WO2020004366A1 - ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム - Google Patents

ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム Download PDF

Info

Publication number
WO2020004366A1
WO2020004366A1 PCT/JP2019/025090 JP2019025090W WO2020004366A1 WO 2020004366 A1 WO2020004366 A1 WO 2020004366A1 JP 2019025090 W JP2019025090 W JP 2019025090W WO 2020004366 A1 WO2020004366 A1 WO 2020004366A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
state
medicine
drone system
battery
Prior art date
Application number
PCT/JP2019/025090
Other languages
English (en)
French (fr)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020527533A priority Critical patent/JP6777923B2/ja
Publication of WO2020004366A1 publication Critical patent/WO2020004366A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a drone system, a flying object (drone), and more particularly to a drone with improved safety, a control method for the drone system, and a drone system control program.
  • the drone can now accurately know its absolute position in centimeters while flying, In small, complicated terrain farmland typical of the above, it is possible to fly autonomously with minimal maneuvering, and to efficiently and accurately spray medicine.
  • a drone system is a drone system in which a pilot and a drone are connected to each other through a network and operate in cooperation with each other. It has a plurality of states different from each other, and transitions to another state corresponding to the condition by satisfying a condition determined for each state, and the plurality of states are a plurality of states based on an operation command from a user.
  • the drone includes a battery for driving the drone, and a low battery detection unit that detects that the charged amount of the battery is equal to or less than a predetermined value, The drone system transitions to the standby state based on the detection by the low battery detection unit.
  • the plurality of states further include a shutdown state to which the drone system belongs while shutting down the configuration of the drone system, and in the standby state, when an operation command for shutting down the drone is input, the drone system is activated. It may be configured to transition to the shutdown state.
  • the pilot and the drone are connected to each other through at least a third configuration and a network to operate in cooperation with each other, and the plurality of states are determined after the activation of each configuration of the drone system. Further comprising: an initial check state for checking whether the operation of the configuration is performed normally and cooperating with each other; and a shutdown state to which the drone system belongs while shutting down the configuration of the drone system, wherein the shutdown state includes A drone shutdown state in which the drone is shut down, and a partial cooperative state in which the drone is shut down after the drone is shut down, and the pilot and the third configuration are in a cooperative state.
  • the drone system Beam based on said battery of said drone is replaced in the part cooperative state, it may be configured to be a transition to the initial check state.
  • the drone system Based on the detection by the low battery detection unit, the drone system records information on the status of the drone system, the information is the state to which the drone system currently belongs, the history of the state that has transitioned so far, in the field It may be configured to include at least one of the information on the area where the medicine is already sprayed and the information on the area that needs to be sprayed in the future.
  • the drone is out of coordination with the drone system when replacing the battery, and the information is based on the drone being connected to the drone system and the drone being connected to establish the coordination. May be configured to be called.
  • the drone includes: a pilot battery for driving the pilot; and a second low battery detection unit that detects that a charged amount of the pilot battery is equal to or less than a predetermined value.
  • the system may be configured to transition to the standby state based on the detection by the second low battery detection unit.
  • the predetermined value detected by the low battery detection unit may be configured to be equal to or more than the amount of power storage required for the drone to return to the departure / arrival point.
  • the plurality of states further include a maintenance state for performing maintenance of the drone, and when an operation command requesting maintenance of the drone is input in the standby state, the drone system is configured to transition to a maintenance state. May be.
  • the plurality of states further include a flight start standby state capable of receiving a flight start command for permitting the drone to start flying, and in the standby state, an operation command requesting a change in a designated field where the drone sprays a drug. May be configured to transition to the flight start standby state when is input.
  • the low battery detection unit estimates a charged amount of the battery based on one or more values of a battery voltage, a battery temperature, and a current, and detects that the charged amount of the battery is equal to or less than a predetermined value. It may be constituted as follows.
  • the low battery detection unit may be configured to correct the estimated charge amount of the battery based on one or more values of the actual use time of the battery, the ambient temperature, and the like.
  • a control method for a drone system is a control method for a drone system in which a pilot and a drone are connected to each other through a network and operate in cooperation with each other, wherein the drone systems are connected to each other. It has a plurality of different states, transitions to another state corresponding to the condition by satisfying a condition defined for each state, and the plurality of states are a plurality of states based on an operation command from a user.
  • the drone includes a battery for driving the drone, and a low battery detection unit that detects that the charged amount of the battery is less than or equal to a predetermined value, the drone includes:
  • the drone system includes a step of transitioning to the standby state based on the detection by the low battery detection unit.
  • a control program for a drone system is a control program for a drone system in which a pilot and a drone are connected to each other through a network and operate in cooperation with each other. It has a plurality of states different from each other, and transitions to another state corresponding to the condition by satisfying a condition determined for each state, and the plurality of states are a plurality of states based on an operation command from a user.
  • the drone includes a battery for driving the drone, and a low battery detection unit that detects that the charged amount of the battery is equal to or less than a predetermined value, A command for causing the drone system to transition to the standby state based on detection by the low battery detection unit is provided.
  • the computer program can be provided by download via a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.
  • Provide a drone (unmanned aerial vehicle) that can maintain high security even during autonomous flight.
  • FIG. 3 is a detailed functional block diagram of the drone.
  • FIG. 4 is a schematic state transition diagram showing a plurality of states to which the drone system transitions. It is a schematic state transition diagram regarding medicine replenishment to which the above-mentioned drone system changes.
  • FIG. 3 is a schematic state transition diagram regarding takeoff diagnosis, to which the drone system transitions.
  • FIG. 4 is a schematic state transition diagram regarding the shutdown of the drone system to which the drone system transitions. It is a flowchart in which the said drone system determines the charge of the battery which the said drone has.
  • FIG. 6 shows an overall conceptual diagram of a system using the embodiment of the drone 100 according to the present invention for spraying medicine.
  • the drone system 500 is a system in which the drone 100, the pilot 401, the base station 404, and the farming support cloud 405 are connected to each other through a network NW and operate in cooperation with each other.
  • the base station 404 and the farming support cloud 405 are examples of the third configuration.
  • all the components may be directly connected to each other, or each component may be directly connected to at least one component, and may be separately connected via the directly connected component. May be configured to be indirectly connected to the components.
  • Drone system 500 is an example of an agricultural machine system. At least one of the drone 100 and the pilot 401 constituting the drone system 500 determines whether or not the medicine replenishment control system satisfies the condition for state transition.
  • the pilot 401 transmits a command to the drone 100 by an operation of the user 402, and also displays information (for example, a position, a medicine amount, a remaining battery level, a camera image, and the like) received from the drone 100.
  • a portable information device such as a general tablet terminal that runs a computer program.
  • the drone 100 according to the present invention is controlled to perform an autonomous flight, and can perform a manual operation during a basic operation such as takeoff or return, and in an emergency.
  • an emergency pilot having a function dedicated to emergency stop may be used.
  • the emergency pilot is a dedicated device equipped with a large emergency stop button and the like so that an emergency response can be quickly taken.
  • the pilot 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
  • the field 403 is a field or a field to which the drone 100 is to apply the medicine.
  • the terrain of the field 403 is complicated, and there is a case where a topographic map cannot be obtained in advance, or a case where the topographic map differs from the situation of the site.
  • the field 403 is adjacent to houses, hospitals, schools, other crop fields, roads, railways, and the like.
  • an obstacle such as a building or an electric wire may exist in the field 403 in some cases.
  • the base station 404 is a device that provides a master device function of Wi-Fi communication and the like, and also functions as an RTK-GPS base station, and can provide an accurate position of the drone 100 (with the master device function of Wi-Fi communication and
  • the RTK-GPS base station may be an independent device).
  • the farming support cloud 405 is typically a group of computers and related software operated on a cloud service, and is wirelessly connected to the pilot 401 by a mobile phone line or the like.
  • the farming support cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growing condition of the crop, and perform a process for determining a flight route. Further, the stored topographical information of the field 403 may be provided to the drone 100.
  • the history of the flying and photographed images of the drone 100 may be accumulated, and various analysis processes may be performed.
  • the drone 100 takes off from the departure / departure point 406 outside the field 403 and returns to the departure / departure point 406 after spraying the medicine on the field 403 or when it becomes necessary to replenish or charge the medicine.
  • the flight route (intrusion route) from the departure / arrival point 406 to the target field 403 may be stored in advance in the farming support cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • FIG. 1 is a plan view of an embodiment of the drone 100
  • FIG. 2 is a front view thereof (as viewed from the traveling direction)
  • FIG. 3 is a right side view thereof
  • FIG. 4 is a rear view thereof
  • FIG. The figure is shown.
  • the term “drone” refers to a power means (electric power, prime mover, etc.) and a control method (whether wireless or wired, autonomous flight type or manual control type, etc.). In other words, it refers to an entire flying object having a plurality of rotors or flying means.
  • Rotors 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are means for flying drone 100. Eight aircraft (four sets of two-stage rotors) are equipped to balance flight stability, aircraft size, and battery consumption.
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b have rotating blades 101-1a, 101-1b, 101-2a, 101- 2b, means for rotating 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but may be a motor, etc.), one for each rotor Has been.
  • the upper and lower rotors (eg, 101-1a and 101-1b) and their corresponding motors (eg, 102-1a and 102-1b) in one set are used for drone flight stability and the like.
  • the axes are collinear and rotate in opposite directions.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign matter is not horizontal but has a scalloped structure. This is for promoting the member to buckle to the outside of the rotor at the time of collision and preventing the member from interfering with the rotor.
  • the medicine nozzles 103-1, 103-2, 103-3, and 103-4 are means for spraying the medicine downward and are provided with four units.
  • a drug generally refers to a liquid or powder, such as a pesticide, a herbicide, a liquid fertilizer, a pesticide, a seed, and water, which is sprayed on a field.
  • the medicine tank 104 is a tank for storing the medicine to be sprayed, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the drug hoses 105-1, 105-2, 105-3, and 105-4 are means for connecting the drug tank 104 and each of the drug nozzles 103-1, 103-2, 103-3, and 103-4. And may also serve to support the drug nozzle.
  • the pump 106 is a unit for discharging a medicine from a nozzle.
  • the drone 100 sprays the medicine stored in the medicine tank 104 downward from the air toward the field.
  • the drone 100 that performs the aerial spraying it is possible to spray the drug more densely on the field than in the case where the spraying is performed by the ground sprayer or the user himself from the ground. Therefore, unlike the case where the water is sprayed from the ground, the water can be sprayed uniformly without being overlapped with the area in the field. Therefore, the medicine stored in the medicine tank 104 has a higher concentration, for example, about 10 times as much as the medicine sprayed from the ground.
  • FIG. 7 is a schematic diagram showing a control function of the embodiment of the medicine spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may specifically be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 controls the motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b, thereby controlling the flight speed of the drone 100.
  • ESC Electronic Speed Control
  • the actual number of revolutions of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501, and normal rotation is performed. It can be monitored whether it is running.
  • the rotation wing 101 may be provided with an optical sensor or the like, and the rotation of the rotation wing 101 may be fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through a storage medium or the like for function expansion / change, problem correction, or the like, or through communication means such as Wi-Fi communication or USB. In this case, protection by encryption, checksum, electronic signature, virus check software, etc. may be performed so that rewriting by unauthorized software is not performed.
  • a part of the calculation processing used by the flight controller 501 for control may be executed by the control device 401, the farming support cloud 405, or another computer existing in another place. Since the flight controller 501 is highly important, some or all of its components may be duplicated.
  • the battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is, for example, a rechargeable battery.
  • the battery 502 is connected to the flight controller 501 via a fuse or a power supply unit including a circuit breaker or the like.
  • the battery 502 may be a smart battery having a function of transmitting its internal state (power storage amount, accumulated use time, and the like) to the flight controller 501 in addition to a power supply function.
  • the batteries 502 may be multiplexed, and in this embodiment, have a first battery 502a and a second battery 502b.
  • the first battery 502a and the second battery 502b may be equivalent to each other, may have different battery capacities, or may have different functions.
  • the flight controller 501 communicates with the pilot 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives necessary commands from the pilot 401, and transmits necessary information to the pilot 401. Can be sent to 401. In this case, the communication is encrypted so as to prevent eavesdropping, impersonation, hijacking of equipment, and other illegal acts.
  • the base station 404 may have the function of an RTK-GPS base station in addition to the communication function using Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters.
  • the GPS modules 504 are duplicated and multiplexed because of their importance, and each of the redundant GPS modules 504 is controlled to use another satellite in order to cope with the failure of a specific GPS satellite. I have.
  • the six-axis gyro sensor 505 is means for measuring accelerations of the drone body in three directions orthogonal to each other (further, means for calculating a speed by integrating the accelerations).
  • the six-axis gyro sensor 505 is a means for measuring a change in the attitude angle of the drone body in the above three directions, that is, an angular velocity.
  • the geomagnetic sensor 506 is means for measuring the direction of the drone body by measuring geomagnetism.
  • the air pressure sensor 507 is a means for measuring the air pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by using the reflection of laser light, and uses, for example, an IR (infrared) laser.
  • the sonar 509 is a unit that measures the distance between the drone body and the surface of the earth using reflection of sound waves such as ultrasonic waves. These sensors may be selected based on the cost objectives and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind power, and the like may be added. These sensors are duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and in the event of a failure, may switch to and use an alternative sensor.
  • a plurality of sensors may be used simultaneously, and if the respective measurement results do not match, it may be determined that a failure has occurred.
  • the flow rate sensors 510 are means for measuring the flow rate of the medicine, and are provided at a plurality of locations on the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount.
  • the multispectral camera 512 is a unit that captures an image of the field 403 and acquires data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens direction are different from those of the multispectral camera 512, it is preferable that the obstacle detection camera 513 be a device different from the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to perform various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, particularly its rotor or propeller guard portion, has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone.
  • the cover sensor 516 is a sensor that detects that an operation panel of the drone 100 and a cover for internal maintenance are open.
  • the drug inlet sensor 517 is a sensor that detects that the inlet of the drug tank 104 is open. These sensors may be selected and duplicated or multiplexed depending on the cost objectives and performance requirements of the drone.
  • a sensor may be provided in the base station 404, the pilot 401, or another place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information on the wind and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 transmits a control signal to the pump 106, and adjusts the medicine ejection amount and stops the medicine ejection.
  • the current state of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
  • the LED 107 is display means for notifying the drone operator of the status of the drone.
  • a display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output unit for notifying a drone state (especially an error state) by an audio signal.
  • the Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, separately from the controller 401.
  • Other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection may be used instead of or in addition to the Wi-Fi slave function. May be used.
  • the speaker 520 is an output unit that notifies a drone state (especially, an error state) by a recorded human voice, a synthesized voice, or the like. Depending on the weather condition, the visual display of the drone 100 during flight may be difficult to see, and in such a case, voice-based status transmission is effective.
  • the warning light 521 is a display means such as a strobe light for notifying a drone state (especially an error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
  • the medicine replenishment control system provided in the drone 100 is provided in an agricultural machine that sprays a medicine, particularly, in this example, a medicine spraying drone 100, and controls the ejection of the medicine with high accuracy. Detects abnormal discharge.
  • a medicine discharge abnormality in the case of a “discharge abnormality” of a medicine, a medicine discharge abnormality actually occurs, and in addition to a state in which a medicine exceeding a specified value is being discharged, such a medicine discharge abnormality is caused.
  • the medicine tank 104 is a tank for storing the medicine to be sprayed as described above.
  • the medicine tank 104 is provided with an openable / closable lid for filling the medicine or taking out the stored medicine.
  • An open / close sensor 104a capable of detecting the open / close state is attached to the openable / closable lid.
  • the open / close sensor 104a can be composed of, for example, a magnet attached to the lid and a sensor attached to the main body and sensing the magnetic force and contact of the magnet. This makes it possible to determine the open / closed state of the lid so that the user can recognize the open / closed state of the lid, and prevent a situation in which the medicine is sprayed with the lid open.
  • the medicine tank 104 is provided with a medicine type discrimination sensor 104b.
  • the medicine type determination sensor 104b can determine the type of the medicine stored in the medicine tank 104.
  • the medicine type discrimination sensor 104b is constituted by, for example, a device capable of measuring the viscosity, conductivity, or pH of the medicine in the medicine tank 104. The measured value of each item and the reference value for each medicine Can be compared to determine the type of drug.
  • the present invention is not limited to this.
  • a cartridge-type medicine tank is used as the medicine tank 104
  • an IC or the like recording the data of the medicine type is attached to the cartridge-type medicine tank, and the IC type or the like is recorded from the IC or the like.
  • the type of medicine can be determined.
  • the medicine tank 104 since a plurality of types of medicines may be used, it is useful to determine whether or not the medicine to be sprayed is stored in the medicine tank 104.
  • the particle size of a drug differs depending on the type, if a drug with a smaller particle size than the drug to be sprayed is erroneously sprayed, the drift (diffusion of the drug to a target other than the target product) may occur. , Adhesion), and cannot be overlooked.
  • the drug tank 104 is provided with a liquid shortage sensor 511 for detecting a liquid shortage of the drug.
  • a liquid shortage sensor 511 for detecting a liquid shortage of the drug.
  • the pump 106 discharges the medicine stored in the medicine tank 104 to the downstream, and through the medicine hoses 105-1, 105-2, 105-3, 105-4, each of the medicine nozzles 103-1 and 103-2, Send to 103-3 and 103-4.
  • the medicine is sent from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, and 103-4.
  • the direction in which the medicine is sent out along this delivery path. May be referred to as the downstream direction, and the opposite direction may be referred to as the upstream direction.
  • the medicine is partly sent out again from the medicine tank 104 to the medicine tank 104 via the three-way valve 122.
  • the three-way valve 122 side is called the downstream direction
  • the medicine tank 104 side is called the upstream direction. I have.
  • the expansion tank 131 is a tank for temporarily storing the medicine delivered from the three-way valve 122 and returning the medicine to the medicine tank 104.
  • a path from the three-way valve 122 to the medicine tank 104 via the expansion tank 131 is a path for removing (defoaming) water or a bubble in the medicine injected into the medicine tank 104. By circulating this path and temporarily storing it in the expansion tank 131, defoaming of water or chemicals can be performed.
  • the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 deliver the medicine only in a certain direction, and in a direction opposite to the certain direction. This is a valve for preventing the inflow of, ie, backflow.
  • the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, and 121-7 are provided from the drug tank 104 to the drug nozzles 103-1, 103-2, 103-3. , 103-4, plays a role of a blocking mechanism for blocking the ejection of the drug, and if it can play a role of blocking the ejection of the drug, use another mechanism such as an electromagnetic valve as the blocking mechanism. You can also.
  • the check valve 121-1 is provided between the medicine tank 104 and the pump 106, near the medicine discharge port provided in the medicine tank 104, and the check valve 121-2 is provided with the three-way valve 122 and the medicine.
  • the check valves 121-4, 121-5, 121-6, and 121-7 are provided between the nozzles 103-1, 103-2, 103-3, and 103-4. 1, 103a-2, 103a-3, and 103a-4, and a check valve 121-3 is provided between the three-way valve 122 and the expansion tank 131.
  • the check valve 121-1 controls the medicine delivered from the medicine tank 104 to be sent in the downstream direction so that the medicine cannot be returned to the medicine tank 104.
  • the check valve 121-2 controls the medicine sent from the pump 106 to be sent downstream, so that the medicine cannot be returned to the pump 106.
  • the check valve 121-3 controls the medicine delivered from the three-way valve 122 to be delivered in the upstream direction of the expansion tank 131 so that the medicine cannot flow back to the three-way valve 122.
  • the check valves 121-4, 121-5, 121-6, and 121-7 can block the medicine from being discharged from the discharge ports 103a-1, 103a-2, 103a-3, and 103a-4 to the outside. I have to.
  • check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, and 121-7 various types such as a swing type, a lift type, and a wafer type are used. And it is not limited to a particular one. Regardless of the present example, more check valves than in the present example may be provided at appropriate locations.
  • the three-way valve 122 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and from the pump 106, the drug nozzles 103-1, 103-2, 103-3, A branch point of the path leading to 103-4 and the path leading from the pump 106 to the medicine tank 104 via the expansion tank 131 is formed, and the medicine is sent to each path in accordance with the switching operation.
  • the three-way valve 122 is an example of a valve, and is, for example, a three-way solenoid valve.
  • the path from the pump 106 to the medicine tank 104 via the expansion tank 131 is a path for removing (defoaming) bubbles in the medicine.
  • the flow rate sensor 510 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and is sent to the drug nozzles 103-1, 103-2, 103-3, 103-4. Measure the flow rate of the drug being used. Based on the flow rate of the medicine measured by the flow sensor 510, the amount of the medicine sprayed on the field 403 can be grasped.
  • the pressure sensors 111-1 and 111-2 measure the ejection pressure of the medicine at the attachment position.
  • the pressure sensor 111-1 is mounted on the downstream side of the pump 106 and on the upstream side of the check valve 121-2 and the three-way valve 122, and measures the discharge pressure of the medicine discharged downstream.
  • the pressure sensor 111-2 is mounted on the downstream side of the check valve 121-2 and on the upstream side of the medicine nozzles 103-1, 103-2, 103-3, and 103-4, and is provided for the medicine discharged downstream. Measure the discharge pressure.
  • the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6 , 121-7 in a state where the valve is closed obtains the temporal change of the medicine ejection pressure measured by 111-1 and 111-2 of each pressure sensor, and obtains the change over time of the normal medicine ejection pressure.
  • the change with the change it is possible to detect a drug leakage abnormality. For example, when the ejection pressure of the medicine acquired by the pressure sensors 111-1 and 111-2 draws a descending line with time, and this descending line exceeds the range of the error, and is different from the normal state, it may be in the path. It can be inferred that drug leakage may have occurred.
  • the pump sensor 106a measures the number of rotations of a rotor that sucks the medicine from the medicine tank 104 and discharges the medicine downstream in the pump 106.
  • the pump sensor 106a measures the number of revolutions of the rotor of the pump 106, and compares it with the ejection pressure of the medicine measured by the pressure sensors 111-1, 111-2 to determine whether or not the ratio matches the normal ratio. , It is possible to detect a drug leakage abnormality. That is, when the discharge pressure of the medicine according to the rotation speed of the pump 106 is not obtained as compared with the normal state, it is estimated that the leakage of the medicine occurs and the discharge pressure is reduced.
  • the nozzle type determination sensors 114-1, 114-2, 114-3, and 114-4 determine the types of the drug nozzles 103-1, 103-2, 103-3, and 103-4 attached to the drug discharge ports. be able to.
  • the medicine nozzles 103-1, 103-2, 103-3, and 103-4 are usually different depending on the medicine, due to the difference in the particle diameter of each medicine to be sprayed. Therefore, by determining whether or not the type of the drug nozzles 103-1, 103-2, 103-3, and 103-4 is appropriate, it is possible to prevent erroneous drug spraying.
  • a mechanism for fitting or engaging with the medicine nozzles 103-1, 103-2, 103-3, and 103-4 is provided at the discharge port, and the medicine nozzles 103-1 and 103-2 and 103 are provided.
  • -3 and 103-4 are mechanisms that fit or engage with the fitting or engaging mechanism on the spout side, and include a plurality of medicine nozzles 103-1, 103-2, 103-3, and 103-4.
  • a mechanism having a different shape is provided for each.
  • the drug nozzles 103-1, 103-2, 103-3, and 103-4 are attached to the discharge ports, different shapes are identified for each of the drug nozzles 103-1, 103-2, 103-3, and 103-4. By doing so, the type of the medicine nozzles 103-1, 103-2, 103-3, and 103-4 can be determined.
  • an outlet with a cock for discharging the drug stored in the route to the outside (Denoted as “DRAIN” in FIG. 6).
  • DRAIN a cock for discharging the drug stored in the route to the outside.
  • each drug-related sensor included in the drug ejection system that is, the liquid-out sensor 511, the pressure sensors 511-1 and 511-2, and the flow rate sensor 510 operate similarly even when the drug tank 104 is filled with water.
  • the medicine type determination sensor 104b can determine that the medicine tank 104 is filled with water.
  • a gas such as air mainly exists in a path from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, and 103-4.
  • the gas in the path may be mixed into the drug, and the specified amount of drug may not be refilled.
  • unintended gas may be discharged instead of the medicine, and it is difficult to accurately spray the medicine on the field. is there.
  • the pressure is not applied to the medicine nozzle 103 at a constant level, and the pulsation of the water pressure occurs.
  • the gas is crushed by the pressure, the water pressure is reduced, and the flow rate is reduced, or the flow rate is suddenly increased after the gas is released. This is particularly noticeable when the viscosity of the drug is high relative to the diameter of the path.
  • the flow rate decreases and the particle size of the ejected medicine becomes smaller than the planned particle diameter, the medicine may be scattered by the wind, and the medicine may be sprayed to an unintended location.
  • an increase in the flow rate may result in dropping more medicine than planned. Therefore, when refilling the drug in the drug tank 104, it is desirable that the gas in the path be efficiently exhausted to the outside and the path be filled with the drug. Specifically, it is desirable that the replenishment of the medicine is monitored in a stepwise manner, and the procedure of the replenishment of the medicine is notified to the user at an appropriate timing.
  • the drone system 500 shown in FIG. 9 has a plurality of different states.
  • the drone system 500 transits to another state corresponding to the condition by satisfying the condition defined for each state.
