WO2020004360A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2020004360A1
WO2020004360A1 PCT/JP2019/025058 JP2019025058W WO2020004360A1 WO 2020004360 A1 WO2020004360 A1 WO 2020004360A1 JP 2019025058 W JP2019025058 W JP 2019025058W WO 2020004360 A1 WO2020004360 A1 WO 2020004360A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
inch
refrigerant communication
nominal diameter
less
Prior art date
Application number
PCT/JP2019/025058
Other languages
English (en)
French (fr)
Inventor
山田 拓郎
熊倉 英二
岩田 育弘
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP19825963.2A priority Critical patent/EP3816544A4/en
Publication of WO2020004360A1 publication Critical patent/WO2020004360A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/17Size reduction

Definitions

  • a refrigeration cycle device in which a heat source unit and a utilization unit are connected via a refrigerant communication pipe to form a refrigerant circuit, and uses carbon dioxide as a refrigerant sealed in the refrigerant circuit.
  • a refrigeration cycle apparatus is a refrigeration cycle apparatus in which a heat source unit and a utilization unit are connected via a gas refrigerant communication pipe and a liquid refrigerant communication pipe to form a refrigerant circuit, and is sealed in the refrigerant circuit.
  • the refrigerant to be used is carbon dioxide, a pipe having an inner diameter of 6.2 mm or less is used as a gas refrigerant communication pipe, and / or a pipe having an inner diameter of 3.6 mm or less is used as a liquid refrigerant communication pipe.
  • the pipe having the inner diameter not used as the gas refrigerant communication pipe and / or the liquid refrigerant communication pipe is used, the volume of the gas refrigerant communication pipe and / or the liquid refrigerant communication pipe is reduced. Therefore, the amount of refrigerant sealed in the refrigerant circuit can be reduced.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein a rated refrigeration capacity is less than 1/4 inch as a liquid refrigerant communication pipe to which a utilization unit having a capacity of 8.0 kW or less is connected.
  • a copper tube with a diameter of 1/2 H is used.
  • the size of the copper pipe that can be used as the liquid refrigerant communication pipe can be increased because a copper pipe having a nominal diameter that is not conventionally used as the liquid refrigerant communication pipe is used. It can contribute to pipe optimization.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein the rated refrigeration capacity is 1.5 / 8 inch as a liquid refrigerant communication pipe to which a utilization unit having a power of 8.0 kW or less is connected. Nominal diameter copper tubes (1 / 2H temper) are used.
  • the size of the copper pipe that can be used as the liquid refrigerant communication pipe can be increased because a copper pipe having a nominal diameter that is not conventionally used as the liquid refrigerant communication pipe is used. It can contribute to pipe optimization.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first to third aspects, wherein a gas refrigeration cycle pipe to which a use unit having a rated refrigeration capacity of 4.5 kW or less is connected.
  • a copper tube having a nominal diameter larger than inch and less than 3 inch is used (the temper is 1 / H).
  • the size of the copper pipe usable as the gas refrigerant communication pipe can be increased, and the gas refrigerant communication pipe can be used. It can contribute to pipe optimization.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to third aspects, wherein a gas refrigeration cycle pipe is connected to a utilization unit having a rated refrigeration capacity of 4.5 kW or less.
  • a copper tube with a nominal diameter of .5 / 8 inch (quality is 1 / 2H) is used.
  • the size of the copper pipe usable as the gas refrigerant communication pipe can be increased, and the gas refrigerant communication pipe can be used. It can contribute to pipe optimization.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein a liquid refrigerant communication pipe to which a use unit having a rated refrigeration capacity of 3.6 kW or less is connected has a nominal size of less than 1/4 inch. A copper tube with a diameter of O is used.
  • the size of the copper pipe that can be used as the liquid refrigerant communication pipe can be increased because a copper pipe with a nominal diameter that has not been used as the liquid refrigerant communication pipe is used. Can contribute to
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein the rated refrigeration capacity is 1.5 / 8 inch as a liquid refrigerant communication pipe to which a utilization unit having a capacity of 3.6 kW or less is connected. Nominal diameter copper tube (O is used).
  • the size of the copper pipe that can be used as the liquid refrigerant communication pipe can be increased because a copper pipe having a nominal diameter that is not conventionally used as the liquid refrigerant communication pipe is used. It can contribute to pipe optimization.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first, sixth, and seventh aspects, wherein the gas refrigerant communication pipe is connected to a utilization unit having a rated refrigeration capacity of 2.8 kW or less.
  • a copper tube having a nominal diameter of greater than 1 / inch and less than / inch is used.
  • the size of the copper pipe usable as the gas refrigerant communication pipe can be increased, and the gas refrigerant communication pipe can be used. It can contribute to pipe optimization.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first, sixth, and seventh aspects, wherein the gas refrigeration cycle pipe is connected to a utilization unit having a rated refrigeration capacity of 2.8 kW or less.
  • a copper tube having a nominal diameter of 2.5 / 8 inch (the temper is O) is used.
  • the size of the copper pipe usable as the gas refrigerant communication pipe can be increased, and the gas refrigerant communication pipe can be used. It can contribute to pipe optimization.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first to ninth aspects, wherein each of the gas refrigerant communication pipe and the liquid refrigerant communication pipe has an outer surface coated with a heat insulating material, and both pipes are provided. Constitutes a paired refrigerant communication tube in which are bundled.
  • a paired refrigerant communication pipe can be used, so that workability can be improved.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first to tenth aspects, wherein the liquid refrigerant communication pipe having a nominal diameter of less than 1/4 inch has a nominal diameter of 1.5 / 8 inch.
  • the tube end has a different diameter portion enlarged to a nominal diameter of 1/4 inch.
  • a pipe joint such as a socket pipe or a branch pipe for connecting the pipes is required.
  • a pipe joint such as a socket pipe or a branch pipe for connecting the pipes.
  • conventionally used pipe joints are compatible with pipes having a nominal diameter of 1/8 inch, but are compatible with pipes having a nominal diameter of 0.5 / 8 inch.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first to eleventh aspects, wherein the gas refrigerant communication pipe has a nominal diameter of greater than 1/4 inch and less than 3/8 inch.
  • the end of the tube has a different diameter portion enlarged to a nominal diameter of 3/8 inch.
  • pipe joints such as socket pipes and branch pipes for connecting the pipes are required.
  • pipe joints are compatible with pipes having a nominal diameter of 1/8 inch, but are compatible with pipes having a nominal diameter of 0.5 / 8 inch.
  • the pipe end portion of the 2.5 / 8 inch nominal diameter pipe used as the gas refrigerant communication pipe has a different diameter portion enlarged to a 3/8 inch nominal diameter.
  • FIG. 1 is a schematic configuration diagram of an air conditioner as a refrigeration cycle device according to an embodiment of the present disclosure. It is a table
  • FIG. 2 is an explanatory view of a refrigerant communication tube included in the refrigeration cycle apparatus of FIG. 1 (illustration of components configuring a heat source unit and a utilization unit is omitted). It is a table
  • FIG. 1 is a schematic configuration diagram of an air conditioner 1 as a refrigeration cycle device according to an embodiment of the present disclosure.
  • the air conditioner 1 is a device that can perform cooling and heating of a room such as a building by a vapor compression refrigeration cycle.
  • the air conditioner 1 mainly includes a heat source unit 2, use units 4a and 4b, and a gas refrigerant communication pipe 5 and a liquid refrigerant communication pipe 6 connecting the heat source unit 2 and the use units 4a and 4b.
  • the vapor compression type refrigerant circuit 7 of the air conditioner 1 is configured by connecting the heat source unit 2 and the use units 4a and 4b via the gas refrigerant communication pipe 5 and the liquid refrigerant communication pipe 6.
  • the refrigerant circuit 7 contains carbon dioxide as a refrigerant.
  • the refrigerant When carbon dioxide is used as the refrigerant, the refrigerant may be in a supercritical state (a state in which a gas state and a liquid state cannot be distinguished) during the refrigeration cycle. And the like, the names of the parts constituting the refrigerant circuit 7 including the “gas” or “gas” are used in the names of the parts as in the case of using the refrigerant (R410A, R32, or the like) that does not enter the supercritical state during the refrigeration cycle. "Liquid" is used.
  • the use units 4a and 4b are installed in a room or the like and constitute a part of the refrigerant circuit 7.
  • the use unit 4a mainly has a use-side expansion mechanism 41a and a use heat exchanger 42a.
  • the use unit 4b mainly has a use-side expansion mechanism 41b and a use heat exchanger 42b.
  • the usage unit 4a and the usage unit 4b have the same configuration, only the configuration of the usage unit 4a will be described here, and the configuration of the usage unit 4b will be denoted by a suffix indicating each part of the usage unit 4a.
  • a subscript “b” is added instead of “a”, and description of each part is omitted.
  • the use-side expansion mechanism 41a is a mechanism for reducing the pressure of the refrigerant, and here, an expansion valve is used.
  • the use-side expansion mechanism 41a has one end connected to the use-side heat exchanger 42a and the other end connected to the liquid refrigerant communication pipe 6.
  • the use-side heat exchanger 42a is a heat exchanger that functions as a refrigerant evaporator or a radiator.
  • the use heat exchanger 42a has one end connected to the use side expansion mechanism 41a and the other end connected to the gas refrigerant communication pipe 5.
  • the usage unit 4a has a usage-side fan 43a for sucking air into the unit and supplying the air to the room, whereby heat exchange between the air and the refrigerant flowing through the usage-side heat exchanger 42a is performed. It has become.
  • the heat source unit 2 is installed outdoors or the like, and forms a part of the refrigerant circuit 7.
  • the heat source unit 2 mainly includes a compressor 21, a switching mechanism 22, a heat source side heat exchanger 23, a heat source side expansion mechanism 25, a supercooling heat exchanger 26, a suction return pipe 27, a liquid side closing valve. 29, a gas side shut-off valve 30, and an accumulator 31.
  • the compressor 21 is a device that compresses the refrigerant. On the suction side of the compressor 21, an accumulator 31 for temporarily storing the refrigerant is provided.
  • the switching mechanism 22 is a mechanism for switching the direction of the flow of the refrigerant in the refrigerant circuit 7, and here, a four-way switching valve is used.
  • the switching mechanism 22 is connected to the discharge side of the compressor 21 so that the heat source side heat exchanger 23 functions as a refrigerant radiator and the use side heat exchangers 42a and 42b function as refrigerant evaporators.
  • One end of the heat source side heat exchanger 23 is connected and the suction side of the compressor 21 is connected to the gas side closing valve 30 (see the solid line of the switching mechanism 22 in FIG. 1).
  • the switching mechanism 22 serves to make the use side heat exchanger 42 function as a refrigerant radiator and the heat source side heat exchanger 23 as a refrigerant evaporator.
  • the closing valve 30 is connected and the suction side of the compressor 21 and one end of the heat source side heat exchanger 23 are connected (see the broken line of the switching mechanism 22 in FIG. 1).
  • the heat source side heat exchanger 23 is a heat exchanger that functions as a radiator or an evaporator for the refrigerant.
  • the heat source side heat exchanger 23 has one end connected to the switching mechanism 22 and the other end connected to the heat source side expansion mechanism 25.
  • the heat source unit 2 has a heat source side fan 24 for sucking air into the unit and discharging the air to the outside, whereby heat exchange between the air and the refrigerant flowing through the heat source side heat exchanger 23 is performed. It has become.
  • the heat source side expansion mechanism 25 is a mechanism for reducing the pressure of the refrigerant, and here, an expansion valve is used.
  • the heat-source-side expansion mechanism 25 has one end connected to the heat-source-side heat exchanger 23 and the other end connected to the subcooling heat exchanger 26.
  • the supercooling heat exchanger 26 is a heat exchanger that further cools the refrigerant radiated in the heat source side heat exchanger 23.
  • One end of the subcooling heat exchanger 26 is connected to the heat source side expansion mechanism 25, and the other end is connected to the liquid side closing valve 29.
  • the refrigerant circuit 7 a part of the refrigerant flowing from the other end of the heat source side heat exchanger 23 to the liquid side closing valve 29 through the heat source side expansion mechanism 25 and the supercooling heat exchanger 26 is decompressed and then compressed.
  • a suction return pipe 27 for returning to the suction side of the machine 21 is provided.
  • the suction return pipe 27 branches a part of the refrigerant flowing between the heat-source-side expansion mechanism 25 and the supercooling heat exchanger 26 from the refrigerant circuit 7 to supply the refrigerant to the suction side (more specifically, the compressor 21). , Between the switching mechanism 22 and the accumulator 31).
  • the suction return pipe 27 is provided with a suction return expansion mechanism 28 for reducing the pressure of the refrigerant.
  • an expansion valve is used as the suction return expansion mechanism 28.
  • the liquid side closing valve 28 is a valve to which the liquid refrigerant communication pipe 6 for exchanging the refrigerant between the heat source unit 2 and the utilization units 4a and 4b is connected, and is connected to the subcooling heat exchanger 26. .
  • the gas-side shut-off valve 30 is a valve to which the gas refrigerant communication pipe 5 for exchanging the refrigerant between the heat source unit 2 and the utilization units 4a and 4b is connected, and is connected to the switching mechanism 22.
  • the refrigerant communication pipes 5 and 6 are refrigerant pipes that locally connect the heat source unit 2 and the use units 4a and 4b when configuring the air conditioner 1.
  • the gas refrigerant communication pipe 5 can be described by using a compression process, a heat release process, an expansion process, and an evaporation process of a refrigeration cycle.
