WO2018101439A1 - 配管径の決定方法、配管径の決定装置、および冷凍装置 - Google Patents

配管径の決定方法、配管径の決定装置、および冷凍装置 Download PDF

Info

Publication number
WO2018101439A1
WO2018101439A1 PCT/JP2017/043173 JP2017043173W WO2018101439A1 WO 2018101439 A1 WO2018101439 A1 WO 2018101439A1 JP 2017043173 W JP2017043173 W JP 2017043173W WO 2018101439 A1 WO2018101439 A1 WO 2018101439A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
side refrigerant
pipe diameter
communication pipe
refrigerant communication
Prior art date
Application number
PCT/JP2017/043173
Other languages
English (en)
French (fr)
Inventor
山田 拓郎
中川 裕介
雅裕 本田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP17875459.4A priority Critical patent/EP3550215A4/en
Priority to KR1020197018155A priority patent/KR102091098B1/ko
Priority to JP2018554265A priority patent/JP6680366B2/ja
Priority to CN201780073966.XA priority patent/CN110023684B/zh
Priority to BR112019010854-8A priority patent/BR112019010854B1/pt
Priority to AU2017369485A priority patent/AU2017369485B2/en
Priority to US16/465,483 priority patent/US11105620B2/en
Publication of WO2018101439A1 publication Critical patent/WO2018101439A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a pipe diameter determining method, a pipe diameter determining apparatus, and a refrigeration apparatus.
  • an outdoor unit and an indoor unit are connected by a refrigerant communication pipe, and a refrigeration apparatus capable of cooling operation and heating operation is used.
  • Such a refrigeration apparatus in which the amount of refrigerant existing in the refrigerant communication pipe changes between the cooling operation and the heating operation is installed in various environments. For example, it may be installed in a cold district with a large heating load, a warm region with a large cooling load, or a building with a poor heat insulation function.
  • Each construction site has a cooling load and a heating load to be processed according to each environment, and the outdoor unit and the indoor unit of the refrigeration apparatus handle both the cooling load and the heating load. It is required to select those that have the ability. When the refrigeration apparatus is selected in this way, various refrigeration apparatuses having various cooling capabilities and various heating capabilities are generated.
  • the pipe diameter determining method is a pipe diameter determining method for the liquid side refrigerant communication pipe in the refrigeration apparatus.
  • the refrigeration apparatus includes an outdoor unit having a compressor and an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, a liquid side refrigerant communication pipe and a gas side refrigerant communication pipe that connect the outdoor unit and the indoor unit, It is possible to perform cooling operation and heating operation.
  • the pipe diameter of the liquid side refrigerant communication pipe is determined based on the outdoor unit to be installed and the cooling capacity and heating capacity of the indoor unit.
  • the refrigeration apparatus for example, an apparatus that can handle a cooling load and a heating load determined according to the environment of the place where the refrigeration apparatus is installed is appropriately selected and installed.
  • the pipe diameter of the liquid side refrigerant communication pipe is determined based on the cooling capacity and heating capacity of the outdoor unit to be installed and the indoor unit. For this reason, the pipe diameter of the liquid side refrigerant communication pipe can be made smaller than when the pipe diameter of the liquid side refrigerant communication pipe is uniformly determined regardless of the cooling capacity and the heating capacity.
  • the pipe diameter determination method according to the second aspect is a pipe diameter determination method according to the first aspect, grasping the cooling load and heating load at the place where the refrigeration apparatus is installed, and cooling capacity and heating of the refrigeration apparatus
  • the pipe diameter of the liquid side refrigerant communication pipe is determined using the relationship between the capacity and the cooling load and the heating load.
  • the method of determining the cooling load and the heating load in the place where the refrigeration apparatus is installed is not particularly limited.
  • the weather data of the area where the refrigeration apparatus is installed, the building where the refrigeration apparatus is installed In consideration of at least one of heat insulation performance (grade rank, etc.), heat load due to internal heat generation, etc., it can be determined using a method well known to those skilled in the art described in an air conditioning handbook or the like.
  • the pipe diameter of the liquid side refrigerant communication pipe is not particularly limited.
  • the refrigeration is performed based on the pipe diameter of the liquid side refrigerant communication pipe determined in advance according to the cooling capacity and heating capacity of the refrigeration apparatus.
  • the pipe diameter of the liquid-side refrigerant communication pipe may be determined by correcting the pipe diameter serving as the reference using the relationship between the cooling capacity and heating capacity of the apparatus, the cooling load, and the heating load.
  • the ratio of the heating capacity to the cooling capacity provided in the refrigeration apparatus is not particularly limited.
  • the cooling capacity: heating capacity 1.0: 1.0 to 1.2.
  • this pipe diameter determination method when determining the pipe diameter of the liquid side refrigerant communication pipe, there is a relationship between the cooling capacity and heating capacity of the refrigeration system and the cooling load and heating load at the place where the refrigeration system is installed. Used.
  • the cooling load and the heating load at the place where the refrigeration apparatus is installed are not necessarily completely corresponding to the cooling capacity and the heating capacity of the selected refrigeration apparatus, and are different from each other.
  • the capacity and / or heating capacity may exceed the cooling load and / or heating load required to be processed.