  • the “state of the drone system 500” is a concept indicating a state corresponding to the condition by satisfying a condition for transitioning to another state, and is configured independently of each other in a software system configuration for each state. Or a plurality of states may be configured in the same system configuration.
  • the drone system 500 When belonging to a certain state, the drone system 500 performs an operation determined for each state. If the conditions defined for each state are not satisfied, the drone system 500 remains in that state. Further, there may be a plurality of conditions to be determined, and there may be a state that can transit to a plurality of states.
  • the security of the entire drone system 500 may be threatened. Since the state of the drone system 500 is correctly determined, and the operation is defined according to the determination, the drone 100 is not caused to fly or the medicine is not sprayed when the conditions are not satisfied. That is, the drone system 500 can be operated safely. In particular, the drone 100 can be safely flown to spray the medicine.
  • the drone 100 includes a first state transmission unit 111, a first state reception unit 112, a first state transition determination unit 113, and a first main unit. It has a terminal determination unit 114 and a first state storage unit 115.
  • the pilot 401, the base station 404, and the farming support cloud 405 include the first state transmitting unit 111, the first state receiving unit 112, the first state transition determining unit 113, the first main terminal determining unit 114, and the first It has a configuration corresponding to the state storage unit 115.
  • the pilot 401 includes the second state transmission unit 411, the second state reception unit 412, the second state transition determination unit 413, the second main terminal determination unit 414, and the second state storage unit 415.
  • the base station 404 includes a third state transmitting unit 441, a third state receiving unit 442, a third state receiving unit 443, a third main terminal determining unit 444, and a third state storage unit 445.
  • the farming support cloud 405 includes a fourth state transmission unit 451, a fourth state reception unit 452, a fourth state transition determination unit 453, a fourth main terminal determination unit 454, and a fourth state storage unit 455.
  • the first to fourth state transmitting units 111, 411, 441, and 451 transmit information of the state to which the drone system 500 currently belongs, and terminal information indicating the states of the terminals of the drone 100, the pilot 401, and the base station 404 to other connected terminals. It is a functional unit that transmits to components. Other components here are the drone 100, the pilot 401, the base station 404, or the farming support cloud 405.
  • the terminal information is, for example, power on / off information of each of the drone 100, the pilot 401, and the base station 404, and a numerical value indicating each power supply capacity.
  • the terminal information includes the connection state between the components, the operation history and the maintenance history of each component, the failure information of each component, the information on whether or not the emergency stop is being performed, and the emergency stop.
  • the information may include the history, the type of the water or drug injected into the drug tank 104, the amount thereof, the injection history, and the like.
  • the first to fourth state transmitting units 111, 411, 441, and 451 may transmit cloud information indicating the status of the farming support cloud 405 to other components.
  • the cloud information may include, for example, a history of updates of information stored in the farming support cloud 405, that is, the last update date and time, information on the terminal that has performed the update, and the like.
  • the first to fourth state receiving units 112, 412, 442, and 452 provide information on the state to which the drone system 500 currently belongs, and terminal information indicating the states of the drone 100, the pilot 401, and the base station 404. It is a functional unit that receives from the first to fourth state transmitting units 111, 411, 441, and 451. Further, the first to fourth state receiving units 112, 412, 442, 452 may receive the cloud information from another component.
  • the base station 404 transmits the status to which the drone system 500 currently belongs to at least one of the drone 100 and the pilot 401. Further, the base station 404 receives a state to which the drone system 500 currently belongs from at least one of the drone 100 and the pilot 401. The base station 404 sets the connection state of the pilot 401 and the base station 404, the connection state of the drone 100 and the base station 404, and at least one of the connection states of the pilot 401 and the drone 100 to the drone 100 and the connection state. Received from at least one of the pilots 401.
  • the base station 404 may transmit and receive the connection state between each component and the farming support cloud 405 to and from at least one other component.
  • each component grasps terminal information and cloud information of other components connected in the drone system 500 mutually. be able to. In other words, each component can maintain the state of the drone system 500 and smoothly continue operation as the drone system 500 even when any component goes out of coordination.
  • the user 402 can always grasp the state of the drone system 500.
  • the first to fourth state transition determination units 113, 413, 443, and 453 are functional units that recognize the state to which the drone system 500 currently belongs and determine whether a condition for transitioning from the state to which the drone system 500 belongs to another state is satisfied. is there.
  • the first to fourth state transition determination units 113, 413, 443, 453 can make a determination regarding the same condition, and each state transition determination unit can operate as a substitute for another state transition determination unit.
  • the first to fourth state transition determination units 113, 413, 443, and 453 selectively determine whether a condition for transition to another state is satisfied. That is, when one state transition determination unit is making a determination, the other state transition determination units do not make a determination.
  • a component having a state transition determination unit that makes a state transition determination is also referred to as a “main terminal”. According to this configuration, even when the power of one of the components is turned off, or when the connection between any of the components is disconnected and the operation as the main terminal cannot be performed, another component is not used.
  • the state transition of the drone system 500 can be transitioned by determining the state transition as the main terminal.
  • the first to fourth main terminal determination units 114, 414, 444, 454 are functional units that determine which component is to be the main terminal based on the information received by the first to fourth state reception units 112, 412, 442, 452.
  • the priority order is determined in advance as to which component becomes the main terminal, that is, which of the first to fourth state transition determination units 113, 413, 443, and 453 determines the state transition. Specifically, when the power of each component is turned on and all components cooperate, the drone 100 becomes the main terminal. When the power of the drone 100 is turned off or the connection with each component of the drone 100 is cut off and the operation as the main terminal is impossible, the first to fourth main terminal determination units 114, 414, 444, 454 determine that the pilot 401 Become the main terminal.
  • the priority is an example, and when the drone 100 cannot operate as the main terminal, the base station 404 or the farming support cloud 405 may be the main terminal. Further, the priority order may be fixed or may change. For example, the priorities may vary depending on the state to which the drone system 500 currently belongs.
  • the main terminal determining unit is provided for each component. According to this configuration, the main terminal can be determined even if the connection of any component is disconnected and the coordination is lost. When all the components are operating in cooperation, it is sufficient that any one of the main terminal determination units determines the main terminal, for example, the first main terminal determination unit provided in the drone 100. 114 may determine that the drone 100 is to be the primary terminal. If the drone 100 is out of coordination, the second main terminal determination unit 114 determines that the pilot 401 will be the main terminal based on the information to that effect.
  • the first to fourth state storage units 115, 415, 445, and 455 are function units that store terminal information indicating the state to which the drone system 500 currently belongs, and the states of the drone 100, the pilot 401, and the base station 404.
  • the first state storage unit 115 may further store cloud information indicating the status of the farming support cloud 405.
  • the first to fourth state storage units 115, 415, 445, and 455 are at least partially constituted by a nonvolatile storage area, for example, a nonvolatile memory. According to this configuration, information can be stored even when the power of each component is turned off. Since the failure information and maintenance history are inherited even when the power is turned on again, repairs and maintenance can be reliably performed even for failures and abnormalities that occurred before the power was turned off, and the drone system 500 Can be used safely.
  • the drone 100 includes a liquid detection unit 31, an air release detection unit 32, and a configuration for managing injection of a drug into the drug tank 104.
  • a leakage abnormality detection unit 33 and a replenishment detection unit 34 are provided.
  • When injecting the medicine into the medicine tank 104 first, a liquid is injected into the medicine tank 104, and this liquid is circulated by the pump 106 to form the medicine tank 104 and each path from the medicine tank 104 to the medicine nozzles 103-1 to 103-4. After bleeding for discharging gas, mainly air, to the outside, the medicine to be sprayed to the field is injected into the medicine tank 104.
  • the liquid detecting unit 31 is a functional unit that detects that the replenishment of the liquid in the medicine tank 104 is completed.
  • the liquid detection unit 31 can be realized by, for example, a determination device that detects that a predetermined amount of liquid is contained in the medicine tank 104 based on a liquid level, a weight, or the like.
  • the liquid detection unit 31 is a functional unit that uses a liquid level meter, a weighing scale, a water pressure sensor, or the like that measures the amount of liquid in the medicine tank 104, and that software-determines that the medicine has reached a predetermined amount. You may.
  • the liquid detection unit 31 detects that the liquid is injected into the medicine tank 104 in such an amount that the liquid remains in the medicine tank even when the liquid enters each path by an air bleeding operation described later. . This is to prevent the water level in the medicine tank 104 from dropping due to the air bleeding operation, and to prevent the liquid in the medicine tank 104 from being emptied.
  • the amount of liquid detected by the liquid detection unit 31 is larger than the total volume of each path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid detection unit 31 may detect, for example, that the liquid is injected at 10% or more of the upper limit of the medicine tank 104.
  • the liquid detected by the liquid detection unit 31 is, for example, water, but may be a medicine to be sprayed on a field, or may be any other appropriate liquid.
  • the air bleeding detection unit 32 completes the air bleeding operation of causing the air inside the medicine tank 104 and the respective paths from the medicine tank 104 to the medicine nozzles 103-1 to 4 shown in FIG. 8 to flow out of the medicine tank 104.
  • This is a functional part that detects that When the three-way valve 122 opens the path on the expansion tank 131 side, the air release detection unit 32 detects air in the path from the medicine tank 104 to the three-way valve 122 in FIG. 6 (hereinafter, also referred to as “upstream path”). Detects that extraction has been completed.
  • the air release detection unit 32 determines that the path from the three-way valve 122 to the medicine nozzles 103-1 to 10-4 in FIG. It is detected that the air bleeding is completed in the "path".
  • the air bleeding detection unit 32 detects the air bleeding in the upstream path based on the rotation speed of the pump 106 detected by the pump sensor 106a and the measurement result of at least one of the pressure sensor 111-1 and the flow rate sensor 510. It detects that the air bleeding operation has been completed. In the downstream path, specifically, the air bleeding detection unit 32 calculates the value of the value of the pressure sensor 111-1 and the value of the flow rate sensor 510 according to the rotation speed of the pump 106 when the air bleeding operation is completed. At least one value is stored as a reference value. The air release detection unit 32 compares a reference value corresponding to the rotation speed of the pump 106 with at least one of the measured values of the pressure and the flow rate. If the difference is within a predetermined range, the air release detection unit 32 detects that the air release operation has been completed.
  • the air bleed detection unit 32 detects the air bleed in the downstream path based on the rotation speed of the pump 106 detected by the pump sensor 106a and the measurement result of at least one of the pressure sensor 111-2 and the flow sensor 510. Then, it is detected that the air bleeding operation is completed.
  • the air release detection unit 32 stores, as a reference value, at least one of the value of the pressure sensor 111-2 and the value of the flow rate sensor 510 according to the rotation speed of the pump 106 when the air release operation is completed. Then, the completion of the air bleeding operation is detected in comparison with the actually measured value. Further, the value of the pressure sensor 111-1 may be used for detecting air bleeding in the downstream path.
  • the air bleed detection unit 32 determines a reference value to be compared with an actually measured value based on information on which path the three-way valve 122 opens.
  • the leakage abnormality detection unit 33 is a functional unit that detects whether or not each component of the drone 100 related to the application of the medicine has an abnormality. Specifically, the leakage abnormality detection unit 33 diagnoses whether there is any abnormality on the route from the medicine tank 104 to the medicine nozzle 103.
  • the abnormality of the path means that the pipe path itself or a shutoff mechanism arranged in the pipe path, specifically, the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121 -6, 121-7, etc.
  • the leak abnormality detection unit 33 is configured to close the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, and 121-7, and to close each of the pressure sensors 111-121.
  • the leakage abnormality detection unit 33 measures the rotation speed of the rotor of the pump 106 by the pump sensor 106a, compares it with the discharge pressure of the liquid measured by the pressure sensors 111-1, 111-2, and determines the normal state. By judging whether or not the ratio is equal to the ratio, the liquid leakage abnormality is detected.
  • the replenishment detecting unit 34 is a functional unit that detects that the replenishment of the medicine in the medicine tank 104 is completed.
  • the replenishment detection unit 34 can be realized by, for example, a determination device that detects that a predetermined amount of medicine is in the medicine tank 104 based on the liquid level, weight, or the like.
  • the replenishment detection unit 34 is a functional unit that uses a liquid level meter, a weighing scale, a water pressure sensor, or the like that measures the amount of the medicine in the medicine tank 104, and that software-determines that the medicine has reached a predetermined amount. It may be.
  • the replenishment detection unit 34 can detect not only the case where the medicine is infused up to the upper limit of the medicine tank 104 but also a predetermined amount. For example, the replenishment detection unit 34 may detect that a drug is injected at 10% or more of the upper limit of the drug tank 104.
  • Flight start command receiving unit 51 Flight plan checking unit 52, drone determining unit 53, external environment determining unit 54, base station position checking unit 55, aircraft position checking unit 56, nose checking unit 57, A peripheral confirmation unit 58 and a body visual confirmation unit 59 are provided.
  • the flight start command receiving unit 51 is a functional unit that receives a flight start command input from the user 402.
  • the flight start command is a command transmitted from the pilot 401 to the drone 100. Since the flight start command is a command for transmitting the intention of the user 402 to the drone 100, the flight start command is transmitted to the drone 100 starting from the operation of the user 402.
  • the base station position confirmation unit 55 is a functional unit that confirms whether the position of the base station 404 connected to the drone 100 is within a predetermined range.
  • the aircraft position confirmation unit 56 is a function unit that confirms whether the drone 100 is installed at the departure / arrival point 406.
  • the nose checking unit 57 is a function unit that checks whether the nose of the drone 100 is facing in a normal direction. "The direction of the nose is normal" refers to, for example, that the nose is oriented in a direction where a field where the chemical solution is sprayed is located.
  • the peripheral confirmation unit 58 is a functional unit that confirms whether there is an obstacle such as a person or an object in a predetermined range around the drone 100 around the drone 100.
  • the peripheral confirmation unit 58 may be a functional unit that prompts the user 402 to confirm the presence or absence of an obstacle around the drone 100 by, for example, notification and display by the drone 100 or the pilot 401. After confirming the surroundings of the drone 100, the user 402 inputs the fact that there is no obstacle. When the user 402 finds an obstacle, the user 402 removes the obstacle as appropriate. It should be noted that the input of the result of confirming the surroundings by the user 402 may be input to the drone 100, or may be input via the pilot 401.
  • the peripheral confirmation unit 58 detects an obstacle around the drone 100 using an appropriate camera or sensor mounted on the drone 100, and automatically determines that there is no object within a predetermined range. It may be.
  • the camera may be, for example, a 360-degree camera capable of capturing 360 degrees around the drone 100, or may be configured by a plurality of cameras capable of capturing directions different from each other.
  • the sensor is, for example, an infrared sensor.
  • the aircraft visual confirmation unit 59 is a functional unit that prompts the user 402 to visually confirm the drone 100 and allows the user 402 to input a confirmation result.
  • the aircraft visual confirmation unit 59 prompts the user 402 to confirm the presence or absence of an obstacle around the drone 100 by notification and display by the drone 100 or the pilot 401 or the like. After visually confirming the drone 100, the user 402 inputs the fact if no abnormality is found. In addition, when the user 402 finds an abnormality, the user 402 performs repair or the like as appropriate. It should be noted that the input of the result of confirming the surroundings by the user 402 may be input to the drone 100 or may be input via the pilot 401.
  • the aircraft visual confirmation unit 59 may notify the user 402 of points for visual confirmation or the like through the pilot 401. By specifically instructing the point of visual confirmation, the user 402 can efficiently inspect the drone 100.
  • the flight plan confirmation unit 52 is a functional unit that confirms whether the drone 100 normally has information on the flight plan of the drone 100.
  • the flight plan includes, for example, the position of the field where the chemical solution is sprayed during the flight, and the flight route in the field.
  • the flight plan is information registered in advance in the drone 100, and can be appropriately rewritten. Further, the flight route included in the flight plan is automatically calculated based on the position of the designated field.
  • the flight route may be uniquely calculated based on the position of the field, or may be a different flight route calculated every time a flight plan is formulated in consideration of other conditions. Is also good.
  • the drone determining unit 53 is a functional unit that determines that each component of the drone 100 itself operates within a normal range.
  • the components included in the drone 100 itself include, for example, the battery 502, the motor 102, various sensors, and the like.
  • the external environment determination unit 54 is a functional unit that mainly determines whether the external environment of the drone 100 is an environment suitable for the flight of the drone 100.
  • the external environment includes, for example, the presence or absence of a disturbance that interferes with the radio waves connecting the components, the GPS reception sensitivity, the temperature, the wind speed around the drone 100, the weather, the geomagnetic state, and the like. This is because, when the wind speed around the drone 100 is equal to or higher than a predetermined value, the drone 100 is blown by the wind or the sprayed medicine is scattered, so that it is difficult to fly properly.
  • takeoff may be prohibited even when there is precipitation or when there is a high possibility of precipitation within a predetermined time. Further, even when the geomagnetism is disturbed, the radio waves connecting the respective components are obstructed, so that takeoff may be prohibited. Furthermore, the number of satellites for which GPS communication has been established may be measured, and if the number is less than a predetermined number, takeoff may be prohibited.
  • the predetermined number may be, for example, five.
  • the external environment determination unit 54 notifies the user 402 of the reason why the external environment is waiting without taking off.
  • the drone 100 further includes a flight preparation unit 60 that determines whether or not the drone 100 is suitable for flight when the drone 100 is hovering.
  • the flight preparation unit 60 performs the diagnosis particularly during hovering performed immediately after the drone 100 takes off, but may perform the diagnosis during hovering performed appropriately after the drone 100 takes off and starts flying.
  • the flight preparation unit 60 includes a strong wind diagnosis unit 61, a thrust diagnosis unit 62, a calibration unit 63, a weight estimation unit 64, and a hovering determination unit 65.
  • the hovering determination unit 65 is a functional unit that determines whether the drone 100 is hovering, that is, makes a hovering determination.
  • Hovering means that when the X and Y coordinates orthogonal to each other on the horizontal plane and the vertical Z coordinate orthogonal to the XY plane are defined, the XYZ coordinates of the drone 100 do not change or swing within a narrow predetermined range. Refers to the moving state. Hovering is a state in which there is no moving speed in any of the XYZ directions.
  • the hovering determination unit 65 detects, for example, that the positioning sitting amount of the RTK-GPS does not change in all of the XYZ directions.
  • the hovering determination unit 65 calculates the position by performing second-order integration of the measured values of the six-axis gyro sensor 505 in the XYZ directions, respectively, and detects that the position in the XYZ directions does not change for a predetermined time. Furthermore, the hovering determination unit 65 calculates the speed by integrating the measured values of the six-axis gyro sensor 505 in the XYZ directions, respectively, and detects that the drone 100 has no speed in the XYZ directions. The hovering determination unit 65 determines that the drone 100 is hovering by combining any one or a plurality of obtained values described above.
  • the strong wind diagnostic unit 61 is a functional unit that measures wind blowing on the drone 100 and diagnoses whether the drone 100 can fly.
  • the measurement of the wind by the strong wind diagnostic unit 61 may be performed by calculating the wind speed by, for example, measuring the stress generated by the wind by a contact detector, or may be calculated by an anemometer such as a cup type or a windmill type. .
  • the strong wind diagnosis unit 61 calculates the attitude angle of the drone 100 by the six-axis gyro sensor 505 while the drone 100 is hovering. When the wind is blowing on the drone 100, the attitude angle is inclined forward to the leeward side in accordance with the strength of the wind. Therefore, when the attitude angle of the drone 100 is equal to or more than the predetermined angle, the strong wind diagnosis unit 61 determines that the wind having the predetermined strength or more is blowing on the drone 100.
  • the strong wind diagnostic unit 61 includes a motor 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b or a rotating wing 101-1a, 101-1b.
  • 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, and 101-4b may be calculated.
  • the thrust of the rotating blades arranged at two places on the leeward side of the eight rotating blades 101 increases, because a force to tilt the drone 100 toward the leeward side increases, That is, the rotation speed increases, and the thrust of the rotor blades arranged at two locations on the windward side decreases, that is, the rotation speed decreases.
  • the strong wind diagnosis unit 61 determines that the wind having a predetermined intensity or more is blowing on the drone 100.
  • the strong wind diagnosis unit 61 detects a strong wind by using one of the above-described determination based on the attitude angle and the determination based on the difference in the number of rotations, or by combining the determination results.
  • the strong wind diagnostic unit 61 may receive information about the wind from the base station 404 or the drone 100 flying around by communication, and determine whether the drone 100 can fly.
  • the strong wind diagnosis unit 61 notifies the drone system 500 of the fact.
  • the state transition determination unit of the main terminal makes the state of the drone system 500 stand by while hovering. Further, the state transition determination unit of the main terminal may shift the state of the drone system 500 to a flight start standby state (S4) described later and land the drone 100.
  • the thrust diagnosis unit 62 is a functional unit that measures a thrust for flying the drone 100 in flight and diagnoses whether the thrust of the drone 100 is normally exerted.
  • the thrust is obtained by the rotor 101 in the present embodiment.
  • the thrust diagnosis unit 62 indicates a rotation measuring function disposed inside the motor itself that controls the rotation of the rotary wing 101, for example. That is, the thrust measuring unit 244 obtains the rotation speed of the rotary wing 101 controlled by the motor by measuring the rotation speed of the motor.
  • the thrust diagnosis unit 62 may measure the rotation speed of the rotary wing 101 itself.
  • the thrust diagnosis unit 62 may be a non-contact tachometer.
  • the thrust diagnosing unit 62 irradiates the laser to at least one portion of the rotating wing 101 and counts the number of rotations of the rotating wing 101 by measuring the reflected light of the laser from the rotating wing 101.
  • the laser is, for example, an infrared laser.
  • the thrust diagnosis unit 62 may measure the current supplied to the motor.
  • the thrust diagnosis unit 62 may be a functional unit that measures the operating state of the propulsion unit.
  • the thrust diagnosis unit 62 may be a functional unit that measures the pressure of jet injection.
  • the thrust diagnosis unit 62 compares the measured thrust with the command value from the flight controller 501, and when the difference after a predetermined time from the command from the flight controller 501 is within a predetermined threshold, the thrust is Judge that it has been properly demonstrated. If the difference exceeds the threshold, the thrust diagnosis unit 62 notifies the drone system 500 of that fact.
  • the state transition determination unit of the main terminal shifts the state of the drone system 500 to a flight start standby state (S4) described later, and causes the drone 100 to land.
  • the calibration unit 63 performs calibration of at least one of a sensor for measuring the altitude of the drone 100 and a sensor for measuring the speed of the drone 100.
  • Calibration of the sensor includes calibration for correcting the offset of the zero point of the sensor and the gain deviation when the numerical value of the measurement result is high.
  • the calibration by the calibration unit 63 is performed particularly when the drone 100 is hovering.
  • a sensor for measuring the altitude of the drone 100 includes, for example, a laser sensor 508, a sonar 509, a six-axis gyro sensor 505, or a GPS module RTK504-1, 504-2. That is, the calibration unit 63 can calibrate the laser sensor 508, the sonar 509, the six-axis gyro sensor 505, or the GPS modules RTK 504-1 and 504-2 with respect to the altitude calibration.
  • the calibrating unit 63 determines that the positioning coordinates in the height direction of the RTK-GPS, that is, the Z coordinates, in a state where the sensor is grounded, that is, the hovering.
  • the laser sensor 508 and the sonar 509 are calibrated with the difference between the RTK-GPS height direction Z coordinate and the true value of the altitude to ground.
  • the calibrating unit 63 calculates the altitude obtained by the laser sensor 508 and the sonar 509 when hovering is determined as the true value of the ground altitude. Calibrate 505.
  • the calibrating unit 63 calculates the altitude obtained by the laser sensor 508 and the sonar 509 when hovering is determined, as the true value of the ground altitude. Calibrate the positioning coordinates in the Z direction of RTK-GPS by RTK504-1, 504-2.
  • the sensors for measuring the speed of the drone include, for example, the GPS module Doppler 504-3 or the six-axis gyro sensor 505.
  • the calibration unit 63 measures the moving speed of the drone 100 using the GPS module Doppler 504-3. Since the drone 100 is not moving in the hovering state after takeoff and the moving speed is 0 in the XYZ directions, the calibrating unit 63 sets the moving speed in the XYZ directions when it is determined that the hovering is performed. The measurement result of the GPS module Doppler 504-3 is calibrated so that it becomes zero. Further, the calibration unit 63 measures the moving speed of the drone 100 using the first-order integrated value of the value measured by the acceleration sensor. In this case, the calibrating unit 63 calibrates the measured value of the acceleration sensor in the XY direction so that the moving speed in the XYZ directions when the hovering is determined is zero.
  • the weight estimating unit 64 is a functional unit that estimates the weight of the drone 100.
  • the weight estimating unit 64 can estimate the weight of the drone 100 based on the value of the thrust measured by the thrust diagnosis unit 62 during hovering.
  • the drone 100 further includes a low battery detection unit 70 that detects that the charge of the battery 502 included in the drone 100 is equal to or less than a predetermined value.
  • the low-battery detection unit 70 is a generally-known device for measuring the charged amount of a battery, and may be, for example, a voltmeter. Further, the low battery detection unit estimates the charged amount of the battery 502 based on one or more values of the battery voltage, the battery temperature, and the current, and detects that the charged amount of the battery 502 is equal to or less than a predetermined value. May be.
  • a remaining amount calculation value called SOC may be calculated by measuring a battery voltage, a current, and a battery temperature to estimate the amount of stored power. Further, the low battery detection unit 70 may correct the charged amount of the battery 502 estimated by the above-described method, based on one or more values of the actual use time of the battery 502, the ambient temperature, and the like. The low battery detection unit 70 can detect the remaining amounts of the plurality of batteries 502a and 502b of the drone 100, respectively. When detecting that the capacity of the battery 502 is equal to or less than a predetermined value, the low battery detection unit 70 transmits the fact to the first to fourth state transition determination units 113, 413, 443, 453. In addition, the low battery detection unit 70 notifies the user 402 to that effect through the drone 100 or the pilot 401 or the like.
  • SOC State of Charge