  • the refrigerant from the end of the evaporation process to the start of the compression process, or the end of the compression process to the start of the heat release process.
  • the gas refrigerant communication pipe 5 connects between the gas side shut-off valve 30 of the heat source unit 2 and the other ends of the use side heat exchangers 42a, 42b of the use units 4a, 4b.
  • the gas refrigerant communication pipe 5 mainly includes a gas refrigerant communication branch pipe 52a connected to the usage unit 4a, a gas refrigerant communication branch pipe 52b connected to the usage unit 4b, and a junction of the gas refrigerant communication branch pipes 52a and 52b. And a gas refrigerant communication mother tube 51 connecting between the heat source unit 2 and the heat source unit 2.
  • the liquid refrigerant communication tube 6 is a refrigerant tube through which the refrigerant flows from the end of the heat release process to the start of the evaporation process, when described using the compression process, the heat release process, the expansion process, and the evaporation process of the refrigeration cycle.
  • the liquid refrigerant communication pipe 6 connects between the liquid side closing valve 29 of the heat source unit 2 and the use side expansion mechanisms 41a, 41b of the use units 4a, 4b.
  • the liquid refrigerant communication pipe 6 mainly includes a liquid refrigerant communication branch pipe 62a connected to the usage unit 4a, a liquid refrigerant communication branch pipe 62b connected to the usage unit 4b, and a junction of the liquid refrigerant communication branch pipes 62a, 62b. And a liquid refrigerant communication mother tube 61 for connecting between the heat source unit 2 and the heat source unit 2.
  • the switching mechanism 22 is in the state shown by the solid line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the heat source side heat exchanger 23, and the suction side of the compressor 21 is connected to the gas side closing valve 30. It is in a connected state.
  • the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed to a high pressure in the refrigeration cycle, and then discharged from the compressor 21.
  • the high-pressure refrigerant discharged from the compressor 21 is sent to the heat-source-side heat exchanger 23 via the switching mechanism 22, and performs heat exchange with outdoor air supplied by the heat-source-side fan 24 to radiate heat.
  • the high-pressure refrigerant that has radiated heat in the heat-source-side heat exchanger 23 flows into the supercooling heat exchanger 26 via the heat-source-side expansion mechanism 25, and is cooled by performing heat exchange with the refrigerant flowing through the suction return pipe 27. .
  • a part of the high-pressure refrigerant radiated in the heat source side heat exchanger 23 is branched to the suction return pipe 27 and decompressed by the suction return expansion mechanism 28.
  • the refrigerant decompressed in the suction return expansion mechanism 28 is heated in the subcooling heat exchanger 26 by exchanging heat with the high-pressure refrigerant flowing in the refrigerant circuit 7, and then heated on the suction side of the compressor 21 (here, (Between the switching mechanism 22 and the accumulator 31).
  • the high-pressure refrigerant cooled in the supercooling heat exchanger 26 is sent to the use units 4a and 4b via the liquid-side shut-off valve 29 and the liquid refrigerant communication pipe 6.
  • the high-pressure refrigerant sent to the use units 4a, 4b is decompressed by the use-side expansion mechanisms 41a, 41b and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant decompressed in the use-side expansion mechanisms 41a and 41b is sent to the use-side heat exchangers 42a and 42b, and in the use-side heat exchangers 42a and 42b, the indoor air supplied by the use-side fans 43a and 43b and Evaporate by heat exchange.
  • the room air is cooled by performing heat exchange with the refrigerant in the use-side heat exchangers 42a and 42b and sent to the room, whereby the room is cooled.
  • the low-pressure refrigerant evaporated in the use-side heat exchangers 42a and 42b is sent to the heat source unit 2 via the gas refrigerant communication pipe 5.
  • the low-pressure refrigerant sent to the heat source unit 2 passes through the gas shut-off valve 30, the switching mechanism 22, and the accumulator 31, and is again sucked into the compressor 21 together with the refrigerant returned from the suction return pipe 27.
  • the switching mechanism 22 is in the state shown by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side closing valve 30, and the suction side of the compressor 21 is connected to the heat source side heat exchanger 23. It is in a connected state.
  • the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed to a high pressure in the refrigeration cycle, and then discharged from the compressor 21.
  • the high-pressure refrigerant discharged from the compressor 21 is sent to the use units 4a and 4b via the switching mechanism 22, the gas-side shut-off valve 30, and the gas refrigerant communication pipe 5.
  • the high-pressure refrigerant sent to the use units 4a and 4b exchanges heat with the room air supplied by the use side fans 43a and 43b in the use side heat exchangers 42a and 42b to radiate heat.
  • the room air is heated by exchanging heat with the refrigerant in the use-side heat exchangers 42a and 42b and sent to the room, so that the room is heated.
  • the high-pressure refrigerant radiated in the use-side heat exchangers 42a and 42b is decompressed by the use-side expansion mechanisms 41a and 41b.
  • the refrigerant decompressed in the use-side expansion mechanisms 41a and 41b is sent to the heat source unit 2 via the liquid refrigerant communication pipe 6.
  • the refrigerant sent to the heat source unit 2 is sent to the heat source side expansion mechanism 25 via the liquid side closing valve 29 and the supercooling heat exchanger 26. At this time, the refrigerant is not branched to the suction return pipe 27 because the suction return expansion mechanism 28 is closed.
  • the refrigerant sent to the heat-source-side expansion mechanism 25 is further decompressed by the heat-source-side expansion mechanism 25 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant decompressed in the heat source side expansion mechanism 25 is sent to the heat source side heat exchanger 23, where the refrigerant exchanges heat with outdoor air supplied by the heat source side fan 24 to evaporate.
  • the low-pressure refrigerant evaporated in the heat-source-side heat exchanger 23 is sucked into the compressor 21 again via the switching mechanism 22 and the accumulator 31.
  • the refrigerant communication tubes 5 and 6 have various pipe diameters and lengths according to the condition of the refrigeration capacity of the air conditioner 1, the condition of the installation place, and the like. The one having the characteristic is used.
  • the pipe diameters of the refrigerant communication pipes 5, 6 are selected according to the rated refrigeration capacity of the utilization units 4a, 4b connected to the heat source unit 2.
  • the "rated refrigeration capacity” refers to the "rated cooling capacity” of the use units 4a and 4b and the heat source unit 2 described in a product catalog or an instruction manual. ”Or“ nominal ability ”.
  • the values of the pipe diameters of the refrigerant communication pipes 5 and 6 shown in FIG. 2 are the same as those of the refrigerant pipes except for pipe joints such as the socket pipes 53a and 63a and the branch pipes 54a and 64a for connecting the pipes shown in FIG.
  • the pipe diameters of the communication pipes 5, 6 that is, the refrigerant communication branch pipes 52a, 52b, 62a, 62b and the refrigerant communication mother pipes 51, 61
  • the values of the pipe diameters in the case of using copper pipes (quality: 1 / 2H) such as phosphorus-deoxidized copper seamless copper pipes as the pipe materials of the refrigerant communication pipes 5 and 6 are shown.
  • tempering means, for example, the type of tempering of a copper pipe specified in JIS H3300, and “tempering is HH” means work hardening performed during manufacturing. It shows the degree of tensile strength obtained by the treatment.
  • HH work hardening performed during manufacturing. It shows the degree of tensile strength obtained by the treatment.
  • carbon dioxide is used as the refrigerant to be sealed in the refrigerant circuit 7
  • R410A which has been frequently used in the past and R32 which has recently started to be used are also used as comparative examples.
  • the nominal diameter and the inner diameter are shown as the values of the pipe diameter.
  • the values of the inner diameter when the design pressure of the refrigerant communication pipes 5 and 6 is set to 12.3 MPa are shown in consideration of the high pressure in the refrigeration cycle.
  • the design pressure of the refrigerant communication pipes 5 and 6 may be set to a somewhat higher pressure such as 13.7 MPa, and in this case, the pipe wall thickness may be increased. May result in an inner diameter smaller than the inner diameter shown in FIG.
  • the liquid refrigerant communication pipe 6 to which the use units 4a and 4b having the rated refrigeration capacity of 8.0 kW or less are connected has a nominal diameter of less than 1/4 inch (outer diameter is 6.35 mm). Copper tubing is used. Specifically, a copper pipe having a nominal diameter of 1.5 / 8 inch (outer diameter of 4.76 mm) is used as the liquid refrigerant communication pipe 6 having a nominal diameter of less than 1/4 inch.
  • a copper pipe having a nominal diameter of 1.5 / 8 inch has an inner diameter of 3.6 mm, which means that a pipe having an inner diameter of 3.6 mm or less is used as the liquid refrigerant communication pipe 6.
  • the “liquid refrigerant communication pipe 6 to which a usage unit having a rated refrigeration capacity of 8.0 kW or less is connected” is a liquid refrigerant communication pipe 6 to which only one usage unit having a rated refrigeration capacity of 8.0 kW or less is connected. It doesn't just mean.
  • the use unit 4a having a rated refrigeration capacity of 8.0 kW or less is branched and a plurality of use units 4a and 4b are connected to the liquid refrigerant communication pipe 6 as in the configuration of FIG. 3, the use unit 4a having a rated refrigeration capacity of 8.0 kW or less.
  • Refrigerant connection pipe to which the sum of the rated refrigerating capacity of the branched portions (liquid refrigerant communication branch pipes 62a, 62b) of the liquid refrigerant communication pipe 6 to which the first and second use units 4a, 4b are connected and the plurality of utilization units 4a, 4b is 8.0 kW or less 6 also means the liquid refrigerant communication mother pipe 61.
  • “using a copper pipe having a nominal diameter (inner diameter of 3.6 mm or less) of less than 1/4 inch (1.5 / 8 inch) as the liquid refrigerant communication pipe 6” means less than 1/4 inch (1 Not only when using only a copper tube having a nominal diameter of 0.5 / 8 inch (inner diameter of 3.6 mm or less), but also a nominal diameter (inner diameter of 3.5 / 8 inch) of less than 1/4 inch (1.5 / 8 inch). This includes the case where a copper tube having a nominal diameter of 6 mm or less and a nominal diameter (inner diameter of more than 3.6 mm) of 1/4 inch or more (greater than 1.5 / 8 inch) is used.
  • the liquid refrigerant communication pipe 6 to which the use units 4a and 4b whose rated refrigeration capacity is greater than 8.0 kW and 16.0 kW or less is connected is 1 / inch (outer diameter is 6 mm).
  • a copper tube having a nominal diameter of 0.35 mm and an inner diameter of 5.0 mm is used.
  • the liquid refrigerant communication pipe 6 to which the use units 4a and 4b having a rated refrigeration capacity of more than 16.0 kW and 28.0 kW or less are connected is 1 / inch (outer diameter of 6 Copper tubing with a nominal diameter of greater than 0.35 mm) and less than 3/8 inch (9.52 mm outer diameter) is used.
  • the liquid refrigerant communication pipe 6 having a nominal diameter larger than 1/4 inch and smaller than 3/8 inch a 2.5 / 8 inch (outer diameter is 7.94 mm, inner diameter is 6.2 mm). Nominal diameter copper tubes are used.
  • the gas refrigerant communication pipe 5 to which the use units 4a and 4b having the rated refrigerating capacity of 4.5 kW or less are connected is larger than 1/4 inch (outer diameter is 6.35 mm) and 3 mm. Copper tubing of nominal diameter less than / 8 inch (outer diameter 9.52 mm) is used. Specifically, as the gas refrigerant communication pipe 5 having a nominal diameter larger than 1/4 inch and less than 3/8 inch, the nominal diameter of the nominal diameter of 2.5 / 8 inch (outer diameter is 7.94 mm). Copper tubing is used.
  • the copper pipe having a nominal diameter of 2.5 / 8 inch has an inner diameter of 6.2 mm or less, which means that a pipe having an inner diameter of 6.2 mm or less is used as the gas refrigerant communication pipe 5.
  • the “gas refrigerant communication pipe 5 to which a use unit having a rated refrigeration capacity of 4.5 kW or less is connected” refers to a gas refrigerant communication pipe 6 to which only one use unit having a rated refrigeration capacity of 4.5 kW or less is connected. It doesn't just mean. As shown in FIG.
  • the gas refrigerant communication pipe 5 to which the use units 4a and 4b having a rated refrigerating capacity of more than 4.5 kW and 8.0 kW or less are connected is 3/8 inch (outer diameter of 9
  • a copper pipe having a nominal diameter of 0.52 mm and an inner diameter of 7.4 mm is used.
  • the gas refrigerant communication pipe 5 to which the use units 4a and 4b having a rated refrigeration capacity of more than 8.0 kW and 16.0 kW or less are connected is 1 / inch (outer diameter of 12 inches).
  • a copper tube having a nominal diameter of 0.70 mm and an inner diameter of 9.9 mm) is used.
  • the gas refrigerant communication pipe 5 to which the use units 4a and 4b having a rated refrigeration capacity of more than 16.0 kW and 28.0 kW or less are connected is 5/8 inch (having an outer diameter of 15/8 inch).
  • a copper pipe having a nominal diameter of 0.88 mm and an inner diameter of 12.3 mm is used.
  • the refrigerant communication pipes 5 and 6 when using carbon dioxide are smaller pipes than the conventional refrigerant such as R410A and R32 at the same rated refrigeration capacity. It can be seen that the diameter is to be selected.
  • the pipe diameters of the refrigerant communication pipes 5 and 6 can be selected as follows.
