、可動マグネット30において磁極が切り替わる部位である磁極の切り替わり部(「磁極切り替わり部」ともいう)34が、コイル43側の磁極と対向する位置に位置する。磁極切り替わり部34は、可動マグネット30の外周部分に2箇所設けられている。動作基準位置は、可動マグネット30が軸部13を中心に回転往復駆動する際に、右回り左回りに同様なトルクで回転可能な位置である。
 可動マグネット30とコイル43との協働により、可動体10の軸部13は、固定体20に対して動作基準位置から軸回りの一方向と他方向とに適宜移動、本実施の形態では、往復回転駆動、つまり、揺動或いは振動する。
[可動体10]
 可動体10は、軸部13、軸部13に固定された可動マグネット30の他、後述する回転角度位置検出部70のエンコーダディスク72を有し、軸部13には、ミラーホルダ15を介してミラー16が固定されている。ミラー16は、入射される光であるレーザー光を反射して出射し走査する。なお、本実施の形態の可動体10ではミラー16が取り付けられ、ミラーを可動対象物として、軸部13周りに往復回転振動可能としているが、可動対象物は、ミラー16でなくてもよいことは勿論である。
 軸部13は、固定体20に対して軸回りに回転自在に支持されている。軸部13は、固定体20に可動自在に軸支されていれば、どのように軸支されてもよく、本実施の形態では、軸受け23a、23bを介して軸支されている。
 軸部13は、耐久性を有する金属(例えば、SUS420J2)等により形成され、可動対象に接続される。可動対象とは、往復回転駆動対象となる部材であり、可動体10自体でもよい。
 軸部13は、軸方向に離れた位置で軸受け23a、23bを介して固定体20により軸支されている。軸受け23a、23bの間の部位(ここでは中央部分)には、可動対象であるミラー16がミラーホルダ15を介して固定されている。また、軸受け23aの位置に着目すると、軸受け23aは、軸部13において、可動マグネット30と可動対象物としてのミラー16との間に配置されている。
 なお、ミラー16は、反射面16aを軸部13の接線方向に位置するように取り付けられており、軸部13の回転により、反射面16aの角度が変更自在となっている。
 軸部13に取り付けられるミラー16は、軸部13の全長において、両端部13a、13bのうちの一方側に寄った位置(変位した位置)に取り付けられても良い。その場合、軸部13の他端部13b側で軸受け232、234(図12及び図13の回転往復駆動アクチュエータ1B参照)を介して固定体20Bに軸支されることが好ましい。
 本実施の形態では、軸部13は、ミラー16を挟むように、両端部13a、13b側で軸受け23a、23bを介してベース22に軸支されている。これにより、片持ちで固定するよりもミラー16の保持が強固となり、耐衝撃性や対振動が高まるよう構成されている。
 また、本実施の形態では、軸部13の一端部13aには可動マグネット30が固定され、他端部13bには、減衰部の一例であり、固定体20に取り付けられた減衰器60が接続されている。
 可動マグネット30は、軸部13の外周で、軸部13の回転軸方向と直交する方向に、S極及びN極で交互に着磁された偶数の磁極を有する。可動マグネット30は、本実施の形態では、2極に着磁されているが、可動時の振幅に応じて2極以上着磁されてもよい。
 可動マグネット30は、リング形状をなしている。可動マグネット30では、軸部13の外周で、S極及びN極を成す偶数の磁極31、32が交互に着磁されている。
 本実施の形態では、可動マグネット30は、軸部13を挟み互いに反対側に向く異なる極性の着磁面をそれぞれ有する偶数の磁極31,32を有する。磁極31、32は、本実施の形態では、軸部13の軸方向に沿う平面を境界として異なる極性である。
 また、これら偶数の磁極31、32は、可動マグネット30において、軸部13の外周で、等間隔に着磁されて構成されている。
 このように可動マグネット30では、軸部13の外周に、S極及びN極をなす偶数の磁極31、32が交互に配置され、且つ、それぞれの磁極31、32は等間隔に配置されている。
 可動マグネット30は、図3に示すように平面視して、それぞれの半円状の部位が異なる磁極31、32を構成している。本実施形態の可動マグネット30では、半円状の部位の円弧状の湾曲面が、異なる磁極31、32の着磁面であり、軸回りに周方向に延在するように構成されている。言い換えれば、磁極31、32の着磁面は、軸部13の軸方向と直交する方向に並び、且つ、回転してそれぞれ第1コア41a、第2コア41bの磁極412a、412bに対向可能に配置される。
 可動マグネット30の磁極数は、コアの磁極数と等しい。
 可動マグネット30の外周面における磁極31、32の切り替わりは、軸部13の延在方向に沿う磁極切り替わり部34で切り替わる。
 可動マグネット30の磁極31、32の磁極切り替わり部34は、コイル43への非通電時において、第1コア41a、第2コア41bの磁極412a、412bの幅方向の中心位置と対向する位置に位置する。磁極切り替わり部34は、磁極412a、412bのそれぞれに対して、回転方向の領域が対称となる位置に配置されている。
 可動マグネット30は、軸部13の回転により、軸回りに磁極31、32及び磁極切り替わり部34が周方向に移動自在である。
[固定体20]
 固定体20は、軸部13を軸支して可動体10を可動自在に支持する。
 固定体20は、ベース22、軸受け23a、23b、マグネット位置保持部24、コア固定プレート27、コイル43を有するコアユニット40、を有する。
 ベース22は、回転往復駆動アクチュエータ1において、可動体10の軸部13を回動自在に軸支する。ベース22は、本実施の形態では、軸部13の軸方向、つまりZ方向で離間し、且つ、対向配置された一端面部222及び他端面部224のそれぞれの一辺部(ここでは-Y方向側の一端部)側を、軸方向で延在する本体面部226の両端部で接合した形状をなしている。具体的には、ベース22は、一端面部222、他端面部224及び本体面部226はそれぞれ面状に形成され、本体面部226において、軸部13の軸方向で離間する両端部のそれぞれから一端面部222及び他端面部224が対向するように突設された形状を有する。すなわち、ベース22は、全体で側面視略U字状に形成されている。
 軸方向で離間する一端面部222及び他端面部224にはそれぞれ対向して軸方向(Z方向)で貫通する切欠穴222a、224aを有する。これら切欠穴222a、224aのそれぞれには軸受け23a、23bを介して軸部13が挿通されている。
 一端面部222と他端面部224間には、ミラー16が回動自在に配置され、ミラー16は、ベース22内で回動自在である。
 ベース22の一端面部222の軸方向外方の外面(ここでは左面)側には、可動マグネット30にエアギャップGを空けて対向するコアユニット40が配置されている。
 コアユニット40は、コア固定プレート27に固定され、コア固定プレート27は、止着材28を介して一端面部222の左面側に固定されている。
 他端面部224側には、軸部13の回転角度を検出する回転角度位置検出部70が配置されている。本実施の形態における回転角度位置検出部70は、所謂、光エンコーダセンサであり、軸部13に取り付けられるエンコーダディスク72とともに、エンコーダディスク72を用いて軸部13の回転角度を検出する光学センサ74が実装されたセンサ用基板76を有する。
 他端面部224には、光学センサ74を実装するセンサ用基板76が配置される。本実施の形態では、センサ用基板76はビス等の止着材28により他端面部224に固定されている。回転角度位置検出部70は、光学センサ74でエンコーダディスク72から反射される光を受光することにより軸部13の回転角度、つまり、ミラー16の回転角度を検出する。これにより、検出結果を用いて、軸部13及びミラー16が往復回転駆動(揺動)する際の揺動範囲を、例えば、固定体20側に設けられる制御部で制御できる。
 コアユニット40は、コイル43と、コイル43が巻回される第1コア41a、第2コア41b及び架設コア41cを含むコア41とを有する。
 本実施形態では、コアユニット40の架設コア41cにマグネット位置保持部24が設けられている。
 コイル43は、通電により、コアを励磁する。コイル43は、本実施の形態では、コイル43a、43bから構成され、それぞれボビン44に巻回されている。ボビン44は、第1コア41aの芯部411a、第2コア41bの芯部411bに外挿される。
 このように、コイル43a、43bは、可動マグネット30を挟む位置に配置されたコアの双方に各1つ配置されているため、コイル43寸法を小型化でき、また、コイル43により発生する磁力バランスの向上を図ることができる。
 第1コア41a、第2コア41b及び架設コア41cは、それぞれ積層コアであり、例えば、フェライト系磁性ステンレス鋼板を積層してなる。
 第1コア41a、第2コア41bは、コイル43が通電されることにより、励磁される偶数(ここでは、2つ)の異なる磁極412a、412bを有する。なお、コア41の磁極の数は、偶数であり、可動マグネット30の磁極31、32と同じ数であれば2つ以上有する構成してもよい。
 第1コア41a、第2コア41bは、本実施の形態では、可動マグネット30を回転軸方向と直交する方向で挟むように、且つ、回転軸方向と直交する方向で平行に配置される芯部(411a、411b)を有する。芯部(411a、411b)のそれぞれには、コイル43が巻回されたボビン44が外挿されている。芯部(411a、411b)の一方の端部間に架設コア41cが架設され、芯部(411a、411b)の他方の端部に連続して磁極412a、412bが形成されている。
 2つの磁極412a,412bは、可動マグネット30の回転方向に並ぶように配置される。
 2つの磁極412a、412bは、本実施の形態では、可動マグネット30の外周(磁極31、32に相当)から、可動マグネット30における回転軸と直交する方向で、エアギャップGを空けて可動マグネット30を挟むように対向して配置される。
 磁極412a、412bのそれぞれにおいて、可動マグネット30の回転方向に沿う長さの中心(以下、それぞれ磁極412a、412bの「中心位置」という)どうしが、軸部の軸を挟み対向している。
 磁極412a、412bの中心位置のそれぞれに対して、可動マグネット30の磁極切り替わり部34が対向して配置される。本実施の形態では、磁極412a、412bの中心位置と、軸部13の軸とは平面視して同一直線上に配置されている。
 磁極412a、412bは、本実施の形態では、可動マグネット30の外周面に対応して円弧状に形成され、可動マグネット30をX方向で囲むように配置されている。
 架設コア41cは、第1コア41a、第2コア41bとともに、可動マグネット30を、回転軸と直交する方向で囲むように配置される。