  • the pipe diameter determination method is a pipe diameter determination method according to the second aspect, in which the outdoor unit passes through the outdoor heat exchanger during cooling operation and is sent to the liquid side refrigerant communication pipe It has a cooling part which cools. Then, the smaller the value indicating the ratio of the heating load to the cooling load, or the larger the value obtained by subtracting the heating load from the heating capacity, the smaller the liquid-side refrigerant communication pipe diameter is. Determine the pipe diameter of the connecting pipe.
  • the value indicating the ratio of the heating load to the cooling load is not particularly limited.
  • it is a cooling / heating ratio (heating load / cooling load) which is a value obtained by dividing the heating load by the cooling load. There may be.
  • the cooling unit puts the refrigerant that passes through the outdoor heat exchanger and is sent to the liquid-side refrigerant communication pipe during the cooling operation into a predetermined supercooled state.
  • the pipe diameter of the liquid refrigerant communication pipe of this refrigeration apparatus can suppress the pressure loss during the heating operation to an allowable pressure loss rather than suppressing the pressure loss during the cooling operation to a small value.
  • the pipe diameter can be determined.
  • the value indicating the ratio of the heating load to the cooling load at the place where the refrigeration apparatus is installed is small or when the value obtained by subtracting the heating load from the heating capacity is large, the refrigerant flowing through the liquid refrigerant communication pipe during the heating operation The pressure loss is not so large.
  • the pipe diameter determination method according to the fourth aspect is a pipe diameter determination method according to the third aspect, wherein the smaller the value indicating the ratio of the heating load to the cooling load, or the heating load is subtracted from the heating capacity.
  • the pipe diameter of the liquid side refrigerant communication pipe is determined so that the pipe diameter of the liquid side refrigerant communication pipe decreases stepwise as the obtained value increases.
  • a pipe diameter determining method is a pipe diameter determining method according to any of the second to fourth aspects, wherein the liquid side refrigerant communication pipe passes through an outdoor heat exchanger and is indoors A refrigerant that is directed to the heat exchanger and is in a liquid single-phase state is supplied.
  • the refrigerant flowing through the inlet of the liquid side refrigerant communication pipe during the cooling operation may be in a liquid single phase state.
  • the refrigerant passing through the outdoor heat exchanger and going to the indoor heat exchanger is discharged from the compressor in the state of the refrigerant circuit capable of performing the cooling operation, and passes through the outdoor heat exchanger to exchange the indoor heat. It means the refrigerant going to the vessel.
  • the pipe diameter of the liquid-side refrigerant communication pipe is determined so that becomes smaller. For this reason, since the filling amount of the refrigerant in the high density liquid single phase state can be reduced, it is possible to further enhance the effect of reducing the amount of the refrigerant filled in the refrigeration apparatus.
  • the pipe diameter determining method according to the sixth aspect is a pipe diameter determining method according to any of the first to fifth aspects, and the refrigeration apparatus is filled with a slightly flammable refrigerant.
  • the slightly flammable refrigerant is not particularly limited, and examples thereof include a refrigerant such as R32.
  • the amount of the slightly flammable refrigerant filled in the refrigeration apparatus can be reduced, so that it is possible to minimize the risk of leakage of the slightly flammable refrigerant. Become.
  • the pipe diameter determining apparatus is a pipe diameter determining apparatus for the liquid side refrigerant communication pipe in the refrigeration apparatus, and includes a grasping section, a pipe diameter determining section, and an output section.
  • the refrigeration apparatus includes an outdoor unit having a compressor and an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, a liquid side refrigerant communication pipe and a gas side refrigerant communication pipe that connect the outdoor unit and the indoor unit. I have.
  • the grasping unit grasps information about the outdoor unit to be installed and the cooling capability and heating capability of the indoor unit.
  • the pipe diameter determining unit determines the pipe diameter of the liquid side refrigerant communication pipe based on the information grasped by the grasping unit.
  • the output unit outputs the pipe diameter of the liquid side refrigerant communication pipe determined by the pipe diameter determining unit.
  • the refrigeration apparatus for example, an apparatus that can handle a cooling load and a heating load determined according to the environment of the place where the refrigeration apparatus is installed is appropriately selected and installed.
  • the processing unit determines the pipe diameter of the liquid side refrigerant communication pipe based on the information about the cooling capacity and the heating capacity of the outdoor unit to be installed and the indoor unit, which is grasped by the grasping part. decide. Further, the output unit outputs the pipe diameter of the liquid side refrigerant communication pipe determined by the processing unit. For this reason, it is possible to automatically grasp a smaller pipe diameter than when the pipe diameter of the liquid side refrigerant communication pipe is uniformly determined regardless of the cooling capacity and the heating capacity.
  • the pipe diameter determining apparatus is a pipe diameter determining apparatus according to the seventh aspect, and the grip portion further grasps information on the cooling load and the heating load at the place where the refrigeration apparatus is installed.
  • the pipe diameter determining unit determines the pipe diameter of the liquid side refrigerant communication pipe using the relationship between the cooling capacity and heating capacity of the refrigeration apparatus, and the cooling load and heating load.
  • the method of determining the cooling load and the heating load in the place where the refrigeration apparatus is installed is not particularly limited.
  • the weather data of the area where the refrigeration apparatus is installed, the building where the refrigeration apparatus is installed In consideration of at least one of heat insulation performance (grade rank, etc.), heat load due to internal heat generation, etc., it can be determined using a method well known to those skilled in the art described in an air conditioning handbook or the like.
  • the pipe diameter of the liquid side refrigerant communication pipe is not particularly limited.