  • a copper pipe having a nominal diameter of 2.5 / 8 inch is used as the gas refrigerant communication branch pipes 52a and 52b
  • Copper tubes having a nominal diameter of 1.5 / 8 inch are used as the refrigerant connecting branch tubes 62a and 62b.
  • the total of the rated refrigeration capacity is 5.6 kW. Therefore, a copper pipe having a nominal diameter of 3/8 inch is used as the gas refrigerant communication mother pipe 51, and A copper pipe having a nominal diameter of 1.5 / 8 inch is used as the refrigerant communication mother pipe 61.
  • a copper pipe having a nominal diameter of ⁇ ⁇ ⁇ inch is used as the gas refrigerant communication branch pipes 52a and 52b. Copper pipes having a nominal diameter of 1/4 inch are used as the refrigerant connecting branch pipes 62a and 62b. After the use units 4a and 4b have joined, the total of the rated refrigerating capacity is 22.4 kW. Therefore, a copper pipe having a nominal diameter of 5/8 inch is used as the gas refrigerant communication main pipe 51, and the liquid refrigerant is used. A copper pipe having a nominal diameter of 2.5 / 8 inch is used as the refrigerant communication main pipe 61.
  • the gas refrigerant communication branch pipe 52a has a 2.5 / 8 inch size.
  • a copper pipe having a nominal diameter is used, a copper pipe having a nominal diameter of 1/2 inch is used as the gas refrigerant communication branch pipe 52b, and a copper pipe having a nominal diameter of 1.5 / 8 inch is used as the liquid refrigerant communication branch pipe 62a.
  • a copper pipe having a nominal diameter of 1/4 inch is used as the liquid refrigerant connecting branch pipe 62b.
  • the air conditioner 1 (refrigeration unit) that forms the refrigerant circuit 7 by connecting the heat source unit 2 and the utilization units 4a and 4b via the gas refrigerant communication pipe 5 and the liquid refrigerant communication pipe 6 as described above.
  • the refrigerant sealed in the refrigerant circuit 7 is carbon dioxide
  • the gas refrigerant communication tube 5 uses a tube having an inner diameter of 6.2 mm or less
  • / or the liquid refrigerant communication tube 6 has an inner diameter of A tube of 3.6 mm or less is used (see FIG. 2).
  • the flow rate (refrigerant circulation amount) of the refrigerant circulating in the refrigerant circuit 7 is reduced. be able to.
  • the pipes having an inner diameter smaller than the pipes used in the conventional refrigerant are used as the refrigerant communication pipes 5 and 6 while preventing the flow resistance of the refrigerant flowing in the refrigerant communication pipes 5 and 6 from becoming excessive. Can be used.
  • a pipe having an inner diameter smaller than 11.1 mm is not used as a gas refrigerant communication pipe in consideration of flow path resistance, and a pipe having an inner diameter smaller than 4.7 mm is used. It is not used as a liquid refrigerant communication tube (see FIG. 2).
  • a pipe (inner diameter of 6.2 mm or less) which is not used as the gas refrigerant communication pipe because the inner diameter of the conventional refrigerant is too small is used as the gas refrigerant communication pipe 5
  • a pipe (a pipe having an inner diameter of 3.6 mm or less) that is not used as a liquid refrigerant communication pipe because the inner diameter of the conventional refrigerant is too small is used as the liquid refrigerant communication pipe 6.
  • the volume of the gas refrigerant communication pipe 5 and / or the liquid refrigerant communication pipe 6 can be reduced, and the amount of refrigerant sealed in the refrigerant circuit 7 can be reduced.
  • ⁇ B> As the liquid refrigerant communication pipe 6 having an inner diameter of 3.6 mm or less, a copper pipe having a nominal diameter of less than 1/4 inch (outer diameter is 6.35 mm) (the temper is 1 / 2H). ) (See FIG. 2). Specifically, here, a 1.5 / 8 inch nominal diameter (outer diameter: 4.76 mm) copper tube (quality: 1 / 2H) is used (see FIG. 2).
  • a copper pipe having a nominal diameter of less than 1/4 inch (here, 1.5 / 8 inch) is not used as a liquid refrigerant communication pipe (FIG. 2). reference).
  • the conventional refrigerant has a nominal diameter (outer diameter) that is too small to be used as a liquid refrigerant communication pipe, an inner diameter of 3.6 mm or less, and a 1/4 inch (outer diameter that is not conventionally used).
  • a copper tube having a nominal diameter of less than 6.35 mm (here, 1.5 / 8 inch) (quality: 1 / 2H) is connected to use units 4a and 4b having a rated refrigeration capacity of 8.0 kW or less. Used as the liquid refrigerant communication pipe 6.
  • the volume of the liquid refrigerant communication pipe 6 can be reduced, and the amount of refrigerant sealed in the refrigerant circuit 7 can be reduced.
  • the size of the copper pipe usable as the liquid refrigerant communication pipe 6 can be increased, and the liquid refrigerant communication pipe can be increased. This can contribute to optimization of the tube 6.
  • the gas refrigerant communication pipe 5 having an inner diameter of 6.2 mm or less is larger than 1 / inch (outer diameter is 6.35 mm) and 3/8 inch (outer diameter is 9.35 mm).
  • a copper tube with a nominal diameter of less than 52 mm) (the temper is 1 / 2H) is used (see FIG. 2).
  • a copper tube (temper: 1 / 2H) having a nominal diameter of 2.5 / 8 inch (outer diameter: 7.94 mm) is used (see FIG. 2).
  • the conventional refrigerant (R410A, R32, etc.), a copper pipe having a nominal diameter of less than 1/2 inch is not used as the gas refrigerant communication pipe 5 (see FIG. 2).
  • a copper tube (nominal 1 / 2H) having a nominal diameter of larger than 6.35 mm) and smaller than 3/8 inch (outer diameter: 9.52 mm) (here, 2.5 / 8 inch) is subjected to rated refrigeration. It is used as a gas refrigerant communication pipe 5 to which use units 4a and 4b having a capacity of 4.5 kW or less are connected.
  • the volume of the gas refrigerant communication pipe 5 can be reduced, and the amount of refrigerant sealed in the refrigerant circuit 7 can be reduced.
  • the size of the copper pipe usable as the gas refrigerant communication pipe 5 can be increased, and the gas refrigerant communication pipe can be increased. This can contribute to the optimization of the tube 5.
  • a copper pipe (quality: 1 / 2H) such as a phosphorus-deoxidized copper seamless copper pipe is used as the pipe material of the refrigerant communication pipes 5 and 6 (see FIG. 2).
  • the temper used as the copper tube for the refrigerant has a higher tensile strength than "1 / 2H" in addition to "1 / 2H".
  • FIG. 4 also shows, as a comparative example, a case where a copper tube whose temper is 1 / 2H is used.
  • the liquid refrigerant communication pipe 6 to which the use units 4a and 4b having the rated refrigerating capacity of 3.6 kW or less are connected has a nominal diameter of less than 1/4 inch (outer diameter is 6.35 mm). Copper tubing is used. Specifically, as the liquid refrigerant communication pipe 6 having a nominal diameter of less than 1/4 inch, a copper pipe having a nominal diameter of 1.5 / 8 inch (outer diameter of 4.7 mm) is used. Here, since the copper pipe having a nominal diameter of 1.5 / 8 inch has an inner diameter of 2.8 mm, the liquid refrigerant communication pipe 6 has an inner diameter of 3.6 mm or less as in the case of the temper of 1 / 2H. Means that tubes are used.
  • the liquid refrigerant communication pipe 6 to which the use units 4a and 4b having a rated refrigerating capacity of more than 3.6 kW and 7.1 kW or less are connected is 1 / inch (outer diameter of 6
  • a copper tube having a nominal diameter of 0.35 mm and an inner diameter of 3.8 mm) is used.
  • the liquid refrigerant communication pipe 6 to which the use units 4a and 4b having a rated refrigeration capacity of greater than 7.1 kW and 14.0 kW or less are connected is 1 / inch (outer diameter of 6 Copper tubing with a nominal diameter of greater than 0.35 mm) and less than 3/8 inch (9.52 mm outer diameter) is used.
  • the liquid refrigerant communication pipe 6 having a nominal diameter larger than 1/4 inch and smaller than 3/8 inch a 2.5 / 8 inch (outer diameter is 7.94 mm, inner diameter is 4.8 mm).
  • Nominal diameter copper tubes are used.
  • the liquid refrigerant communication pipe 6 to which the use units 4a and 4b having a rated refrigeration capacity of more than 14.0 kW and 22.4 kW or less are connected is 3/8 inch (outer diameter of 9/4).
  • a copper pipe having a nominal diameter of 0.52 mm and an inner diameter of 5.8 mm) is used.
  • the liquid refrigerant communication pipe 6 to which the use units 4a and 4b having a rated refrigerating capacity of greater than 22.4 kW and 28.0 kW or less are connected is ⁇ ⁇ ⁇ inch (outer diameter of 12 inches).
  • a copper tube having a nominal diameter of 0.70 mm and an inner diameter of 7.7 mm is used.
  • the gas refrigerant communication pipe 5 to which the use units 4a and 4b having the rated refrigeration capacity of 2.8 kW or less are connected is larger than 1/4 inch (outer diameter 6.35 mm) and 3 mm. Copper tubing of nominal diameter less than / 8 inch (outer diameter 9.52 mm) is used. Specifically, as the gas refrigerant communication pipe 5 having a nominal diameter larger than 1/4 inch and less than 3/8 inch, the nominal diameter of the nominal diameter of 2.5 / 8 inch (outer diameter is 7.94 mm). Copper tubing is used.
  • the gas refrigerant communication tube 5 has an inner diameter of 6.2 mm as in the case of the temper of 1 / 2H. It means that the following tubes are used.
  • the gas refrigerant communication pipe 5 to which the use units 4a and 4b whose rated refrigeration capacity is greater than 2.8 kW and is 4.5 kW or less is connected is 3/8 inch (outer diameter is 9 mm). 0.52 mm).
  • the copper pipe having a nominal diameter of 3/8 inch has an inner diameter of 5.8 mm or less
  • the gas refrigerant communication pipe 5 has an inner diameter of 6.2 mm or less as in the case of the temper of 1 / 2H. Means that a tube is used.
  • the gas refrigerant communication pipe 5 to which the use units 4a and 4b whose rated refrigeration capacity is larger than 4.5 kW and 9.0 kW or less is connected is 1 / inch (outer diameter is 12 mm).
  • a copper tube having a nominal diameter of 0.70 mm and an inner diameter of 7.7 mm is used.
  • the gas refrigerant communication pipe 5 to which the use units 4a and 4b having a rated refrigeration capacity of greater than 9.0 kW and 16.0 kW or less are connected is 5/8 inch (outer diameter of 15 mm).
  • a copper tube having a nominal diameter of 0.88 mm and an inner diameter of 9.7 mm is used.
  • the gas refrigerant communication pipe 5 to which the use units 4a and 4b whose rated refrigeration capacity is larger than 16.0 kW and 28.0 kW or less is connected is 3/4 inch (outer diameter is 19 mm).
  • a copper tube having a nominal diameter of 0.05 mm and an inner diameter of 11.7 mm is used.
  • the inner diameters of the gas refrigerant communication tubes 5 and 6 use a copper tube having a temper of 1/2 H at the same rated refrigeration capacity. It can be seen that the same inner diameter as in the case is selected.
  • the pipe diameters of the refrigerant communication pipes 5 and 6 in the case of using the copper pipe whose temper is O are selected as follows. be able to.
  • a copper pipe having a nominal diameter of 2.5 / 8 inch is used as the gas refrigerant communication branch pipes 52a and 52b
  • Copper tubes having a nominal diameter of 1.5 / 8 inch are used as the refrigerant connecting branch tubes 62a and 62b.
  • the total of the rated refrigerating capacity is 5.6 kW. Therefore, a copper pipe having a nominal diameter of 1/2 inch is used as the gas refrigerant communication mother pipe 51, A copper pipe having a nominal diameter of 4 inch is used as the refrigerant communication mother pipe 61.
  • both the rated refrigeration capacity of the utilization units 4a and 4b are 11.2 kW
  • a copper pipe having a nominal diameter of ⁇ 5 inch is used as the gas refrigerant communication branch pipes 52a and 52b
  • Copper tubes having a nominal diameter of 2.5 / 8 inch are used as the refrigerant connecting branch tubes 62a and 62b.
  • the total of the rated refrigeration capacity is 22.4 kW. Therefore, a copper pipe having a nominal diameter of 3/4 inch is used as the gas refrigerant communication main pipe 51, and A copper pipe having a nominal diameter of / inch is used as the refrigerant communication mother pipe 61.
  • the gas refrigerant communication branch pipe 52a has a 2.5 / 8 inch size.
  • a copper pipe having a nominal diameter is used, a copper pipe having a nominal diameter of 1/2 inch is used as the gas refrigerant communication branch pipe 52b, and a copper pipe having a nominal diameter of 1.5 / 8 inch is used as the liquid refrigerant communication branch pipe 62a.
  • a copper pipe having a nominal diameter of 2.5 / 8 inch is used as the liquid refrigerant connecting branch pipe 62b.
  • the rated refrigeration capacity becomes 11.2 kW in total. Therefore, a copper pipe having a nominal diameter of 5/8 inch is used as the gas refrigerant communication main pipe 51, and A copper pipe having a nominal diameter of 2.5 / 8 inch is used as the refrigerant communication main pipe 61.