 架設コア41cには、可動マグネット30にエアギャップGを空けて対向して配置されるマグネット位置保持部24が、可動マグネット30側に突出して取り付けられている。
 マグネット位置保持部24は、可動マグネット30との間に発生する磁気吸引力により、可動マグネット30とともに磁気バネとして機能し、回転する可動マグネット30の位置を動作基準位置(所定の回転角度位置)に位置させて保持する。
 マグネット位置保持部24は、マグネット或いは磁性体である。本実施の形態では、マグネット位置保持部24は、可動マグネット30側に向けて着磁されたマグネットであり、磁性体で構成した場合と比較して可動マグネット30との間の磁気吸引力を増加させている。本実施の形態では、可動マグネット30側を着磁方向としたマグネットを適用している。
 マグネット位置保持部24は、マグネットであり、本実施の形態では、動作基準位置において、可動マグネット30の磁極切り替わり部34を、磁極412a、412bと対向する位置に位置させる。このように、マグネット位置保持部24は、可動マグネット30と互いに吸引し合い、可動マグネット30を動作基準位置に位置させることができる。これにより、可動マグネット30の磁極切り替わり部34が、第1コア41a、第2コア41bの磁極412a、412bの中心位置と対向する。これにより、可動マグネット30は動作基準位置で安定し、且つ、その位置で、コイル43(43a、43b)は通電されて、最大トルクを発生して可動体10を駆動できる。
 また、可動マグネット30は、2極着磁されているので、コイル43との協働により高振幅しやすく、振動性能の向上を図ることができる。
 マグネット位置保持部24は、可動マグネット30の外周面にエアギャップGを空けて対向する対向面を有する。対向面は、可動マグネット30の外周面の形状に対応した湾曲面としている。
 マグネット位置保持部24は、架設コア41cから可動マグネット30に向かって突出する凸状に形成され、その先端面を対向面としている。
 マグネット位置保持部24は、例えば、対向面をN極(図8及び図9参照)に着磁されたマグネットである。
 マグネット位置保持部24の磁極となる対向面は、可動マグネット30の回転方向に沿う部位であって、第1コア41a、第2コア41bの磁極412a、412bとが対向する可動マグネット30の外周面の部位の間の部位に対して、可動マグネット30の径方向外側で対向する。
 マグネット位置保持部24を磁性体とする場合、架設コア41cに一体的に形成してもよい。これにより、少ない部品点数で磁気バネとしての機能を好適に実現できる。
 動作基準位置における可動マグネット30は、可動マグネット30の磁極の一方がマグネット位置保持部24に対向し、可動マグネット30の磁極の磁極切り替わり部34が、第1コア41a、第2コア41bの磁極412a、412bの中心位置と対向する。
 本実施の形態では、コイル43が励磁するコア41を、磁極412aを有する第1コア41a、磁極412bを有する第2コア41b及び、第1コア41a及び第2コア41bの各磁極412a、412b側とは反対側の端部間に架設される架設コア41cで構成している。すなわち、コア41は3つの分割体により構成されている。これら分割体のうち、架設コア41cにマグネット位置保持部24が設けられている。このように、コア41において、マグネット位置保持部24を配置するコア部分を別体としているので、マグネット位置保持部24をコイル43が巻回される部分を含むコアに一体で構成した場合と比較して、コイル43、コア41、可動マグネット30における相互の組み付けが行いやすく、組立性の向上を図ることができる。
 図4は、本発明の実施の形態1に係る回転往復駆動アクチュエータの減衰部を示す縦断面図であり、図5は、本発明の実施の形態1に係る回転往復駆動アクチュエータの減衰器を示す分解斜視図である。
 減衰部は、コイル43が通電されることで可動体10が往復回転駆動する際に鋭い共振が発生する場合、その鋭い共振を減衰する。本実施の形態では、減衰部として減衰器60は、軸部13とベース22との間に設けられ、軸部13の回転に負荷を与えることで、共振を減衰する。
 減衰器60は、例えば、ベース22に固定されるケース62と、マグネット63と、ケース62内で回動自在に配置され、軸部13に固定される回転体64と、上蓋部65と、下蓋部66とを有する。
 ケース62は筒状体であり、内周面にリング状のマグネット63が周方向に沿って取り付けられている。マグネット63の内側には、回転体64がエアギャップG2を空けて配置されている。
 回転体64は、円盤部641と、円盤部641の中央から突出する凹部642と、円盤部641の外縁側から突出し、凹部642の外周側に同心円状に配置される外筒部644とを有する磁性体である。回転体64の凹部642内に、軸部13の他端部13bが挿入されるとともに固定される。外筒部644は、ケース62内においてマグネット63と、上蓋部65の内筒部652との間で周方向に移動自在に配置される。
 ケース62の下面側は、下蓋部66により閉塞され、ケース62の上面側は、回転体64がケース62から抜脱しないように、且つ、回転体64の中央に設けられた凹部642の開口端を露出させた状態で、リング状の上蓋部65により閉塞されている。減衰器60は、ケース62の上面側のフランジで、他端面部224にネジ等の止着材29(図2参照)を介して固定されている。本実施の形態では、ケース62は、他端面部224において外面側に突出する図示しないボス部に止着材29を介して固定され、減衰器60は、他端面部224との間で回転角度位置検出部70を挟むように配置されている。
 ケース62内には、マグネット63と回転体64との間と、上蓋部65の内筒部652と回転体64との間には磁性流体Rが充填されている。
 減衰器60は、可動体10が往復回転駆動する際に、軸部13の他端部13bに固定された回転体64がケース62内で磁性流体Rに接触することによりマグネット63の磁気吸引力により磁性流体Rにより荷重を付与しつつ往復回転駆動することになる。これにより、可動体10の可動時に、共振が鋭い場合に発生する図6Bに示すリンギングを抑制し、図6Aのようにリンギングがなく好適な波形、所謂、のこぎり波で駆動して、制御し易い振動を実現できる。また、本実施の形態の減衰器60は、回転体64と、ケース62側との間に磁性流体Rを介在させた構成として、磁性流体Rがマグネット63により、減衰器60の外部に漏れることがなく、減衰器60としての信頼性の向上を図ることができる。
 なお、本実施の形態の回転往復駆動アクチュエータ1では、減衰部としての減衰器60は、所謂、回転体64と、固定体側であるケース62との間に磁性流体Rを介在させた回転ダンパーとしたが、磁性流体Rに換えて、ケース62に対する回転体64の回転力を減衰させる流体であってもよい。すなわち、減衰器60は、可動体10に接続される回転体64の回転を減衰し、可動体10が往復回転駆動する際に発生する鋭い共振を減衰するものであれば、どのように構成されてもよい。
 例えば、減衰器60の構成において、マグネット63を外し、ケース62、上蓋部65及び下蓋部66との密閉性をシーリングなどにより高めて、磁性流体Rの代わりに、オイルを用いた構成としてもよい。
 この構成によれば、減衰器60において、マグネット63が不要となり、減衰器自体の小型化を図ることができるとともに、組み立て性の向上を図ることができる。
 また、減衰部を磁性流体自体とし、可動マグネット30と磁極412a、412bとの間のエアギャップGや、可動マグネット30とマグネット位置保持部24との間のエアギャップGに配置してもよい。この構成によれば、本実施の形態の減衰器60のような回転ダンパーを別部品として用いる必要がない。また、磁性流体を、可動マグネット30と磁極412a、412bのそれぞれのエアギャップGを挟む部位や、可動マグネット30とマグネット位置保持部24のそれぞれのエアギャップGを挟む部位に塗布することで、これらエアギャップG間に磁性流体を容易に配置して、共振を減衰する減衰機能を、低コストかつ省スペースで実現できる。
 また、減衰部として、例えば、図7に示すように、回転往復駆動アクチュエータ1に駆動信号を供給する電源供給部(駆動信号供給部77)と回転往復駆動アクチュエータ1との間に、ローパスフィルタ、帯域除去フィルタ、或いはノッチフィルタなどの電気的フィルタ78を設けて、リンギングが発生する周波数成分を除去するようにしてもよい。なお、電気的フィルタ78は、コイル43を駆動する図示しない駆動基板に実装され、駆動基板は固定体20に設けられる。
 電気的フィルタ78を設けて、共振を減衰することにより、機械的な減衰構造と比較して,温度の影響を受けたり、構成部品の個体差等の影響を受けることなく、好適にリンギングを抑制できる。
 [回転往復駆動アクチュエータ1の磁気回路構成]
 図8及び図9は、本発明の実施の形態1に係る回転往復駆動アクチュエータの磁気回路による回転往復駆動アクチュエータの動作を示す図であり、図9は、図8においてコイルへの通電方向を逆方向にした場合の回転往復駆動アクチュエータの動作を示している。
 回転往復駆動アクチュエータ1では、コイル43への非通電時において、可動マグネット30は、マグネット位置保持部24と可動マグネット30との磁気吸引力、つまり、磁気ばねにより、可動マグネット30は動作基準位置(所定の回転角度位置)に位置する。
 常態時、つまり、動作基準位置では、可動マグネット30の磁極31、32の一方がマグネット位置保持部24に吸引されて、磁極切り替わり部34が、第1コア41a、第2コア41bの磁極412a、412bの中心位置と対向する位置に位置する。
 図8に示すように、例えば、マグネット位置保持部24が、可動マグネット30に対向する対向面をN極に着磁されている構成では、可動マグネット30のS極に着磁された磁極32と互いに引き合うように、可動マグネット30を回転する磁気バネトルク(図8では矢印FMで示す)を発生する。
 このように本実施の形態の回転往復駆動アクチュエータ1は、常態時において、つまり、可動マグネット30が動作基準位置に位置する場合において、可動マグネット30の磁極切り替わり部34(詳細には線状の磁極切り替わり部34の両端部)が、第1コア41a、第2コア41bの磁極412a、412bに対して向く位置に配置される。これにより、コイル43が通電された際に、コイル43の通電方向に応じたコイル43の励磁により、可動体10を所望の回転方向で駆動でき、また、可動体10を回転駆動するトルクの最大化を実現できる。
 コイル43では、コイル43に通電が行われると、コイル43(43a、43b)は、第1コア41a、第2コア41bを励磁して、第1コア41a、第2コア41bの磁極412a、412bがそれぞれ異なる極性となるように巻回されている。