  • the control device 401 includes a second low battery detection unit 416 that detects that the storage amount of the battery of the control device 401 is equal to or less than a predetermined value.
  • the configuration of the second low battery detection unit 416 is the same as that of the low battery detection unit 70.
  • the drone system 500 in the present embodiment has a stopped state (S0), an initial check state (S1), a medicine preparation standby state (S2), and a medicine preparation state ( S3), flight start standby state (S4), takeoff diagnosis state (S5), flight scattering state (S6), standby state after landing (S7), maintenance state (S8), and shutdown state (S9) And can be taken.
  • the standby state after landing (S7) is an example of the "standby state" of the present invention.
  • the stop state (S0) is a state in which the power of the drone 100, the pilot 401, and the base station 404 is off.
  • the drone system 500 transits to the initial check state (S1).
  • the power of each component may be manually turned on by the user 402, or the user 402 operates one component to turn on the power of another component. It may become so.
  • the power of the drone 100 and the base station 404 may be turned on by the user 402 turning on the power of the pilot 401 and starting a dedicated application.
  • the initial check state (S1) is a state in which after starting each component, it is checked whether or not each component is operating normally. In the initial check state, for example, it is checked whether or not each component is powered on, and whether or not communication between the components is normally performed. When it is confirmed that all the predetermined confirmation items are normal, the drone system 500 transits to the medicine preparation standby state (S2).
  • the medicine preparation standby state (S2) is a state in which a command from the user 402 to start the operation of injecting a medicine into the medicine tank 104 of the drone 100, that is, a state in which a medicine injection start instruction is input is waited for. It is.
  • the drone system 500 Upon receiving the medicine injection start command input by the user 402, the drone system 500 transitions to the medicine preparation state (S3).
  • the medicine preparation state (S3) is a state to which the drone system 500 belongs while the operation of injecting the medicine into the medicine tank 104 by the user 402 is performed.
  • the medicine preparation state (S3) includes a liquid standby state (S31), an air release standby state (S32), a spray system diagnosis state (S33), and a medicine standby state (S34). Including.
  • the liquid standby state (S31) is a state in which liquid can be injected into the medicine tank 104.
  • the liquid standby state (S31) is a state that transits from the medicine preparation standby state (S2) based on a medicine injection start command from the user.
  • the drone system 500 notifies the user 402 via the pilot 401 that the liquid needs to be injected into the medicine tank 104.
  • the drone 100 determines whether or not a sufficient amount of liquid has been injected into the medicine tank 104 by the liquid detection unit 31. In this case, the drone system 500 notifies the user via the pilot 401 that a sufficient amount of liquid has been injected into the medicine tank 104.
  • the amount of liquid detected by the liquid detection unit 31 is larger than the total volume of each path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid detection unit 31 detects, for example, that the liquid is injected at 10% or more of the upper limit of the medicine tank 104.
  • the drone system 500 notifies the user 402 via the pilot 401 to close the lid of the medicine tank 104 after the injection is completed or to further lock the lid.
  • the opening and closing of the lid and the locking and unlocking of the lock may be automatically performed by a mechanism provided in the drone 100, respectively.
  • the drone system 500 transitions to the air release standby state (S32).
  • the drone system 500 refers to the determination result of the opening / closing sensor 104a and enters the air release standby state (S32) on condition that the lid of the medicine tank 104 is closed or further locked by an appropriate lock mechanism. It may transition.
  • the air bleeding standby state (S32) is a state in which the pump 106 is driven to bleed air, and waits for air to escape from the inside of the medicine tank 104 and the path from the medicine tank 104 to the medicine nozzles 103-1 to 103-4. .
  • the air release standby state (S32) further includes an upstream air release standby state (S32-1) and a downstream air release standby state (S32-2).
  • the three-way valve 122 is open to the expansion tank 131 side.
  • the air present in the chemical tank 104 and in the upstream path is circulated through this path and temporarily stored in the expansion tank 131 and removed by driving the pump 106.
  • the air bleed detection unit 32 detects the completion of the air bleed operation in the upstream path, the drone system 500 transitions to a downstream air bleed standby state (S32-2).
  • the three-way valve 122 is open to the side of the chemical nozzles 103-1 to 103-1.
  • the air that is mainly present in the downstream path is pushed by the water that is moved by the drive of the pump 106, and is discharged from the nozzle 103 to the outside of the medicine tank 104. That is, the air is removed from the medicine tank 104 in the downstream path.
  • the air bleed detection unit 32 detects the completion of the air bleed operation, the drone system 500 transitions to the medicine standby state (S34).
  • the upstream air bleeding standby state (S32-1) and the downstream air bleeding standby state (S32-2) are completely automatically changed, and there is no condition based on the action of the user 402.
  • the controller 401 may notify that the state has transitioned from the state (S32-1) to the downstream air bleeding standby state (S32-2), and the state may transition based on a confirmation input of the user 402.
  • the user 402 may be configured to notify the user 402 of the state of the drone system 500 via the pilot 401.
  • the spraying system diagnosis state (S33) is a state to which the drone system 500 belongs while diagnosing whether there is any abnormality in each component of the drone 100 related to the medicine spraying.
  • the leakage abnormality detection unit 33 diagnoses whether there is any abnormality on the path from the medicine tank 104 to the medicine nozzle 103.
  • the abnormality of the path means that the pipe path itself or a shutoff mechanism arranged in the pipe path, specifically, the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121 -6, 121-7, etc.
  • the spraying system diagnosis state (S33) for diagnosing whether there is any abnormality in the configuration related to the drug spraying while the liquid is being injected into the drug tank 104 and the path the discharge pressure applied to the liquid is measured. Therefore, the leakage abnormality can be detected using the liquid.
  • the lid of the water inlet is unlocked, and the medicine can be injected from the water inlet.
  • the drone system 500 notifies the user 402 via the pilot 401 that the medicine needs to be injected into the medicine tank 104.
  • the drone system 500 determines from the replenishment detection unit 34 that a sufficient amount of medicine has been injected into the medicine tank 104, and notifies the user 402 to that effect via the pilot 401.
  • the drone system 500 may notify the user through the pilot 401 to close the lid of the medicine tank 104 after the injection is completed, or to further lock the lid.
  • the drone 100 that performs aerial spraying is capable of precisely spraying a drug on a field, so that compared to a general drug sprayed from the ground by a ground sprayer or the user himself.
  • the medicine With high concentration of drug. That is, it is expensive and may be harmful to the human body and the field as compared with general drugs. Therefore, if the medicine is discharged by the air bleeding operation, it is not preferable in terms of cost and safety.
  • the medicine is replenished after performing the air bleeding operation with water, the amount of the medicine discharged from the nozzle 103 in the medicine ready state (S3) can be suppressed, so that the application to the drone 100 is particularly useful. is there.
  • the first to fourth state storage units 115, 415, 445, and 455 store the state to which the drone system 500 currently belongs.
  • the first to fourth state storage units 115, 415, 445, and 455 store a history of states that have already transitioned in the medicine preparation state (S3). And the steps in this state are omitted.
  • the drone system 500 can transition from each state of the medicine preparation state (S3) to another state on the condition that there is a history of transition, in addition to completing the steps described above.
  • the first to fourth state storage units 115, 415, 445, and 455 store the liquid injection history as “Yes” when transitioning from the liquid standby state (S31) to the upstream air release standby state (S32-1).
  • the first to fourth state storage units 115, 415, 445, 455 store the upstream air bleeding history as "present” when transitioning from the upstream air bleeding standby state (S32-1) to the downstream air bleeding standby state (S32-2).
  • the first to fourth state storage units 115, 415, 445, and 455 store the downstream air bleeding history as “present” when transitioning from the downstream air bleeding standby state (S32-2) to the spraying system diagnostic state (S33).
  • the battery capacity of the drone 100 may become lower than a predetermined value, and it may be necessary to charge or replace the battery.
  • the drone system 500 transitions to the standby state after landing (S7) via the dead battery route (C), and the battery is replaced. Then, the state transits to the medicine preparation standby state (S2) via the medicine exhaustion route (B).
  • the medicine tank 104 When a transition is made from the medicine preparation standby state (S2) to the medicine preparation state (S3), in the liquid standby state (S31), if the liquid injection history, the upstream air bleed history, or the downstream air bleed history is not stored, the medicine tank 104 The user 402 is instructed to inject the liquid to the user. If at least one of the liquid injection history, the upstream air release history, and the downstream air release history is stored, the drone system 500 switches from the liquid standby state (S31) to the upstream air release standby state (S32-1). It is determined that the conditions for the transition are satisfied, and the state transits to the upstream air release standby state (S32-1).
  • the drone system 500 enters the upstream air release standby state (S32-2). It is determined that the condition for transition from -1) to the downstream air bleeding standby state (S32-2) is satisfied, and the state transits to the downstream air bleeding standby state (S32-2).
  • the drone system 500 transitions from the downstream air bleed standby state (S32-2) to the spraying system diagnostic state (S33). Is determined to be satisfied, and the state transits to the spraying system diagnostic state (S33).
  • the first to fourth state storage units 115, 415, 445, and 455 store the history of the state that has already transitioned in the medicine preparation state (S3), and the state in which the state has already transitioned in the state where the storage is held is According to the configuration in which the history is referred to and the step in the state is omitted, the medicine can be replenished in an appropriate procedure even when the operation is interrupted due to a battery exhaustion or the like during the medicine replenishment.
  • the flight start standby state (S4) is a state in which a flight start command from the user 402 can be input.
  • the flight start command is a command in which the user 402 permits the drone 100 to start flying the drone and prompts takeoff.
  • the drone system 500 shifts to a takeoff diagnosis state (S5) in which a necessary takeoff diagnosis is performed before the drone 100 takes off.
  • the takeoff diagnosis state (S5) is a state to which the drone system 500 belongs while the drone 100 safely flies before the takeoff of the drone 100 and diagnoses whether the conditions for performing the spraying of the medicine are in place.
  • the takeoff diagnosis state (S5) includes a drone determination state (S51), a flight plan confirmation state (S52), and an external environment determination state (S53).
  • the drone determination state (S51) is a state to which the drone system 500 belongs while the drone determination unit 53 determines that each component of the drone 100 itself operates within a normal range.
  • the drone system 500 transits to the flight plan confirmation state (S52).
  • the flight plan confirmation state (S52) When an abnormality is confirmed by the drone judging unit 53, the fact is displayed on the pilot 401, and after landing, the state transits to the standby state (S7).
  • the flight plan confirmation state (S52) is a state to which the drone system 500 belongs while the flight plan confirmation unit 52 confirms whether or not the drone 100 normally has information on the flight plan of the drone 100.
  • the drone system 500 transitions to the external environment determination state (S53). If the information on the flight plan is not normally stored, the drone system 500 performs an operation of obtaining the information on the flight plan. In this operation, for example, the information may be received from the farming support cloud 405. Further, when a decision by the user 402 is necessary, such as designation of a field where the medicine is to be sprayed, the fact is notified to the user 402 through the controller 401 to prompt the decision.
  • the external environment determination state (S53) is a state to which the drone system 500 belongs while the external environment determination unit 54 mainly determines whether the external environment of the drone 100 is an environment suitable for flying the drone 100. If the external environment determining unit 54 determines that the external environment is suitable for flight, the drone system 500 takes off and transitions to the flying scatter state (S6). Having the take-off diagnosis state (S5) after the flight start command and immediately before take-off allows abnormalities that occurred during other work such as drug injection to be reliably detected, so diagnosis is made at another timing Higher safety can be ensured as compared with a configuration in which the diagnosis is performed and a configuration in which the diagnosis is not performed.
  • the drone 100 stands by while landing. In addition, a message to that effect is displayed on the pilot 401. Since the external environment is a factor that fluctuates rapidly in a short time, it is preferable to wait for the external environment to be in a state suitable for flight, instead of transitioning to another state.
  • the drone system 500 may prompt the user 402 to confirm and input information indicating that the user 402 has confirmed the condition as one condition of the state transition.
  • the drone system 500 may check the power capacity of the emergency pilot in the takeoff diagnosis state (S5). If the power capacity of the emergency pilot is equal to or less than a predetermined value, the emergency stop command cannot be transmitted in the flight scattering state (S6), which may impair safety. When the power capacity of the emergency pilot is equal to or less than a predetermined value, the fact is displayed on the pilot 401 and the user 402 is urged to take measures such as replacing the battery of the emergency pilot. The same applies to the power supply capacity of the pilot 401 itself.
  • the flight spraying state (S6) is a state to which the drone system 500 belongs while the drone 100 flies and sprays medicine on a field. When the drone 100 lands, it transitions to the standby state (S7) after landing.
  • the evacuation behavior includes, for example, “emergency return” in which the vehicle immediately moves to a predetermined return point on the shortest route.
  • the predetermined return point is a point stored in advance in the flight controller 501, for example, a departure / arrival point 406.
  • the landing point 406 is, for example, a land-based point where the user 402 can approach the drone 100, and the user 402 can inspect the drone 100 that has reached the landing point 406, or manually carry it to another place. can do.
  • ⁇ Evacuation behavior includes landing movement.
  • Landing operation '' means ⁇ normal landing '' that performs normal landing operation, ⁇ emergency landing '' that descends and landing faster than normal landing, and stops all rotors and moves drone 100 downward from the place
  • “emergency stop” to drop on
  • the "emergency landing” includes not only the operation of descending faster than normal landing and landing at the same point as when performing a normal landing while performing the same attitude control as during normal operation, but also the accuracy of attitude control. However, it also includes the action of establishing a landing while slightly distorting the posture. As one specific example, by gradually and uniformly reducing the rotation speed of all motors, it is possible to land while descending accurately but not directly below.
  • the drone 100 receives the power capacity of the pilot 401 from the pilot 401 at least in the flight scattering state (S6).
  • the drone 100 performs an evacuation action. If the power supply capacity of the pilot 401 is low, the flight command of the user 402 cannot be transmitted to the drone 100, making it difficult for the drone 100 to fly safely. Therefore, when the power capacity of the pilot 401 is low, it is preferable that the drone 100 take an evacuation action even when the capacity of the battery 502 of the drone 100 is sufficient.
  • the drone 100 may be made to perform an evacuation action.
  • the drone system 500 Upon receiving the emergency stop command from the pilot 401 or the emergency pilot, the drone system 500 transits to the emergency stop state (S11).
  • the drone system 500 receives the emergency stop command and transmits reception information to the effect that the vehicle has transitioned to the emergency stop state (S11) to the pilot 401.
  • the user 402 can know from the display on the pilot 401 that the drone system 500 has transitioned to the emergency stop state (S11) as intended by the user 402.
  • the standby state after landing is a state to which the drone system 500 belongs while preparing to switch the work after landing.
  • the post-landing standby state is a state in which a transition can be made to a plurality of states based on an operation command from the user 402 while the drone 100 is landing.
  • the drone system 500 sets the designated field switching route (D).
  • the state transits to the flight start standby state (S4) via.
  • the drone system 500 transitions to the maintenance state (S8).
  • the drone system 500 transits to the medicine preparation standby state (S2).
  • the state may be automatically shifted to the medicine preparation standby state (S2). Further, it is configured to notify the user 402 that the storage of the medicine is equal to or less than a predetermined value, and to determine whether to transition to the medicine preparation standby state (S2) based on the input of the user 402. Is also good.
  • the drone system 500 transits to the shutdown state (S9). I do. Further, when the charged amount of the battery 502 is equal to or less than a predetermined value, the state may be automatically shifted to the shutdown state (S9). Further, it is configured to notify the user 402 that the charged amount of the battery 502 is equal to or less than a predetermined value, and determine whether to transition to the shutdown state (S9) based on the input of the user 402. Is also good.
  • the drone system 500 transitions to the maintenance state (S8).
  • the drone system 500 having the standby state after landing (S7) even if the drone 100 that has finished spraying the medicine in one field continues to spray or refill the medicine in another field, the next operation is performed smoothly. Can be transferred to. Specifically, when switching the field and replenishing the medicine, the flight start standby state (S9), the stop state (S0), the initial check state (S1), etc. It can directly transit to S4) and the medicine preparation standby state (S2).
  • the maintenance state (S8) is a state to which the drone system 500 belongs while the drone 100 is performing maintenance on the drone 100 itself.
  • the maintenance includes, for example, an operation of automatically cleaning the outer casing of the drone 100. In addition, the operation of cleaning the route of the medicine of the drone 100 is included.
  • the maintenance includes full maintenance for performing all maintenance that can be performed by the drone 100 and simple maintenance for performing minimum maintenance required when the use of the drone 100 is temporarily suspended.
  • simple maintenance for example, cleaning of a route of a medicine is performed. When spraying is interrupted, solidification, separation, sedimentation, etc. of the drug in the drug route occur immediately, so that appropriate spraying may not be performed after resuming. Therefore, even in the case of simple maintenance, cleaning of the medicine path is required at a minimum.
  • the suspension command input in the standby state after landing (S7) includes a temporary suspension command and a long-term suspension command.
  • the temporary stop instruction is input, for example, when the user 402 takes a break, that is, when the user 402 interrupts within about one hour.
  • the long-term interruption instruction is input, for example, when the operation is to be resumed over several days, that is, when the interruption is for several hours to several days.
  • simple maintenance is performed. Therefore, in order to resume the medicine spraying operation earlier than the long-term suspension instruction, it is sufficient to perform some maintenance.
  • the drone system 500 receives the long-term suspension instruction, it performs full maintenance. According to the configuration in which a plurality of types of maintenance can be selectively executed, power saving and time saving can be achieved.
  • the drone system 500 transitions to the shutdown state (S9).
  • the shutdown state (S9) is a state to which the drone system 500 belongs while disconnecting the drone 100, the pilot 401, and the base station 404 from each other and shutting down the power of the drone 100, the pilot 401, and the base station 404. .
  • the shutdown state (S9) includes a drone shutdown state (S91), a partially cooperative state (S92), and another terminal shutdown state (S93).
  • the drone shutdown state (S91) is a state in which the drone system 500 is in a state where the drone 100 shuts down, that is, prepares for powering off, and the drone 100 shuts down.
  • the drone 100 stores information stored in the first state storage unit 115 in a nonvolatile storage unit. Also, the drone 100 transmits the information stored in the first state storage unit 115 to the farming support cloud 405 by the first state transmission unit 111.
  • the drone 100 releases the connection with the pilot 401 and the base station 404, and releases the cooperation with each component. Then, the drone 100 is shut down.
  • the drone system 500 transits to a partially cooperative state (S92).
  • the main terminal shifts to another component, for example, the pilot 401 when the drone 100 is shut down.
  • the first main terminal determination unit 114 may determine the controller 401 as the main terminal before the drone 100 is shut down.
  • the second main terminal determination unit 414 may detect that the power of the drone 100 is off, and determine the pilot 401 as the main terminal.
  • the partially cooperative state (S92) is a state in which the drone 100 is shut down and other components are cooperating with each other. In the partially cooperative state (S92), the battery 502 of the drone 100 can be replaced.
  • the user 402 can select whether to restart the operation after the battery 502 is attached or detached or to shut down other terminals to stop the operation.
  • the partially cooperative state (S92) after the battery 502 is replaced, when the command to restart the drone 100 and restart the operation (hereinafter, also referred to as “restart command”) is input, the drone is started.
  • the system 500 transitions to the initial check state (S1).
  • the drone system 500 In the partial cooperative state (S92), if no restart command is input for a predetermined time, or if a command to shut down other terminals is input, the drone system 500 enters the other terminal shutdown state (S93). Transition.
  • the other terminal shutdown state (S93) is a state to which the drone system 500 belongs until the pilot 401 and the base station 404 shut down.
  • the pilot 401 and the base station 404 transmit the information stored in the second and third state storage units 415 and 445 to the farming support cloud 405 by the second and third state transmission units 411 and 441, respectively. Good.
  • the drone system 500 stops. That is, the drone system 500 transitions to the stop state (S0).
  • the drone system In the medicine preparation state (S3), the takeoff diagnosis state (S5), or the flight scattering state (S6), when it is detected that the charged amount of the battery 502 of the drone 100 is less than a predetermined value, the drone system is activated. 500 changes to the standby state (S7) after landing via the dead battery route (C). In the standby state after landing (S7), when the charged amount of the battery 502 is equal to or less than the predetermined amount, the drone system 500 shifts to the shutdown state (S9), and the battery 502 is in a replaceable state. When a plurality of batteries are mounted, when a decrease in the charged amount is detected in one battery, the state transition may be performed using another battery.
  • the drone system 500 detects the charged amount of the battery.
  • the drone system 500 does not transition to the next state illustrated in FIG. 12 and stores information on the state of the drone system 500 in the first to fourth state storage units 115, 415, 445, and 455. Record at least one.
  • the status of the drone system 500 includes the status to which the drone system 500 currently belongs and the history of the status that has transitioned so far. Further, this storage area is a non-volatile area capable of holding a record even when the drone system 500 is shut down. Then, the drone system 500 transits to the standby state after landing via the dead battery route (C). Further, the user 402 is notified through the drone 100 or the pilot 401 to that effect.
  • the charged amount of the first battery 502a is detected (S101), and it is determined whether the charged amount is large (S102).
  • the criterion for determining whether the charged amount is large is whether the drone 100 can perform a normal operation. If the charged amount is large, a normal operation is performed (S103), and the process returns to step S101. If the power storage amount is not large, the following evacuation action is performed.
  • the power storage amount of the second battery 502b is detected (S104), and it is determined whether the power storage amount of the second battery 502b is large (S105).
  • the criterion for determining whether or not the charged amount is large is whether or not the drone can return urgently. If the power storage amount is large, an emergency return is made (S16). If the power storage amount is not large, it is determined whether the power storage amount is minimal (S17). The criterion for determining whether or not the charged amount is minimal is whether or not the drone can make an emergency landing. If the charged amount is not minimal, that is, if a certain amount of charged amount remains, emergency landing is performed (S18), and the charged amount is determined. If it is extremely small, an emergency stop is performed (S19).
  • the program may be configured so that the drug is returned while spraying the medicine on a predetermined field.
  • the charge amount of the battery may be displayed on the pilot 401, and the user 402 may be notified of the operation being performed as appropriate. If the emergency stop operation is not possible, the user 402 may be notified of that. Unless the medicine is to be returned while being sprayed systematically, the evacuation action is performed after stopping the spraying of the medicine without fail.
  • a transition to the standby state after landing (S7) may be made via the dead battery route (C).
  • the evacuation action may be performed using another battery.
  • the drone system 500 transmits the information on the state of the drone system 500 to at least one of the first to fourth state storage units 115, 415, 445, and 455 in the case of going through the dead battery route (C). Record one.
  • the status of the drone system 500 includes information on a state to which the drone system 500 currently belongs, information on an area where the medicine is already sprayed on the field, and information on an area that needs to be sprayed in the future.
  • the drone system 500 transitions to the initial check state (S1).
  • the drone system 500 calls and stores, from at least one of the first to fourth state storage units 115, 415, 445, 455, information on the situation of the drone system 500 recorded when the battery exhaustion is detected. .
  • the example in which the battery 502 of the drone 100 is replaced with a charged battery has been described, but by charging the battery 502 with a reduced storage amount, even after resuming operation.
  • the same battery may be used.
  • the drone incorporated in the drone system 500 may be replaced with another drone.
  • By connecting to the same drone system 500 it is recorded when battery exhaustion is detected from at least one of the pilot 401, the base station 404, or the second to fourth state storage units 415, 445, 455 of the farming support cloud 405.
  • the information on the status of the drone system 500 can be called, and the newly connected drone can hold the information.
  • the drone system 500 transits to the standby state after landing (S7) via the dead battery route (C).
  • the battery may have a first threshold value and a second threshold value smaller than the first threshold value, and may perform different operations according to the relationship between the charged amount of the battery and each threshold value.
  • the pilot 401 notifies the user 402 by appropriate means such as display or sound. For example, this is a notification that charging should be performed because charging will soon run out.
  • the emergency stop command when transmitting the emergency stop command, it is a notification that it should be transmitted through a component other than the pilot 401, for example, an emergency pilot, a base station, or the like.
  • a component other than the pilot 401 for example, an emergency pilot, a base station, or the like.
  • the user 402 can selectively continue the operation of the drone system 500.
  • the drone 100 takes an evacuation action in the hovering state (S55) or the flight scattering state (S6), or restricts the start of flight in the landing state. I do. This is because, when the power storage amount of the pilot 401 is small and operation becomes impossible, an emergency stop command cannot be transmitted to the drone 100, and there is a possibility that safe flight cannot be performed.
  • a function unit for detecting the low charged amount is similarly arranged, and when the charged amount is equal to or less than a predetermined value, the same operation as the pilot 401 is performed. You may.
  • the drone system 500 goes through the drug out route (B). Then, the state transits to the medicine preparation standby state (S2).
  • the medicine preparation standby state (S2) When it is detected that the medicine in the medicine tank 104 is equal to or less than a predetermined value in the medicine preparation state (S3), that is, in a state where the drone 100 is landing, the state may transition to the medicine preparation standby state (S2) before takeoff. it can.
  • the drone 100 lands from the flight scattering state (S6), transitions to the standby state after landing (S7), and then transitions to the medicine preparation standby state (S2).
  • the drone system 500 can detect the running out of medicine and transition from the two different states to the medicine preparing standby state (S2), so that even when the medicine runs out, the state transition is redundant. The transition to the next state can be made smoothly without any change.
  • the drone, the pilot, the base station, and the farming support cloud are connected to each other, and according to the drone system according to the present invention that operates in cooperation with each other, the connection between any one of the components and the other components is disconnected, Even when the power of any one of the components is turned off, the state of the drone system can be maintained, and the operation as the drone system can be smoothly continued.
  • the agricultural chemical spray drone was described as an example, the technical idea of the present invention is not limited to this, and is applicable to a spray machine, and an agricultural machine having a spray function. . It is also useful for drones that fly autonomously.