  • the refrigeration is performed based on the pipe diameter of the liquid side refrigerant communication pipe determined in advance according to the cooling capacity and heating capacity of the refrigeration apparatus.
  • the pipe diameter of the liquid-side refrigerant communication pipe may be determined by correcting the pipe diameter serving as the reference using the relationship between the cooling capacity and heating capacity of the apparatus, the cooling load, and the heating load.
  • the ratio of the heating capacity to the cooling capacity provided in the refrigeration apparatus is not particularly limited.
  • the cooling capacity: heating capacity 1.0: 1.0 to 1.2.
  • this pipe diameter determining device when determining the pipe diameter of the liquid side refrigerant communication pipe, there is a relationship between the cooling capacity and heating capacity of the refrigeration apparatus and the cooling load and heating load at the place where the refrigeration apparatus is installed. Used.
  • the cooling load and the heating load at the place where the refrigeration apparatus is installed are not necessarily completely corresponding to the cooling capacity and the heating capacity of the selected refrigeration apparatus, and are different from each other.
  • the capacity and / or heating capacity may exceed the cooling load and / or heating load required to be processed.
  • the pipe diameter determining unit of the pipe diameter determining apparatus determines whether the liquid-side refrigerant communication pipe is in accordance with an excess of the cooling capacity and / or heating capacity of the refrigeration apparatus with respect to the cooling load and / or heating load to be processed.
  • a refrigeration apparatus includes an outdoor unit having a compressor and an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, a liquid-side refrigerant communication pipe and a gas-side refrigerant that connect the outdoor unit and the indoor unit.
  • a communication pipe and a pipe diameter determining device according to the seventh or eighth aspect.
  • this refrigeration apparatus is provided with a pipe diameter determining device, it is possible to grasp the pipe diameter of the liquid side refrigerant communication pipe when constructing the refrigeration apparatus.
  • FIG. 1 is an overall configuration diagram of a refrigeration apparatus in which a pipe diameter determination method according to an embodiment is used.
  • the block block diagram of the control system of the freezing apparatus which concerns on a modification (C).
  • FIG. 1 is a schematic configuration diagram of the refrigeration device 1.
  • the refrigeration apparatus 1 is an apparatus used for cooling and heating a room such as a building by performing a vapor compression refrigeration cycle operation.
  • the refrigeration apparatus 1 mainly includes an outdoor unit 2, an indoor unit 4 (first indoor unit 4a and second indoor unit 4b), a liquid side refrigerant communication pipe 5 and a gas side that connect the outdoor unit 2 and the indoor unit 4. And a refrigerant communication pipe 6. That is, the vapor compression refrigerant circuit 10 of the refrigeration apparatus 1 is configured by connecting the outdoor unit 2, the indoor unit 4, the liquid side refrigerant communication pipe 5 and the gas side refrigerant communication pipe 6.
  • the refrigerant circuit 10 of the present embodiment is filled with R32 as a refrigerant.
  • the indoor unit 4 is installed by being embedded in a ceiling of a room such as a building or hanging, or by being hung on a wall surface of a room.
  • the indoor unit 4 is connected to the outdoor unit 2 via the liquid side refrigerant communication pipe 5 and the gas side refrigerant communication pipe 6 and constitutes a part of the refrigerant circuit 10 as a main circuit.
  • a plurality of indoor units 4 are connected in parallel to each other in the refrigerant circuit 10.
  • the first indoor unit 4a and the second indoor unit 4b are connected in parallel to each other in the refrigerant circuit 10, and the branch pipes included in the liquid side refrigerant communication pipe 5 and the gas side refrigerant communication pipe 6 are respectively first. It is connected to the 1 indoor unit 4a side and the 2nd indoor unit 4b side.
  • the first indoor unit 4a mainly has a first indoor-side refrigerant circuit 10a that constitutes a part of the refrigerant circuit 10 as a main circuit.
  • the first indoor-side refrigerant circuit 10a mainly includes a first indoor expansion valve 44a and a first indoor heat exchanger 41a.
  • the first indoor expansion valve 44a is constituted by an electronic expansion valve, and is disposed on the liquid side of the first indoor heat exchanger 41a.
  • the first indoor heat exchanger 41a is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. This is a heat exchanger that functions as a refrigerant radiator or condenser during heating operation to warm indoor air.
  • the first indoor unit 4a has a first indoor fan 42a for sucking indoor air into the unit and exchanging heat with the refrigerant in the first indoor heat exchanger 41a and then supplying the indoor air as supply air.
  • the first indoor fan 42a is a centrifugal fan, a multiblade fan, or the like, and has a first indoor fan motor 43a for driving.
  • the 1st indoor unit 4a is provided with the 1st indoor gas side refrigerant
  • the first indoor unit 4a is provided with a first indoor liquid side refrigerant temperature sensor 49a that detects the temperature of the refrigerant flowing between the liquid side of the first indoor heat exchanger 41a and the first indoor expansion valve 44a. Yes.
  • the first indoor unit 4a includes a first indoor control unit 46a that controls the operation of each unit constituting the first indoor unit 4a.
  • the first indoor control unit 46a includes a microcomputer, a memory, and the like provided for controlling the first indoor unit 4a, and a remote controller for individually operating the first indoor unit 4a (see FIG. It is possible to exchange control signals and the like with the outdoor unit 2 via the transmission line 7a.