 本実施の形態では、図8に示す方向でコイル43(43a、43b)が通電されると、コイル43(43a、43b)は、第1コア41a、第2コア41bを励磁して、磁極412aはN極に磁化され、磁極412bはS極に磁化される。
 詳細には、通電されたコイル43a、43bは、それぞれが巻回する芯部(411a、411b)を磁化する。第1コア41aでは、例えば、N極である磁極412aから可動マグネット30に出射して、可動マグネット30、マグネット回転位置保持部24、架設コア41cを順に流れ、芯部411aに入射する磁束が形成される。
 また、第2コア41bでは、芯部411bから架設コア41c側に出射して、架設コア41c、マグネット回転位置保持部24、可動マグネット30を順に流れ、磁極412bに入射する磁束が形成される。
 これにより、N極に磁化された磁極412aは、可動マグネット30のS極と引き合い、S極に磁化された磁極412bは、可動マグネット30のN極と引き合い、可動マグネット30には、軸部13の軸回りのF方向のトルクが発生し、F方向に回転する。これに伴い、軸部13も回転し、軸部13に固定されるミラー16も回転する。
 また、コイル43の通電方向が逆方向に切り替わると、コイル43により、励磁される第1コア41a、第2コア41bでは、磁極412a、412bは、先のコイル43への通電方向の場合と、異なる磁極で着時される。具体的には、図8に示す通電方向とは異なる方向で通電する(図9参照)と、磁極412aはS極に磁化され、磁極412bはN極に磁化され、磁束の流れも逆になる。通電方向の切り替わり時では、マグネット回転位置保持部24と可動マグネット30との間の磁気吸引力、つまり磁気バネにより、磁気バネトルクFMが発生し可動マグネット30は動作基準位置に移動する。
 これにより、図9に示すように、S極に磁化された磁極412aは、可動マグネット30のN極と引き合い、N極に磁化された磁極412bは、可動マグネット30のS極と引き合い、可動マグネット30には、軸部13の軸回りのF方向とは逆回りの方向のトルクが発生し、可動マグネット30はF方向とは逆の方向(-F方向)に回転する。これに伴い、軸部13も逆方向(-F方向)に回転移動し、軸部13に固定されるミラー16も先の移動方向とは逆の方向(-F方向)に回転する。これを繰り返すことで、ミラー16は往復回転駆動する。
 このように、回転往復駆動アクチュエータ1は、電源供給部(例えば、図7の駆動信号供給部77と同様の機能を有する電源供給部)からコイル43へ入力される交流波によって駆動される。つまり、コイル43の通電方向は周期的に切り替わり、可動体10には、軸回りのF方向のトルクによるF方向の推力と、F方向とは逆の方向(-F方向)のトルクによる推力が交互に作用する。これにより、可動体10は、軸部13を中心に往復回転駆動、つまり、振動する。なお、可動体10にF方向のトルク及び-F方向のトルクによる推力が交互に作用する際の切替時では、可動体10の動作基準位置への移動は、磁気バネトルクFM、-FMが作用する。
 以下に、回転往復駆動アクチュエータ1の駆動原理について簡単に説明する。本実施の形態の回転往復駆動アクチュエータ1では、可動体10の慣性モーメントをJ[kg・m]、磁気ばね(磁極412a、412b、マグネット位置保持部24及び可動マグネット30)のねじり方向のバネ定数をKspとした場合、可動体10は、固定体20に対して、下式(1)によって算出される共振周波数F[Hz]で振動する。
Figure JPOXMLDOC01-appb-M000001
 可動体10は、バネ-マス系の振動モデルにおけるマス部を構成するので、コイル43に可動体10の共振周波数Fに等しい周波数の交流波が入力されると、可動体10は共振状態となる。すなわち、電源供給部からコイル43に対して、可動体10の共振周波数Fと略等しい周波数の交流波を入力することにより、可動体10を効率良く振動させることができる。
 回転往復駆動アクチュエータ1の駆動原理を示す運動方程式及び回路方程式を以下に示す。回転往復駆動アクチュエータ1は、下式(2)で示す運動方程式及び下式(3)で示す回路方程式に基づいて駆動する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 すなわち、回転往復駆動アクチュエータ1における可動体10の慣性モーメントJ[kg・m]、回転角度θ(t)[rad]、トルク定数K[N・m/A]、電流i(t)[A]、バネ定数Ksp[N・m/rad]、減衰係数D[N・m/(rad/s)]、負荷トルクTLoss[N・m]等は、式(2)を満たす範囲内で適宜変更できる。また、電圧e(t)[V]、抵抗R[Ω]、インダクタンスL[H]、逆起電力定数K[V/(rad/s)]は、式(3)を満たす範囲内で適宜変更できる。
 このように、回転往復駆動アクチュエータ1では、可動体10の慣性モーメントJと磁気ばねのバネ定数Kspにより決まる共振周波数Fに対応する交流波によりコイル43への通電を行った場合に、効率的に大きな振動出力を得ることができる。
 本実施の形態の回転往復駆動アクチュエータによれば、トルクの発生効率高く、可動対象であるミラーに熱が伝達しにくく、ミラー16の反射面16aの平面度の精度を確保できる。また、製造性が高く、組立精度がよく、可動対象が大型ミラーであっても高振幅で駆動できる。
 なお、実施の形態1の回転往復駆動アクチュエータ1及び後述する回転往復駆動アクチュエータ1A、1B、1Cは、共振駆動が可能であるが、非共振駆動も可能である。また、減衰部を用いて減衰係数を大きくすることにより、リンギングの抑制も可能である。
(実施の形態2)
 図10は、本発明の実施の形態2に係る回転往復駆動アクチュエータ1Aの外観斜視図であり、図11は、本発明の実施の形態2に係る回転往復駆動アクチュエータ1Aの分解斜視図である。
 図10及び図11に示す回転往復駆動アクチュエータ1Aは、回転往復駆動アクチュエータ1の構成において回転角度位置検出部70である光学センサに変えて磁気センサを用いた構成としており、その他の構成は、回転往復駆動アクチュエータ1と同様である。よって、回転往復駆動アクチュエータ1Aの説明において回転往復駆動アクチュエータ1と同様の構成要素については同名称及び同符号を付して説明は省略する。
 回転往復駆動アクチュエータ1Aは、可動マグネット30A及び軸部13Aを有する可動体10Aと、軸部13Aを回転自在に支持し、コイル43及びマグネット位置保持部24を有する固定体20Aとを有する。回転往復駆動アクチュエータ1Aでは、可動体10Aにおける可動マグネット30Aは、リング形状を成し、軸部13Aの外周で、S極及びN極を成す偶数の磁極が交互に着磁されて構成されている。固定体20Aにおけるコア41の2つ偶数の磁極412a、412bは、可動マグネット30Aと、軸部13Aの外周側でエアギャップGを挟み各々対向して配置されている。また、コア41の磁極数と可動マグネット30Aの磁極数は等しい。
 回転往復駆動アクチュエータ1Aでは、マグネット位置保持部24と可動マグネット30Aとの磁気吸引力、所謂、磁気バネにより、常態時では、可動体10Aは、動作基準位置に位置するように、固定体20Aに回動自在に保持されている。ここで、常態時は、コイル43に通電されていない状態である。可動体10Aが動作基準位置に位置する状態とは、可動マグネット30Aがコイル43の励磁する磁極に対して中立な位置に位置する状態であり、可動マグネット30Aの磁極切り替わり部34が、コイル43側の磁極と対向する位置である。
 可動体10Aは、軸部13A、軸部13Aに固定された可動マグネット30Aの他、回転角度位置検出部70Aの磁気センサ74Aにセンシングされる磁気センサ用マグネット72Aを有する。
 軸部13Aには、ミラーホルダ15Aを介してミラー16が固定されている。
 固定体20Aは、ベース22A、軸受け23a、23b、マグネット位置保持部24、コア固定プレート27A、コイル43を有するコアユニット40を有する。
 ベース22Aは、軸方向(Z方向)に離間して対向して配置される一端面部222A及び他端面部224Aを、軸方向に延びる本体面部226Aで接合した形状を有する。なお、ベース22Aの一端面部222Aには、コアユニット40が固定されたコア固定プレート27Aが、ビス等の止着材28Aを介して固定されている。
 ベース22Aでは、一端面部222A及び他端面部224Aの切欠部には軸受け23a、23bが嵌め込まれている。軸受け23a、23bに軸部13Aが挿通され、軸部13Aは、軸受け23a、23bを介して、ベース22Aに回動自在に軸支されている。
 他端面部224Aは、軸方向外側に軸部13Aを回動自在に支持する。
 他端面部224Aの軸方向外側には、回転角度位置検出部70Aが配置されている。
 回転角度位置検出部70Aは、磁気センサ用マグネット72A、磁気センサ74A、磁気センサ74Aが実装されるセンサ用基板76Aを有する。
 磁気センサ用マグネット72Aは、他端面部224Aから軸方向外方に突出する軸部13Aの他端部13bの端面にホルダ73Aを介して一体的に固定されている。
 磁気センサ74Aは、駆動することにより、軸部13Aとともに回転する磁気センサ用マグネット72Aをセンシングして、軸部13A、ひいてはミラー16の回転角度を検出する。センサ用基板76Aは、ビス等の止着材28Aを介して固定部材75Aに固定されている。固定部材75Aは、ビス等の止着材29Aを介して他端面部224Aに固定されている。これにより、磁気センサ74Aは、他端面部224Aにおいて、磁気センサ用マグネット72Aと、軸方向で対向する位置に配置される。センサ用基板76Aは、磁気センサ74Aを駆動し、磁気センサ74Aにより取得した軸部13Aの回転角度、つまり、回転角度に対応する位置を電源供給部(例えば、図7の駆動信号供給部77と同様の機能を有する電源供給部)にフィードバック可能にする。
 本実施の形態では、回転往復駆動アクチュエータ1と同様の基本的な作用効果を奏することができるとともに、光学センサを用いた場合と比較して簡易な構造となり、また製品コストの削減を図ることができる。
(実施の形態3)
 図12は、本発明の実施の形態3に係る回転往復駆動アクチュエータ1Bの外観斜視図であり、図13は、本発明の実施の形態3に係る回転往復駆動アクチュエータ1Bの要部構成を示す縦断面図である。
 図12及び図13に示す回転往復駆動アクチュエータ1Bは、回転往復駆動アクチュエータ1と同様の磁気回路構成を有し、ミラー16Bを軸部13Bの一端部側に固定し、軸部13Bの他端部13b側でベース22Bにより軸支されている。なお、回転往復駆動アクチュエータ1Bにおいても、可動体10Bにおけるリング形状の可動マグネット30は、軸部13Bの外周で、S極及びN極を成す偶数の磁極が交互に着磁されて構成され、固定体20Bにおける2つ偶数の磁極412a、412bは、可動マグネット30の磁極数と等しく、可動マグネット30と、軸部13Bの外周側でエアギャップGを挟み各々対向して配置されている。