  • the air conditioner 1 (refrigeration unit) that forms the refrigerant circuit 7 by connecting the heat source unit 2 and the utilization units 4a and 4b via the gas refrigerant communication pipe 5 and the liquid refrigerant communication pipe 6 as described above.
  • the refrigerant sealed in the refrigerant circuit 7 is carbon dioxide
  • the gas refrigerant communication tube 5 is a tube having an inner diameter of 6.2 mm or less.
  • a pipe having an inner diameter of 3.6 mm or less is used as the liquid refrigerant communication pipe 6 (see FIG. 4).
  • the volume of the gas refrigerant communication pipe 5 and / or the liquid refrigerant communication pipe 6 can be reduced, and the volume is sealed in the refrigerant circuit 7.
  • the amount of refrigerant required can be reduced.
  • the liquid refrigerant communication pipe 6 having the inner diameter of 3.6 mm or less is 1 / inch (the outer diameter is 6.6 inches) as in the case of using a copper pipe having a temper of HH.
  • a copper tube having a nominal diameter of less than 35 mm) is used (see FIG. 4).
  • a copper tube (temper: O) having a nominal diameter of 1.5 / 8 inch (outer diameter: 4.76 mm) is used (see FIG. 4).
  • the copper tube having this nominal diameter is connected to the liquid refrigerant communication tube 6 to which the use units 4a and 4b whose rated refrigerating capacity is 3.6 kW or less are connected.
  • the use units 4a and 4b whose rated refrigerating capacity is 3.6 kW or less are connected.
  • the volume of the liquid refrigerant communication tube 6 can be reduced, and the amount of refrigerant sealed in the refrigerant circuit 7 can be reduced, as in the case of using a copper tube whose temper is 1/2 H. it can.
  • a copper pipe having a nominal diameter which is not conventionally used as the liquid refrigerant communication pipe is used, the size of the copper pipe usable as the liquid refrigerant communication pipe 6 can be increased, and the liquid refrigerant communication pipe can be increased. This can contribute to optimization of the tube 6.
  • the tempering O copper pipe is used as the liquid refrigerant communication pipe 6, the handling such as bending is easier than the case where the tempering 1/2 H copper pipe is used.
  • workability when the heat source unit 2 and the utilization units 4a and 4b are locally connected can be improved.
  • a copper tube having a temper of 1 / 2H as the gas refrigerant communication tube 5 having an inner diameter of 6.2 mm or less, 1/4 inch (an outer diameter of 6.2 mm).
  • a copper tube (with a temper of O) having a nominal diameter larger than 35 mm) and less than 3/8 inch (outer diameter: 9.52 mm) is used (see FIG. 4).
  • a copper tube (the temper is O) having a nominal diameter of 2.5 / 8 inch (outer diameter is 7.94 mm) is used (see FIG. 4).
  • a copper tube of this nominal diameter is connected to the gas refrigerant communication tube 5 to which the use units 4a and 4b whose rated refrigerating capacity is 2.8 kW or less are connected.
  • the volume of the gas refrigerant communication tube 5 can be reduced, and the amount of refrigerant sealed in the refrigerant circuit 7 can be reduced, as in the case of using a copper tube having a temper of 1 / 2H. it can.
  • the size of the copper pipe usable as the gas refrigerant communication pipe 5 can be increased, and the gas refrigerant communication pipe can be increased. This can contribute to the optimization of the tube 5.
  • a copper pipe having a temper of O is used as the gas refrigerant communication pipe 5 here, it is easier to handle such as a bending process than a case where a copper pipe having a temper of 1 / 2H is used.
  • workability when the heat source unit 2 and the utilization units 4a and 4b are locally connected can be improved.
  • the paired refrigerant communication tubes 8 have a structure in which the outer surfaces of the refrigerant communication tubes 5 and 6 are covered with heat insulating materials 9 and 10 and both tubes 5 and 6 are bundled.
  • the refrigerant communication pipes 5 and 6 are respectively covered with heat insulating materials 9 and 10 having a two-layer structure, and the refrigerant communication pipes 5 and 6 are bundled by being attached so that the outer surfaces of the heat insulating materials 9 and 10 are connected. ing.
  • such a paired refrigerant communication pipe 8 may be prepared for each rated refrigeration capacity. For example, according to the pipe diameter table shown in FIG.
  • the gas refrigerant communication pipe 5 is 2.5 / 8 inch
  • a paired refrigerant communication pipe 8 having a liquid refrigerant communication pipe 6 of 1.5 / 8 inch is prepared for a rated refrigeration capacity of 2.2 to 4.5 kW.
  • a paired refrigerant communication pipe 8 having a gas refrigerant communication pipe 5 of 3/8 inch and a liquid refrigerant communication pipe 6 of 1.5 / 8 inch is prepared for a rated refrigeration capacity of 5.6 to 8.0 kW. .
  • a paired refrigerant communication pipe 8 having a gas refrigerant communication pipe 5 of 1/2 inch and a liquid refrigerant communication pipe 6 of 1/4 inch is prepared for a rated refrigeration capacity of 9.0 to 16.0 kW.
  • a paired refrigerant communication pipe 8 having a gas refrigerant communication pipe 5 of 5/8 inch and a liquid refrigerant communication pipe 6 of 2.5 / 8 inch is prepared for a rated refrigeration capacity of 22.4 to 28.0 kW.
  • the temper is used as the refrigerant communication pipes 5 and 6
  • the same copper pipe as the temper is used as the refrigerant communication pipes 5 and 6.
  • a paired refrigerant communication pipe 8 (however, the applicable range of the rated refrigeration capacity is different) can be prepared.
  • the paired refrigerant communication pipes 8 as described above can be used, so that workability can be improved.
  • a tube having a nominal diameter of 0.5 / 8 inch (here, 1.5 / 8 inch or 2.5 / 8 inch) which is not used in the conventional refrigerant (R410A, R32, etc.) is used.
  • preparing the paired refrigerant communication pipes 8 including such nominal diameter pipes is very useful for improving workability.
  • the pipe ends have different diameter portions 5a and 6a enlarged to a nominal diameter of 3/8 inch.
  • the conventionally used 1/8 inch is used. Fittings for pipes with nominal diameters in inch increments can be used. That is, in FIG. 3, even when a pipe having a nominal diameter of 1.5 / 8 inch is used as the liquid refrigerant communication branch pipes 62a and 62b and the liquid refrigerant communication main pipe 61, the socket pipe 63a and the branch pipe 64a are used. A tube corresponding to a tube having a nominal diameter of 1/4 inch can be used.
  • the socket pipe 53a is used.
  • 63a and branch pipes 54a, 64a corresponding to pipes having a nominal diameter of 8 inch can be used. For this reason, it becomes possible to dispense with preparing a pipe joint corresponding to a pipe having a nominal diameter of 0.5 / 8 inch, thereby improving workability.