  • the configuration of the second indoor unit 4b includes a second indoor side refrigerant circuit 10b having a second indoor expansion valve 44b and a second indoor heat exchanger 41b, a second indoor fan 42b having a second indoor fan motor 43b, Since it has the 2nd indoor gas side refrigerant
  • the outdoor unit 2 is installed outside a building or the like, and is connected to the indoor unit 4 via the liquid side refrigerant communication pipe 5 and the gas side refrigerant communication pipe 6.
  • the refrigerant circuit 10 is configured between the two.
  • the outdoor unit 2 has an outdoor refrigerant circuit 10 c that constitutes a part of the refrigerant circuit 10.
  • the outdoor refrigerant circuit 10c mainly includes a compressor 21, an outdoor heat exchanger 22, a supercooling circuit 11, a supercooling heat exchanger 12 (corresponding to a cooling unit), an outdoor expansion valve 28, and an accumulator 29. And a four-way switching valve 27, a liquid side closing valve 24, and a gas side closing valve 25.
  • the compressor 21 is a positive displacement compressor driven by a compressor motor 21a.
  • the compressor motor 21a is driven by being supplied with electric power through an inverter device (not shown), and the operating capacity is changed by changing the frequency (that is, the rotation speed). It is possible.
  • the outdoor heat exchanger 22 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant radiator or condenser during cooling operation. It is a heat exchanger that sometimes functions as a refrigerant evaporator.
  • the outdoor heat exchanger 22 has a gas side connected to the compressor 21 and a liquid side connected to the outdoor expansion valve 28 via the supercooling heat exchanger 12.
  • the outdoor unit 2 has an outdoor fan 26 as an air blowing unit for sucking outdoor air into the unit and exchanging heat with the refrigerant in the outdoor heat exchanger 22 and then discharging the air to the outside.
  • the outdoor fan 26 is a fan capable of changing the air volume of outdoor air as a heat source supplied to the outdoor heat exchanger 22, and is driven by an outdoor fan motor 26a including a DC fan motor in this embodiment. Propeller fans.
  • the outdoor fan motor 26a is driven by being supplied with electric power through an inverter device (not shown).
  • the supercooling circuit 11 is a circuit branched from between the outdoor heat exchanger 22 and the supercooling heat exchanger 12 and joined between the four-way switching valve 27 and the accumulator 29.
  • the supercooling circuit 11 is provided with a supercooling expansion valve 13 that depressurizes the refrigerant flowing upstream of the supercooling heat exchanger 12.
  • the supercooling circuit 11 can increase the degree of supercooling of the refrigerant from the outdoor heat exchanger 22 toward the outdoor expansion valve 28.
  • the outdoor expansion valve 28 is provided between the outdoor heat exchanger 22 and the supercooling heat exchanger 12 in order to adjust the flow rate of the refrigerant flowing in the outdoor refrigerant circuit 10c.
  • the outdoor expansion valve 28 in the refrigerant circuit 10 is provided between the outdoor heat exchanger 22 and the branch position of the supercooling circuit 11.
  • the accumulator 29 is provided on the suction side of the compressor 21 between the four-way switching valve 27 and the compressor 21, and can separate the liquid state refrigerant and the gaseous state refrigerant.
  • the four-way switching valve 27 is connected in a cooling operation connection state in which the downstream side of the accumulator 29 and the gas side shutoff valve 25 are connected while the discharge side of the compressor 21 and the outdoor heat exchanger 22 are connected by switching the connection state.
  • the heating operation connection state in which the downstream side of the accumulator 29 and the outdoor heat exchanger 22 are connected while the discharge side of the compressor 21 and the gas side shut-off valve 25 are connected can be switched.
  • the liquid side shut-off valve 24 and the gas side shut-off valve 25 are valves provided at connection ports with external devices and pipes (specifically, the liquid side refrigerant communication pipe 5 and the gas side refrigerant communication pipe 6).
  • the liquid side closing valve 24 is connected to the outdoor expansion valve 28 on the side opposite to the outdoor heat exchanger 22 side via a pipe.
  • the gas side closing valve 25 is connected to one of the connection ports of the four-way switching valve 27 via a pipe.
  • the outdoor unit 2 is provided with various sensors. Specifically, the outdoor unit 2 detects a suction pressure sensor 32 that detects the suction pressure of the compressor 21, a discharge pressure sensor 33 that detects the discharge pressure of the compressor 21, and a suction temperature of the compressor 21. An intake temperature sensor 34, a discharge temperature sensor 35 that detects the discharge temperature of the compressor 21, and an outdoor heat exchange liquid side temperature that detects a refrigerant temperature (outdoor heat exchange outlet temperature) at the liquid side end of the outdoor heat exchanger 22.
  • a suction pressure sensor 32 that detects the suction pressure of the compressor 21
  • a discharge pressure sensor 33 that detects the discharge pressure of the compressor 21, and a suction temperature of the compressor 21.
  • An intake temperature sensor 34, a discharge temperature sensor 35 that detects the discharge temperature of the compressor 21, and an outdoor heat exchange liquid side temperature that detects a refrigerant temperature (outdoor heat exchange outlet temperature) at the liquid side end of the outdoor heat exchanger 22.
  • liquid pipe temperature sensor 38 that detects the temperature of the refrigerant flowing through the outdoor liquid refrigerant pipe 23 that connects the outdoor expansion valve 28 and the liquid side shut-off valve 24, and the outside air temperature as a temperature detector that detects the outside air temperature Sensor 39 is provided.