 回転往復駆動アクチュエータ1Bは、ミラー16Bを、所謂、ピボット構造にて往復回転駆動可能に構成されている。
 具体的には、軸部13Bと、軸部13Bに固定される可動マグネット30を有する可動体10Bにおいて、軸部13Bにはエンコーダディスク72と、走査用のミラー16Bとが固定されている。走査用のミラー16Bは、ミラーホルダ15Bを介して軸部13Bに固定されている。
 コアユニット40を有する固定体20Bでは、ベース22Bに形成された貫通部に、軸受け232、234が隣接して嵌め込まれ、この軸受け232、234に挿通されている。
 ベース22Bは、XY平面上に配置される板状のベースであり、ベース22Bの一端面側(左側面側)には、コア固定プレート27を介して、コアユニット40が固定されている。
 ベース22Bの他端面(右側面)、つまり、ベース部22Bにおいてコアユニット40が設けられる面とは反対側の面には、回転角度位置検出部70が配置されている。ベース22Bの他端面(右側面)側に、軸部13Bに取り付けられたエンコーダディスク72と、センサ用基板76とが配置され、エンコーダディスク72と対向する光学センサ74により軸部13Bの回転角度を検出可能となっている。また、ベース22Bの右側面側には、回転角度位置検出部70よりも右側に位置する減衰器60が設けられている。
 実施の形態1と同様の減衰器60の回転体64(図6及び図7参照)には、軸受け232,234を介してベース22Bを挿通された軸部13Bの他端部13bが接合されている。
 このように回転往復駆動アクチュエータ1Bでは、軸部13Bは、一端部側でミラー16Bを固定し、他端部側でベース22Bに往復回転可能に支持されている。ベース22B側では、軸部13Bにおいて、ベース22Bの一端面側に可動マグネット30が固定され、軸受け234、232を介して、ベース22Bの他端面側に回転角度位置検出部70のエンコーダディスク72、減衰器60の回転体が固定されている。
 エンコーダディスク72は、軸受け234に隣接して配置されており、回転往復駆動アクチュエータ1Bは、ミラー16Bに固定される軸部13Bの長さを、実施の形態1の回転往復駆動アクチュエータ1の軸部13よりも短くして、ミラー16Bを往復回転駆動させることができる。
 回転往復駆動アクチュエータ1Bは、軸部13Bの一端部13a側にミラー16Bを固定し、軸部13Bの他端部13b側で2つの軸受け232、234により軸支している。これにより、軸部13Bに沿って配置されるミラー16B、可動マグネット30、軸受け232、234をそれぞれ順に隣接して配置させることができ、軸受け232、234を離間して配置する構成と比較して、回転往復駆動アクチュエータ1B自体を小型化できる。回転往復駆動アクチュエータ1Bは、回転往復駆動アクチュエータ1と同様に、トルクの発生効率高く、可動対象であるミラーに熱が伝達しにくく、ミラー16Bの反射面の平面度の精度を確保できる。また、製造性が高く、組立精度がよく、ミラー16Bを高振幅で駆動できる。
(実施の形態4)
 図14は、本発明の実施の形態4に係る回転往復駆動アクチュエータの外観斜視図である。
 図14に示す回転往復駆動アクチュエータ1Cは、回転往復駆動アクチュエータ1と同様の磁気回路構成を有し、回転往復駆動アクチュエータ1と同様の構成において、一軸方向で駆動するミラー16に代えて、2軸方向で駆動するミラー16Cを適用したものある。よって、回転往復駆動アクチュエータ1Cにおいて、回転往復駆動アクチュエータ1と同様の構成要素には同符号同名称を付して説明は省略する。
 回転往復駆動アクチュエータ1Cでは、電磁相互作用を用いたコアユニット40及び可動マグネット30を含むによる駆動源により、二軸で往復回転駆動する反射ミラー部162を有するミラー16Cが、軸部13の軸方向と直交する方向で往復回転駆動可能に設けられている。
 ミラー16Cは、ミラー16Cの反射ミラー部162を軸部13に対して、軸部13の回転方向と直交方向で駆動する別駆動部を含む。
 別駆動部を有するミラー16Cは、例えば、MEMS(Micro Electro Mechanical System)ミラーであり、例えば、垂直駆動信号供給部207(図16参照)により供給される駆動信号に基づいて、ミラー16Cの反射ミラー部162を軸部13と直交する1軸を中心として高速に回転可能に構成される。これにより、ミラー16Cの反射ミラー部162は、コアユニット40と可動マグネット30との駆動により軸部13を軸に往復回転駆動されるとともに、別駆動部により軸方向と直交する方向でも往復回転駆動される。
 回転往復駆動アクチュエータ1Cは、トルクの発生効率高く、可動対象であるミラー16Cに熱が伝達しにくく、反射面である反射ミラー部162の平面度の精度を確保できる。また、製造性が高く、組立精度がよく、ミラー16Cが大型ミラーであっても高振幅で駆動できる。
[スキャナシステムの概略構成]
 図15は、回転往復駆動アクチュエータを有するスキャナシステム200Aの第1例の要部構成を示すブロック図であり、図16は、回転往復駆動アクチュエータを有するスキャナシステム200Bの第2例の要部構成を示すブロック図である。
 図15に示すスキャナシステム200Aは、スキャナシステム200は、レーザー発光部201、レーザー制御部202、アクチュエータ203、駆動信号供給部204、位置制御信号計算部205を有する。
 スキャナシステム200Aでは、ミラーを一軸で往復回転駆動可能な回転往復駆動アクチュエータ203を用いて対象物を走査するものであり、回転往復駆動アクチュエータ203としては、例えば、本実施の形態の回転往復駆動アクチュエータ1~1Bを適用できる。
 レーザー制御部202は、レーザー発光部201を駆動して照射するレーザーを制御する。レーザー発光部201は、例えば、光源となるLD(レーザーダイオード)並びに出力されるレーザー収束の為のレンズ等である。光源からのレーザー光を、レンズ系を介して、アクチュエータ203のミラー16に出射する。
 位置制御信号計算部205は、回転角度位置検出部70が取得した実際の軸部13(ミラー16)の角度位置と、目標角度位置とを参照して、軸部13(ミラー16)を目標角度位置となるように制御する駆動信号を生成して出力する。例えば、位置制御信号計算部205は、取得した実際の軸部13(ミラー16)の角度位置と、図示しない波形メモリに格納されるのこぎり波形(図6A参照)データ等を用いて変換された目標角度位置を示す信号とに基づいて位置制御信号を生成して、駆動信号供給部204に出力する。
 駆動信号供給部204は、アクチュエータ203のコイル43に、所望の駆動信号を供給して、アクチュエータ203を回転往復駆動して、対象物を走査する。
 図16に示すスキャナシステム200Bは、スキャナシステム200Aと同様のレーザー発光部201及びレーザー制御部202の他、アクチュエータ203A、アクチュエータ203Aが備える水平走査角度位置検出部702、水平駆動信号供給部204A、位置制御信号計算部205、垂直走査角度位置検出部206、垂直駆動信号供給部207、位置制御信号計算部208を有する。
 スキャナシステム200Bでは、ミラー(具体的には反射ミラー部162)を二軸で往復回転駆動可能なアクチュエータ203Aを用いて、対象物を走査するものであり、アクチュエータ203Aとしては、本実施の形態の回転往復駆動アクチュエータ1Cを適用できる。
 アクチュエータ203Aとしての回転往復駆動アクチュエータ1Cは、軸部13を中心に往復回転駆動することにより、ミラー16Cの反射ミラー部162により反射するレーザー光を水平に出射させる。また、回転往復駆動アクチュエータ1Cでは、反射ミラー部162を、軸部13と直交する方向に延在する軸を中心に往復回転駆動させる。
 水平走査角度位置検出部702は、回転角度位置検出部70と同様の機能を有し、軸部13、ひいては反射ミラー部162の軸部13周りでの回転角度位置を検出し、位置制御信号計算部205に出力する。
 位置制御信号計算部205は、水平走査角度位置検出部702が取得した実際の軸部13の角度位置(ミラー16の水平走査における角度位置)と、図示しない波形メモリに格納されるのこぎり波形(図6A参照)データ等を用いて、目標角度位置となるように制御する位置制御信号を生成して、水平駆動信号供給部204Aに出力する。水平駆動信号供給部204Aは、駆動信号供給部204と同様の機能を有し、アクチュエータ203Aのコイル43に、駆動信号を出力して、アクチュエータ203の反射ミラー部162を水平走査方向に回転往復駆動して、対象物を水平走査する。
 垂直走査角度位置検出部206は、反射ミラー部162において、軸部13と直交する軸(ここではX軸)を中心に回転移動する回転角度位置を検出し、位置制御信号計算部208に出力する。
 位置制御信号計算部208は、垂直走査角度位置検出部206が取得した実際の軸部13、つまりミラー16の実際の垂直走査における角度位置と、図示しない波形メモリに格納される垂直走査用ののこぎり波形データ等を用いて変換された目標角度位置を示す情報とに基づいて、目標角度位置となるように制御する位置制御信号を生成して、垂直駆動信号供給部207に出力する。垂直駆動信号供給部207は、アクチュエータ203Aに駆動信号を出力して、アクチュエータ203Aの反射ミラー部162を垂直走査方向に回転往復駆動して、対象物を垂直走査する。
 なお、本実施の形態において減衰部として機能する構成は,実施の形態の回転往復駆動アクチュエータ1、1A、1B、1Cにおいて適宜、変更して適用してもよく、また、適宜、組み合わせて適用してもよい。例えば、磁性流体Rを用いた回転ダンパーである減衰器60、減衰器60において磁性流体に換えてオイルを用いた回転ダンパーと、ローパスフィルタ、帯域除去フィルタ、或いはノッチフィルタなどの電気フィルタ78とを組み合わせて備えるようにしてもよい。これにより、共振に対して、一層大きな減衰を得ることができ、リンギングを抑制して制御性の高い回転往復駆動アクチュエータ1、1A、1B、1Cとなる。よって、回転往復駆動アクチュエータ1、1A、1B、1Cとしての信頼性の向上を図ることができる。
 また、本実施の形態では、固定体20、20B側のコイル43は、コアユニット40に設けられた構成したが、これに限らず、コアを有さずに、本実施の形態の回転往復駆動アクチュエータ1、1A、1B、1Cを構成してもよい。例えば、振動アクチュエータ1において、コア41を有することなく、軸部13及び軸部13に固定された可動マグネット30を有する可動体と、コイル43を有し軸部13を回転自在に支持する固定体とを有し、コイル43と可動マグネット30との電磁相互作用により固定体に対して軸部13を中心に可動体10を往復回転駆動する回転往復駆動アクチュエータとしてもよい。このとき、可動マグネットは、可動マグネット30と同様に、リング形状を成し、軸部13の外周で、S極及びN極を成す偶数の磁極31、32が交互に着磁されて形成される。また、コイルは、コイル43と同様に、固定体において、可動マグネットに対して電磁相互作用により前記可動マグネットを回転するトルクが発生する位置に配置されている。例えば、コイルは、可動マグネットとの間の電磁相互作用により偶数の磁極のそれぞれとで、可動マグネットを往復回転させるトルクを発生する位置に配置されている。