  • the refrigeration cycle device may be an air conditioner dedicated to cooling, or may be an air conditioner having one, three or more use units.
  • the present disclosure constitutes a refrigerant circuit by connecting a heat source unit and a utilization unit via a refrigerant communication pipe, and a refrigeration cycle device using carbon dioxide as a refrigerant sealed in the refrigerant circuit, Widely applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

冷凍サイクル装置(1)は、熱源ユニット(2)と利用ユニット(4a、4b)とがガス冷媒連絡管(5)及び液冷媒連絡管(6)を介して接続されることによって冷媒回路(7)を構成している。冷媒回路(7)には、冷媒として二酸化炭素が封入されている。冷凍サイクル装置(1)では、冷媒回路(7)に封入される冷媒量を少なくするために、ガス冷媒連絡管(5)として、内径が6.2mm以下の管を使用し、及び/又は、液冷媒連絡管(6)として、内径が3.6mm以下の管を使用している。

Description

冷凍サイクル装置
 熱源ユニットと利用ユニットとが冷媒連絡管を介して接続されることによって冷媒回路を構成しており、冷媒回路に封入される冷媒として二酸化炭素を使用する冷凍サイクル装置
 従来より、熱源ユニットと利用ユニットとが冷媒連絡管を介して接続されることによって冷媒回路を構成する空気調和装置(冷凍サイクル装置)がある。このような冷凍サイクル装置として、特許文献1(国際公開第2011/099063号)に示すように、冷媒回路に封入される冷媒として二酸化炭素を使用するものがある。
 冷媒回路に封入される冷媒として二酸化炭素を使用する場合には、人体への悪影響(酸欠等)を考慮する必要がある。具体的には、冷媒が冷媒回路から漏洩した際の室内空間における二酸化炭素の濃度レベルに応じて、安全対策を講じる必要がある。特に、ビル用マルチエアコンのような複数の利用ユニットを有する冷凍サイクル装置では、冷媒回路に封入される冷媒量が多く、複数の利用ユニットの1つで冷媒が漏洩した場合に、冷媒の漏洩が発生した利用ユニットに対応する室内空間に冷媒回路に封入されている冷媒がすべて漏洩するおそれがあるため、その傾向が顕著になる。
 このため、冷媒回路に封入される冷媒として二酸化炭素を使用する場合には、冷媒回路に封入される冷媒量を少なくすることが好ましい。
 第1の観点にかかる冷凍サイクル装置は、熱源ユニットと利用ユニットとがガス冷媒連絡管及び液冷媒連絡管を介して接続されることによって冷媒回路を構成する冷凍サイクル装置において、冷媒回路に封入される冷媒を二酸化炭素とし、ガス冷媒連絡管として、内径が6.2mm以下の管を使用し、及び/又は、液冷媒連絡管として、内径が3.6mm以下の管を使用している。
 これにより、ここでは、従来はガス冷媒連絡管及び/又は液冷媒連絡管として使用されていない内径の管を使用しているため、ガス冷媒連絡管及び/又は液冷媒連絡管の容積を小さくすることができ、冷媒回路に封入される冷媒量を少なくすることができる。
 第2の観点にかかる冷凍サイクル装置は、第1の観点にかかる冷凍サイクル装置において、定格冷凍能力が8.0kW以下の利用ユニットが接続される液冷媒連絡管として、1/4インチ未満の呼び径の銅管(質別が1/2H)を使用している。
 これにより、ここでは、従来は液冷媒連絡管として使用されていない呼び径の銅管を使用しているため、液冷媒連絡管として使用可能な銅管のサイズを増やすことができ、液冷媒連絡管の最適化に寄与できる。
 第3の観点にかかる冷凍サイクル装置は、第1の観点にかかる冷凍サイクル装置において、定格冷凍能力が8.0kW以下の利用ユニットが接続される液冷媒連絡管として、1.5/8インチの呼び径の銅管(質別が1/2H)を使用している。
 これにより、ここでは、従来は液冷媒連絡管として使用されていない呼び径の銅管を使用しているため、液冷媒連絡管として使用可能な銅管のサイズを増やすことができ、液冷媒連絡管の最適化に寄与できる。
 第4の観点にかかる冷凍サイクル装置は、第1~第3の観点のいずれかにかかる冷凍サイクル装置において、定格冷凍能力が4.5kW以下の利用ユニットが接続されるガス冷媒連絡管として、1/4インチよりも大きくかつ3/8インチ未満の呼び径の銅管(質別が1/2H)を使用している。
 これにより、ここでは、従来はガス冷媒連絡管として使用されていない呼び径の銅管を使用しているため、ガス冷媒連絡管として使用可能な銅管のサイズを増やすことができ、ガス冷媒連絡管の最適化に寄与できる。
 第5の観点にかかる冷凍サイクル装置は、第1~第3の観点のいずれかにかかる冷凍サイクル装置において、定格冷凍能力が4.5kW以下の利用ユニットが接続されるガス冷媒連絡管として、2.5/8インチの呼び径の銅管(質別が1/2H)を使用している。
 これにより、ここでは、従来はガス冷媒連絡管として使用されていない呼び径の銅管を使用しているため、ガス冷媒連絡管として使用可能な銅管のサイズを増やすことができ、ガス冷媒連絡管の最適化に寄与できる。
 第6の観点にかかる冷凍サイクル装置は、第1の観点にかかる冷凍サイクル装置において、定格冷凍能力が3.6kW以下の利用ユニットが接続される液冷媒連絡管として、1/4インチ未満の呼び径の銅管(質別がO)を使用している。
 これにより、従来は液冷媒連絡管として使用されていない呼び径の銅管を使用しているため、液冷媒連絡管として使用可能な銅管のサイズを増やすことができ、液冷媒連絡管の最適化に寄与できる。
 第7の観点にかかる冷凍サイクル装置は、第1の観点にかかる冷凍サイクル装置において、定格冷凍能力が3.6kW以下の利用ユニットが接続される液冷媒連絡管として、1.5/8インチの呼び径の銅管(質別がO)を使用している。
 これにより、ここでは、従来は液冷媒連絡管として使用されていない呼び径の銅管を使用しているため、液冷媒連絡管として使用可能な銅管のサイズを増やすことができ、液冷媒連絡管の最適化に寄与できる。
 第8の観点にかかる冷凍サイクル装置は、第1、第6、第7の観点のいずれかにかかる冷凍サイクル装置において、定格冷凍能力が2.8kW以下の利用ユニットが接続されるガス冷媒連絡管として、1/4インチよりも大きくかつ3/8インチ未満の呼び径の銅管(質別がO)を使用している。
 これにより、ここでは、従来はガス冷媒連絡管として使用されていない呼び径の銅管を使用しているため、ガス冷媒連絡管として使用可能な銅管のサイズを増やすことができ、ガス冷媒連絡管の最適化に寄与できる。
 第9の観点にかかる冷凍サイクル装置は、第1、第6、第7の観点のいずれかにかかる冷凍サイクル装置において、定格冷凍能力が2.8kW以下の利用ユニットが接続されるガス冷媒連絡管として、2.5/8インチの呼び径の銅管(質別がO)を使用している。
 これにより、ここでは、従来はガス冷媒連絡管として使用されていない呼び径の銅管を使用しているため、ガス冷媒連絡管として使用可能な銅管のサイズを増やすことができ、ガス冷媒連絡管の最適化に寄与できる。
 第10の観点にかかる冷凍サイクル装置は、第1~第9の観点のいずれかにかかる冷凍サイクル装置において、ガス冷媒連絡管及び液冷媒連絡管が、各外面が保温材によって被覆されかつ両管が束ねられたペア冷媒連絡管を構成している。
 ここでは、熱源ユニットと利用ユニットとを現地接続する際に、ペア冷媒連絡管を使用することができるため、施工性を向上できる。
 第11の観点にかかる冷凍サイクル装置は、第1~第10の観点のいずれかにかかる冷凍サイクル装置において、1/4インチ未満の呼び径の液冷媒連絡管として1.5/8インチの呼び径の管を使用する場合には、管端部が1/4インチの呼び径に拡大した異径部を有している。
 液冷媒連絡管が長くなる場合や枝分かれする場合には、管同士を接続するためのソケット管や分岐管等の管継手が必要となる。しかし、このような管継手として従来から使用されているものは、1/8インチ刻みの呼び径の管に対応しているが、0.5/8インチ刻みの呼び径の管には対応していない。
 そこで、ここでは、液冷媒連絡管として使用される1.5/8インチの呼び径の管の管端部を、1/4インチ(=2/8インチ)の呼び径に拡大した異径部を有するものとしている。
 これにより、ここでは、1/4インチ未満の呼び径の液冷媒連絡管として1.5/8インチの呼び径の管を使用する場合であっても、従来から使用されている1/8インチ刻みの呼び径の管に対応した管継手を使用することができるため、0.5/8インチ刻みの呼び径の管に対応する管継手を準備せずに済ませることが可能になり、施工性を向上できる。
 第12の観点にかかる冷凍サイクル装置は、第1~第11の観点のいずれかにかかる冷凍サイクル装置において、1/4インチよりも大きくかつ3/8インチ未満の呼び径のガス冷媒連絡管として2.5/8インチの呼び径の管を使用する場合には、管端部が3/8インチの呼び径に拡大した異径部を有している。
 ガス冷媒連絡管が長くなる場合や枝分かれする場合には、管同士を接続するためのソケット管や分岐管等の管継手が必要となる。しかし、このような管継手として従来から使用されているものは、1/8インチ刻みの呼び径の管に対応しているが、0.5/8インチ刻みの呼び径の管には対応していない。
 そこで、ここでは、ガス冷媒連絡管として使用される2.5/8インチの呼び径の管の管端部を、3/8インチの呼び径に拡大した異径部を有するものとしている。
 これにより、ここでは、1/4インチよりも大きくかつ3/8インチ未満の呼び径のガス冷媒連絡管として2.5/8インチの呼び径の管を使用する場合であっても、従来から使用されている1/8インチ刻みの呼び径の管に対応した管継手を使用することができるため、0.5/8インチ刻みの呼び径の管に対応する管継手を準備せずに済ませることが可能になり、施工性を向上できる。
本開示の一実施形態にかかる冷凍サイクル装置としての空気調和装置の概略構成図である。 冷媒としてR410A、R32又は二酸化炭素を使用した場合における定格冷凍能力と冷媒連絡管の管径との関係を示す表である。 図1の冷凍サイクル装置を構成する冷媒連絡管の説明図(熱源ユニット及び利用ユニットを構成する部品の図示を省略)である。 銅管の質別を1/2H又はOにした場合における定格冷凍能力と冷媒連絡管の管径との関係を示す表である。 ペア冷媒連絡管の要部を示す図である。 冷媒連絡管の管端部を示す図である。
 以下、冷凍サイクル装置について、図面に基づいて説明する。
 (1)構成
 <全体>
 図1は、本開示の一実施形態にかかる冷凍サイクル装置としての空気調和装置1の概略構成図である。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルによって、建物等の室内の冷房や暖房を行うことが可能な装置である。空気調和装置1は、主として、熱源ユニット2と、利用ユニット4a、4bと、熱源ユニット2と利用ユニット4a、4bとを接続するガス冷媒連絡管5及び液冷媒連絡管6と、を有している。すなわち、空気調和装置1の蒸気圧縮式の冷媒回路7は、熱源ユニット2と利用ユニット4a、4bとがガス冷媒連絡管5及び液冷媒連絡管6を介して接続されることによって構成されている。そして、冷媒回路7には、冷媒として二酸化炭素が封入されている。尚、冷媒として二酸化炭素を使用する場合には、冷凍サイクルの過程で冷媒が超臨界状態(ガス状態と液状態との区別が付かない状態)になる場合があるが、冷媒連絡管5、6を含む冷媒回路7を構成する部品の名称等については、冷凍サイクルの過程で超臨界状態にならない冷媒(R410AやR32等)を使用する場合と同様に、部品の名称等に「ガス」や「液」という文言を使用している。
 <利用ユニット>
 利用ユニット4a、4bは、室内等に設置されており、冷媒回路7の一部を構成している。利用ユニット4aは、主として、利用側膨張機構41aと、利用熱交換器42aと、を有している。利用ユニット4bは、主として、利用側膨張機構41bと、利用熱交換器42bと、を有している。ここで、利用ユニット4aと利用ユニット4bとは同様の構成であるため、ここでは、利用ユニット4aの構成のみを説明し、利用ユニット4bの構成については、それぞれ、利用ユニット4aの各部を示す添字「a」の代わりに添字「b」を付して、各部の説明を省略する。
 利用側膨張機構41aは、冷媒を減圧するための機構であり、ここでは、膨張弁が使用されている。利用側膨張機構41aは、その一端が利用側熱交換器42aに接続され、その他端が液冷媒連絡管6に接続されている。
 利用側熱交換器42aは、冷媒の蒸発器又は放熱器として機能する熱交換器である。利用熱交換器42aは、その一端が利用側膨張機構41aに接続され、その他端がガス冷媒連絡管5に接続されている。
 利用ユニット4aは、ユニット内に空気を吸入して室内に供給するための利用側ファン43aを有しており、これにより、空気と利用側熱交換器42aを流れる冷媒との熱交換が行われるようになっている。
 <熱源ユニット>
 熱源ユニット2は、室外等に設置されており、冷媒回路7の一部を構成している。熱源ユニット2は、主として、圧縮機21と、切換機構22と、熱源側熱交換器23と、熱源側膨張機構25と、過冷却熱交換器26と、吸入戻し管27と、液側閉鎖弁29と、ガス側閉鎖弁30と、アキュムレータ31と、を有している。
 圧縮機21は、冷媒を圧縮する機器である。また、圧縮機21の吸入側には、冷媒を一時的に溜めるアキュムレータ31が設けられている。
 切換機構22は、冷媒回路7内における冷媒の流れの方向を切り換えるための機構であり、ここでは、四路切換弁が使用されている。切換機構22は、冷房運転時には、熱源側熱交換器23を冷媒の放熱器として、かつ、利用側熱交換器42a、42bを冷媒の蒸発器として機能させるために、圧縮機21の吐出側と熱源側熱交換器23の一端とを接続するとともに圧縮機21の吸入側とガス側閉鎖弁30とを接続する(図1の切換機構22の実線を参照)。切換機構22は、暖房運転時には、利用側熱交換器42を冷媒の放熱器として、かつ、熱源側熱交換器23を冷媒の蒸発器として機能させるために、圧縮機21の吐出側とガス側閉鎖弁30とを接続するとともに圧縮機21の吸入側と熱源側熱交換器23の一端とを接続する(図1の切換機構22の破線を参照)。
 熱源側熱交換器23は、冷媒の放熱器又は蒸発器として機能する熱交換器である。熱源側熱交換器23は、その一端が切換機構22に接続されており、その他端が熱源側膨張機構25に接続されている。
 熱源ユニット2は、ユニット内に空気を吸入して室外に排出するための熱源側ファン24を有しており、これにより、空気と熱源側熱交換器23を流れる冷媒との熱交換が行われるようになっている。
 熱源側膨張機構25は、冷媒を減圧するための機構であり、ここでは、膨張弁が使用されている。熱源側膨張機構25は、その一端が熱源側熱交換器23に接続され、その他端が過冷却熱交換器26に接続されている。
 過冷却熱交換器26は、熱源側熱交換器23において放熱した冷媒をさらに冷却する熱交換器である。過冷却熱交換器26は、その一端が熱源側膨張機構25に接続されており、その他端が液側閉鎖弁29に接続されている。また、冷媒回路7には、熱源側熱交換器23の他端から熱源側膨張機構25及び過冷却熱交換器26を通じて液側閉鎖弁29までの間を流れる冷媒の一部を減圧した後に圧縮機21の吸入側に戻す吸入戻し管27が設けられている。ここで、吸入戻し管27は、熱源側膨張機構25と過冷却熱交換器26との間を流れる冷媒の一部を冷媒回路7から分岐させて圧縮機21の吸入側(より具体的には、切換機構22とアキュムレータ31との間)に戻すように、冷媒回路7に設けられている。吸入戻し管27には、冷媒を減圧するための吸入戻し膨張機構28が設けられている。ここでは、吸入戻し膨張機構28として、膨張弁が使用されている。これにより、熱源側熱交換器23において冷却された冷媒は、その一部が、吸入戻し管27によって圧縮機21の吸入側にバイパスされ、そして、その残りが、熱源側熱交換器26において、吸入戻し管27を流れる冷媒によって冷却されるようになっている。