Abstract

【課題】自律飛行時であっても、高い安全性を維持できるドローン、すなわち無人飛行体を提供する。 【解決策】 操縦器401と、ドローン100と、がネットワークNWを通じて互いに接続されて互いに協調して動作するドローンシステム500であって、ドローンシステムは、互いに異なる複数の状態を有し、状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、複数の状態は、使用者からの動作命令に基づいて複数の状態に遷移可能なスタンバイ状態(S7を含み、ドローンは、ドローンを駆動するためのバッテリー502と、バッテリーの蓄電量が所定値以下になっていることを検知する低バッテリー検知部70と、を備え、ドローンシステムは、前記低バッテリー検知部による検知に基づいてスタンバイ状態に遷移する。

Description

ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
本願発明は、ドローンシステム、飛行体(ドローン)、特に、安全性を高めたドローン、ドローンシステムの制御方法、および、ドローンシステム制御プログラムに関する。
一般にドローンと呼ばれる小型無人ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
準天頂衛星システムやRTK-GPS(Real Time Kinematic-Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。
特許公開公報 特開2001-120151 特許公開公報 特開2017-163265
 自律飛行時であっても、高い安全性を維持できるドローン、すなわち無人飛行体を提供することができる。
 上記目的を達成するため、本発明の一の観点に係るドローンシステムは、操縦器と、ドローンと、がネットワークを通じて互いに接続されて互いに協調して動作するドローンシステムであって、前記ドローンシステムは、互いに異なる複数の状態を有し、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、前記複数の状態は、使用者からの動作命令に基づいて複数の状態に遷移可能なスタンバイ状態を含み、前記ドローンは、前記ドローンを駆動するためのバッテリーと、前記バッテリーの蓄電量が所定値以下になっていることを検知する低バッテリー検知部と、を備え、前記ドローンシステムは、前記低バッテリー検知部による検知に基づいて前記スタンバイ状態に遷移する。
前記複数の状態は、前記ドローンシステムの構成をシャットダウンする間に前記ドローンシステムが属するシャットダウン状態をさらに含み、前記スタンバイ状態において、前記ドローンのシャットダウンを行う動作命令が入力されると、前記ドローンシステムはシャットダウン状態に遷移するように構成されていてもよい。
 前記ドローンシステムは、前記操縦器および前記ドローンが少なくとも第3の構成とネットワークを通じて互いに接続されて互いに協調して動作し、前記複数の状態は、前記ドローンシステムが有する各構成の起動後に、前記各構成の動作が正常に行われて互いに協調しているかどうかを確認する初期チェック状態と、前記ドローンシステムの構成をシャットダウンする間に前記ドローンシステムが属するシャットダウン状態と、をさらに含み、前記シャットダウン状態は、前記ドローンがシャットダウンされるドローンシャットダウン状態と、前記ドローンがシャットダウンされた後に前記ドローンシャットダウン状態から遷移し、前記操縦器および前記第3の構成が協調を保った状態である一部協調状態と、を含み、前記ドローンシステムは、前記一部協調状態において前記ドローンの前記バッテリーが交換されることに基づいて、前記初期チェック状態に遷移可能であるように構成されていてもよい。
 前記低バッテリー検知部による検知に基づいて、前記ドローンシステムは、前記ドローンシステムの状況に関する情報を記録し、前記情報は、前記ドローンシステムが現在属する状態、これまでに遷移した状態の履歴、圃場において薬剤散布が既に行われている領域の情報、および今後散布を要する領域の情報、のうち少なくとも1個を含むように構成されていてもよい。
 前記ドローンは、前記バッテリーを交換しているとき前記ドローンシステムの協調から外れており、前記ドローンシステムが有する他の構成と前記ドローンとが接続されて前記協調が確立されることに基づいて前記情報を呼び出すように構成されていてもよい。
前記操縦器は、前記操縦器を駆動するための操縦器バッテリーと、前記操縦器バッテリーの蓄電量が所定値以下になっていることを検知する第2低バッテリー検知部と、を備え、前記ドローンシステムは、前記第2低バッテリー検知部による検知に基づいて前記スタンバイ状態に遷移するように構成されていてもよい。
 前記低バッテリー検知部が検知する前記所定値は、前記ドローンが発着地点に帰還するために必要な蓄電量以上であるように構成されていてもよい。
 前記複数の状態は、前記ドローンのメンテナンスを行うメンテナンス状態をさらに含み、前記スタンバイ状態において前記ドローンのメンテナンスを要求する動作命令が入力されると、前記ドローンシステムはメンテナンス状態に遷移するように構成されていてもよい。
 前記複数の状態は、前記ドローンの飛行開始を許可する飛行開始指令を受信可能な飛行開始スタンバイ状態をさらに含み、前記スタンバイ状態において、前記ドローンが薬剤散布を行う指定圃場の変更を要求する動作命令が入力されると、前記飛行開始スタンバイ状態に遷移するように構成されていてもよい。
 前記低バッテリー検知部は、バッテリー電圧、バッテリー温度、電流のうち1又は複数の値に基づいて前記バッテリーの蓄電量を推定し、前記バッテリーの蓄電量が所定値以下になっていることを検知するように構成されていてもよい。
 前記低バッテリー検知部は、バッテリーの実使用時間および周辺温度等のうち1又は複数の値に基づいて、推定された前記バッテリーの蓄電量を補正するように構成されていてもよい。
 本発明の別の観点に係るドローンシステムの制御方法は、操縦器と、ドローンと、がネットワークを通じて互いに接続されて互いに協調して動作するドローンシステムの制御方法であって、前記ドローンシステムは、互いに異なる複数の状態を有し、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、前記複数の状態は、使用者からの動作命令に基づいて複数の状態に遷移可能なスタンバイ状態を含み、前記ドローンは、前記ドローンを駆動するためのバッテリーと、前記バッテリーの蓄電量が所定値以下になっていることを検知する低バッテリー検知部と、を備え、前記ドローンシステムは、前記低バッテリー検知部による検知に基づいて前記スタンバイ状態に遷移するステップを含む。
 本発明のさらに別の観点に係るドローンシステムの制御プログラムは、操縦器と、ドローンと、がネットワークを通じて互いに接続されて互いに協調して動作するドローンシステムの制御プログラムであって、前記ドローンシステムは、互いに異なる複数の状態を有し、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、前記複数の状態は、使用者からの動作命令に基づいて複数の状態に遷移可能なスタンバイ状態を含み、前記ドローンは、前記ドローンを駆動するためのバッテリーと、前記バッテリーの蓄電量が所定値以下になっていることを検知する低バッテリー検知部と、を備え、前記ドローンシステムを、前記低バッテリー検知部による検知に基づいて前記スタンバイ状態に遷移させる命令をコンピューターに実行させる。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
 自律飛行時であっても、高い安全性を維持できるドローン(無人飛行体)を提供する。
本願発明に係るドローンシステムを構成するドローンの実施の形態を示す平面図である。 上記ドローンの正面図である。 上記ドローンの右側面図である。 上記ドローンの背面図である。 上記ドローンの斜視図である。 上記ドローンシステムの全体概念図である。 上記ドローンの制御機能を表した模式図である。 上記ドローンが有する薬剤散布システムの構成を表した模式図である。 上記ドローンシステムの構成要素である上記ドローン、操縦器、基地局、および営農支援クラウドがそれぞれ有する、状態遷移に関する機能部を示す機能ブロック図である。 上記ドローンの詳細な機能ブロック図である。 上記ドローンシステムが遷移する複数の状態を示す概略状態遷移図である。 上記ドローンシステムが遷移する、薬剤補充に関する概略状態遷移図である。 上記ドローンシステムが遷移する、離陸診断に関する概略状態遷移図である。 上記ドローンシステムが遷移する、上記ドローンシステムのシャットダウンに関する概略状態遷移図である。 上記ドローンシステムが、上記ドローンが有するバッテリーの蓄電量を判定するフローチャートである。
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。
 図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図および図9に示すように、ドローンシステム500は、ドローン100、操縦器401、基地局404、および営農支援クラウド405が、ネットワークNWを通じて互いに接続され、互いに協調して動作するシステムである。基地局404および営農支援クラウド405は、第3の構成の例である。なお、ドローンシステム500は、すべての構成要素が互いに直接接続されていてもよいし、各構成要素が少なくとも1個の構成要素と直接接続され、当該直接接続されている構成要素を経由して別の構成要素と間接的に接続されている構成であってもよい。ドローンシステム500は、農業用機械システムの例である。ドローンシステム500を構成するドローン100および操縦器401の少なくとも一方は、薬剤の補充制御システムが状態遷移する条件を満たしているか否かを判定する。
操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御され、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっている。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操縦器を使用してもよい。非常用操縦器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器である。操縦器401とドローン100はWi-Fi等による無線通信を行う。
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できる(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農支援クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されている。営農支援クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農支援クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。
図1に、ドローン100の実施例の平面図を、図2にその(進行方向側から見た)正面図を、図3にその右側面図を、図4に背面図を、図5に斜視図を示す。なお、本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼または飛行手段を有する飛行体全般を指すこととする。
回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
ドローン100は薬剤タンク104に保管される薬剤を、圃場に向かって空中から下方に向かって散布する。空中散布を行うドローン100によれば、地上散布機や使用者自身により地上から散布される場合に比べて、圃場に対して薬剤を緻密に散布することが可能である。そのため、地上から散布される場合のように、圃場内の領域に重複して散布されることがなく、均一に散布することができる。したがって、薬剤タンク104に保管される薬剤は、地上から散布される薬剤に比べて高濃度、例えば10倍程度の薬剤である。
図7に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表した模式図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行ってもよい。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農支援クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、例えば充電式である。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されている。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであってもよい。バッテリー502は多重化されていてもよく、本実施形態では第1バッテリー502aおよび第2バッテリー502bを有する。第1バッテリー502aおよび第2バッテリー502bは、互いに同等のものであってもよいし、互いに異なるバッテリー容量を有してもよいし、異なる機能を有するものでもよい。
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようになっている。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていてもよい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しており、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御されている。
6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。また、6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、例えばIR(赤外線)レーザーを使用する。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されている。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器であることが望ましい。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
 図8に示すように、ドローン100が備える薬剤の補充制御システムは、薬剤を散布する農業用機械、特に本例では薬剤散布用ドローン100に備えられ、薬剤の吐出を精度よく制御すると共に、薬剤の吐出異常を検知する。
 なお、本実施形態において、薬剤の「吐出異常」といった場合には、現実に薬剤の吐出異常を来たし、規定値を超える薬剤が吐出されている状態のほか、このような薬剤の吐出異常となる虞のある準備状態や、散布予定とは異なる薬剤が現実に散布され、又は散布される虞がある設定異常の状態を含む。
 薬剤タンク104は上述の通り、散布される薬剤を保管するためのタンクである。
この薬剤タンク104には、薬剤を充填したり、保管している薬剤を出したりするための開閉可能な蓋が取り付けられている。この開閉可能な蓋には、開閉状態を検知可能な開閉センサー104aが取り付けられている。この開閉センサー104aは例えば、蓋に取り付けられたマグネットと、本体に取り付けられて、このマグネットの磁力や接触を感知する感知器によって構成することができる。これにより蓋の開閉状態を判別して、使用者に蓋の開閉状態を認識可能とし、蓋が開いたまま薬剤の散布が行われるといった事態を防ぐことができる。
 また、薬剤タンク104には薬剤種別判別センサー104bが設けられている。薬剤種別判別センサー104bは、薬剤タンク104内に貯留されている薬剤の種別を判別することができる。
 この薬剤種別判別センサー104bは例えば、薬剤タンク104内の薬剤の粘度や導電率、あるいはpHを測定することのできる装置によって構成され、測定された各項目の値と、薬剤ごとの基準となる値とを対比し、薬剤の種別を判別することができる。
 なお、これに限らず、例えば薬剤タンク104としてカートリッジ式の薬剤タンクを用いれば、当該カートリッジ式の薬剤タンクに薬剤種別のデータを記録したIC等を付しておき、当該IC等から薬剤種別のデータを取得する手段を設けることで、薬剤の種別を判別することもできる。
 ここで、薬剤は複数の種類のものが用いられる場合があるため、散布を予定している薬剤が薬剤タンク104内に保管されているかどうかを判別することは有用である。特に、薬剤の粒子径は種類に応じて異なるところ、散布を予定していた薬剤よりも粒子径の小さい薬剤を誤って散布してしまった場合には、ドリフト(薬剤の目的物以外への飛散、付着)を惹き起こす可能性が高く、看過できない。
 また、薬剤タンク104には、薬剤の液切れを検知するための液切れセンサー511が取り付けられている。なお、薬剤の液切れには、薬剤がなくなった場合のほか、薬剤の量が所定の量以下になった場合を含み、任意に設定された量に応じて、薬剤の液切れを検知することができる。
 なお、薬剤タンク104内における薬剤の蒸散検知機能や、温度・湿度の測定機能などを薬剤タンク104に設け、薬剤が適切な状態に管理されるようにするとよい。
 ポンプ106は、薬剤タンク104内に保管されている薬剤を下流へ吐き出し、薬剤ホース105-1、105-2、105-3、105-4を介して各薬剤ノズル103-1、103-2、103-3、103-4へ送出する。
 なお、薬剤は薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4へ送出されるところ、本実施形態の説明では、この送出経路に沿って薬剤が送出される方向を下流方向と称し、これとは逆の方向を上流方向と称することがある。なお、薬剤は一部、薬剤タンク104から三方弁122を介して再び薬剤タンク104へ送出されるが、この経路に関しては、三方弁122側を下流方向、薬剤タンク104側を上流方向と称している。
 拡張タンク131は、三方弁122から送出された薬剤を一時的に貯留させ、薬剤タンク104に戻すためのタンクである。
 三方弁122から拡張タンク131を介して薬剤タンク104に至る経路は、薬剤タンク104に注入されている水又は薬剤中の気泡を除去(脱泡)するための経路である。この経路を循環させると共に、拡張タンク131に一時的に貯留させることで水又は薬剤の脱泡を行うことができる。
 逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7は、薬剤を一定方向のみに送出し、当該一定方向とは逆の方向への流入、即ち逆流を防ぐための弁である。この逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7は、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路において、薬剤の吐出を遮断する遮断機構の役割を果たしており、薬剤の吐出を遮断する役割を果たすことができれば、遮断機構として電磁弁など、他の機構のものを用いることもできる。
 本例では、逆止弁121-1が薬剤タンク104とポンプ106の間であって、薬剤タンク104に設けられた薬剤吐出口近傍に設けられ、逆止弁121-2が三方弁122と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられ、逆止弁121-4、121-5、121-6、121-7が薬剤の外部への吐出口103a-1、103a-2、103a-3、103a-4に設けられ、逆止弁121-3が三方弁122と拡張タンク131の間に設けられている。逆止弁121-1は、薬剤タンク104から送出された薬剤を下流方向へ送出させ、薬剤タンク104へ逆流不能に制御している。また、逆止弁121-2は、ポンプ106から送出された薬剤を下流方向へ送出させ、ポンプ106へ逆流不能に制御している。また、逆止弁121-3は、三方弁122から送出された薬剤を拡張タンク131のある上流方向へ送出させ、三方弁122へ逆流不能に制御している。さらに、逆止弁121-4、121-5、121-6、121-7は、吐出口103a-1、103a-2、103a-3、103a-4から薬剤が外部へ吐出するのを遮断可能にしている。
 なお、逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7には、スイング式、リフト式、ウエハ式など、各種のものを用いることができ、特に特定のものに限られることはない。また、本例に関わらず、本例よりも多くの逆止弁を適宜の箇所に設けてもよい。
 三方弁122は、ポンプ106と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられており、ポンプ106から薬剤ノズル103-1、103-2、103-3、103-4へつながる経路と、ポンプ106から拡張タンク131を介して薬剤タンク104へつながる経路の分岐点を構成しており、切替操作に応じて薬剤を各経路へ送出させる。三方弁122は、弁の例であり、例えば三方電磁弁である。
ここで、ポンプ106から薬剤ノズル103-1、103-2、103-3、103-4へつながる経路は、薬剤を薬剤ノズル103-1、103-2、103-3、103-4から吐出させ、薬剤を散布させるための経路である。
また、ポンプ106から拡張タンク131を介して薬剤タンク104へつながる経路は上述の通り、薬剤中の気泡を除去(脱泡)するための経路である。
 流量センサー510は、ポンプ106と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられ、薬剤ノズル103-1、103-2、103-3、103-4へ送出されている薬剤の流量を測定する。この流量センサー510によって測定された薬剤の流量に基づき、圃場403に散布した薬剤の量を把握することができる。
圧力センサー111-1、111-2は、取り付け位置における薬剤の吐出圧を測定する。
圧力センサー111-1は、ポンプ106の下流側であって、逆止弁121-2及び三方弁122の上流側に取り付けられ、下流へ吐き出される薬剤の吐出圧を測定する。
圧力センサー111-2は、逆止弁121-2の下流側であって、薬剤ノズル103-1、103-2、103-3、103-4の上流側に取り付けられ、下流へ吐き出される薬剤の吐出圧を測定する。
これらの圧力センサー111-1、111-2によって薬剤の吐出圧を測定することができることから、逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7を閉弁させた状態で各圧力センサーの111-1、111-2によって測定された薬剤の吐出圧の経時的変化を取得し、これを正常時の薬剤の吐出圧の経時的変化と対比することで、薬剤の漏出異常を検知することができる。例えば、圧力センサー111-1、111-2によって取得された薬剤の吐出圧が経時的に下降線を描き、この下降線が誤差の範囲を超えて、正常時と異なる場合には、経路中に薬剤の漏出が発生している可能性があると推測することができる。