 よって、コア41を有さず、その他の構成は振動アクチュエータ1と同様に構成される振動アクチュエータにおいて、可動マグネットは、可動マグネット30と同様の作用効果を得ることができる。また、この振動アクチュエータにおいて、コイル43により磁化される磁極数と可動マグネットの磁極数は等しい。また、コイルにより磁化される偶数の磁極は、可動マグネット30と、軸部の径方向でエアギャップGを挟み各々対向して配置される。加えて、固定体には、可動マグネット30とエアギャップGを挟み対向して配置され、可動マグネット30間で発生する磁気吸引力により、可動マグネット30の回転角度位置を保持する回転角度位置保持部24を有する構成とする。この構成により、製造性が高く、組立精度がよく、可動対象を高振幅で駆動できる。
 以上、本発明の実施の形態について説明した。なお、以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されない。つまり、上記装置の構成や各部分の形状についての説明は一例であり、本発明の範囲においてこれらの例に対する様々な変更や追加が可能であることは明らかである。
 2018年6月26日出願の特願2018-121167の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係る回転往復駆動アクチュエータは、製造性が高く、組立精度がよく、可動対象が大型ミラーであっても高振幅で駆動できる効果を有し、特に、耐久性が必要な、ミラーを回転させるスキャナに用いるものとして有用である。
 1、1A、1B、1C 回転往復駆動アクチュエータ
 10、10A、10B 可動体
 13、13A、13B 軸部
 13a 一端部
 13b 他端部
 15、15A、15B ミラーホルダ
 16、16B、16C ミラー
 162 反射ミラー部
 16a 反射面
 20、20B 固定体
 22、22A、22B ベース
 222、222A 一端面部
 222a、224a 切欠穴
 224、224A 他端面部
 226、226A 本体面部
 23a、23b、232、234 軸受け
 24 マグネット位置保持部
 27、27A コア固定プレート
 28、28A、29、29A 止着材
 30 可動マグネット
 31、32 磁極
 34 磁極切り替わり部
 40 コアユニット
 41 コア
 41a 第1コア
 41b 第2コア
 41c 架設コア
 411a、411b 芯部
 412a、412b 磁極
 43、43a、43b コイル
 44 ボビン
 60 減衰器
 62 ケース
 63 マグネット
 64 回転体
 641 円盤部
 642 凹部
 644 外筒部
 65 上蓋部
 652 内筒部
 66 下蓋部
 70、70A 回転角度位置検出部
 702 水平走査角度位置検出部
 72 エンコーダディスク
 72A 磁気センサ用マグネット
 73A ホルダ
 74 光学センサ
 74A 磁気センサ
 75A 固定部材
 76、76A センサ用基板
 77 駆動信号供給部
 78 電気フィルタ
 200A、200B スキャナシステム
 201 レーザー発光部
 202 レーザー制御部
 203、203A アクチュエータ
 204 駆動信号供給部
 204A 水平駆動信号供給部
 205、208 位置制御信号計算部
 206 垂直走査角度位置検出部
 207 垂直駆動信号供給部

Claims (23)

  1.  可動対象物が接続される軸部及び前記軸部に固定された可動マグネットを有する可動体と、
     コイル及び前記コイルが巻回され、偶数の磁極を有するコアを有し、前記軸部を回転自在に支持する固定体と、を備え、通電される前記コイルと前記可動マグネットとの電磁相互作用により前記固定体に対して前記軸部を中心に前記可動体を往復回転駆動する回転往復駆動アクチュエータであって、
     前記可動マグネットは、リング形状を成し、前記軸部の外周で、S極及びN極を成す偶数の磁極が交互に着磁されて構成され、
     前記コアの磁極数と前記可動マグネットの磁極数は、等しく、
     前記コアの偶数の磁極は、前記可動マグネットと、前記軸部の外周側でエアギャップを挟み各々対向して配置され、
     前記固定体は、前記可動マグネットとエアギャップを挟み対向して配置され、可動マグネットとの間で発生する磁気吸引力により、前記可動マグネットの回転角度位置を保持する回転角度位置保持部を有する、
     ことを特徴とする回転往復駆動アクチュエータ。
  2.  前記可動マグネットの磁極切り替わり部は、前記可動マグネットが前記回転角度位置保持部により前記回転角度位置で保持されたとき、前記偶数の磁極の各々に対して対称となる位置に配置される、
     ことを特徴とする請求項1に記載の回転往復駆動アクチュエータ。
  3.  前記可動マグネットは、前記軸部の外周で、前記偶数の磁極が等間隔に着磁されている、
     ことを特徴とする請求項1または2に記載の回転往復駆動アクチュエータ。
  4.  前記回転角度位置保持部は、マグネットである、
     ことを特徴とする請求項1から3のいずれか一項に記載の回転往復駆動アクチュエータ。
  5.  前記回転角度位置保持部は、前記コアに設けられる凸状の磁極である、
     ことを特徴とする請求項1から4のいずれか一項に記載の回転往復駆動アクチュエータ。
  6.  前記回転角度位置保持部としての前記マグネットは、前記偶数の磁極の間で前記可動マグネットの径方向に対向して配置されている、
     ことを特徴とする請求項4に記載の回転往復駆動アクチュエータ。
  7.  前記コアは、前記可動マグネットを挟む位置に配置された偶数の芯部を有し、
     前記コイルは、各々の芯部に各々巻回されている、
     ことを特徴とする請求項1から6のいずれか一項に記載の回転往復駆動アクチュエータ。
  8.  前記コアは、前記回転角度位置保持部が設けられる部位が、前記偶数の磁極を有する部位とは別体で形成されている、
     ことを特徴とする請求項5に記載の回転往復駆動アクチュエータ。
  9.  前記軸部は、前記固定体に設けられる軸受けを介して軸支され、
     前記軸受けは、前記軸部において、前記可動対象物を挟む位置に配置されている、
     ことを特徴とする請求項1から8のいずれか一項に記載の回転往復駆動アクチュエータ。
  10.  前記軸部は、前記固定体に設けられる軸受けを介して軸支され、
     前記軸受けは、前記軸部において、前記可動マグネットと前記可動対象物との間に配置されている、
     ことを特徴とする請求項1から8のいずれか一項に記載の回転往復駆動アクチュエータ。
  11.  前記可動体が可動する際の共振を減衰する減衰部を有する、
     請求項1から10のいずれか一項に記載の回転往復駆動アクチュエータ。
  12.  前記減衰部は、オイルを用いた回転ダンパーである、
     ことを特徴とする請求項11に記載の回転往復駆動アクチュエータ。
  13.  前記減衰部は、磁性流体を用いた回転ダンパーである、
     ことを特徴とする請求項11に記載の回転往復駆動アクチュエータ。
  14.  前記減衰部は、前記可動マグネットと前記偶数の磁極との間、及び、前記可動マグネットと前記回転角度位置保持部との間に配置される磁性流体である、
     ことを特徴とする請求項11に記載の回転往復駆動アクチュエータ。
  15.  前記減衰部は、前記コイルに入力される駆動信号をフィルタリングする電気的フィルタである、
     ことを特徴とする請求項11に記載の回転往復駆動アクチュエータ。
  16.  前記減衰部は、前記固定体と前記軸部とを接続する回転ダンパーと、前記コイルに入力される駆動信号をフィルタリングする電気的フィルタとを有する、
     ことを特徴とする請求項11に記載の回転往復駆動アクチュエータ。
  17.  前記軸部の回転角度位置を検出する回転角度位置検出部を有する、
     ことを特徴とする請求項1から16のいずれか一項に記載の回転往復駆動アクチュエータ。
  18.  前記回転角度位置検出部は、光センサを有する、
     ことを特徴とする請求項17に記載の回転往復駆動アクチュエータ。
  19.  前記回転角度位置検出部は、磁気センサを有する、
     ことを特徴とする請求項17に記載の回転往復駆動アクチュエータ。
  20.  前記可動対象物は、走査光を反射するミラーである、
     ことを特徴とする請求項1から19のいずれか一項に記載の回転往復駆動アクチュエータ。
  21.  前記可動対象物は、当該可動対象物を前記軸部に対して、前記軸部の回転方向と直交方向で駆動する別駆動部を有する、
     ことを特徴とする請求項1から19のいずれか一項に記載の回転往復駆動アクチュエータ。
  22.  軸部及び前記軸部に固定された可動マグネットを有する可動体と、
     コイルを有し前記軸部を回転自在に支持する固定体と、を有し、前記コイルと前記可動マグネットとの電磁相互作用により前記固定体に対して前記軸部を中心に前記可動体を往復回転駆動する回転往復駆動アクチュエータであって、
     前記可動マグネットは、リング形状を成し、前記軸部の外周で、S極及びN極を成す偶数の磁極が交互に着磁され、
     前記コイルは、前記可動マグネットに対して、前記電磁相互作用により前記可動マグネットを回転するトルクが発生する位置に配置され、
     前記固定体は、前記可動マグネットとエアギャップを挟み対向して配置され、可動マグネットとの間で発生する磁気吸引力により、前記可動マグネットの回転角度位置を保持する回転角度位置保持部を有する、
     回転往復駆動アクチュエータ。
  23.  前記可動マグネットは、前記軸部の外周で、前記偶数の磁極が等間隔に着磁されている、
     前記コイルは、前記偶数の磁極のそれぞれとの前記電磁相互作用により前記可動マグネットを往復回転させるトルクを発生する位置に配置されている、
     ことを特徴とする請求項22記載の回転往復駆動アクチュエータ。
PCT/JP2019/025505 2018-06-26 2019-06-26 回転往復駆動アクチュエータ WO2020004514A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207038096A KR102581631B1 (ko) 2018-06-26 2019-06-26 회전 왕복 구동 액추에이터