 液側閉鎖弁28は、熱源ユニット2と利用ユニット4a、4bとの間で冷媒をやりとりするための液冷媒連絡管6が接続される弁であり、過冷却熱交換器26に接続されている。
 ガス側閉鎖弁30は、熱源ユニット2と利用ユニット4a、4bとの間で冷媒をやりとりするためのガス冷媒連絡管5が接続される弁であり、切換機構22に接続されている。
 <冷媒連絡管>
 冷媒連絡管5、6は、空気調和装置1を構成する際に、熱源ユニット2と利用ユニット4a、4bとを現地接続する冷媒管である。
 ガス冷媒連絡管5は、冷凍サイクルの圧縮過程、放熱過程、膨張過程及び蒸発過程を用いて説明すると、蒸発過程終了後から圧縮過程開始までの冷媒、又は、圧縮過程終了後で放熱過程開始までの冷媒、が流れる冷媒管である。ここで、ガス冷媒連絡管5は、熱源ユニット2のガス側閉鎖弁30と利用ユニット4a、4bの利用側熱交換器42a、42bの他端との間を接続している。ガス冷媒連絡管5は、主として、利用ユニット4aに接続されるガス冷媒連絡枝管52aと、利用ユニット4bに接続されるガス冷媒連絡枝管52bと、ガス冷媒連絡枝管52a、52bの合流部と熱源ユニット2との間を接続するガス冷媒連絡母管51と、を有している。
 液冷媒連絡管6は、冷凍サイクルの圧縮過程、放熱過程、膨張過程及び蒸発過程を用いて説明すると、放熱過程終了後から蒸発過程開始までの冷媒が流れる冷媒管である。ここで、液冷媒連絡管6は、熱源ユニット2の液側閉鎖弁29と利用ユニット4a、4bの利用側膨張機構41a、41bとの間を接続している。液冷媒連絡管6は、主として、利用ユニット4aに接続される液冷媒連絡枝管62aと、利用ユニット4bに接続される液冷媒連絡枝管62bと、液冷媒連絡枝管62a、62bの合流部と熱源ユニット2との間を接続する液冷媒連絡母管61と、を有している。
 (2)動作
 次に、空気調和装置1の動作について、図1を用いて説明する。尚、下記に説明する冷房運転及び暖房運転等の空気調和装置1の動作は、ここでは図示しないが、利用ユニット4a、4b及び熱源ユニット2に設けられる制御基板やリモコン等が通信接続されることによって構成される制御部によって行われる。
 <冷房運転>
 冷房運転時は、切換機構22が図1の実線で示される状態、すなわち、圧縮機21の吐出側が熱源側熱交換器23に接続され、かつ、圧縮機21の吸入側がガス側閉鎖弁30に接続された状態となっている。
 この冷媒回路7の状態において、冷凍サイクルにおける低圧の冷媒は、圧縮機21に吸入され、冷凍サイクルの高圧になるまで圧縮された後に、圧縮機21から吐出される。圧縮機21から吐出された高圧の冷媒は、切換機構22を経由して熱源側熱交換器23に送られて、熱源側ファン24によって供給される室外空気と熱交換を行って放熱する。熱源側熱交換器23において放熱した高圧の冷媒は、熱源側膨張機構25を経由して、過冷却熱交換器26に流入し、吸入戻し管27を流れる冷媒と熱交換を行って冷却される。このとき、熱源側熱交換器23において放熱した高圧の冷媒の一部は、吸入戻し管27に分岐され、吸入戻し膨張機構28によって減圧される。吸入戻し膨張機構28において減圧された冷媒は、過冷却熱交換器26において、冷媒回路7側を流れる高圧の冷媒と熱交換を行って加熱された後に、圧縮機21の吸入側(ここでは、切換機構22とアキュムレータ31との間)に戻される。
 そして、過冷却熱交換器26において冷却された高圧の冷媒は、液側閉鎖弁29及び液冷媒連絡管6を経由して、利用ユニット4a、4bに送られる。利用ユニット4a、4bに送られた高圧の冷媒は、利用側膨張機構41a、41bによって減圧されて低圧の気液二相状態の冷媒となる。利用側膨張機構41a、41bにおいて減圧された冷媒は、利用側熱交換器42a、42bに送られて、利用側熱交換器42a、42bにおいて、利用側ファン43a、43bによって供給される室内空気と熱交換を行って蒸発する。このとき、室内空気は、利用側熱交換器42a、42bにおいて冷媒と熱交換を行うことによって冷却されて室内に送られるため、これにより、室内の冷房が行われる。
 そして、利用側熱交換器42a、42bにおいて蒸発した低圧の冷媒は、ガス冷媒連絡管5を経由して、熱源ユニット2に送られる。熱源ユニット2に送られた低圧の冷媒は、ガス閉鎖弁30、切換機構22及びアキュムレータ31を経由して、吸入戻し管27から戻される冷媒とともに、再び、圧縮機21に吸入される。
 <暖房運転>
 暖房運転時は、切換機構22が図1の破線で示される状態、すなわち、圧縮機21の吐出側がガス側閉鎖弁30に接続され、かつ、圧縮機21の吸入側が熱源側熱交換器23に接続された状態となっている。
 この冷媒回路7の状態において、冷凍サイクルにおける低圧の冷媒は、圧縮機21に吸入され、冷凍サイクルの高圧になるまで圧縮された後に、圧縮機21から吐出される。圧縮機21から吐出された高圧の冷媒は、切換機構22、ガス側閉鎖弁30及びガス冷媒連絡管5を経由して、利用ユニット4a、4bに送られる。
 そして、利用ユニット4a、4bに送られた高圧の冷媒は、利用側熱交換器42a、42bにおいて、利用側ファン43a、43bによって供給される室内空気と熱交換を行って放熱する。このとき、室内空気は、利用側熱交換器42a、42bにおいて冷媒と熱交換を行うことによって加熱されて室内に送られるため、これにより、室内の暖房が行われる。利用側熱交換器42a、42bにおいて放熱した高圧の冷媒は、利用側膨張機構41a、41bによって減圧される。
 そして、利用側膨張機構41a、41bにおいて減圧された冷媒は、液冷媒連絡管6を経由して、熱源ユニット2に送られる。熱源ユニット2に送られた冷媒は、液側閉鎖弁29及び過冷却熱交換器26を経由して、熱源側膨張機構25に送られる。このとき、吸入戻し膨張機構28は閉止されているため、冷媒が吸入戻し管27に分岐されない。熱源側膨張機構25に送られた冷媒は、熱源側膨張機構25によってさらに減圧されて低圧の気液二相状態の冷媒となる。熱源側膨張機構25において減圧された冷媒は、熱源側熱交換器23に送られて、熱源側熱交換器23において、熱源側ファン24によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器23において蒸発した低圧の冷媒は、切換機構22及びアキュムレータ31を経由して、再び、圧縮機21に吸入される。
 (3)冷媒連絡管の管径の選定
 空気調和装置1では、冷媒連絡管5、6として、空気調和装置1の冷凍能力の条件や設置場所の条件等に応じて、種々の管径や長さを有するものが使用される。
 そして、ここでは、図2に示すように、冷媒連絡管5、6の管径を、熱源ユニット2に接続される利用ユニット4a、4bの定格冷凍能力に応じて選定するようにしている。ここで、「定格冷凍能力」とは、例えば、冷凍サイクル装置が空気調和装置1である場合には、製品カタログや取扱説明書に記載の利用ユニット4a、4bや熱源ユニット2の「定格冷房能力」や「呼称能力」と同等の値を意味する。
 また、図2に示される冷媒連絡管5、6の管径の値は、図3に示す管同士を接続するためのソケット管53a、63aや分岐管54a、64a等の管継手を除いた冷媒連絡管5、6(すなわち、冷媒連絡枝管52a、52b、62a、62bや冷媒連絡母管51、61)の管径を示している。また、ここでは、冷媒連絡管5、6の管材として、リン脱酸銅継目無銅管等の銅管(質別が1/2H)を使用する場合の管径の値を示している。ここで、「質別」とは、例えば、JIS H 3300に規定された銅管の調質の種類を意味しており、「質別が1/2H」とは、製造時に施される加工硬化処理によって得られる引張強さの程度を示している。また、ここでは、冷媒回路7に封入される冷媒として二酸化炭素を使用する場合とともに、比較例として、従来からよく使用されているR410Aや最近使用され始めたR32を使用する場合も示している。尚、図2においては、管径の値として、呼び径及び内径を示している。ここで、二酸化炭素を使用する場合については、冷凍サイクルにおける高圧を考慮して、冷媒連絡管5、6の設計圧力を12.3MPaに設定した場合の内径の値を示している。但し、二酸化炭素を使用する場合には、冷媒連絡管5、6の設計圧力を13.7MPaのような、いくらか高い圧力に設定することもあり、この場合には、管肉厚が大きくなることによって図2に示される内径よりも小さい内径になることもある。
 そして、図2によれば、定格冷凍能力が8.0kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として、1/4インチ(外径が6.35mm)未満の呼び径の銅管が使用される。具体的には、1/4インチ未満の呼び径の液冷媒連絡管6として、1.5/8インチの呼び径(外径が4.76mm)の銅管が使用される。ここで、1.5/8インチの呼び径の銅管は、内径が3.6mmであるため、液冷媒連絡管6として、内径が3.6mm以下の管が使用されることを意味する。尚、「定格冷凍能力が8.0kW以下の利用ユニットが接続される液冷媒連絡管6」とは、定格冷凍能力が8.0kW以下の利用ユニットが1つだけ接続される液冷媒連絡管6を意味するだけではない。図3の構成のように液冷媒連絡管6が枝分かれして複数の利用ユニット4a、4bが液冷媒連絡管6に接続されている場合には、定格冷凍能力が8.0kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6の枝分かれ部分(液冷媒連絡枝管62a、62b)や、複数の利用ユニット4a、4bの定格冷凍能力の合計が8.0kW以下になる液冷媒連絡管6の合流部分(液冷媒連絡母管61)も意味する。また、「液冷媒連絡管6として、1/4インチ未満(1.5/8インチ)の呼び径(内径が3.6mm以下)の銅管を使用」とは、1/4インチ未満(1.5/8インチ)の呼び径(内径が3.6mm以下)の銅管だけを使用する場合だけでなく、1/4インチ未満(1.5/8インチ)の呼び径(内径が3.6mm以下)の銅管及び1/4インチ以上(1.5/8インチよりも大きい)の呼び径(内径が3.6mmよりも大きい)の銅管を使用する場合も含まれる。
 また、図2によれば、定格冷凍能力が8.0kWより大きく、かつ、16.0kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として、1/4インチ(外径が6.35mm、内径が5.0mm)の呼び径の銅管が使用される。
 また、図2によれば、定格冷凍能力が16.0kWより大きく、かつ、28.0kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として、1/4インチ(外径が6.35mm)よりも大きくかつ3/8インチ(外径が9.52mm)未満の呼び径の銅管が使用される。具体的には、1/4インチよりも大きくかつ3/8インチ未満の呼び径の液冷媒連絡管6として、2.5/8インチ(外径が7.94mm、内径が6.2mm)の呼び径の銅管が使用される。
 また、図2によれば、定格冷凍能力が4.5kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として、1/4インチ(外径が6.35mm)よりも大きくかつ3/8インチ(外径が9.52mm)未満の呼び径の銅管が使用される。具体的には、1/4インチよりも大きくかつ3/8インチ未満の呼び径のガス冷媒連絡管5として、2.5/8インチの呼び径(外径が7.94mm)の呼び径の銅管が使用される。ここで、2.5/8インチの呼び径の銅管は、内径が6.2mm以下であるため、ガス冷媒連絡管5として、内径が6.2mm以下の管が使用されることを意味する。尚、「定格冷凍能力が4.5kW以下の利用ユニットが接続されるガス冷媒連絡管5」とは、定格冷凍能力が4.5kW以下の利用ユニットが1つだけ接続されるガス冷媒連絡管6を意味するだけではない。図3の構成のようにガス冷媒連絡管5が枝分かれして複数の利用ユニット4a、4bがガス冷媒連絡管5に接続されている場合には、定格冷凍能力が4.5kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5の枝分かれ部分(ガス冷媒連絡枝管52a、52b)や、複数の利用ユニット4a、4bの定格冷凍能力の合計が4.5kW以下になるガス冷媒連絡管5の合流部分(ガス冷媒連絡母管51)も意味する。また、「ガス冷媒連絡管5として、1/4インチよりも大きくかつ3/8インチ未満(2.5/8インチ)の呼び径(内径が6.2mm以下)の銅管を使用」とは、1/4インチよりも大きくかつ3/8インチ未満(2.5/8インチ)の呼び径(内径が6.2mm以下)の銅管だけを使用する場合だけでなく、1/4インチよりも大きくかつ3/8インチ未満(2.5/8インチ)の呼び径(内径が6.2mm以下)の銅管及び3/8インチ以上(2.5/8インチよりも大きい)の呼び径(内径が6.2mmよりも大きい)の銅管を使用する場合も含まれる。
 また、図2によれば、定格冷凍能力が4.5kWより大きく、かつ、8.0kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として、3/8インチ(外径が9.52mm、内径が7.4mm)の呼び径の銅管が使用される。
 また、図2によれば、定格冷凍能力が8.0kWより大きく、かつ、16.0kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として、1/2インチ(外径が12.70mm、内径が9.9mm)の呼び径の銅管が使用される。
 また、図2によれば、定格冷凍能力が16.0kWより大きく、かつ、28.0kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として、5/8インチ(外径が15.88mm、内径が12.3mm)の呼び径の銅管が使用される。
 また、図2によれば、二酸化炭素を使用する場合の冷媒連絡管5、6は、同等の定格冷凍能力において、R410AやR32のような従来の冷媒を使用する場合に比べて、小さめの管径が選定されるようになっていることがわかる。
 そして、図2に示す冷媒連絡管5、6の管径の表を用いると、冷媒連絡管5、6の管径を、以下のように選定することができる。
 例えば、利用ユニット4a、4bの定格冷凍能力が両方とも2.8kWである場合には、ガス冷媒連絡枝管52a、52bとして、2.5/8インチの呼び径の銅管を使用し、液冷媒連絡枝管62a、62bとして、1.5/8インチの呼び径の銅管を使用する。そして、利用ユニット4a、4bが合流した後においては、定格冷凍能力の合計が5.6kWになるため、ガス冷媒連絡母管51として、3/8インチの呼び径の銅管を使用し、液冷媒連絡母管61として、1.5/8インチの呼び径の銅管を使用する。
 また、例えば、利用ユニット4a、4bの定格冷凍能力が両方とも11.2kWである場合には、ガス冷媒連絡枝管52a、52bとして、1/2インチの呼び径の銅管を使用し、液冷媒連絡枝管62a、62bとして、1/4インチの呼び径の銅管を使用する。そして、利用ユニット4a、4bが合流した後においては、定格冷凍能力の合計が22.4kWになるため、ガス冷媒連絡母管51として、5/8インチの呼び径の銅管を使用し、液冷媒連絡母管61として、2.5/8インチの呼び径の銅管を使用する。
 また、例えば、利用ユニット4aの定格冷凍能力が2.2kWであり、利用ユニット4bの定格冷凍能力が9.0kWである場合には、ガス冷媒連絡枝管52aとして、2.5/8インチの呼び径の銅管を使用し、ガス冷媒連絡枝管52bとして、1/2インチの呼び径の銅管を使用し、液冷媒連絡枝管62aとして、1.5/8インチの呼び径の銅管を使用し、液冷媒連絡枝管62bとして、1/4インチの呼び径の銅管を使用する。そして、利用ユニット4a、4bが合流した後においては、定格冷凍能力の合計が11.2kWになるため、ガス冷媒連絡母管51として、1/2インチの呼び径の銅管を使用し、液冷媒連絡母管61として、1/4インチの呼び径の銅管を使用する。
 (4)特徴