また、圧力センサー111-1、111-2ごとに判断することで、薬剤の漏出が発生している経路を大まかに特定することができる。即ち、本例であれば、圧力センサー111-1の測定値が正常である一方、圧力センサー111-2の測定値が異常であると判別される場合には、圧力センサー111-1よりも下流で薬剤の漏出が発生していると推測することができる。
 ポンプ用センサー106aは、ポンプ106内において薬剤を薬剤タンク104から吸い込むと共に下流へ吐き出す回転子の回転数を測定する。
 このポンプ用センサー106aによってポンプ106の回転子の回転数を測定した上、圧力センサー111-1、111-2によって測定された薬剤の吐出圧と対比し、正常時の比率と一致するか否かを判別することで、薬剤の漏出異常を検知することができる。即ち、正常時に比して、ポンプ106の回転数に応じた薬剤の吐出圧が得られていない場合には、薬剤の漏出が発生して、吐出圧が減少していると推測される。
 ノズル種別判別センサー114-1、114-2、114-3、114-4は、薬剤の吐出口に取り付けられる薬剤ノズル103-1、103-2、103-3、103-4の種別を判別することができる。
散布される薬剤ごとの粒子径の違いから、薬剤ノズル103-1、103-2、103-3、103-4は通常、薬剤に応じて用いられるものが異なっている。そのため、薬剤ノズル103-1、103-2、103-3、103-4の種別が適切か否かを判別することで、誤った薬剤の散布を防ぐことができる。
 具体的には例えば、吐出口に薬剤ノズル103-1、103-2、103-3、103-4と嵌合又は係合する機構を設けておき、薬剤ノズル103-1、103-2、103-3、103-4には、当該吐口側の嵌合又は係合機構に嵌合又は係合する機構であって、複数の薬剤ノズル103-1、103-2、103-3、103-4ごとに異なる形状の機構を設ける。そして、吐出口に薬剤ノズル103-1、103-2、103-3、103-4を取り付けた際、薬剤ノズル103-1、103-2、103-3、103-4ごとに異なる形状を識別することにより、薬剤ノズル103-1、103-2、103-3、103-4の種別を判別することができる。
 なお、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路の途中には、当該経路中に貯留する薬剤を外部へ排出するためのコック付きの排出口(図6中、「DRAIN」と表記)が設けられている。圃場403への薬剤の散布が終わった後などにおいて、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路に溜まっている薬剤を排出させる場合には、この排出口より薬剤を排出させることができる。
 なお、薬剤タンク104に薬剤を補充する過程、特に後述する液体待機状態(S31)およびエア抜き待機状態(S32)では、薬剤タンク104に水が注入される。薬剤吐出システムが有する、薬剤に関する各センサー、すなわち液切れセンサー511、圧力センサー511-1、511-2、および流量センサー510は、薬剤タンク104に水が入っている場合にも、同様に動作する。また、薬剤種別判別センサー104bは、薬剤タンク104に水が入っていることを判別することが可能である。
 薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路には主に空気等の気体が存在している。薬剤を薬剤タンク104に補充する際、経路内の気体が薬剤中に混入し、規定量の薬剤を補充できない恐れがある。また、気体が混入されている状態で農業用機械が薬剤を吐出しようとすると、意図されていない気体が薬剤の代わりに吐出される恐れがあり、薬剤を圃場に正確に散布することは困難である。さらに、気体と薬剤とが不規則に吐出される場合、薬剤ノズル103に圧力が一定にかからなくなり、水圧の脈動が起こるため、薬剤の吐出量を正確に制御することは困難である。具体的には、気体が圧力により潰れて水圧が低下し、流量が下がったり、気体が放出された後に突如流量が上がったりしてしまう。当該経路の径に対して薬剤の粘度が高い場合には、特に顕著である。その結果、流量が下がって、吐出される薬剤の粒子径が計画された粒子径より小さくなると、風により飛散し、意図しない場所に薬剤を散布してしまう恐れがある。また逆に、流量が上がってしまった結果、計画された量よりも多くの薬剤を投下してしまう恐れもある。したがって、薬剤タンク104に薬剤を補充する際に、当該経路中の気体を効率よく外部に排出し、経路に薬剤が充満されることが望ましい。具体的には、薬剤の補充が適切に行われているかを段階的に監視し、薬剤補充の手順が適切なタイミングで使用者に報知されることが望ましい。
 図9に示すドローンシステム500は、互いに異なる複数の状態を有する。ドローンシステム500は、状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移する。「ドローンシステム500の状態」とは、別の状態に遷移するための条件を満たすことにより、その条件に対応した状態を示す概念であり、状態ごとにソフトウェアのシステム構成上互いに独立して構成されていてもよいし、複数の状態が同一のシステム構成中に構成されていてもよい。ドローンシステム500は、ある状態に属しているとき、当該状態ごとに定められる動作を行う。状態ごとに定められる条件を充足していない場合、ドローンシステム500は、当該状態に留まる。また、定められる条件が複数あり、複数の状態に遷移し得る状態があってもよい。
 ドローン100、操縦器401、基地局404、および営農支援クラウド405のいずれかに異常が生じている場合、ドローンシステム500全体の安全性を脅かす恐れがある。ドローンシステム500の状態を正しく判定し、その判定に応じて動作が規定されていることで、条件を充足しない場合にドローン100を飛行させたり薬剤を散布させたりすることがない。すなわち、ドローンシステム500を安全に稼働させることができる。特に、ドローン100を安全に飛行させ、薬剤を散布することができる。
●ドローンシステムの状態遷移を行うための構成
 図9に示すように、ドローン100は、第1状態送信部111と、第1状態受信部112と、第1状態遷移判定部113と、第1主端末決定部114と、第1状態記憶部115と、を有する。また、操縦器401、基地局404、および営農支援クラウド405は、第1状態送信部111、第1状態受信部112、第1状態遷移判定部113、第1主端末決定部114、および第1状態記憶部115に対応する構成をそれぞれ有する。すなわち、操縦器401は、第2状態送信部411、第2状態受信部412、第2状態遷移判定部413、第2主端末決定部414、および第2状態記憶部415、を有する。基地局404は、第3状態送信部441、第3状態受信部442、第3状態受信部443、第3主端末決定部444、および第3状態記憶部445を有する。営農支援クラウド405は、第4状態送信部451、第4状態受信部452、第4状態遷移判定部453、第4主端末決定部454、および第4状態記憶部455を有する。
 第1乃至第4状態送信部111,411,441,451は、ドローンシステム500が現在属する状態の情報、ならびにドローン100、操縦器401、および基地局404それぞれの端末の状況を示す端末情報を、接続されている他の構成要素に送信する機能部である。他の構成要素は、ここでは、ドローン100、操縦器401、基地局404、又は営農支援クラウド405である。端末情報とは、例えばドローン100、操縦器401、基地局404それぞれの電源のオンオフ情報や、それぞれの電源容量などを示す数値である。また、端末情報とは、各構成要素間の接続状態、各構成要素の動作履歴およびメンテナンス履歴、各構成要素の故障情報、緊急停止を実行中であるか否かの情報、緊急停止を行った履歴、ならびに、薬剤タンク104に注入されている水又は薬剤の別、その量および注入履歴等を含んでいてもよい。
 第1乃至第4状態送信部111,411,441,451は、営農支援クラウド405の状況を示すクラウド情報をさらに他の構成要素に送信してもよい。クラウド情報とは、例えば営農支援クラウド405に記憶されている情報が更新された履歴、すなわち、最終更新日時や、更新を行った端末の情報等を含んでいてもよい。
 第1乃至第4状態受信部112,412,442,452は、ドローンシステム500が現在属する状態の情報、ならびにドローン100、操縦器401、および基地局404の状況を示す端末情報を、接続されている他の構成要素が有する第1乃至第4状態送信部111,411,441,451から受信する機能部である。また、第1乃至第4状態受信部112,412,442,452は、クラウド情報をさらに他の構成要素から受信してもよい。
 すなわち、基地局404は、ドローンシステム500が現在属している状態をドローン100および操縦器401の少なくとも一方に送信する。また、基地局404は、ドローンシステム500が現在属している状態をドローン100および操縦器401の少なくとも一方から受信する。基地局404は、操縦器401および基地局404の接続状態、ドローン100および基地局404の接続状態、ならびに、操縦器401およびドローン100の接続状態のうち、少なくとも一個の接続状態を、ドローン100および操縦器401の少なくとも一方から受信する。
 また、基地局404は、各構成要素と営農支援クラウド405との接続状態を、少なくとも1個の他の構成要素との間で送受信してもよい。
 第1乃至第4状態送信部111,411,441,451および第1乃至第4状態受信部112,412,442,452によれば、各構成要素は、ドローンシステム500において接続されている他の構成要素の端末情報およびクラウド情報を互いに把握することができる。すなわち、各構成要素は、いずれの構成要素が協調から外れた場合にも、ドローンシステム500の状態を保持し、ドローンシステム500としての運用を円滑に継続できる。
 また、操縦器401が端末情報およびクラウド情報を常に把握している構成によれば、使用者402はドローンシステム500の様子を常に把握することができる。
 第1乃至第4状態遷移判定部113,413,443,453は、ドローンシステム500が現在属する状態を認識して、現在属する状態から別の状態に遷移するための条件が充足しているか否かを判定する機能部である。第1乃至第4状態遷移判定部113,413,443,453は、同じ条件に関する判断を行うことが可能であり、それぞれの状態遷移判定部は、他の状態遷移判定部の代替として動作することができる。
 第1乃至第4状態遷移判定部113,413,443,453は、別の状態に遷移するための条件が充足しているか否かの判定を択一的に行う。すなわち、1個の状態遷移判定部が判定を行っている場合、他の状態遷移判定部は判定を行わない。以降の説明において、状態遷移の判定を行っている状態遷移判定部を有する構成要素を、「主端末」ともいう。この構成によれば、いずれかの構成要素の電源がオフになっている場合や、いずれかの構成要素間の接続が切断され、主端末としての動作ができない場合においても、別の構成要素が主端末として状態遷移の判定を行い、ドローンシステム500の状態を遷移させることができる。
 第1乃至第4主端末決定部114,414,444,454は、第1乃至第4状態受信部112,412,442,452が受信する情報に基づいて、いずれの構成要素を主端末とするかを決定する機能部である。いずれの構成要素が主端末となるか、すなわち第1乃至第4状態遷移判定部113,413,443,453のうちいずれが状態遷移を判定するかは、あらかじめ優先順位が定められている。具体的には、各構成要素の電源が投入され、すべての構成要素が協調している場合、ドローン100が主端末となる。ドローン100の電源がオフ、又はドローン100の各構成要素との接続が切断され、主端末としての動作が不可能な場合、第1乃至第4主端末決定部114,414,444,454の決定により、操縦器401が主端末となる。なお、優先順位は一例であり、ドローン100が主端末として動作不能な場合、基地局404又は営農支援クラウド405が主端末となってもよい。また、優先順位は、固定されていてもよいし、変動してもよい。たとえば、優先順位は、ドローンシステム500が現在属している状態に応じて変動してもよい。
 本実施形態においては、主端末決定部は各構成要素に設けられている。この構成によれば、いずれの構成要素の接続が切断され、協調が外れた場合であっても、主端末を決定することができる。なお、すべての構成要素が協調して動作している場合にはいずれか1の主端末決定部が主端末の決定を行えば足り、例えば、ドローン100に設けられている第1主端末決定部114が、ドローン100が主端末となる旨の決定を行えばよい。ドローン100が協調から外れた場合は、第2主端末決定部114がその旨の情報に基づいて、操縦器401が主端末となることを決定する。
 第1乃至第4状態記憶部115,415,445,455は、ドローンシステム500が現在属する状態、およびドローン100、操縦器401、および基地局404の状況を示す端末情報を記憶する機能部である。第1状態記憶部115は、営農支援クラウド405の状況を示すクラウド情報をさらに記憶してもよい。
 第1乃至第4状態記憶部115,415,445,455は、少なくとも一部が不揮発性の記憶領域、例えば不揮発性メモリによって構成されている。この構成によれば、各構成要素の電源がオフになっても、情報を記憶しておくことができる。電源の再投入時にも故障情報やメンテナンスの履歴が引き継がれているので、電源がオフになる前に起こった故障や異常に対しても確実に修理およびメンテナンスを行うことができ、ドローンシステム500を安全に使用することができる。
●薬剤の注入を管理するための構成
 図10に示すように、ドローン100は、薬剤タンク104への薬剤の注入を管理するための構成として、液体検知部31と、エア抜き検知部32と、漏出異常検知部33と、補充検知部34と、を備える。薬剤タンク104への薬剤の注入にあたっては、まず薬剤タンク104に液体を注入し、この液体をポンプ106により循環させて薬剤タンク104および薬剤タンク104から薬剤ノズル103-1~4に至る各経路の気体、主に空気を外部に排出するエア抜きを行った上で、薬剤タンク104に圃場へ散布する薬剤を注入する。
 液体検知部31は、薬剤タンク104に液体の補充が完了していることを検知する機能部である。液体検知部31は、例えば薬剤タンク104内に所定量の液体が入っていることを、液面高さ又は重量等により検知する判定装置により実現できる。液体検知部31は、薬剤タンク104内の液体の量を計測する液面計、重量計、又は水圧センサー等を用い、薬剤が所定量となっていることをソフト的に判定する機能部であってもよい。
 液体検知部31は、後述するエア抜き動作により液体が各経路に侵入した場合にも、薬剤タンク内に液体が残留する程度の量の液体が、薬剤タンク104に注入されていることを検知する。エア抜き動作により薬剤タンク104内の水位が下がり、薬剤タンク104内の液体が空になってしまうのを防ぐためである。液体検知部31が検知する液体の量は、薬剤タンク104から薬剤ノズル103に至る各経路の総容積よりも多い。液体検知部31は、例えば薬剤タンク104の上限の10%以上液体が注入されていることを検知してもよい。
 液体検知部31が検知する液体は、例えば水であるが、圃場へ散布する薬剤であってもよいし、その他適宜の液体であってもよい。
 エア抜き検知部32は、図8に示す薬剤タンク104および薬剤タンク104から薬剤ノズル103-1~4に至る各経路の内部の空気を薬剤タンク104の外部に流出させるエア抜き動作が完了していることを検知する機能部である。エア抜き検知部32は、三方弁122が拡張タンク131側の経路を開放している場合、図6における薬剤タンク104から三方弁122までの経路(以下、「上流経路」ともいう。)においてエア抜きが完了していることを検知する。エア抜き検知部32は、三方弁122が薬剤ノズル103-1~4側の経路を開放している場合、図6における三方弁122から薬剤ノズル103-1~4までの経路(以下、「下流経路」ともいう。)においてエア抜きが完了していることを検知する。
 エア抜き検知部32は、上流経路におけるエア抜きの検知では、ポンプ用センサー106aによって検知されるポンプ106の回転数と、圧力センサー111-1および流量センサー510の少なくとも一方の計測結果に基づいて、エア抜き動作が完了していることを検知する。下流経路においては、具体的には、エア抜き検知部32は、エア抜き動作が完了している場合における、ポンプ106の回転数に応じた圧力センサー111-1の値および流量センサー510の値の少なくとも一方の値を基準値として記憶している。エア抜き検知部32は、ポンプ106の回転数に応じた基準値と、圧力および流量の少なくとも一方の実測値とを比較する。その差が所定以内の場合、エア抜き検知部32は、エア抜き動作が完了していることを検知する。
 エア抜き検知部32は、下流経路におけるエア抜きの検知においては、ポンプ用センサー106aによって検知されるポンプ106の回転数と、圧力センサー111-2および流量センサー510の少なくとも一方の計測結果に基づいて、エア抜き動作が完了していることを検知する。エア抜き検知部32は、エア抜き動作が完了している場合における、ポンプ106の回転数に応じた圧力センサー111-2の値をおよび流量センサー510の値の少なくとも一方の値を基準値として記憶し、実測値と比較してエア抜き動作の完了を検知する。また、圧力センサー111-1の値も下流経路におけるエア抜きの検知に利用してもよい。
 なお、三方弁122が開放している経路により、ポンプ106の回転数に応じた圧力センサー111-1、111-2の値および流量センサー510の値は、それぞれ異なる。エア抜き検知部32は、三方弁122がいずれの経路を開放しているかの情報に基づいて、実測値と比較する基準値を決定する。
 漏出異常検知部33は、薬剤散布に係わるドローン100の各構成に異常がないか否かを検知する機能部である。具体的には、漏出異常検知部33は、薬剤タンク104から薬剤ノズル103に至る経路上の異常がないか否かを診断する。経路の異常とは、すなわち配管経路自体、又は配管経路に配置されている遮断機構、具体的には逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7等の部材の異常を含む。漏出異常検知部33は、逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7を閉弁させた状態で各圧力センサーの111-1、111-2によって測定された液体の吐出圧の経時的変化を取得し、これを正常時の吐出圧の経時的変化と対比することで、液体の漏出異常を検知する。また、漏出異常検知部33は、ポンプ用センサー106aによってポンプ106の回転子の回転数を測定した上、圧力センサー111-1、111-2によって測定された液体の吐出圧と対比し、正常時の比率と一致するか否かを判別することで、液体の漏出異常を検知する。
 補充検知部34は、薬剤タンク104に薬剤の補充が完了していることを検知する機能部である。補充検知部34は、例えば薬剤タンク104内に所定量の薬剤が入っていることを、液面高さ又は重量等により検知する判定装置により実現できる。また、補充検知部34は、薬剤タンク104内の薬剤の量を計測する液面計、重量計、又は水圧センサー等を用い、薬剤が所定量となっていることをソフト的に判定する機能部であってもよい。
 補充検知部34は、薬剤が薬剤タンク104の上限まで注入されている場合に限らず、あらかじめ定められた所定量を検知することができる。例えば、補充検知部34は、薬剤タンク104の上限の10%以上薬剤が注入されていることを検知してもよい。
飛行開始指令受信部51と、飛行計画確認部52と、ドローン判定部53と、外部環境判定部54と、基地局位置確認部55と、機体位置確認部56と、機首確認部57と、周辺確認部58と、機体目視確認部59と、を備える。
 飛行開始指令受信部51は、使用者402から入力される飛行開始指令を受信する機能部である。飛行開始指令は、操縦器401からドローン100に送信される指令である。飛行開始指令は、使用者402の意思がドローン100に伝達されるための指令であるため、使用者402の動作を起点としてドローン100に送信される。
 基地局位置確認部55は、ドローン100と接続されている基地局404の位置が所定の範囲内にあるか否かを確認する機能部である。
 機体位置確認部56は、ドローン100が発着地点406に設置されているか否かを確認する機能部である。
 機首確認部57は、ドローン100の機首の向きが正常な方向を向いているか否かを確認する機能部である。「機首の向きが正常である」とは、例えば薬液を散布する圃場がある方向に機首が向いていることを指す。
 周辺確認部58は、ドローン100の周辺にドローン100周辺の所定範囲内に人や物などの障害物がないか否かを確認する機能部である。周辺確認部58は、例えばドローン100又は操縦器401等による報知および表示により、使用者402にドローン100周辺の障害物の有無の確認を促す機能部であってもよい。使用者402は、ドローン100の周辺を確認した後、障害物がなければその旨を入力する。また、使用者402は、障害物を発見した場合には適宜取り除く。なお、使用者402による周辺の確認結果の入力は、ドローン100に入力可能になっていてもよいし、操縦器401を介して入力可能になっていてもよい。
 また、周辺確認部58は、ドローン100に搭載される適宜のカメラやセンサを用いて、ドローン100の周辺における障害物を探知し、所定範囲内に物体がないことを自動的に判定する機能部であってもよい。カメラは、例えばドローン100の周辺を360度撮影可能な360度カメラであってもよいし、互いに異なる方向を撮影可能な複数のカメラにより構成されていてもよい。センサは、例えば赤外線センサである。
 機体目視確認部59は、ドローン100を使用者402が目視で確認することを促し、使用者402により確認結果を入力可能な機能部である。機体目視確認部59は、ドローン100又は操縦器401等による報知および表示により、使用者402にドローン100周辺の障害物の有無の確認を促す。使用者402は、ドローン100を目視で確認した後、異常を発見しない場合はその旨を入力する。また、使用者402は、異常を発見した場合には適宜修理等を行う。なお、使用者402による周辺の確認結果の入力は、ドローン100に入力可能になっていてもよいし、操縦器401を介して入力可能になっていてもよい。
 機体目視確認部59は、操縦器401を通じて目視確認のポイント等を使用者402に報知してもよい。具体的に目視確認のポイントを指示することにより、使用者402は効率的にドローン100を点検することができる。
 飛行計画確認部52は、ドローン100が、ドローン100の飛行計画に関する情報を正常に保有しているか否かを確認する機能部である。飛行計画は、例えば飛行中に薬液を散布する圃場の位置や、当該圃場内における飛行するルートを含む。飛行計画は、あらかじめドローン100に登録される情報であり、適宜書き換え可能である。また、飛行計画に含まれる飛行ルートは、指定される圃場の位置に基づいて自動的に算出される。なお、飛行ルートは、圃場の位置に基づいて一意に算出されるものであってもよいし、他の条件を考慮して飛行計画の策定の度ごとに算出される、異なる飛行ルートであってもよい。
 ドローン判定部53は、ドローン100自体が有する各構成が正常の範囲内で動作していることを判定する機能部である。ドローン100自体が有する各構成とは、例えばバッテリー502やモーター102、各種センサー等である。