JP2020527610A JP7108211B2 (ja) 2018-06-26 2019-06-26 回転往復駆動アクチュエータ
CN201980037890.4A CN112243563A (zh) 2018-06-26 2019-06-26 旋转往复驱动致动器
US17/255,227 US11909291B2 (en) 2018-06-26 2019-06-26 Rotary reciprocating drive actuator with movable element and magnets and rotating mirror
EP19825399.9A EP3817204A4 (en) 2018-06-26 2019-06-26 ROTARY RETRACTOR DRIVE ACTUATOR
JP2022112473A JP7421140B2 (ja) 2018-06-26 2022-07-13 回転往復駆動アクチュエータ
JP2024002555A JP2024028459A (ja) 2018-06-26 2024-01-11 回転往復駆動アクチュエータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-121167 2018-06-26
JP2018121167 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020004514A1 true WO2020004514A1 (ja) 2020-01-02

Family

ID=68985454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025505 WO2020004514A1 (ja) 2018-06-26 2019-06-26 回転往復駆動アクチュエータ

Country Status (6)

Country Link
US (1) US11909291B2 (ja)
EP (1) EP3817204A4 (ja)
JP (3) JP7108211B2 (ja)
KR (1) KR102581631B1 (ja)
CN (1) CN112243563A (ja)
WO (1) WO2020004514A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836372A1 (en) * 2019-12-13 2021-06-16 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator
EP3952079A1 (en) * 2020-08-07 2022-02-09 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator
EP4047798A1 (en) * 2021-02-19 2022-08-24 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102581631B1 (ko) 2018-06-26 2023-09-22 미쓰미덴기가부시기가이샤 회전 왕복 구동 액추에이터
JP2023006571A (ja) * 2021-06-30 2023-01-18 ミツミ電機株式会社 回転往復駆動アクチュエーター
JP2023043027A (ja) * 2021-09-15 2023-03-28 ミツミ電機株式会社 回転往復駆動アクチュエーター
JP2024011914A (ja) * 2022-07-15 2024-01-25 ミツミ電機株式会社 回転往復駆動アクチュエーター
EP4307530A1 (en) * 2022-07-15 2024-01-17 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator
CN115930763B (zh) * 2022-12-08 2023-12-05 楚瑞智能科技(苏州)有限公司 一种基于磁栅尺的位移测量方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129804A (ja) * 1984-11-29 1986-06-17 Kokusai Gijutsu Kaihatsu Kk 双安定ロ−タリ−ソレノイド
JP2001169524A (ja) * 1999-09-28 2001-06-22 Aisin Seiki Co Ltd バルブ駆動装置
JP2007333873A (ja) * 2006-06-13 2007-12-27 Sumitomo Heavy Ind Ltd ビームスキャナ
WO2018078848A1 (ja) * 2016-10-31 2018-05-03 タカノ株式会社 ロータリソレノイド
JP2018121167A (ja) 2017-01-24 2018-08-02 株式会社東芝 電力監視制御システムおよび電力監視制御システム用プログラム

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516888Y2 (ja) 1971-04-17 1976-02-25
DE2723140C2 (de) * 1977-05-23 1986-06-12 Basf Ag, 6700 Ludwigshafen Vorrichtung zum Positionieren von Gegenständen
CA1131499A (en) * 1977-12-02 1982-09-14 Thurman S. Jess Metering apparatus for a fluid infusion system with flow control station
US4370019A (en) * 1978-12-23 1983-01-25 Canon Kabushiki Kaisha Optical scanning device with temperature control means
US4314295A (en) * 1979-10-18 1982-02-02 Burroughs Corporation Linear actuator with staggered flat coils
JPS5678342A (en) * 1979-11-26 1981-06-27 Kangiyou Denki Kiki Kk Printed circuit
US4490635A (en) * 1980-09-24 1984-12-25 Quantum Corporation Pure torque, limited displacement transducer
JPS5744330Y2 (ja) 1981-09-16 1982-09-30
US4509109A (en) * 1982-09-13 1985-04-02 Hansen Thomas C Electronically controlled coil assembly
US4502752A (en) * 1982-11-08 1985-03-05 General Scanning, Inc. Resonant actuator for optical scanning
NL8400791A (nl) * 1984-03-13 1985-10-01 Philips Nv Trillingsmotor met een draaibaar gelagerd anker.
DE3526166C2 (de) * 1984-07-23 1996-05-02 Asahi Chemical Ind Bürstenloser Elektromotor und Verfahren zum Herstellen einer Spuleneinheit für diesen
JPS62237302A (ja) * 1986-04-08 1987-10-17 Sony Corp 回転揺動アクチユエ−タの回転位置検出装置
JPH0681475B2 (ja) 1986-05-02 1994-10-12 国際技術開発株式会社 ロ−タリ−ソレノイド
FR2625335A1 (fr) * 1987-12-24 1989-06-30 Castelo Veronique Dispositif a miroir oscillant pour la deviation de rayons electromagnetiques
IL87252A (en) * 1988-07-28 1992-03-29 Israel State Scanning device
US4919500A (en) * 1988-09-09 1990-04-24 General Scanning, Inc. Torsion bar scanner with damping
US5206762A (en) * 1988-12-01 1993-04-27 Kabushiki Kaisha Toshiba Viscoelastic substance and objective lens driving apparatus with the same
US5187612A (en) * 1990-11-15 1993-02-16 Gap Technologies, Inc. Gyrating programmable scanner
US5130328A (en) 1991-09-06 1992-07-14 American Cyanamid Company N-alkanoylaminomethyl and N-aroylaminomethyl pyrrole insecticidal and acaricidal agents
JPH05181078A (ja) * 1991-12-27 1993-07-23 Ricoh Co Ltd 2軸アクチュエータ
US5610752A (en) * 1992-05-27 1997-03-11 Opticon Inc. Optical reader with vibrating mirror
US5283682A (en) 1992-10-06 1994-02-01 Ball Corporation Reactionless scanning and positioning system
US5686832A (en) * 1993-05-17 1997-11-11 Nu-Tech & Engineering, Inc. Miniature crossed coil gauge having an active flux ring
JP2722314B2 (ja) * 1993-12-20 1998-03-04 日本信号株式会社 プレーナー型ガルバノミラー及びその製造方法