 次に、空気調和装置1の特徴について説明する。
 <A>
 ここでは、上記のように、熱源ユニット2と利用ユニット4a、4bとがガス冷媒連絡管5及び液冷媒連絡管6を介して接続されることによって冷媒回路7を構成する空気調和装置1(冷凍サイクル装置)において、冷媒回路7に封入される冷媒を二酸化炭素とし、ガス冷媒連絡管5として、内径が6.2mm以下の管を使用し、及び/又は、液冷媒連絡管6として、内径が3.6mm以下の管を使用している(図2参照)。
 ここでは、従来の冷媒(R410AやR32等)に比べて単位体積当たりの冷凍能力が高い二酸化炭素を冷媒として使用しているため、冷媒回路7を循環する冷媒の流量(冷媒循環量)を減らすことができる。このため、ここでは、冷媒連絡管5、6内を流れる冷媒の流路抵抗が過大にならないようにしつつ、従来の冷媒で使用される管よりも内径が小さい管を冷媒連絡管5、6として使用することができる。
 具体的には、従来の冷媒では、流路抵抗を考慮して、内径が11.1mmよりも小さい管がガス冷媒連絡管として使用されることはなく、内径が4.7mmよりも小さい管が液冷媒連絡管として使用されることはない(図2参照)。これに対して、ここでは、上記のように、従来の冷媒では内径が小さすぎてガス冷媒連絡管として使用されない管(内径が6.2mm以下の管)をガス冷媒連絡管5として使用し、及び/又は、従来の冷媒では内径が小さすぎて液冷媒連絡管として使用されない管(内径が3.6mm以下の管)を液冷媒連絡管6として使用している。
 これにより、ここでは、ガス冷媒連絡管5及び/又は液冷媒連絡管6の容積を小さくすることができ、冷媒回路7に封入される冷媒量を少なくすることができる。
 <B>
 また、ここでは、上記のように、内径が3.6mm以下の液冷媒連絡管6として、1/4インチ(外径が6.35mm)未満の呼び径の銅管(質別が1/2H)を使用している(図2参照)。具体的には、ここでは、1.5/8インチの呼び径(外径が4.76mm)の銅管(質別が1/2H)を使用している(図2参照)。
 ここで、従来の冷媒(R410AやR32等)では、1/4インチ未満(ここでは、1.5/8インチ)の呼び径の銅管は、液冷媒連絡管として使用されていない(図2参照)。また、従来から使用されている冷媒用の銅管は、1/4(=2/8)インチ、3/8インチ、1/2(=4/8)インチ、5/8インチ、3/4(=6/8)インチのように、1/8インチ刻みの呼び径であり、0.5/8インチ刻みの呼び径は使用されていない。すなわち、ここでは、従来の冷媒では呼び径(外径)が小さすぎて液冷媒連絡管として使用されない内径が3.6mm以下で、かつ、従来は使用されていない1/4インチ(外径が6.35mm)未満(ここでは、1.5/8インチ)の呼び径の銅管(質別が1/2H)を、定格冷凍能力が8.0kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として使用している。
 これにより、ここでは、液冷媒連絡管6の容積を小さくすることができ、冷媒回路7に封入される冷媒量を少なくすることができる。しかも、ここでは、従来は液冷媒連絡管として使用されていない呼び径の銅管を使用しているため、液冷媒連絡管6として使用可能な銅管のサイズを増やすことができ、液冷媒連絡管6の最適化に寄与できる。
 <C>
 また、ここでは、上記のように、内径が6.2mm以下のガス冷媒連絡管5として、1/4インチ(外径が6.35mm)よりも大きくかつ3/8インチ(外径が9.52mm)未満の呼び径の銅管(質別が1/2H)を使用している(図2参照)。具体的には、ここでは、2.5/8インチの呼び径(外径が7.94mm)の銅管(質別が1/2H)を使用している(図2参照)。
 ここで、従来の冷媒(R410AやR32等)では、1/2インチ未満の呼び径の銅管は、ガス冷媒連絡管5として使用されていない(図2参照)。また、従来から使用されている冷媒用の銅管は、1/2(=4/8)インチ、5/8インチ、3/4(=6/8)インチ、7/8インチ、1(=8/8)インチのように、1/8インチ刻みの呼び径であり、0.5/8インチ刻みの呼び径は使用されていない。すなわち、ここでは、従来の冷媒では呼び径(外径)が小さすぎてガス冷媒連絡管として使用されない内径が6.2mm以下で、かつ、従来は使用されていない1/4インチ(外径が6.35mm)よりも大きくかつ3/8インチ(外径が9.52mm)未満(ここでは、2.5/8インチ)の呼び径の銅管(質別が1/2H)を、定格冷凍能力が4.5kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として使用している。
 これにより、ここでは、ガス冷媒連絡管5の容積を小さくすることができ、冷媒回路7に封入される冷媒量を少なくすることができる。しかも、ここでは、従来はガス冷媒連絡管として使用されていない呼び径の銅管を使用しているため、ガス冷媒連絡管5として使用可能な銅管のサイズを増やすことができ、ガス冷媒連絡管5の最適化に寄与できる。
 (5)変形例
 <A>
 上記実施形態では、冷媒連絡管5、6の管材として、リン脱酸銅継目無銅管等の銅管(質別が1/2H)を使用している(図2参照)。しかし、銅管の質別には、種々のものがあり、冷媒用の銅管として使用される質別としては、「1/2H」以外に、「1/2H」よりも引張強さが高くなるように加工硬化処理が施された「H」や、製造時に加工硬化処理が施されずに焼き鈍しされた状態(引張強さが低い)の「O」がある。
 そこで、ここでは、冷媒連絡管5、6の管材として、図4に示すように、質別がOの銅管を使用している。尚、図4においては、比較例として、質別が1/2Hの銅管を使用する場合も示している。
 そして、図4によれば、定格冷凍能力が3.6kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として、1/4インチ(外径が6.35mm)未満の呼び径の銅管が使用される。具体的には、1/4インチ未満の呼び径の液冷媒連絡管6として、1.5/8インチの呼び径(外径が4.7mm)の銅管が使用される。ここで、1.5/8インチの呼び径の銅管は、内径が2.8mmであるため、液冷媒連絡管6として、質別が1/2Hの場合と同様、内径が3.6mm以下の管が使用されることを意味する。
 また、図4によれば、定格冷凍能力が3.6kWより大きく、かつ、7.1kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として、1/4インチ(外径が6.35mm、内径が3.8mm)の呼び径の銅管が使用される。
 また、図4によれば、定格冷凍能力が7.1kWより大きく、かつ、14.0kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として、1/4インチ(外径が6.35mm)よりも大きくかつ3/8インチ(外径が9.52mm)未満の呼び径の銅管が使用される。具体的には、1/4インチよりも大きくかつ3/8インチ未満の呼び径の液冷媒連絡管6として、2.5/8インチ(外径が7.94mm、内径が4.8mm)の呼び径の銅管が使用される。
 また、図4によれば、定格冷凍能力が14.0kWより大きく、かつ、22.4kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として、3/8インチ(外径が9.52mm、内径が5.8mm)の呼び径の銅管が使用される。
 また、図4によれば、定格冷凍能力が22.4kWより大きく、かつ、28.0kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として、1/2インチ(外径が12.70mm、内径が7.7mm)の呼び径の銅管が使用される。
 また、図4によれば、定格冷凍能力が2.8kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として、1/4インチ(外径が6.35mm)よりも大きくかつ3/8インチ(外径が9.52mm)未満の呼び径の銅管が使用される。具体的には、1/4インチよりも大きくかつ3/8インチ未満の呼び径のガス冷媒連絡管5として、2.5/8インチの呼び径(外径が7.94mm)の呼び径の銅管が使用される。ここで、2.5/8インチの呼び径の銅管は、内径が4.8mm以下であるため、ガス冷媒連絡管5として、質別が1/2Hの場合と同様、内径が6.2mm以下の管が使用されることを意味する。
 また、図4によれば、定格冷凍能力が2.8kWより大きく、かつ、4.5kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として、3/8インチ(外径が9.52mm)の呼び径の銅管が使用される。ここで、3/8インチの呼び径の銅管は、内径が5.8mm以下であるため、ガス冷媒連絡管5として、質別が1/2Hの場合と同様、内径が6.2mm以下の管が使用されることを意味する。
 また、図4によれば、定格冷凍能力が4.5kWより大きく、かつ、9.0kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として、1/2インチ(外径が12.70mm、内径が7.7mm)の呼び径の銅管が使用される。
 また、図4によれば、定格冷凍能力が9.0kWより大きく、かつ、16.0kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として、5/8インチ(外径が15.88mm、内径が9.7mm)の呼び径の銅管が使用される。
 また、図4によれば、定格冷凍能力が16.0kWより大きく、かつ、28.0kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として、3/4インチ(外径が19.05mm、内径が11.7mm)の呼び径の銅管が使用される。
 また、図4によれば、質別がOの銅管を使用する場合のガス冷媒連絡管5、6の内径は、同等の定格冷凍能力において、質別が1/2Hの銅管を使用する場合と同等の内径が選定されるようになっていることがわかる。
 そして、図4に示す冷媒連絡管5、6の管径の表を用いると、質別がOの銅管を使用する場合の冷媒連絡管5、6の管径を、以下のように選定することができる。
 例えば、利用ユニット4a、4bの定格冷凍能力が両方とも2.8kWである場合には、ガス冷媒連絡枝管52a、52bとして、2.5/8インチの呼び径の銅管を使用し、液冷媒連絡枝管62a、62bとして、1.5/8インチの呼び径の銅管を使用する。そして、利用ユニット4a、4bが合流した後においては、定格冷凍能力の合計が5.6kWになるため、ガス冷媒連絡母管51として、1/2インチの呼び径の銅管を使用し、液冷媒連絡母管61として、1/4インチの呼び径の銅管を使用する。
 また、例えば、利用ユニット4a、4bの定格冷凍能力が両方とも11.2kWである場合には、ガス冷媒連絡枝管52a、52bとして、5/8インチの呼び径の銅管を使用し、液冷媒連絡枝管62a、62bとして、2.5/8インチの呼び径の銅管を使用する。そして、利用ユニット4a、4bが合流した後においては、定格冷凍能力の合計が22.4kWになるため、ガス冷媒連絡母管51として、3/4インチの呼び径の銅管を使用し、液冷媒連絡母管61として、3/8インチの呼び径の銅管を使用する。
 また、例えば、利用ユニット4aの定格冷凍能力が2.2kWであり、利用ユニット4bの定格冷凍能力が9.0kWである場合には、ガス冷媒連絡枝管52aとして、2.5/8インチの呼び径の銅管を使用し、ガス冷媒連絡枝管52bとして、1/2インチの呼び径の銅管を使用し、液冷媒連絡枝管62aとして、1.5/8インチの呼び径の銅管を使用し、液冷媒連絡枝管62bとして、2.5/8インチの呼び径の銅管を使用する。そして、利用ユニット4a、4bが合流した後においては、定格冷凍能力の合計が11.2kWになるため、ガス冷媒連絡母管51として、5/8インチの呼び径の銅管を使用し、液冷媒連絡母管61として、2.5/8インチの呼び径の銅管を使用する。
 ここでは、上記のように、熱源ユニット2と利用ユニット4a、4bとがガス冷媒連絡管5及び液冷媒連絡管6を介して接続されることによって冷媒回路7を構成する空気調和装置1(冷凍サイクル装置)において、質別が1/2Hの銅管を使用する場合と同様、冷媒回路7に封入される冷媒を二酸化炭素とし、ガス冷媒連絡管5として、内径が6.2mm以下の管を使用し、及び/又は、液冷媒連絡管6として、内径が3.6mm以下の管を使用している(図4参照)。
 これにより、ここでは、質別が1/2Hの銅管を使用する場合と同様、ガス冷媒連絡管5及び/又は液冷媒連絡管6の容積を小さくすることができ、冷媒回路7に封入される冷媒量を少なくすることができる。
 また、ここでは、上記のように、内径が3.6mm以下の液冷媒連絡管6として、質別が1/2Hの銅管を使用する場合と同様、1/4インチ(外径が6.35mm)未満の呼び径の銅管(質別がO)を使用している(図4参照)。具体的には、ここでは、1.5/8インチの呼び径(外径が4.76mm)の銅管(質別がO)を使用している(図4参照)。但し、質別が1/2Hの銅管を使用する場合とは異なり、この呼び径の銅管を、定格冷凍能力が3.6kW以下の利用ユニット4a、4bが接続される液冷媒連絡管6として使用している。
 これにより、ここでは、質別が1/2Hの銅管を使用する場合と同様、液冷媒連絡管6の容積を小さくすることができ、冷媒回路7に封入される冷媒量を少なくすることができる。しかも、ここでは、従来は液冷媒連絡管として使用されていない呼び径の銅管を使用しているため、液冷媒連絡管6として使用可能な銅管のサイズを増やすことができ、液冷媒連絡管6の最適化に寄与できる。また、ここでは、質別がOの銅管を液冷媒連絡管6として使用しているため、質別が1/2Hの銅管を使用する場合に比べて、曲げ加工等の取り扱いが容易であり、熱源ユニット2と利用ユニット4a、4bとを現地接続する際の施工性を向上できる。
 また、ここでは、上記のように、内径が6.2mm以下のガス冷媒連絡管5として、質別が1/2Hの銅管を使用する場合と同様、1/4インチ(外径が6.35mm)よりも大きくかつ3/8インチ(外径が9.52mm)未満の呼び径の銅管(質別がO)を使用している(図4参照)。具体的には、ここでは、2.5/8インチの呼び径(外径が7.94mm)の銅管(質別がO)を使用している(図4参照)。但し、質別が1/2Hの銅管を使用する場合とは異なり、この呼び径の銅管を、定格冷凍能力が2.8kW以下の利用ユニット4a、4bが接続されるガス冷媒連絡管5として使用している。
 これにより、ここでは、質別が1/2Hの銅管を使用する場合と同様、ガス冷媒連絡管5の容積を小さくすることができ、冷媒回路7に封入される冷媒量を少なくすることができる。しかも、ここでは、従来はガス冷媒連絡管として使用されていない呼び径の銅管を使用しているため、ガス冷媒連絡管5として使用可能な銅管のサイズを増やすことができ、ガス冷媒連絡管5の最適化に寄与できる。また、ここでは、質別がOの銅管をガス冷媒連絡管5として使用しているため、質別が1/2Hの銅管を使用する場合に比べて、曲げ加工等の取り扱いが容易であり、熱源ユニット2と利用ユニット4a、4bとを現地接続する際の施工性を向上できる。
 <B>
 上記実施形態及び変形例において、熱源ユニット2と利用ユニット4a、4bとを現地接続する際の施工性を向上させるために、図5に示すように、ガス冷媒連絡管5及び液冷媒連絡管6がペア冷媒連絡管8を構成してもよい。