 外部環境判定部54は、主にドローン100の外部環境がドローン100の飛行に適する環境であるかを判定する機能部である。外部環境とは、例えば各構成要素間を接続する電波の妨げになるような外乱の有無や、GPSの受信感度、気温、ドローン100の周囲の風速、天候、および地磁気の状況などを含む。ドローン100周囲の風速が所定以上の場合、ドローン100が風であおられたり、散布される薬剤が飛散したりするため、適切な飛行が困難になるためである。また、雨や雪等の降水がある場合、又は所定時間以内に降水現象が起こる可能性が高いことが予測される場合は、降水により薬剤が流れてしまい、圃場に定着しづらくなるため、散布を行わない方が好ましい。すなわち、降水があるか、所定時間内での降水の可能性が高いときにも、離陸を禁止してもよい。さらに、地磁気が乱れている場合にも各構成要素間を接続する電波の妨げになるため、離陸を禁止してもよい。さらにまた、GPSの通信が確立できている衛星の数を測定し、所定数以下の場合は離陸を禁止してもよい。所定数は、例えば5個であってもよい。GPSの通信が確立できている衛星数が少ない場合、飛行中に通信可能な衛星がさらに減ってしまうとGPSによる測定が不可能になるおそれがあるためである。外部環境判定部54は、いずれの理由により離陸せず待機しているのかを、使用者402に通知する。
●ホバリング中に行う診断のための構成
 ドローン100は、ドローン100がホバリングしている時にドローン100が飛行に適した状況であるか否かを判定する、飛行準備部60をさらに有する。飛行準備部60は、特にドローン100が離陸直後に行うホバリングの間に診断を行うが、ドローン100が離陸して飛行を開始した後に適宜行うホバリング中に診断を行ってもよい。
 飛行準備部60は、強風診断部61、推力診断部62、校正部63、重量推定部64、およびホバリング判定部65を備える。
 ホバリング判定部65は、ドローン100がホバリングをしているか否かを判定、すなわちホバリング判定を行う機能部である。ホバリングとは、すなわち、水平面上において互いに直交するXおよびY座標、ならびにXY平面に直交する鉛直なZ座標を定義した場合において、ドローン100のXYZ座標に変化がない、又は狭い所定範囲内で揺動している状態を指す。また、ホバリングは、XYZ方向のいずれにも移動速度を有さない状態である。
 ホバリング判定部65は、例えばRTK-GPSの測位座量がXYZ方向の全てにおいて変化がないことを検知する。また、ホバリング判定部65は、6軸ジャイロセンサー505のXYZ方向における測定値をそれぞれ二階積分して位置を算出し、XYZ方向における位置に所定時間変化がないことを検知する。さらに、ホバリング判定部65は、6軸ジャイロセンサー505のXYZ方向における測定値をそれぞれ積分して速度を算出し、ドローン100がXYZ方向における速度を有さないことを検知する。ホバリング判定部65は、上述のいずれか、もしくは複数の取得値を組み合わせることにより、ドローン100がホバリングしていることを判定する。
 強風診断部61は、ドローン100に吹き付けている風を測定して、ドローン100の飛行が可能であるか否かを診断する機能部である。強風診断部61による風の測定は、例えば接触検知器により風によって発生する応力を測定することで風速を算出してもよいし、風杯型、風車型などの風速計により算出してもよい。
 強風診断部61は、ドローン100がホバリングしている状態において、ドローン100の姿勢角を6軸ジャイロセンサー505により算出する。ドローン100に風が吹き付けている場合、風の強さに応じて風下側へ前傾した姿勢角となる。したがって、ドローン100の姿勢角が所定角度以上の場合、強風診断部61は、ドローン100に所定以上の強さの風が吹き付けている、と判定する。
 また、強風診断部61は、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4b又は回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bのそれぞれの回転数を算出してもよい。ドローン100に風が吹き付けている場合、ドローン100に風下側へ傾こうとする力が働くため、8個の回転翼101のうち、風下側の2箇所に配置された回転翼の推力が増加、すなわち回転数が増加し、風上側の2箇所に配置された回転翼の推力が低下、すなわち回転数が低下する。したがって、モーター102又は回転翼101の回転数の配置位置による差異が所定以上の場合、強風診断部61は、ドローン100に所定以上の強さの風が吹き付けている、と判定する。強風診断部61は、上述の姿勢角による判定、および回転数の差異による判定のいずれか、又は双方の判定結果を組み合わせることにより、強風を検知する。
 強風診断部61は、基地局404や周辺に飛行しているドローン100から風に関する情報を通信により受信して、当該ドローン100の飛行が可能か否かを判断してもよい。
 ドローン100に吹き付けている風が所定以上の強さであるとき、強風診断部61はドローンシステム500にその旨を通知する。主端末の状態遷移判定部は、ドローンシステム500の状態をホバリング状態のまま待機させる。また、主端末の状態遷移判定部は、ドローンシステム500の状態を、後述する飛行開始スタンバイ状態(S4)に移行させ、ドローン100を着陸させてもよい。
 推力診断部62は、飛行中のドローン100を飛行させる推力を測定して、ドローン100の推力が正常に発揮されているか否かを診断する機能部である。推力は、本実施の形態においては回転翼101により得られる。推力診断部62は、例えば回転翼101の回転を制御するモーター自身の内部に配置されている回転測定機能を指す。すなわち、推力測定部244は、モーターの回転数を測定することにより、モーターに制御される回転翼101の回転数を取得する。
 また、推力診断部62は、回転翼101自身の回転数を測定してもよい。例えば、推力診断部62は、非接触式の回転計であってもよい。この場合、推力診断部62は、回転翼101の少なくとも1か所にレーザーを照射し、レーザーの回転翼101からの反射光を計測することで回転翼101の回転数を計数する。レーザーは、例えば赤外線レーザーである。
 さらに、推力診断部62は、モーターに供給される電流を測定してもよい。
 なお、推力診断部62は、ドローンの推力が回転翼以外の構成により実現される場合は、その推進器の稼働状態を測定する機能部であってもよい。例えば、ドローンがジェット噴射により推進される場合、推力診断部62は、ジェット噴射の圧力を測定する機能部であってもよい。
 推力診断部62は、測定される推力と、フライトコントローラー501による命令値とを比較し、フライトコントローラー501からの命令から一定時間後における差異があらかじめ定められている閾値以内である場合には推力が適切に発揮されていると判断する。差異が閾値を超えている場合は、推力診断部62はドローンシステム500にその旨を通知する。主端末の状態遷移判定部は、ドローンシステム500の状態を、後述する飛行開始スタンバイ状態(S4)に移行させ、ドローン100を着陸させる。
 校正部63は、ドローン100の高度を測定するためのセンサー、およびドローン100の速度を測定するためのセンサーの少なくとも1個の校正を行う。センサーの校正とは、センサーの0点のオフセット、および測定結果の数値が高い場合におけるゲインのずれを補正する校正を含む。校正部63による校正は、特にドローン100がホバリングしているときに行われる。
 ドローン100の高度を測定するためのセンサーとは、例えばレーザーセンサー508、ソナー509、6軸ジャイロセンサー505、又はGPSモジュールRTK504-1,504-2を含む。すなわち、校正部63は、高度校正に関して、レーザーセンサー508、ソナー509、6軸ジャイロセンサー505、又はGPSモジュールRTK504-1,504-2の校正が可能である。
 校正するセンサーがレーザーセンサー508、ソナー509の場合、校正部63は、地上に接地している状態におけるRTK-GPSの高さ方向の測位座標、すなわちZ座標と、ホバリングしていることが判定された時のRTK-GPSの高さ方向のZ座標と、の差が対地高度の真値として、レーザーセンサー508およびソナー509を校正する。
 校正するセンサーが6軸ジャイロセンサー505の場合、校正部63は、ホバリングしていることが判定された時のレーザーセンサー508およびソナー509によって得られる高度が、対地高度の真値として6軸ジャイロセンサー505を校正する。
 校正するセンサーがGPSモジュールRTK504-1,504-2の場合、校正部63は、ホバリングしていることが判定された時のレーザーセンサー508およびソナー509によって得られる高度が、対地高度の真値としてGPSモジュールRTK504-1,504-2によるRTK-GPSのZ方向の測位座標を校正する。
 ドローンの速度を測定するためのセンサーとは、例えばGPSモジュールドップラー504-3又は6軸ジャイロセンサー505を含む。校正部63は、GPSモジュールドップラー504-3を用いてドローン100の移動速度を測定する。ドローン100は、離陸後のホバリング状態においては移動しておらず、移動速度はXYZ方向において0であるので、校正部63は、ホバリングしていることが判定された時のXYZ方向の移動速度が0となるようにGPSモジュールドップラー504-3の測定結果を校正する。また、校正部63は、加速度センサーによる計測値の1階積分値を用いてドローン100の移動速度を測定する。この場合、校正部63は、ホバリングしていることが判定された時のXYZ方向の移動速度が0となるように加速度センサーのXY方向の測定値を校正する。
 重量推定部64は、ドローン100の重量を推定する機能部である。重量推定部64は、ホバリング中において、推力診断部62により計測される推力の値に基づいて、ドローン100の重量を推定することができる。
●バッテリーの蓄電量検知に関する構成
 ドローン100は、ドローン100が有するバッテリー502の蓄電量が所定以下であることを検知する、低バッテリー検知部70をさらに有する。低バッテリー検知部70は、一般的に知られているバッテリーの蓄電量測定装置であり、例えば電圧計であってもよい。また、低バッテリー検知部は、バッテリー電圧、バッテリー温度、電流のうち1又は複数の値に基づいてバッテリー502の蓄電量を推定し、バッテリー502の蓄電量が所定値以下になっていることを検知してもよい。具体的には、バッテリー電圧、電流およびバッテリー温度を測定することでSOC(State of Charge)と呼ばれる残量算出値を算出し、蓄電量を推定してもよい。さらに、低バッテリー検知部70は、バッテリー502の実使用時間および周辺温度等のうち1又は複数の値に基づいて、上述の方法により推定されたバッテリー502の蓄電量を補正してもよい。低バッテリー検知部70は、ドローン100が有する複数のバッテリー502a、502bの残量をそれぞれ検知することができる。低バッテリー検知部70は、バッテリー502の容量が所定以下であることを検知すると、その旨を第1乃至第4状態遷移判定部113,413,443,453に伝達する。また、低バッテリー検知部70は、ドローン100又は操縦器401等を通じて、使用者402にその旨を通知する。
●操縦器の蓄電量検知に関する構成
 図9に示すように、操縦器401は、操縦器401が有するバッテリーの蓄電量が所定以下であることを検知する、第2低バッテリー検知部416を有する。第2低バッテリー検知部416の構成は、低バッテリー検知部70と同様である。
●ドローンシステムの状態遷移
 図11に示すように、本実施形態におけるドローンシステム500は、停止状態(S0)と、初期チェック状態(S1)と、薬剤準備スタンバイ状態(S2)と、薬剤準備状態(S3)と、飛行開始スタンバイ状態(S4)と、離陸診断状態(S5)と、飛行散布状態(S6)と、着陸後スタンバイ状態(S7)と、メンテナンス状態(S8)と、シャットダウン状態(S9)と、を取り得る。着陸後スタンバイ状態(S7)は、本発明の「スタンバイ状態」の例である。
 停止状態(S0)は、ドローン100、操縦器401および基地局404の電源がオフになっている状態である。停止状態(S0)において各構成要素の電源がオンになると、ドローンシステム500は初期チェック状態(S1)に遷移する。各構成要素の電源は、それぞれ使用者402により手動でオンにできるようになっていてもよいし、使用者402がある1個の構成要素を操作することで、他の構成要素の電源がオンになるようになっていてもよい。例えば、使用者402が操縦器401の電源をオンにして専用のアプリケーションを起動することで、ドローン100および基地局404の電源がオンになるように構成されていてもよい。
 初期チェック状態(S1)は、各構成要素の起動後に、各構成要素の動作が正常に行われているかどうかを確認する状態である。初期チェック状態では、例えば各構成要素に電源が投入されているか否かの確認や、各構成要素間の通信が正常に行われているか否かの確認が行われる。所定の確認事項がすべて正常であることが確認されると、ドローンシステム500は、薬剤準備スタンバイ状態(S2)に遷移する。
 薬剤準備スタンバイ状態(S2)は、使用者402からの、ドローン100の薬剤タンク104に薬剤を注入する作業を開始する旨の指令、すなわち薬剤注入開始指令が入力されるのを待機している状態である。使用者402により入力される薬剤注入開始指令を受信すると、ドローンシステム500は、薬剤準備状態(S3)に遷移する。
 薬剤準備状態(S3)は、使用者402により薬剤タンク104に薬剤を注入する作業が行われている間、ドローンシステム500が属する状態である。
 図12に示すように、薬剤準備状態(S3)は、液体待機状態(S31)と、エア抜き待機状態(S32)と、散布系診断状態(S33)と、薬剤待機状態(S34)と、を含む。
 液体待機状態(S31)は、薬剤タンク104に液体を注入することが可能な状態である。液体待機状態(S31)は、使用者からの薬剤注入開始指令に基づいて薬剤準備スタンバイ状態(S2)から遷移する状態である。液体待機状態(S31)において、ドローンシステム500は、薬剤タンク104に液体を注入する必要がある旨を、操縦器401を通じて使用者402に通知する。また、ドローン100は、液体検知部31により薬剤タンク104に十分な量の液体が注入されているか否かを判定する。この場合、ドローンシステム500は、薬剤タンク104に十分な量の液体が注入されていることを、操縦器401を通じて使用者に通知する。液体検知部31が検知する液体の量は、薬剤タンク104から薬剤ノズル103に至る各経路の総容積よりも多い。液体検知部31は、例えば薬剤タンク104の上限の10%以上液体が注入されていることを検知する。
 さらに、ドローンシステム500は、注入が完了した後に薬剤タンク104の蓋を閉めるように、又はさらに蓋のロックを掛けるように、操縦器401を通じて使用者402に通知する。なお、蓋の開閉ならびにロックの施錠および開錠は、それぞれドローン100に設けられる機構により自動で行われてもよい。
 液体待機状態(S31)において、液体検知部31が薬剤タンク104に液体が注入されたことを検知すると、ドローンシステム500は、エア抜き待機状態(S32)に遷移する。ドローンシステム500は、開閉センサー104aの判別結果を参照して、薬剤タンク104が有する蓋が閉じられ、又はさらに適宜のロック機構によりロックされていることを条件に、エア抜き待機状態(S32)に遷移してもよい。
 エア抜き待機状態(S32)は、ポンプ106を駆動してエア抜きを行い、薬剤タンク104内および薬剤タンク104から薬剤ノズル103-1~4に至る経路から空気が抜けるのを待機する状態である。エア抜き待機状態(S32)は、さらに上流エア抜き待機状態(S32-1)および下流エア抜き待機状態(S32-2)を有する。
 上流エア抜き待機状態(S32-1)において、三方弁122は、拡張タンク131側に開放されている。薬剤タンク104内および上流経路中に存在している空気は、ポンプ106の駆動により、この経路を循環させると共に拡張タンク131に一時的に貯留され、除去される。エア抜き検知部32が上流経路におけるエア抜き動作の完了を検知すると、ドローンシステム500は、下流エア抜き待機状態(S32-2)に遷移する。
 下流エア抜き待機状態(S32-2)において、三方弁122は、薬剤ノズル103-1~4側に開放されている。主に下流経路中に存在している空気は、ポンプ106の駆動により移動する水に押されて、ノズル103から薬剤タンク104の外部に放出される。すなわち、下流経路における薬剤タンク104のエア抜きが行われる。エア抜き検知部32がエア抜き動作の完了を検知すると、ドローンシステム500は、薬剤待機状態(S34)に遷移する。
 上流エア抜き待機状態(S32-1)および下流エア抜き待機状態(S32-2)は、全自動的に状態が遷移し、使用者402の行為に基づく条件はなくてよいが、上流エア抜き待機状態(S32-1)から下流エア抜き待機状態(S32-2)に遷移する旨を操縦器401から報知し、使用者402の確認入力に基づいて状態が遷移するものとしてもよい。また、全自動的に状態が遷移する場合にも、操縦器401を通じてドローンシステム500がいずれの状態にあるかを使用者402に通知するよう構成されていてもよい。
 散布系診断状態(S33)は、薬剤散布に係わるドローン100の各構成に異常がないか否か診断する間、ドローンシステム500が属する状態である。具体的には、漏出異常検知部33が、薬剤タンク104から薬剤ノズル103に至る経路上の異常がないか否かを診断する。経路の異常とは、すなわち配管経路自体、又は配管経路に配置されている遮断機構、具体的には逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7等の部材の異常を含む。
 液体の漏出異常が検知される場合、いずれかの逆止弁121の故障又は経路中の損壊があることが想定される。異常が検知される場合、ドローンシステム500はその旨を使用者402に通知する。漏出異常が検知されない場合、ドローンシステム500は薬剤待機状態(S34)に遷移する。
 薬剤タンク104および経路中に液体が注入されている状態において薬剤散布に関わる構成に異常がないかを診断する散布系診断状態(S33)を有する構成によれば、液体にかかる吐出圧を測定することができるため、液体を利用して漏出異常を検知することができる。
 薬剤待機状態(S34)は、注水口の蓋のロックが解除されており、注水口から薬剤を注入することができる状態である。薬剤待機状態(S34)において、ドローンシステム500は、薬剤タンク104に薬剤を注入する必要がある旨を、操縦器401を通じて使用者402に通知する。ドローンシステム500は、補充検知部34により薬剤タンク104に十分な量の薬剤が注入されていることを判別し、操縦器401を通じてその旨を使用者402に通知する。
 さらに、ドローンシステム500は、注入が完了した後に薬剤タンク104の蓋を閉めるように、又はさらに蓋のロックを掛けるように、操縦器401を通じて使用者に通知してもよい。
 補充検知部34が薬剤タンク104に薬剤の補充が完了していることを検知すると、ドローンシステム500は、飛行開始スタンバイ状態(S4)に遷移する。
 前述したように、空中散布を行うドローン100は、圃場に対して薬剤を緻密に散布することが可能であるため、地上散布機や使用者自身により地上から散布される一般的な薬剤に比べて、高濃度の薬剤を搭載する。すなわち、一般的な薬剤に比べて、高価であり、かつ人体や圃場に対して有害となる恐れがある。したがって、エア抜き動作により薬剤を排出すると、費用面および安全面で好ましくない。水によりエア抜き動作を行った上で薬剤を補充する本構成によれば、薬剤準備状態(S3)においてノズル103から排出される薬剤の量を抑えられるので、ドローン100への適用は特に有用である。
 薬剤準備状態(S3)の各状態においても、第1乃至第4状態記憶部115,415,445,455は、ドローンシステム500が現在属する状態を記憶する。また、第1乃至第4状態記憶部115,415,445,455は、薬剤準備状態(S3)において既に遷移した状態の履歴を記憶し、記憶が保持されている状態において当該既に遷移した状態になった場合は、履歴を参照して当該状態における工程を省略する。言い換えれば、ドローンシステム500は、上に説明した工程を完了する他、既に遷移した履歴があることを条件に、薬剤準備状態(S3)の各状態から別の状態に遷移することができる。
 第1乃至第4状態記憶部115,415,445,455は、液体待機状態(S31)から上流エア抜き待機状態(S32-1)に遷移する際に、液体注入履歴を「有」と記憶する。第1乃至第4状態記憶部115,415,445,455は、上流エア抜き待機状態(S32-1)から下流エア抜き待機状態(S32-2)に遷移する際に、上流エア抜き履歴を「有」と記憶する。第1乃至第4状態記憶部115,415,445,455は、下流エア抜き待機状態(S32-2)から散布系診断状態(S33)に遷移する際に、下流エア抜き履歴を「有」と記憶する。
 薬剤準備状態(S3)において、ドローン100のバッテリー容量が所定以下になり、バッテリーの充電又はバッテリーの交換を行う必要が生じる場合がある。図11に示すように、薬剤準備状態(S3)においてバッテリー容量が所定以下になると、ドローンシステム500は、バッテリ切れルート(C)を介して着陸後スタンバイ状態(S7)に遷移し、バッテリーが交換された後、薬剤切れルート(B)を介して薬剤準備スタンバイ状態(S2)に遷移する。薬剤準備スタンバイ状態(S2)から薬剤準備状態(S3)に遷移すると、液体待機状態(S31)において、液体注入履歴、上流エア抜き履歴、又は下流エア抜き履歴が記憶されていない場合、薬剤タンク104に液体の注入を行うよう使用者402に通知する。液体注入履歴、上流エア抜き履歴、又は下流エア抜き履歴のうち少なくとも1の履歴が記憶されている場合、ドローンシステム500は、液体待機状態(S31)から上流エア抜き待機状態(S32-1)に遷移する条件が充足していると判断し、上流エア抜き待機状態(S32-1)に遷移する。
 同様に、上流エア抜き待機状態(S32-2)において、上流エア抜き履歴、又は下流エア抜き履歴のうち少なくとも1の履歴が記憶されている場合、ドローンシステム500は、上流エア抜き待機状態(S32-1)から下流エア抜き待機状態(S32-2)に遷移する条件が充足していると判断し、下流エア抜き待機状態(S32-2)に遷移する。下流エア抜き待機状態(S32-2)において、下流エア抜き履歴が記憶されている場合、ドローンシステム500は、下流エア抜き待機状態(S32-2)から散布系診断状態(S33)に遷移する条件が充足していると判断し、散布系診断状態(S33)に遷移する。
 このように、第1乃至第4状態記憶部115,415,445,455が、薬剤準備状態(S3)において既に遷移した状態の履歴を記憶し、記憶が保持されている状態において当該既に遷移した状態になった場合は、履歴を参照して当該状態における工程を省略する構成によれば、薬剤補充の途中でバッテリー切れ等により作業が中断された場合にも、適切な手順で薬剤を補充することができる。