EP0735526B1 (en) * 1995-03-31 1998-05-20 Daewoo Electronics Co., Ltd Optical pick-up apparatus
US5703555A (en) * 1995-04-25 1997-12-30 Itt Automotive Electrical Systems Inc. Rotary actuator
US5982521A (en) * 1995-11-15 1999-11-09 Brother Kogyo Kabushiki Kaisha Optical scanner
WO1997021231A1 (en) * 1995-12-05 1997-06-12 Smith's Industries Aerospace & Defense Systems, Inc. Flexible lead electromagnetic coil assembly
FR2765351B1 (fr) * 1997-06-27 2005-04-22 Asahi Optical Co Ltd Systeme de detection de rotation pour miroir galvanique
US6424068B2 (en) * 1997-06-27 2002-07-23 Asahi Kogaku Kogyo Kabushiki Kaisha Galvano mirror unit
JP3456130B2 (ja) * 1997-11-26 2003-10-14 三菱電機株式会社 距離測定装置
US6188502B1 (en) * 1998-03-26 2001-02-13 Nec Corporation Laser pointing apparatus and on-fulcrum drive apparatus
US6421208B1 (en) * 2000-05-30 2002-07-16 Western Digital Technologies, Inc. Disk drive employing a voice coil motor comprising a yoke for generating a undirectional magnetic flux and a voice coil partially interacting with the undirectional magnetic flux
DE10038209A1 (de) * 2000-08-04 2002-02-14 Philips Corp Intellectual Pty Elektrisches Gerät mit einem Aktuator
US7136547B2 (en) * 2001-03-30 2006-11-14 Gsi Group Corporation Method and apparatus for beam deflection
US9825499B2 (en) * 2001-05-24 2017-11-21 Arjuna Indraeswaran Rajasingham Axial gap electrical machine
JP2003043405A (ja) 2001-08-02 2003-02-13 Hitachi Via Mechanics Ltd スキャナ装置
JP2004074166A (ja) * 2002-08-09 2004-03-11 Hitachi Via Mechanics Ltd 光学スキャナおよびレーザ加工装置
WO2004030407A2 (en) * 2002-09-26 2004-04-08 Seiko Epson Corporation Drive mechanism
US6956684B2 (en) * 2002-11-08 2005-10-18 Texas Instruments Incorporated Multilayered oscillating device with spine support
JP4298311B2 (ja) * 2003-02-07 2009-07-15 キヤノン株式会社 モータ
WO2004082106A1 (en) * 2003-03-13 2004-09-23 Elop Electro-Optics Industries Ltd. Torque producing device
JP4271514B2 (ja) 2003-06-30 2009-06-03 セイコープレシジョン株式会社 ステップモータ
US6967422B2 (en) * 2003-12-02 2005-11-22 Nelson Victor H Rotary actuator
JP2005173411A (ja) * 2003-12-12 2005-06-30 Canon Inc 光偏向器
US7468824B2 (en) * 2004-01-19 2008-12-23 Ricoh Company, Ltd. Imaging apparatus including optical scanning device with deflecting mirror module, and method of deflecting with the mirror module
US7340944B2 (en) * 2005-08-19 2008-03-11 Arthur Beyder Oscillator and method of making for atomic force microscope and other applications
US7420721B2 (en) * 2005-08-31 2008-09-02 Optoelectronics Co., Ltd. Oscillation scan mirror with magnetic retaining force acting between the holder and shaft to prevent relative tilt between shaft and bearings
WO2007029643A1 (ja) * 2005-09-07 2007-03-15 Alps Electric Co., Ltd. アクチュエータ及びこれを用いたホログラフィー装置
JP5493240B2 (ja) * 2005-11-21 2014-05-14 株式会社リコー 光走査装置及び画像形成装置
JP2008047648A (ja) * 2006-08-11 2008-02-28 Hamanako Denso Co Ltd ロータリーソレノイド
EP2535759B1 (en) * 2006-10-12 2020-06-17 National Institute of Advanced Industrial Science and Technology Optical scanning device
JP2008301626A (ja) 2007-05-31 2008-12-11 Takano Co Ltd ロータリアクチュエータ装置
US8752969B1 (en) * 2007-10-15 2014-06-17 Arete Associates Method of operating a fast scanning mirror
KR20090051859A (ko) * 2007-11-20 2009-05-25 삼성전기주식회사 스캐너 및 이를 구비하는 디스플레이 장치
US7586659B2 (en) * 2008-01-18 2009-09-08 Texas Instruments Incorporated Audio MEMS mirror feedback
JP5020880B2 (ja) * 2008-04-22 2012-09-05 キヤノン株式会社 ガルバノモータ及びガルバノモータシステム
WO2009147654A1 (en) * 2008-06-02 2009-12-10 Maradin Technologies Ltd. Gimbaled scanning micro-mirror apparatus
KR100956890B1 (ko) * 2008-06-17 2010-05-11 삼성전기주식회사 스캐너
JP2010014680A (ja) * 2008-07-07 2010-01-21 Sanyo Electric Co Ltd ビーム照射装置
JP2010265805A (ja) 2009-05-14 2010-11-25 Kaneko Fumiko 磁力増強電磁式駆動装置
US8130436B2 (en) * 2009-02-17 2012-03-06 Prysm, Inc. Flexure actuator
US8193781B2 (en) * 2009-09-04 2012-06-05 Apple Inc. Harnessing power through electromagnetic induction utilizing printed coils
US8390909B2 (en) * 2009-09-23 2013-03-05 Metrologic Instruments, Inc. Molded elastomeric flexural elements for use in a laser scanning assemblies and scanners, and methods of manufacturing, tuning and adjusting the same
US8059324B2 (en) * 2009-09-23 2011-11-15 Metrologic Instruments, Inc. Scan element for use in scanning light and method of making the same
JP4849497B2 (ja) * 2009-11-19 2012-01-11 パイオニア株式会社 駆動装置
TWI416168B (zh) * 2010-02-05 2013-11-21 Ind Tech Res Inst 光學多環掃描元件
US8456724B2 (en) * 2010-06-17 2013-06-04 Touch Micro-System Technology Corp. Biaxial scanning mirror for image forming apparatus
JP2012068451A (ja) 2010-09-24 2012-04-05 Brother Ind Ltd 光スキャナ及び画像投影装置
JP5640687B2 (ja) * 2010-11-16 2014-12-17 セイコーエプソン株式会社 アクチュエーター、アクチュエーターの製造方法、光スキャナーおよび画像形成装置
CN103180772A (zh) * 2010-11-24 2013-06-26 日本电气株式会社 光学扫描设备