 ここで、ペア冷媒連絡管8は、冷媒連絡管5、6の各外面が保温材9、10によって被覆されかつ両管5、6が束ねられた構造を有している。ここでは、冷媒連絡管5、6がそれぞれ2層構造の保温材9、10によって被覆されており、保温材9、10の外面間が結う着されることによって冷媒連絡管5、6が束ねられている。そして、このようなペア冷媒連絡管8を、定格冷凍能力毎に準備しておけばよい。例えば、図4の管径の表にしたがって、質別が1/2Hの銅管を冷媒連絡管5、6として使用する場合には、ガス冷媒連絡管5が2.5/8インチで、かつ、液冷媒連絡管6が1.5/8インチのペア冷媒連絡管8を定格冷凍能力が2.2~4.5kW用に準備する。また、ガス冷媒連絡管5が3/8インチで、かつ、液冷媒連絡管6が1.5/8インチのペア冷媒連絡管8を定格冷凍能力が5.6~8.0kW用に準備する。また、ガス冷媒連絡管5が1/2インチで、かつ、液冷媒連絡管6が1/4インチのペア冷媒連絡管8を定格冷凍能力が9.0~16.0kW用に準備する。また、ガス冷媒連絡管5が5/8インチで、かつ、液冷媒連絡管6が2.5/8インチのペア冷媒連絡管8を定格冷凍能力が22.4~28.0kW用に準備する。詳細は記載しないが、質別がOの銅管を冷媒連絡管5、6として使用する場合にも、質別が1/2Hの銅管を冷媒連絡管5、6として使用する場合と同様のペア冷媒連絡管8(但し、定格冷凍能力の適用範囲は異なる)を準備することができる。
 これにより、ここでは、熱源ユニット2と利用ユニット4a、4bとを現地接続する際に、上記のようなペア冷媒連絡管8を使用することができるため、施工性を向上できる。特に、ここでは、従来の冷媒(R410AやR32等)では使用されない0.5/8インチ刻みの呼び径(ここでは、1.5/8インチや2.5/8インチ)の管を使用することがあるため、このような呼び径の管を含むペア冷媒連絡管8を準備しておくことは、施工性の向上に非常に有用である。
 <C>
 上記実施形態及び変形例においては、冷媒連絡管5、6が長くなる場合や枝分かれする場合には、図3に示すように、管同士を接続するためのソケット管53a、63aや分岐管54a、64a等の管継手が必要となる。しかし、このような管継手として従来から使用されているものは、1/8インチ刻みの呼び径の管に対応しているが、1.5/8インチや2.5/8インチの呼び径の管(図4参照)のような0.5/8インチ刻みの呼び径の管には対応していない。
 そこで、ここでは、図6に示すように、1/4インチ未満の呼び径の液冷媒連絡管6として使用される1.5/8インチの呼び径の管の管端部を、1/4インチ(=2/8インチ)の呼び径に拡大した異径部6aを有するものとしている。また、図6に示すように、1/4インチよりも大きくかつ3/8インチ未満の呼び径のガス冷媒連絡管5及び液冷媒連絡管6として使用される2.5/8インチの呼び径の管の管端部を、3/8インチの呼び径に拡大した異径部5a、6aを有するものとしている。
 これにより、ここでは、1/4インチ未満の呼び径の液冷媒連絡管6として1.5/8インチの呼び径の管を使用する場合であっても、従来から使用されている1/8インチ刻みの呼び径の管に対応した管継手を使用することができる。すなわち、図3において、液冷媒連絡枝管62a、62bや液冷媒連絡母管61として、1.5/8インチの呼び径の管を使用する場合であっても、ソケット管63aや分岐管64aとして、1/4インチの呼び径の管に対応するものを使用することができる。このため、0.5/8インチ刻みの呼び径の管に対応する管継手を準備せずに済ませることが可能になり、施工性を向上できる。また、1/4インチよりも大きくかつ3/8インチ未満の呼び径のガス冷媒連絡管5及び液冷媒連絡管6として2.5/8インチの呼び径の管を使用する場合であっても、従来から使用されている1/8インチ刻みの呼び径の管に対応した管継手を使用することができる。すなわち、図3において、冷媒連絡枝管52a、52b、62a、62bや冷媒連絡母管51、61として、2.5/8インチの呼び径の管を使用する場合であっても、ソケット管53a、63aや分岐管54a、64aとして、3/8インチの呼び径の管に対応するものを使用することができる。このため、0.5/8インチ刻みの呼び径の管に対応する管継手を準備せずに済ませることが可能になり、施工性を向上できる。
 <D>
 上記実施形態及び変形例では、冷凍サイクル装置として、2つの利用ユニット4a、4bを有する冷暖房可能な空気調和装置1を例に挙げて説明を行ったが、冷凍サイクル装置はこれに限定されるものではない。例えば、冷凍サイクル装置が冷房専用の空気調和装置であってもよいし、利用ユニットが1つや3つ以上有する空気調和装置であってもよい。
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能であることが理解されるであろう。
 本開示は、熱源ユニットと利用ユニットとが冷媒連絡管を介して接続されることによって冷媒回路を構成しており、冷媒回路に封入される冷媒として二酸化炭素を使用する冷凍サイクル装置に対して、広く適用可能である。
 1     空気調和装置(冷凍サイクル装置)
 2     熱源ユニット
 4a、4b 利用ユニット
 5     ガス冷媒連絡管
 5a    異径部
 6     液冷媒連絡管
 6a    異径部
 7     冷媒回路
 8     ペア冷媒連絡管
国際公開第2011/099063号

Claims (12)

  1.  熱源ユニット(2)と利用ユニット(4a、4b)とがガス冷媒連絡管(5)及び液冷媒連絡管(6)を介して接続されることによって冷媒回路(7)を構成する冷凍サイクル装置において、
     前記冷媒回路に封入される冷媒を二酸化炭素とし、
     前記ガス冷媒連絡管として、内径が6.2mm以下の管を使用し、
     及び/又は、
     前記液冷媒連絡管として、内径が3.6mm以下の管を使用している、
    冷凍サイクル装置(1)。
  2.  定格冷凍能力が8.0kW以下の前記利用ユニットが接続される前記液冷媒連絡管として、1/4インチ未満の呼び径の銅管(質別が1/2H)を使用している、
    請求項1に記載の冷凍サイクル装置。
  3.  定格冷凍能力が8.0kW以下の前記利用ユニットが接続される前記液冷媒連絡管として、1.5/8インチの呼び径の銅管(質別が1/2H)を使用している、
    請求項1に記載の冷凍サイクル装置。
  4.  定格冷凍能力が4.5kW以下の前記利用ユニットが接続される前記ガス冷媒連絡管として、1/4インチよりも大きくかつ3/8インチ未満の呼び径の銅管(質別が1/2H)を使用している、
    請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  5.  定格冷凍能力が4.5kW以下の前記利用ユニットが接続される前記ガス冷媒連絡管として、2.5/8インチの呼び径の銅管(質別が1/2H)を使用している、
    請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  6.  定格冷凍能力が3.6kW以下の前記利用ユニットが接続される前記液冷媒連絡管として、1/4インチ未満の呼び径の銅管(質別がO)を使用している、
    請求項1に記載の冷凍サイクル装置。
  7.  定格冷凍能力が3.6kW以下の前記利用ユニットが接続される前記液冷媒連絡管として、1.5/8インチの呼び径の銅管(質別がO)を使用している、
    請求項1に記載の冷凍サイクル装置。
  8.  定格冷凍能力が2.8kW以下の前記利用ユニットが接続される前記ガス冷媒連絡管として、1/4インチよりも大きくかつ3/8インチ未満の呼び径の銅管(質別がO)を使用している、
    請求項1、6、7のいずれか1項に記載の冷凍サイクル装置。
  9.  定格冷凍能力が2.8kW以下の前記利用ユニットが接続される前記ガス冷媒連絡管として、2.5/8インチの呼び径の銅管(質別がO)を使用している、
    請求項1、6、7のいずれか1項に記載の冷凍サイクル装置。
  10.  前記ガス冷媒連絡管及び前記液冷媒連絡管は、各外面が保温材によって被覆されかつ両管が束ねられたペア冷媒連絡管(8)を構成している、
    請求項1~9のいずれか1項に記載の冷凍サイクル装置。
  11.  1/4インチ未満の呼び径の前記液冷媒連絡管として1.5/8インチの呼び径の管を使用する場合には、管端部が1/4インチの呼び径に拡大した異径部(6a)を有している、
    請求項1~10のいずれか1項に記載の冷凍サイクル装置。
  12.  1/4インチよりも大きくかつ3/8インチ未満の呼び径の前記ガス冷媒連絡管として2.5/8インチの呼び径の管を使用する場合には、管端部が3/8インチの呼び径に拡大した異径部(5a)を有している、
    請求項1~11のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2019/025058 2018-06-25 2019-06-25 冷凍サイクル装置 WO2020004360A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19825963.2A EP3816544A4 (en) 2018-06-25 2019-06-25 REFRIGERATION CIRCUIT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-119779 2018-06-25
JP2018119779A JP2020003086A (ja) 2018-06-25 2018-06-25 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020004360A1 true WO2020004360A1 (ja) 2020-01-02

Family

ID=68987072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025058 WO2020004360A1 (ja) 2018-06-25 2019-06-25 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3816544A4 (ja)
JP (1) JP2020003086A (ja)
WO (1) WO2020004360A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220235982A1 (en) * 2019-08-07 2022-07-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156714U (ja) * 1986-03-27 1987-10-05
JPH11257689A (ja) * 1998-03-09 1999-09-21 Yuji Kamimura 家庭用セパレート型エアコンの冷媒配管の施工方法並びに該施工方法に用いる部材及びその支持具
JP2000105027A (ja) * 1998-09-25 2000-04-11 Matsushita Electric Ind Co Ltd 空気調和装置の施工方法
JP2003139422A (ja) * 2001-10-31 2003-05-14 Daikin Ind Ltd 冷凍機
JP2008032275A (ja) * 2006-07-27 2008-02-14 Daikin Ind Ltd 空気調和装置
JP2011027346A (ja) * 2009-07-27 2011-02-10 Iwasaki Kogyo:Kk クロスフィンチューブ式熱交換器
WO2011099063A1 (ja) 2010-02-10 2011-08-18 三菱電機株式会社 空気調和装置
WO2015140827A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 ヒートポンプ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698842A3 (en) * 1999-03-02 2009-12-09 Daikin Industries, Ltd. Refrigerating apparatus
JP2008096082A (ja) * 2006-10-16 2008-04-24 Mitsubishi Electric Corp 冷凍サイクルの配管継手構造、圧縮機及び冷凍装置
JP5536817B2 (ja) * 2012-03-26 2014-07-02 日立アプライアンス株式会社 冷凍サイクル装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156714U (ja) * 1986-03-27 1987-10-05
JPH11257689A (ja) * 1998-03-09 1999-09-21 Yuji Kamimura 家庭用セパレート型エアコンの冷媒配管の施工方法並びに該施工方法に用いる部材及びその支持具
JP2000105027A (ja) * 1998-09-25 2000-04-11 Matsushita Electric Ind Co Ltd 空気調和装置の施工方法
JP2003139422A (ja) * 2001-10-31 2003-05-14 Daikin Ind Ltd 冷凍機
JP2008032275A (ja) * 2006-07-27 2008-02-14 Daikin Ind Ltd 空気調和装置
JP2011027346A (ja) * 2009-07-27 2011-02-10 Iwasaki Kogyo:Kk クロスフィンチューブ式熱交換器
WO2011099063A1 (ja) 2010-02-10 2011-08-18 三菱電機株式会社 空気調和装置
WO2015140827A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 ヒートポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816544A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220235982A1 (en) * 2019-08-07 2022-07-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2020003086A (ja) 2020-01-09
EP3816544A1 (en) 2021-05-05
EP3816544A4 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP5188572B2 (ja) 空気調和装置
US10605498B2 (en) Heat pump apparatus
JP5709978B2 (ja) 空気調和装置
US8156752B2 (en) Air conditioning system
JP5328933B2 (ja) 空気調和装置
US10126026B2 (en) Refrigeration cycle apparatus
WO2020004108A1 (ja) 空気調和システム
WO2015133036A1 (ja) 空気調和装置
US20150075199A1 (en) Air-Conditioning/Hot-Water Supply System
US11906191B2 (en) Air-conditioning apparatus
KR20170074917A (ko) 공기 조화 장치
JPWO2018138770A1 (ja) 熱源側ユニット、及び、冷凍サイクル装置
JP2008032275A (ja) 空気調和装置
JP2005114253A (ja) 空気調和装置
JP6576603B1 (ja) 空気調和装置
WO2020004360A1 (ja) 冷凍サイクル装置
WO2016157481A1 (ja) 空気調和装置
WO2018101439A1 (ja) 配管径の決定方法、配管径の決定装置、および冷凍装置
JP2008096082A (ja) 冷凍サイクルの配管継手構造、圧縮機及び冷凍装置
JP6417775B2 (ja) 冷凍装置
JP6925508B2 (ja) 熱交換器、冷凍サイクル装置および空気調和装置
CN209279290U (zh) 一种空调器
JP2004170048A (ja) 空気調和装置
CN109253501A (zh) 一种空调器
JP7197815B1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019825963

Country of ref document: EP

Effective date: 20210125