 飛行開始スタンバイ状態(S4)は、使用者402からの飛行開始指令が入力可能な状態である。飛行開始指令は、使用者402がドローン100のドローンの飛行開始を許可し、離陸を促す指令である。図11に示すように、飛行開始指令受信部51が、飛行開始指令を受信すると、ドローンシステム500は、ドローン100の離陸前に必要な離陸診断を行う離陸診断状態(S5)に移行する。
 離陸診断状態(S5)は、ドローン100が離陸する前に、ドローン100が安全に飛行し、薬剤散布を行うための条件が整っているか診断する間、ドローンシステム500が属する状態である。
 図13に示すように、離陸診断状態(S5)は、ドローン判定状態(S51)と、飛行計画確認状態(S52)と、外部環境判定状態(S53)と、を含む。
 ドローン判定状態(S51)は、ドローン判定部53によりドローン100自体が有する各構成が正常の範囲内で動作していることが判定される間、ドローンシステム500が属する状態である。ドローン判定部53により各構成が正常の範囲内で動作していることが判定されると、ドローンシステム500は、飛行計画確認状態(S52)に遷移する。ドローン判定部53により異常が確認されると、操縦器401にその旨表示され、着陸後スタンバイ状態(S7)に遷移する。
 飛行計画確認状態(S52)は、飛行計画確認部52により、ドローン100がドローン100の飛行計画に関する情報を正常に保有しているか否か確認される間、ドローンシステム500が属する状態である。飛行計画に関する情報が確認されると、ドローンシステム500は外部環境判定状態(S53)に遷移する。飛行計画に関する情報が正常に保有されていない場合、ドローンシステム500は飛行計画に関する情報を入手する動作を行う。この動作は、例えば営農支援クラウド405から当該情報を受信してもよい。また、薬剤散布を行う圃場の指定など使用者402による決定が必要な場合は、操縦器401を通じてその旨を使用者402に通知し、決定を促す。
 外部環境判定状態(S53)は、外部環境判定部54により主にドローン100の外部環境がドローン100の飛行に適する環境であるか判定される間、ドローンシステム500が属する状態である。外部環境判定部54により外部環境が飛行に適すると判定されると、ドローンシステム500は離陸し、飛行散布状態(S6)に遷移する。飛行開始指令の後であって離陸の直前に離陸診断状態(S5)を有することで、薬剤注入等の他の作業中に発生した異常も確実に検知することができるため、別のタイミングで診断を行う構成及び診断を行わない構成に比べて高い安全性を担保できる。
 外部環境判定部54により、外部環境がドローン100の飛行に適さないと判定されると、ドローン100は着陸したまま待機する。また、操縦器401にその旨が表示される。外部環境は、短時間での変動が激しいファクターであるので、別の状態に遷移するのではなく、外部環境が飛行に適する状況になるのを待機するのが好適である。
 ドローンシステム500は、離陸診断状態(S5)において、使用者402による確認を促し、使用者402が確認した旨の情報を入力することを状態遷移の1条件としてもよい。
 ドローンシステム500は、離陸診断状態(S5)において、非常用操縦器の電源容量を確認してもよい。非常用操縦器の電源容量が所定以下の場合、飛行散布状態(S6)において緊急停止指令を送信することができず、安全性を損なうおそれがあるためである。非常用操縦器の電源容量が所定以下の場合は、操縦器401にその旨表示し、非常用操縦器のバッテリを交換する等の措置を使用者402に促す。また、操縦器401自身の電源容量についても同様である。
 飛行散布状態(S6)は、ドローン100が飛行し、圃場に薬剤散布を行っている間、ドローンシステム500が属する状態である。ドローン100が着陸すると、着陸後スタンバイ状態(S7)に遷移する。
 飛行散布状態(S6)において操縦器401又は非常用操縦器により緊急停止指令が送信されると、ドローン100は退避行動を取る。退避行動とは、例えば、最短のルートで直ちに所定の帰還地点まで移動する、「緊急帰還」を含む。所定の帰還地点とは、あらかじめフライトコントローラー501に記憶させた地点であり、例えば発着地点406である。発着地点406とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は発着地点406に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。
 また、退避行動は、着陸動作を含む。「着陸動作」とは、通常の着陸動作をする「通常着陸」、通常の着陸より速く下降して着陸する「緊急着陸」、および、すべての回転翼を停止させてドローン100をその場から下方に落下させる「緊急停止」を含む。なお、「緊急着陸」には、通常の着陸より速く下降して、通常時と同様の姿勢制御を行いながら通常の着陸を行う場合と同様の地点に着陸する動作だけでなく、姿勢制御の精度が悪く、姿勢を多少崩しながらも着陸を成立させる動作も含める。具体例の一つとして全モーターの回転数をゆっくり均等に減少させることで、真下にではないものの精度よく下降しながら着陸することができる。
 ドローン100は、少なくとも飛行散布状態(S6)において、操縦器401から操縦器401の電源容量を受信する。ドローン100は、操縦器401の電源容量が所定以下の場合には退避行動をとる。操縦器401の電源容量が低下している場合、使用者402の飛行に関する指令をドローン100に伝達することができず、ドローン100の安全な飛行が困難になる。したがって、操縦器401の電源容量が低下している場合は、ドローン100のバッテリー502の容量が充分である場合にも、ドローン100に退避行動を取らせるとよい。
 また、同様に、非常用操縦器の電源容量が所定以下の場合も、ドローン100に退避行動を取らせるとよい。
 ドローンシステム500は、操縦器401又は非常用操縦器からの緊急停止命令を受信すると、緊急停止状態(S11)に遷移する。ドローンシステム500は、緊急停止命令を受領して緊急停止状態(S11)に遷移した旨の受領情報を操縦器401に送信する。この構成によれば、使用者402は、ドローンシステム500が使用者402の意図通りに緊急停止状態(S11)に遷移したことを操縦器401の表示により知ることができる。
 着陸後スタンバイ状態(S7)は、着陸後に作業を切り替える準備をしている間、ドローンシステム500が属する状態である。着陸後スタンバイ状態(S7)は、ドローン100が着陸している状態において使用者402からの動作指令に基づいて複数の状態に遷移可能な状態である。
 着陸後スタンバイ状態(S7)において、使用者402から薬剤散布を行う圃場を切り替える動作命令(以下、「圃場切替命令」ともいう。)を受信すると、ドローンシステム500は、指定圃場切替ルート(D)を経由して飛行開始スタンバイ状態(S4)に遷移する。
 着陸後スタンバイ状態(S7)において、使用者402からメンテナンスを行う動作指令を受信すると、ドローンシステム500は、メンテナンス状態(S8)に遷移する。
 着陸後スタンバイ状態(S7)において、使用者402から薬剤補充を行う動作指令を受信すると、ドローンシステム500は、薬剤準備スタンバイ状態(S2)に遷移する。また、薬剤タンク104の薬剤の貯留量が所定以下の場合に、自動で薬剤準備スタンバイ状態(S2)に遷移してもよい。また、薬剤の貯留が所定以下であることを使用者402に通知し、薬剤準備スタンバイ状態(S2)に遷移するか否かを、使用者402の入力に基づいて決定するように構成されていてもよい。
 着陸後スタンバイ状態(S7)において、使用者402からバッテリー502の交換を行う旨の動作命令(以下、「バッテリー交換命令」ともいう。)を受信すると、ドローンシステム500はシャットダウン状態(S9)に遷移する。また、バッテリー502の蓄電量が所定以下の場合に、自動でシャットダウン状態(S9)に遷移してもよい。また、バッテリー502の蓄電量が所定以下であることを使用者402に通知し、シャットダウン状態(S9)に遷移するか否かを、使用者402の入力に基づいて決定するように構成されていてもよい。
 着陸後スタンバイ状態(S7)において、薬剤散布作業を中断する旨の動作命令(以下、「中断命令」ともいう。)を受信すると、ドローンシステム500は、メンテナンス状態(S8)に遷移する。
 着陸後スタンバイ状態(S7)を有するドローンシステム500によれば、ある圃場について薬剤散布を終えたドローン100が、引き続き別の圃場への薬剤散布や薬剤補充を行う場合にも、円滑に次の動作に移行することができる。具体的には、圃場の切替えおよび薬剤補充を行う場合に、シャットダウン状態(S9)や停止状態(S0)、初期チェック状態(S1)等の他の状態を経由することなく、飛行開始スタンバイ状態(S4)および薬剤準備スタンバイ状態(S2)に直接遷移することができる。
 メンテナンス状態(S8)は、ドローン100がドローン100自体のメンテナンスを行っている間、ドローンシステム500が属する状態である。メンテナンスとは、例えば自動でドローン100の外筐体を洗浄する動作を含む。また、ドローン100の薬剤の経路を洗浄する動作を含む。
 メンテナンスには、複数種類の動作がプログラムされ、選択的に行うことができる。例えば、メンテナンスには、ドローン100が実施可能なすべてのメンテナンスを行うフルメンテナンスと、ドローン100の使用を一時中断する場合に必要な最低限のメンテナンスを行う簡易メンテナンスと、が含まれる。簡易メンテナンスでは、例えば薬剤の経路の洗浄等が行われる。散布を中断する場合、薬剤経路における薬剤の固化や分離、沈殿などがすぐに起こるため、再開後に適切な散布ができない恐れがある。したがって、簡易メンテナンスの場合にも、薬剤経路の洗浄が最低限必要である。
 いずれのメンテナンスを行うかは、着陸後スタンバイ状態(S7)において選択される。着陸後スタンバイ状態(S7)において入力される中断命令は、一時中断命令および長期中断命令を含む。一時中断命令は、例えば使用者402が休憩を取る場合、すなわち1時間程度以内の中断をする場合等に入力される。長期中断命令は、例えば日をまたいで動作を再開する予定の場合、すなわち、中断が数時間から数日に及ぶ場合等に入力される。ドローンシステム500が一時中断命令を受信する場合、簡易メンテナンスを行う。したがって、長期中断命令に比べて早期に薬剤散布作業を再開するため、一部のメンテナンスをすれば足りる。一方、ドローンシステム500が長期中断命令を受信する場合、フルメンテナンスを行う。複数種類のメンテナンスを選択的に実行できる構成によれば、省電力化、および時間の節約等が可能である。
 メンテナンス状態(S8)におけるメンテナンスが終了すると、ドローンシステム500は、シャットダウン状態(S9)に遷移する。
 シャットダウン状態(S9)は、ドローン100、操縦器401及び基地局404の相互の接続を解除し、ドローン100、操縦器401及び基地局404の電源をシャットダウンする間、ドローンシステム500が属する状態である。
 図14に示すように、シャットダウン状態(S9)は、ドローンシャットダウン状態(S91)と、一部協調状態(S92)と、他端末シャットダウン状態(S93)と、を含む。
 ドローンシャットダウン状態(S91)は、ドローン100がシャットダウン、すなわち電源がオフされるのに必要な準備を行い、ドローン100がシャットダウンするまでの間、ドローンシステム500が属する状態である。ドローンシャットダウン状態(S91)において、ドローン100は、第1状態記憶部115に記憶されている情報を不揮発性の記憶部に格納する。また、ドローン100は、第1状態送信部111により、第1状態記憶部115に記憶されている情報を営農支援クラウド405に送信する。
 ドローン100は、操縦器401及び基地局404との接続を解除し、各構成要素との協調を解除する。そして、ドローン100はシャットダウンされる。
 ドローン100がシャットダウンされると、ドローンシステム500は、一部協調状態(S92)に遷移する。ここで、ドローン100が主端末であった場合、ドローン100のシャットダウンと共に、主端末は他の構成要素、例えば操縦器401に移行する。
 主端末の移行は、ドローン100のシャットダウン前に、第1主端末決定部114により操縦器401を主端末に決定してもよい。また、第2主端末決定部414がドローン100の電源がオフになっていることを検知して、操縦器401を主端末に決定してもよい。
 一部協調状態(S92)は、ドローン100がシャットダウンされ、他の構成要素は互いに協調している状態である。一部協調状態(S92)は、ドローン100のバッテリー502を交換可能である。
 一部協調状態(S92)は、バッテリー502を着脱した後動作を再開するか、他端末もシャットダウンして動作を停止するかを使用者402の入力により選択することができる。一部協調状態(S92)において、バッテリー502が交換された後、ドローン100を再度起動して動作を再開する旨の命令(以下、「再起動命令」ともいう。)が入力されると、ドローンシステム500は、初期チェック状態(S1)に遷移する。
 一部協調状態(S92)において、再起動命令が所定時間入力されない場合、又は、他端末に関してもシャットダウンを行う旨の命令が入力される場合、ドローンシステム500は、他端末シャットダウン状態(S93)に遷移する。
 他端末シャットダウン状態(S93)は、操縦器401及び基地局404がシャットダウンするまでの間、ドローンシステム500が属する状態である。操縦器401及び基地局404は、第2および第3状態送信部411、441により、第2および第3状態記憶部415、445にそれぞれ記憶されている情報を営農支援クラウド405に送信してもよい。
 ドローン100、操縦器401及び基地局404が全てシャットダウンされると、ドローンシステム500は停止する。すなわち、ドローンシステム500は、停止状態(S0)に遷移する。
●バッテリー切れルート
 薬剤準備状態(S3)、離陸診断状態(S5)又は飛行散布状態(S6)において、ドローン100のバッテリー502の蓄電量が所定以下になっていることが検知されると、ドローンシステム500はバッテリー切れルート(C)を経由して着陸後スタンバイ状態(S7)に遷移する。着陸後スタンバイ状態(S7)においてバッテリー502の蓄電量所定以下であるとき、ドローンシステム500はシャットダウン状態(S9)に移行し、バッテリー502が交換可能な状態になる。バッテリーを複数搭載している場合は、ある1個のバッテリーにおいて蓄電量の低下が検出されるとき、別のバッテリーを使用して状態遷移を行ってもよい。
 薬剤準備状態(S3)および離陸診断状態(S5)におけるドローン判定状態(S51)乃至位置および周辺確認状態(S54)においてバッテリー切れを検知したときのフローを説明する。薬剤準備状態(S3)に含まれる各状態(S31乃至S34)から次の状態に遷移する際に、ドローンシステム500はバッテリーの蓄電量を検出する。第1バッテリー502aの蓄電量が所定以下であるとき、ドローンシステム500は、図12記載の次の状態には遷移せず、ドローンシステム500の状況に関する情報を第1乃至第4状態記憶部115,415,445,455の少なくとも1個に記録する。ドローンシステム500の状況とは、ドローンシステム500が現在属する状態や、これまでに遷移した状態の履歴を含む。また、この記憶領域は、ドローンシステム500をシャットダウンしても記録を保持可能な不揮発性の領域である。そして、ドローンシステム500は、バッテリー切れルート(C)を経由して着陸後スタンバイ状態に遷移する。また、ドローン100又は操縦器401を通じて使用者402にその旨を通知する。
 図15を用いて、ホバリング状態(S55)および飛行散布状態(S6)においてバッテリー切れを検知し、退避するフローを説明する。まず第1バッテリー502aの蓄電量を検出し(S101)、蓄電量が大であるかどうかを判断する(S102)。蓄電量が大であるかどうかの基準は、ドローン100が通常の動作を行うことができるかどうかである。蓄電量が大であれば通常動作を行い(S103)、ステップS101に戻る。蓄電量が大でなければ、以下の退避行動を行う。
 退避行動において、第2バッテリー502bの蓄電量を検出し(S104)、第2バッテリー502bの蓄電量が大であるかどうかを判断する(S105)。この場合の蓄電量が大であるかどうかの基準は、ドローンが緊急帰還できるかどうかである。蓄電量が大であれば緊急帰還させる(S16)。蓄電量が大でなければ、蓄電量が極小であるかどうかを判断する(S17)。蓄電量が極小であるかどうかの基準は、ドローンが緊急着陸できるかどうかであり、蓄電量が極小でなければ、すなわちある程度の蓄電量が残っていれば緊急着陸させ(S18)、蓄電量が極小であれば緊急停止させる(S19)。
 一方のバッテリーの蓄電量が少なくなり、蓄電量の多い他方のバッテリーから電力を供給して緊急帰還させる場合は、ドローンの積み荷を放棄して帰還するとよい。例えば農業用ドローンにおいて緊急帰還させる場合は、所定の圃場に薬剤を散布しながら帰還させるようにプログラムを構成しておくとよい。バッテリーの蓄電量を操縦器401に表示させ、実行している動作を適宜使用者402に通知してもよい。緊急停止操作が不可能な状態である場合は、その旨を使用者402に通知してもよい。なお、計画的に薬剤を散布しながら帰還させる場合を除いては、確実に薬剤散布を停止してから退避行動を行う。
 また、バッテリー502の蓄電量が少ない場合の他、バッテリー502に異常又は劣化が検出された場合にも、バッテリー切れルート(C)を経由して着陸後スタンバイ状態(S7)に遷移してもよい。バッテリー502を複数搭載している場合は、ある1個のバッテリーに異常又は劣化が検出されるとき、別のバッテリーを使用して退避行動を行っても良い。
 ホバリング状態(S55)および飛行散布状態(S6)においてバッテリー切れルート(C)を経由する場合にも、ドローンシステム500は、ドローンシステム500の状況に関する情報を第1乃至第4状態記憶部115,415,445,455の少なくとも1個に記録する。ドローンシステム500の状況は、ドローンシステム500が現在属する状態や、圃場において薬剤散布が既に行われている領域の情報、および今後散布を要する領域の情報を含む。
 着陸後スタンバイ状態(S7)の後、バッテリー脱着状態(S92)において、バッテリー502の取出口のロック等が解除され、バッテリー502の交換が可能な状態になる。バッテリー502が交換されるとともに再起動の要求がなされると、ドローンシステム500は初期チェック状態(S1)に遷移する。初期チェック状態(S1)において、ドローンシステム500は、バッテリー切れが検知されたときに記録されたドローンシステム500の状況に関する情報を第1乃至第4状態記憶部115,415,445,455の少なくとも1個から呼び出して記憶する。
 この構成により、前述したとおり、既に行った動作を適宜省略することが可能になる。したがって、薬剤準備状態(S3)においてバッテリーが切れ、薬剤補充の途中で作業が中断された場合にも、バッテリー交換後に適切な手順で薬剤を補充することができる。ドローン判定状態(S51)乃至位置および周辺確認状態(S54)においてバッテリーが切れた場合、バッテリー交換後には、未了であった離陸前診断を適切に行うことができる。外部環境判定等短時間に状況が変わり得る診断項目によっては、バッテリー交換前に行った診断を再度行ってもよい。飛行散布状態(S6)においてバッテリーが切れた場合にも、薬剤散布の必要がある圃場中の領域を適切に把握し、薬剤散布を正確に再開することができる。
 なお、バッテリーが切れた場合の機序について、ドローン100のバッテリー502を充電されたバッテリーに交換することを例に説明したが、蓄電量が低下したバッテリー502を充電することで、動作再開後にも同一のバッテリーを使用してもよい。また、ドローンシステム500に組み込まれているドローン自体を、別のドローンに交換してもよい。同一のドローンシステム500に接続することで、操縦器401、基地局404、または営農支援クラウド405の第2乃至第4状態記憶部415,445,455の少なくとも1個から、バッテリー切れが検知されたときに記録されたドローンシステム500の状況に関する情報を呼び出し、新たに接続されたドローンに当該情報を保有させることができる。
 また、操縦器401のバッテリーの蓄電量が所定以下となっている場合も、ドローンシステム500はバッテリー切れルート(C)を経由して着陸後スタンバイ状態(S7)に遷移する。蓄電量に関し、第1閾値と、第1閾値より小さい第2閾値を有し、バッテリーの蓄電量と各閾値との関係に応じて、異なる動作をしてもよい。操縦器401のバッテリーの蓄電量が第1閾値以下である場合、操縦器401は、表示又は音等適宜の手段により使用者402に対して通知を行う。例えば、まもなく充電が切れるため充電すべきである旨の通知である。また、緊急停止命令を送信する場合は操縦器401以外の構成要素、例えば非常用操縦器や基地局等を通じて送信すべきである旨の通知である。操縦器401のバッテリーの蓄電量が第1閾値以下かつ第2閾値を超えている場合、使用者402は選択的にドローンシステム500の動作を継続することができる。
 操縦器401のバッテリーの蓄電量が第2閾値以下である場合、ドローン100は、ホバリング状態(S55)又は飛行散布状態(S6)においては退避行動をとるか、着陸状態においては飛行の開始を規制する。操縦器401の蓄電量が小さく、操作不能になった場合、ドローン100に緊急停止命令を送信することができず、安全な飛行ができない恐れがあるためである。なお、非常用操縦器のバッテリーの蓄電量に関しても、同様に低蓄電量を検知する機能部を配置し、蓄電量が所定以下の場合は操縦器401と同様の措置を行うように構成されていてもよい。
●薬剤切れルート
 薬剤準備状態(S3)又は着陸後スタンバイ状態(S7)において、薬剤タンク104内の薬剤が所定以下であることが検知されると、ドローンシステム500は薬剤切れルート(B)を経由して薬剤準備スタンバイ状態(S2)に遷移する。薬剤準備状態(S3)、すなわちドローン100が着陸している状態において薬剤タンク104の薬剤が所定以下であることが検知されたときは、離陸前に薬剤準備スタンバイ状態(S2)に遷移することができる。薬剤準備状態(S3)において薬剤タンク104に薬剤が充分入っていた場合は、ドローン100の飛行散布状態(S6)において薬剤が枯渇する可能性が高い。したがって、ドローン100は飛行散布状態(S6)から着陸して着陸後スタンバイ状態(S7)に遷移した上で、薬剤準備スタンバイ状態(S2)に遷移する。このように、ドローンシステム500は、薬剤切れを検知して2個の異なる状態から薬剤準備スタンバイ状態(S2)に遷移することができるので、薬剤切れとなった場合にも冗長な状態遷移をすることなく円滑に次の状態に遷移することができる。
 ドローン、操縦器、基地局、および営農支援クラウドが互いに接続され、協調して動作する本発明に係るドローンシステムによれば、いずれかの構成要素と他の構成要素との接続が切断されたり、いずれかの構成要素の電源がオフになっていたりする場合にも、ドローンシステムの状態を保持し、ドローンシステムとしての運用を円滑に継続することができる。
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、噴霧機、および噴霧機能を備える農業用機械に適用可能である。自律飛行を行うドローンにも有用である。
(本願発明による技術的に顕著な効果)
 本発明にかかる薬剤の制御補充システムにおいては、薬剤の散布を行なう農業用機械において、薬剤の散布の安全性を高めることができる。
 