  • the outdoor unit 2 has an outdoor control unit 31 that controls the operation of each unit constituting the outdoor unit 2.
  • the outdoor control unit 31 includes a microcomputer provided for controlling the outdoor unit 2, a memory, a compressor motor 21a, an outdoor fan motor 26a, an inverter circuit for controlling the outdoor expansion valve 28, and the like.
  • control signals and the like can be exchanged with the first indoor control unit 46a of the first indoor unit 4a and the second indoor control unit 46b of the second indoor unit 4b via the transmission line 7a. It has become. That is, the control part 7 which performs operation control of the whole freezing apparatus 1 is comprised by the transmission line 7a which connects between the 1st indoor control part 46a, the 2nd indoor control part 46b, and the outdoor control part 31.
  • the control unit 7 is connected so as to be able to receive detection signals of various sensors 32 to 39, 45a, 45b, 49a, 49b, and various kinds of signals based on these detection signals and the like.
  • Equipment, four-way switching valve 27, compressor 21, outdoor fan 26, outdoor expansion valve 28, supercooling expansion valve 13, first indoor expansion valve 44a, first indoor fan 42a, second indoor expansion valve 44b, second indoor The fan 42b is connected so that it can be controlled.
  • FIG. 2 is a control block diagram of the refrigeration apparatus 1.
  • the control unit 7 receives various setting inputs from the user, is connected to a controller 30 that monitors, manages, or controls the refrigeration apparatus 1 and has a memory (not shown).
  • the liquid-side refrigerant communication pipe 5 and the gas-side refrigerant communication pipe 6 are refrigerant pipes that are installed on site when the refrigeration apparatus 1 is installed in a building or the like. Those having various lengths and pipe diameters are used according to the installation conditions such as the location and the combination of the outdoor unit and the indoor unit.
  • the first indoor side refrigerant circuit 10a, the second indoor side refrigerant circuit 10b, the outdoor refrigerant circuit 10c, the liquid side refrigerant communication pipe 5 and the gas side refrigerant communication pipe 6 are connected, that is, compressed.
  • Machine 21, outdoor heat exchanger 22, outdoor expansion valve 28, liquid side refrigerant communication pipe 5, indoor expansion valve 44, indoor heat exchanger 41, and gas side refrigerant communication pipe 6 are sequentially connected.
  • the refrigerant circuit 10 of the refrigeration apparatus 1 is configured.
  • the liquid side refrigerant communication pipe 5 has a main liquid side refrigerant communication pipe 50, a first indoor liquid side branch pipe 51, and a second indoor liquid side branch pipe 52.
  • the main liquid side refrigerant communication pipe 50 extends so as to connect the liquid side shut-off valve 24 of the outdoor unit 2 and the branch point X.
  • the first indoor liquid side branch pipe 51 extends so as to connect the branch point X and the first indoor unit 4a (the outlet on the side where the first indoor expansion valve 44a of the first indoor unit 4a is provided).
  • the second indoor liquid side branch pipe 52 extends so as to connect the branch point X and the second indoor unit 4b (the outlet on the side where the second indoor expansion valve 44b of the second indoor unit 4b is provided). .
  • the gas side refrigerant communication pipe 6 has a main gas side refrigerant communication pipe 60, a first indoor gas side branch pipe 61, and a second indoor gas side branch pipe 62.
  • the main gas side refrigerant communication pipe 60 extends so as to connect the gas side closing valve 25 of the outdoor unit 2 and the branch point Y.
  • the first indoor gas side branch pipe 61 extends so as to connect the branch point Y and the first indoor unit 4a (the outlet on the side where the first indoor heat exchanger 41a of the first indoor unit 4a is provided). Yes.
  • the second indoor gas side branch pipe 62 extends so as to connect the branch point Y and the second indoor unit 4b (the outlet on the side where the second indoor heat exchanger 41b of the second indoor unit 4b is provided). Yes.
  • the four-way switching valve 27 is set so that the discharge side of the compressor 21 is on the outdoor heat exchanger 22 side and the suction side of the compressor 21 is on the indoor heat exchangers 41a and 41b side. This is performed in a state in which the connection state is switched.
  • the frequency of the compressor 21 is controlled by the control unit 7 so as to be the target low pressure so that the cooling load in each predetermined indoor unit can be processed.
  • the low-pressure refrigerant sucked into the compressor 21 is discharged from the compressor 21 to become a high-pressure refrigerant, and flows into the outdoor heat exchanger 22 through the four-way switching valve 27.
  • the refrigerant flowing into the outdoor heat exchanger 22 dissipates the heat of the refrigerant and condenses.
  • the refrigerant that has flowed from the outdoor heat exchanger 22 toward the outdoor expansion valve 28 passes through the outdoor expansion valve 28 that is controlled to be fully opened by the control unit 7 during the cooling operation, and flows into the supercooling heat exchanger 12.
  • the refrigerant flowing into the supercooling heat exchanger 12 exchanges heat with the refrigerant flowing in the supercooling circuit 11 in the supercooling heat exchanger 12 (the refrigerant decompressed in the supercooling expansion valve 13), thereby increasing the degree of supercooling. It becomes a liquid single-phase refrigerant and flows toward the liquid-side closing valve 24.