US8582191B2 (en) * 2011-01-28 2013-11-12 Prysm, Inc. Positioning sensing and position servo control
US9035502B2 (en) * 2011-02-07 2015-05-19 Lg Innotek Co., Ltd. Multifunctional voice coil motor
US20140118809A1 (en) * 2011-07-06 2014-05-01 Nec Corporation Optical scanning device, image display apparatus and optical scanning method
NL2007554C2 (en) * 2011-10-10 2013-04-11 Innoluce B V Mems scanning micromirror.
US8915439B2 (en) * 2012-02-06 2014-12-23 Metrologic Instruments, Inc. Laser scanning modules embodying silicone scan element with torsional hinges
WO2013183435A1 (ja) * 2012-06-08 2013-12-12 三菱電機株式会社 ガルバノスキャナおよびレーザ加工機
DE102013104410A1 (de) * 2013-04-30 2014-10-30 Scansonic Mi Gmbh Scannervorrichtung
DE202013103566U1 (de) * 2013-08-08 2013-08-21 Femotech Gmbh Optischer Resonanzscanner
US9285566B2 (en) * 2013-08-08 2016-03-15 Apple Inc. Mirror tilt actuation
WO2015029493A1 (ja) * 2013-08-28 2015-03-05 三菱電機株式会社 画像投影装置
US9997984B2 (en) * 2013-12-19 2018-06-12 Pinoeer Corporation Driving apparatus
WO2016123618A1 (en) * 2015-01-30 2016-08-04 Adcole Corporation Optical three dimensional scanners and methods of use thereof
JP5949972B1 (ja) * 2015-02-12 2016-07-13 日本電気株式会社 撮像装置
US10101457B1 (en) * 2015-07-15 2018-10-16 Apple Inc. Mirror tilt actuator
KR102312469B1 (ko) * 2016-09-13 2021-10-13 미쓰비시덴키 가부시키가이샤 갈바노 스캐너 및 미러 유닛
JP6587603B2 (ja) 2016-12-27 2019-10-09 三菱電機株式会社 ガルバノスキャナ及びレーザ加工装置
JP7461882B2 (ja) * 2017-12-28 2024-04-04 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー 光学科学機器におけるミラー位置合わせ
KR102581631B1 (ko) 2018-06-26 2023-09-22 미쓰미덴기가부시기가이샤 회전 왕복 구동 액추에이터
US11803047B2 (en) 2019-02-04 2023-10-31 Thorlabs Measurement Systems Inc. Actuator and beam steering mechanism using an actuator
FR3100400B1 (fr) * 2019-09-03 2022-03-11 Cedrat Tech Actionneur magnetique et systeme mecatronique
JP7140980B2 (ja) * 2019-12-13 2022-09-22 ミツミ電機株式会社 回転往復駆動アクチュエーター
WO2021232069A1 (en) * 2020-05-14 2021-11-18 Velodyne Lidar Usa, Inc. Scanning mirror mechanisms for lidar systems, and related methods and apparatus
JP2022030904A (ja) * 2020-08-07 2022-02-18 ミツミ電機株式会社 回転往復駆動アクチュエーター

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129804A (ja) * 1984-11-29 1986-06-17 Kokusai Gijutsu Kaihatsu Kk 双安定ロ−タリ−ソレノイド
JP2001169524A (ja) * 1999-09-28 2001-06-22 Aisin Seiki Co Ltd バルブ駆動装置
JP2007333873A (ja) * 2006-06-13 2007-12-27 Sumitomo Heavy Ind Ltd ビームスキャナ
JP4727509B2 (ja) 2006-06-13 2011-07-20 住友重機械工業株式会社 ビームスキャナ
WO2018078848A1 (ja) * 2016-10-31 2018-05-03 タカノ株式会社 ロータリソレノイド
JP2018121167A (ja) 2017-01-24 2018-08-02 株式会社東芝 電力監視制御システムおよび電力監視制御システム用プログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836372A1 (en) * 2019-12-13 2021-06-16 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator
US11664713B2 (en) 2019-12-13 2023-05-30 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator having magnets and coils, capable of attaching a movable object
EP3952079A1 (en) * 2020-08-07 2022-02-09 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator
US11936250B2 (en) 2020-08-07 2024-03-19 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator
EP4047798A1 (en) * 2021-02-19 2022-08-24 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator

Also Published As

Publication number Publication date
JP7108211B2 (ja) 2022-07-28
US11909291B2 (en) 2024-02-20
JPWO2020004514A1 (ja) 2021-06-10
JP2024028459A (ja) 2024-03-04
KR20210018356A (ko) 2021-02-17
KR102581631B1 (ko) 2023-09-22
JP2022140492A (ja) 2022-09-26
US20210265904A1 (en) 2021-08-26
EP3817204A1 (en) 2021-05-05
EP3817204A4 (en) 2022-03-09
JP7421140B2 (ja) 2024-01-24
CN112243563A (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
WO2020004514A1 (ja) 回転往復駆動アクチュエータ
JP7140980B2 (ja) 回転往復駆動アクチュエーター
EP3952079A1 (en) Rotary reciprocating drive actuator
JPWO2008149851A1 (ja) 物体検出装置
JP2008111882A (ja) アクチュエータ、光スキャナおよび画像形成装置
JP7477786B2 (ja) 回転往復駆動アクチュエーター及びスキャナーシステム
EP4047798A1 (en) Rotary reciprocating drive actuator
JP2022127375A (ja) 回転往復駆動アクチュエーター
JP2022127381A (ja) 回転往復駆動アクチュエーター
US20230006526A1 (en) Rotary reciprocating driving actuator
US20240019684A1 (en) Rotary reciprocating drive actuator
US20230096114A1 (en) Rotary reciprocating drive actuator
US20240022153A1 (en) Rotary reciprocating drive actuator
JP2010054652A (ja) 光走査装置
US20240019683A1 (en) Rotary reciprocating drive actuator
US20240022154A1 (en) Rotary reciprocating drive actuator
JP2023015900A (ja) 回転往復駆動アクチュエーター
JP2023015903A (ja) 回転往復駆動アクチュエーター
JP2010032827A (ja) 振動ミラーおよび画像記録装置
JPH0696251A (ja) バーコードリーダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527610

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207038096

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019825399

Country of ref document: EP

Effective date: 20210126