 

Claims (13)

  1.  操縦器と、
     ドローンと、
    がネットワークを通じて互いに接続されて互いに協調して動作するドローンシステムであって、
     前記ドローンシステムは、互いに異なる複数の状態を有し、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、
     前記複数の状態は、使用者からの動作命令に基づいて複数の状態に遷移可能なスタンバイ状態を含み、
     前記ドローンは、
      前記ドローンを駆動するためのバッテリーと、
      前記バッテリーの蓄電量が所定値以下になっていることを検知する低バッテリー検知部と、
    を備え、
     前記ドローンシステムは、前記低バッテリー検知部による検知に基づいて前記スタンバイ状態に遷移する、
    ドローンシステム。
  2. 前記複数の状態は、前記ドローンシステムの構成をシャットダウンする間に前記ドローンシステムが属するシャットダウン状態をさらに含み、前記スタンバイ状態において、前記ドローンのシャットダウンを行う動作命令が入力されると、前記ドローンシステムはシャットダウン状態に遷移する、請求項1記載のドローンシステム。
  3.  前記ドローンシステムは、前記操縦器および前記ドローンが少なくとも第3の構成とネットワークを通じて互いに接続されて互いに協調して動作し、
     前記複数の状態は、
      前記ドローンシステムが有する各構成の起動後に、前記各構成の動作が正常に行われて互いに協調しているかどうかを確認する初期チェック状態と、
      前記ドローンシステムの構成をシャットダウンする間に前記ドローンシステムが属するシャットダウン状態と、
    をさらに含み、
     前記シャットダウン状態は、
      前記ドローンがシャットダウンされるドローンシャットダウン状態と、
      前記ドローンがシャットダウンされた後に前記ドローンシャットダウン状態から遷移し、前記操縦器および前記第3の構成が協調を保った状態である一部協調状態と、
    を含み、
     前記ドローンシステムは、前記一部協調状態において前記ドローンの前記バッテリーが交換されることに基づいて、前記初期チェック状態に遷移可能である、請求項1記載のドローンシステム。
  4. 前記低バッテリー検知部による検知に基づいて、前記ドローンシステムは、前記ドローンシステムの状況に関する情報を記録し、前記情報は、前記ドローンシステムが現在属する状態、これまでに遷移した状態の履歴、圃場において薬剤散布が既に行われている領域の情報、および今後散布を要する領域の情報、のうち少なくとも1個を含む、請求項1乃至3のいずれかに記載のドローンシステム。
  5.  前記ドローンは、前記バッテリーを交換しているとき前記ドローンシステムの協調から外れており、前記ドローンシステムが有する他の構成と前記ドローンとが接続されて前記協調が確立されることに基づいて前記情報を呼び出す、請求項4記載のドローンシステム。
  6. 前記操縦器は、前記操縦器を駆動するための操縦器バッテリーと、前記操縦器バッテリーの蓄電量が所定値以下になっていることを検知する第2低バッテリー検知部と、を備え、前記ドローンシステムは、前記第2低バッテリー検知部による検知に基づいて前記スタンバイ状態に遷移する、請求項1乃至5のいずれかに記載のドローンシステム。
  7.  前記低バッテリー検知部が検知する前記所定値は、前記ドローンが発着地点に帰還するために必要な蓄電量以上である、請求項1乃至6のいずれかに記載のドローンシステム。
  8.  前記複数の状態は、前記ドローンのメンテナンスを行うメンテナンス状態をさらに含み、前記スタンバイ状態において前記ドローンのメンテナンスを要求する動作命令が入力されると、前記ドローンシステムはメンテナンス状態に遷移する、請求項1乃至7のいずれかに記載のドローンシステム。
  9.  前記複数の状態は、前記ドローンの飛行開始を許可する飛行開始指令を受信可能な飛行開始スタンバイ状態をさらに含み、前記スタンバイ状態において、前記ドローンが薬剤散布を行う指定圃場の変更を要求する動作命令が入力されると、前記飛行開始スタンバイ状態に遷移する、請求項1乃至8のいずれかに記載のドローンシステム。
  10.  前記低バッテリー検知部は、バッテリー電圧、バッテリー温度、電流のうち1又は複数の値に基づいて前記バッテリーの蓄電量を推定し、前記バッテリーの蓄電量が所定値以下になっていることを検知する、請求項1乃至9のいずれかに記載のドローンシステム。
  11.  前記低バッテリー検知部は、バッテリーの実使用時間および周辺温度等のうち1又は複数の値に基づいて、推定された前記バッテリーの蓄電量を補正する、請求項10記載のドローンシステム。
  12.  操縦器と、
     ドローンと、
    がネットワークを通じて互いに接続されて互いに協調して動作するドローンシステムの制御方法であって、
     前記ドローンシステムは、互いに異なる複数の状態を有し、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、
     前記複数の状態は、使用者からの動作命令に基づいて複数の状態に遷移可能なスタンバイ状態を含み、
     前記ドローンは、
      前記ドローンを駆動するためのバッテリーと、
      前記バッテリーの蓄電量が所定値以下になっていることを検知する低バッテリー検知部と、
    を備え、
     前記ドローンシステムは、前記低バッテリー検知部による検知に基づいて前記スタンバイ状態に遷移するステップを含む、
    ドローンシステムの制御方法。
  13.  操縦器と、
     ドローンと、
    がネットワークを通じて互いに接続されて互いに協調して動作するドローンシステムの制御プログラムであって、
     前記ドローンシステムは、互いに異なる複数の状態を有し、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、
     前記複数の状態は、使用者からの動作命令に基づいて複数の状態に遷移可能なスタンバイ状態を含み、
     前記ドローンは、
      前記ドローンを駆動するためのバッテリーと、
      前記バッテリーの蓄電量が所定値以下になっていることを検知する低バッテリー検知部と、
    を備え、
     前記ドローンシステムを、前記低バッテリー検知部による検知に基づいて前記スタンバイ状態に遷移させる命令をコンピューターに実行させる、
    ドローンシステムの制御プログラム。
     

     
     
PCT/JP2019/025090 2018-06-28 2019-06-25 ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム WO2020004366A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527533A JP6777923B2 (ja) 2018-06-28 2019-06-25 ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018123320 2018-06-28
JP2018-123320 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004366A1 true WO2020004366A1 (ja) 2020-01-02

Family

ID=68986691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025090 WO2020004366A1 (ja) 2018-06-28 2019-06-25 ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム

Country Status (2)

Country Link
JP (1) JP6777923B2 (ja)
WO (1) WO2020004366A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112273038A (zh) * 2020-10-21 2021-01-29 塔里木大学 一种促苗壮苗的棉花种植方法
CN112965513A (zh) * 2020-11-11 2021-06-15 普宙飞行器科技(深圳)有限公司 一种无人机降落控制方法、系统、存储介质及电子设备
WO2022195759A1 (ja) * 2021-03-17 2022-09-22 株式会社ジャパン・インフラ・ウェイマーク 移動体収容ポート及び点検システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048025A (ja) * 2013-09-04 2015-03-16 佐古 曜一郎 防御装置及び防御システム
JP2016210360A (ja) * 2015-05-12 2016-12-15 オービタルワークス株式会社 無人飛行体
JP2017174326A (ja) * 2016-03-25 2017-09-28 キヤノンマーケティングジャパン株式会社 情報処理システム、その制御方法、及びプログラム、並びに、サーバ装置、その制御方法、及びプログラム
JP2017530043A (ja) * 2015-07-02 2017-10-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人機、その制御システムおよび方法、ならびに無人機降着制御方法
US20170345319A1 (en) * 2016-05-24 2017-11-30 Beijing Xiaomi Mobile Software Co., Ltd. Methods and Devices for Controlling Unmanned Aerial Vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870171B1 (ja) * 2014-08-18 2016-02-24 ヤマハ発動機株式会社 遠隔操縦装置
JP6811483B2 (ja) * 2017-03-30 2021-01-13 株式会社スカイマティクス ドローンを用いた作業を支援するシステムおよび方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048025A (ja) * 2013-09-04 2015-03-16 佐古 曜一郎 防御装置及び防御システム
JP2016210360A (ja) * 2015-05-12 2016-12-15 オービタルワークス株式会社 無人飛行体
JP2017530043A (ja) * 2015-07-02 2017-10-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人機、その制御システムおよび方法、ならびに無人機降着制御方法
JP2017174326A (ja) * 2016-03-25 2017-09-28 キヤノンマーケティングジャパン株式会社 情報処理システム、その制御方法、及びプログラム、並びに、サーバ装置、その制御方法、及びプログラム
US20170345319A1 (en) * 2016-05-24 2017-11-30 Beijing Xiaomi Mobile Software Co., Ltd. Methods and Devices for Controlling Unmanned Aerial Vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112273038A (zh) * 2020-10-21 2021-01-29 塔里木大学 一种促苗壮苗的棉花种植方法
CN112965513A (zh) * 2020-11-11 2021-06-15 普宙飞行器科技(深圳)有限公司 一种无人机降落控制方法、系统、存储介质及电子设备
WO2022195759A1 (ja) * 2021-03-17 2022-09-22 株式会社ジャパン・インフラ・ウェイマーク 移動体収容ポート及び点検システム

Also Published As

Publication number Publication date
JP6777923B2 (ja) 2020-10-28
JPWO2020004366A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP7009005B2 (ja) ドローンシステム
WO2020022266A1 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6803592B2 (ja) ドローンシステム、ドローン、操縦器、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP6749626B2 (ja) 薬剤の吐出制御システム、方法、及びコンピュータプログラム
JP6913978B2 (ja) 故障検知システム、方法、及びコンピュータプログラム
WO2020004366A1 (ja) ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP6727498B2 (ja) フールプルーフ性を向上した農業用ドローン
CN111655581B (zh) 无人飞行器及其控制系统以及计算机可读取记录介质
JP6745519B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2020004367A1 (ja) 薬剤散布システム、薬剤散布システムの制御方法、および、薬剤散布システム制御プログラム
JP6837254B2 (ja) ドローンシステム、ドローン、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP6746157B2 (ja) 薬剤の補充制御システム、噴霧機、ドローン、薬剤補充システムの制御方法、および、薬剤補充システム制御プログラム
JP6746126B2 (ja) 薬剤の漏出防止システム及び方法
CN111670418B (zh) 无人机及其控制方法以及计算机可读取记录介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825965

Country of ref document: EP

Kind code of ref document: A1