  • the refrigerant sufficiently cooled in the supercooling heat exchanger 12 can be sent to the indoor units 4a and 4b, it becomes easier to handle the cooling load without increasing the circulation amount, and the density is increased by cooling. Since the liquid refrigerant can be sent efficiently, it is also possible to reduce the pressure loss by suppressing the amount of refrigerant passing through the liquid side refrigerant communication pipe 5 to be small.
  • the valve opening degree of the supercooling expansion valve 13 is controlled so that the supercooling degree of the refrigerant flowing through the supercooling heat exchanger 12 and flowing toward the liquid side closing valve 24 becomes the target supercooling degree.
  • the opening degree is controlled by the unit 7.
  • the control unit is configured so that the degree of supercooling obtained by subtracting the saturation temperature corresponding to the pressure grasped from the discharge pressure sensor 33 from the temperature grasped by the liquid pipe temperature sensor 38 becomes the target supercooling degree. 7 controls the valve opening degree of the supercooling expansion valve 13.
  • the refrigerant that has passed through the supercooling heat exchanger 12 becomes a liquid single-phase refrigerant with a sufficient degree of supercooling.
  • the refrigerant that has passed through the supercooling heat exchanger 12 passes through the outdoor liquid refrigerant pipe 23 and the liquid side shut-off valve 24 and is sent to the liquid side refrigerant communication pipe 5.
  • the refrigerant flowing through the liquid side refrigerant communication pipe 5 is sent to the indoor units 4a and 4b.
  • coolant communication pipe 5 receives changes with the length of the liquid side refrigerant
  • the refrigerant passing through the main liquid side refrigerant communication pipe 50 of the liquid side refrigerant communication pipe 5 and flowing to the branch point X branches and flows into the first indoor unit 4a via the first indoor liquid side branch pipe 51. Then, it flows into the second indoor unit 4b through the second indoor liquid side branch pipe 52.
  • the refrigerant flowing into the first indoor unit 4a is depressurized at the first indoor expansion valve 44a until it reaches the low pressure of the refrigeration cycle, and the refrigerant flowing into the second indoor unit 4b is similarly refrigerated in the second indoor expansion valve 44b. The pressure is reduced until the low pressure is reached.
  • the valve opening degree of the first indoor expansion valve 44a is controlled by the control unit 7 so that the superheat degree of the refrigerant on the outlet side of the first indoor heat exchanger 41a becomes a predetermined target superheat degree. May be.
  • the control unit 7 subtracts the saturation temperature of the refrigerant obtained by converting the detection pressure of the suction pressure sensor 32 from the detection temperature of the first indoor gas-side refrigerant temperature sensor 45a, whereby the first indoor heat exchanger. You may obtain
  • the refrigerant decompressed by the first indoor expansion valve 44a of the first indoor unit 4a evaporates in the first indoor heat exchanger 41a, flows toward the first indoor gas side branch pipe 61, and flows into the second indoor unit 4b.
  • the refrigerant decompressed by the two indoor expansion valve 44 b evaporates in the second indoor heat exchanger 41 b and flows toward the second indoor gas side branch pipe 62.
  • the refrigerant evaporated in the first indoor heat exchanger 41a and the second indoor heat exchanger 41b is the main gas in the first indoor gas side branch pipe 61, the second indoor gas side branch pipe 62, and the gas side refrigerant communication pipe 6.
  • the gas After merging at the branch point Y where the side refrigerant communication pipe 60 is connected and flowing through the main gas side refrigerant communication pipe 60, the gas passes through the gas side shut-off valve 25, the four-way switching valve 27, and the accumulator 29 of the outdoor unit 2. It is sucked into the compressor 21 again. In addition, between the four-way switching valve 27 and the accumulator 29, the refrigerant that has flowed through the above-described supercooling circuit 11 joins.
  • Heating Operation Heating operation is performed by changing the four-way switching valve 27 so that the discharge side of the compressor 21 is on the indoor heat exchangers 41a and 41b side and the suction side of the compressor 21 is on the outdoor heat exchanger 22 side. This is performed in a state in which the connection state is switched.
  • the frequency of the compressor 21 is controlled by the control unit 7 so as to be a target high pressure so that a heating load in each predetermined indoor unit can be processed.
  • the high-pressure refrigerant discharged from the compressor 21 flows toward the indoor units 4a and 4b via the four-way switching valve 27 and the gas-side refrigerant communication pipe 6.
  • the refrigerant flowing into the first indoor unit 4a dissipates heat and condenses in the first indoor heat exchanger 41a.
  • the refrigerant flowing into the second indoor unit 4b dissipates heat and condenses in the second indoor heat exchanger 41b.
  • the valve openings of the first indoor expansion valve 44a and the second indoor expansion valve 44b are controlled by the control unit 7 during the heating operation, and the outlet of the first indoor heat exchanger 41a and the second indoor heat. You may control so that the supercooling degree of the refrigerant
  • the temperature detected by the first indoor liquid side refrigerant temperature sensor 49a and the second indoor liquid side refrigerant temperature sensor 49b is obtained from the saturation temperature corresponding to the refrigerant pressure detected by the discharge pressure sensor 33.
  • the controller 7 can control the valve openings of the first indoor expansion valve 44a and the second indoor expansion valve 44b so that the value becomes a predetermined value.
  • the opening degree control of the first indoor expansion valve 44a and the second indoor expansion valve 44b by the control unit 7 is performed such that, for example, liquid refrigerant is supplied to the inlet of the liquid side refrigerant communication pipe 5.
  • Control may be performed so that the liquid refrigerant passes through the inlet of the liquid side refrigerant communication pipe 5 while the gas-liquid two-phase refrigerant after pressure loss passes through the outlet. Also good.
  • the refrigerant that has condensed, passed through the second indoor expansion valve 44 b, and further flowed through the second indoor liquid side branch pipe 52 joins at the branch point X, and communicates with the main liquid side refrigerant in the liquid side refrigerant communication pipe 5. It is sent to the pipe 50.
  • the refrigerant that has passed through the first indoor heat exchanger 41a and the refrigerant that has passed through the second indoor heat exchanger 41b are not particularly cooled (without increasing the density of the refrigerant) to the liquid-side refrigerant communication pipe 5. Supplied.
  • the refrigerant that has flowed through the main liquid side refrigerant communication pipe 50 of the liquid side refrigerant communication pipe 5 is supplied to the outdoor unit 2 through the liquid side shut-off valve 24.
  • the refrigerant that has passed through the liquid-side closing valve 24, passed through the outdoor liquid refrigerant pipe 23, and passed through the supercooling heat exchanger 12 is decompressed to the low pressure of the refrigeration cycle in the outdoor expansion valve 28.
  • the valve opening degree of the outdoor expansion valve 28 is controlled by the control unit 7 so that the superheat degree of the refrigerant sucked into the compressor 21 becomes the target superheat degree.
  • the control unit 7 subtracts the saturation temperature of the refrigerant obtained by conversion using the detection pressure of the suction pressure sensor 32 from the detection temperature of the suction temperature sensor 34, thereby overheating the refrigerant sucked by the compressor 21. You may ask for the degree.
  • the refrigerant sent to the outdoor heat exchanger 22 evaporates and is sucked again into the compressor 21 via the four-way switching valve 27 and the accumulator 29.
  • the method for specifying the cooling load or the heating load is not particularly limited, and a known method can be used.
  • the cooling load and the heating load specified from a predetermined relationship based on the climate characteristics of the area where the refrigeration apparatus 1 is installed, and the cooling load specified from a predetermined relationship based on the heat insulation performance of the building to be constructed And the heating load can be specified respectively.
  • the combination of the outdoor unit 2 and the indoor units 4a and 4b having the cooling rated capacity capable of processing the cooling load at the place where the refrigeration apparatus 1 is installed and the heating rated capacity capable of processing the heating load is determined.
  • the cooling rated capacity and the heating rated capacity of the refrigeration apparatus 1 including the outdoor unit 2 and the indoor units 4a and 4b are determined.
  • the value of the cooling rated capacity and the heating rated capacity is a value determined by a known method according to a standard or the like, and a value described in a catalog may be used.
  • the refrigeration apparatus 1 applies the pipe length of the main liquid side refrigerant communication pipe 50 constituting the liquid side refrigerant communication pipe 5 and the pipe length of the main gas side refrigerant communication pipe 60 constituting the gas side refrigerant communication pipe 6. It is determined according to the property.
  • the pipe diameters of the first indoor liquid side branch pipe 51 and the second indoor liquid side branch pipe 52 and the pipe diameters (inner diameters) of the first indoor gas side branch pipe 61 and the second indoor gas side branch pipe 62 are connected. It is determined according to the capacity of the indoor unit and the length of each branch pipe.
  • the pipe diameter (inner diameter) of the main gas side refrigerant communication pipe 60 uses the refrigerating capacity of the refrigerating apparatus 1 determined as described above (the refrigerating capacity of the outdoor unit 2 that the refrigerating apparatus 1 has).
  • the refrigeration apparatus 1 has one indoor unit 4
  • the refrigeration capacity of the indoor unit 4 may be used, and the refrigeration apparatus 1 may include a plurality of indoor units 4 (first In the case of having one indoor unit 4a and second indoor unit 4b), the total of the refrigeration capacities of the indoor unit 4 may be used.)
  • the pipe diameter is determined in advance.
  • the larger the refrigerating capacity the larger the pipe diameter of the main gas side refrigerant communication pipe 60 and the longer the main gas side refrigerant communication pipe 60 is, the longer the main gas side refrigerant communication pipe 60 is.
  • Correspondence relations of pipe diameters for each refrigeration capacity and length are determined in advance so that the diameter is increased, and the pipe diameter of the main gas side refrigerant communication pipe 60 is determined based on this correspondence relation.
  • the pipe diameter of the main gas side refrigerant communication pipe 60 determined in this way is uniformly determined regardless of the relationship between the heating load and the cooling load at the installation position of the refrigeration apparatus 1. .
  • the refrigeration capacity of the refrigeration apparatus 1 determined as described above (the refrigeration capacity of the outdoor unit 2 that the refrigeration apparatus 1 has) is used.
  • the refrigeration apparatus 1 may include a plurality of indoor units 4 (first If the first indoor unit 4a and the second indoor unit 4b) are provided, the total of the refrigeration capacities of the indoor units 4 may be used.)
  • the length of the main liquid side refrigerant communication pipe 50 it is provisionally determined to be a predetermined pipe diameter.
  • the larger the refrigeration capacity the larger the pipe diameter of the main liquid side refrigerant communication pipe 50 and the longer the main liquid side refrigerant communication pipe 50, the longer the main liquid side refrigerant communication pipe 50.
  • Correspondence relations of pipe diameters for each refrigeration capacity and length are determined in advance so that the diameter increases, and based on this correspondence relation, a pipe diameter serving as a reference for the main liquid side refrigerant communication pipe 50 is provisionally determined. It is done.
  • the tentatively determined pipe diameter serving as a reference for the main liquid side refrigerant communication pipe 50 is a value obtained from the cooling load and the heating load at the place where the refrigeration apparatus 1 is constructed obtained in the above (3), and heating.
  • the cooling / heating ratio which is a value obtained by dividing the load by the cooling load, is smaller, the pipe diameter is smaller than the reference pipe diameter of the main liquid side refrigerant communication pipe 50.
  • the pipe diameter thus corrected is determined as the final pipe diameter of the main liquid side refrigerant communication pipe 50.
  • the degree of “correcting the standard pipe diameter to be smaller as the cooling / heating ratio is smaller” varies depending on the refrigeration capacity of the installed refrigeration apparatus 1. That is, when the cooling / heating ratio in the environment where the refrigeration apparatus 1 is constructed is the same, the correspondence is determined so that the degree of correction of the reference pipe diameter is different depending on the refrigeration capacity of the refrigeration apparatus 1. It is preferable that More specifically, when the cooling / heating ratio in the environment where the refrigeration apparatus 1 is constructed is about the same, the greater the refrigeration capacity of the refrigeration apparatus 1, the greater the degree of correction of the reference pipe diameter. It is preferable that the correspondence is determined as described above.
  • the fact that the pipe diameter of the main liquid side refrigerant communication pipe 50 is different according to the cooling / heating ratio as described above may be posted in the installation manual of the refrigeration apparatus 1, for example.
  • coolant communication pipe 50 is It is determined in advance so that the pipe diameter of the main liquid side refrigerant communication pipe 50 can be made as small as possible. That is, in the heating operation performed so as to process the heating load, the main liquid side refrigerant communication is realized such that a pressure loss smaller than the pressure loss allowed when the liquid refrigerant is allowed to flow through the main liquid side refrigerant communication pipe 50 is realized. The lower limit of the pipe diameter of the pipe 50 is determined.
  • the pressure loss allowed when the liquid refrigerant flows through the main liquid side refrigerant communication pipe 50 is, for example, the refrigeration capacity of the outdoor unit 2 constituting the refrigeration apparatus 1, the refrigeration capacity of the first indoor unit 4a, and the second indoor unit. 4b refrigeration capacity, cooling / heating ratio of the place where the refrigeration apparatus 1 is installed, length of the longest part of the liquid side refrigerant communication pipe 5 (from the liquid side shut-off valve 24 to the inlet of the furthest indoor unit), liquid side refrigerant communication You may make it obtain
  • the refrigerating capacity of the outdoor unit 2 the refrigerating capacity of the first indoor unit 4a, the refrigerating capacity of the second indoor unit 4b is large, and the cooling / heating ratio of the place where the refrigerating apparatus 1 is installed is also large, the refrigerant Since the flow rate of the refrigerant flowing through the circuit 10 tends to increase, the pressure loss when the liquid refrigerant flows through the main liquid side refrigerant communication pipe 50 tends to be a large value.
  • the cooling / heating ratio determined from the heating load and the cooling load and the extent to which the reference pipe diameter is corrected to be small are preferably determined in advance as a list. That is, a list in which the “pipe diameter reduction correction rate serving as a reference for the main liquid side refrigerant communication pipe 50” determined stepwise for each of a plurality of ranges of the “cooling / heating ratio” is stored It may be prepared for each type. Moreover, you may make it publish the list defined by such a method in the installation manual of the freezing apparatus 1, for example.
  • a predetermined amount of refrigerant is charged in advance without the liquid side refrigerant communication pipe 5, the gas side refrigerant communication pipe 6, the first indoor unit 4a, the second indoor unit 4b, and the like being connected. If it is, the refrigerant amount in the outdoor unit 2 may be subtracted from the determined refrigerant amount, and the refrigerant circuit 10 may be additionally charged with the refrigerant.
  • the refrigeration apparatus 1 including the outdoor unit 2 and the indoor unit 4 having a refrigeration capacity capable of processing both the local cooling load and the heating load to be constructed.
  • the refrigeration capacity of the refrigeration apparatus 1 and the length of the main liquid side refrigerant communication pipe 50 are not determined uniformly. Accordingly, the pipe diameter serving as a reference for the main liquid side refrigerant communication pipe 50 is provisionally set so that the smaller the value of the cooling / heating ratio (heating load / cooling load), the smaller the pipe diameter used as the provisionally determined reference is corrected.
  • the pipe diameter of the main liquid side refrigerant communication pipe 50 is determined. Thereby, it is possible to reduce the amount of refrigerant charged in the refrigeration apparatus 1 while keeping the pressure loss of the refrigerant passing through the main liquid side refrigerant communication pipe 50 within an allowable range.
  • the refrigerant that passes through the outdoor heat exchanger 22 and is sent to the liquid-side refrigerant communication pipe 5 during the cooling operation is subcooled heat. It is cooled by the exchanger 12 and becomes a high-density refrigerant.
  • the refrigerant directed to the liquid side refrigerant communication pipe 5 after radiating heat in the first indoor heat exchanger 41a and the second indoor heat exchanger 41b is cooled by the supercooling heat exchanger 12 during the cooling operation. There is no cooling corresponding to the process.
  • the pipe diameter determining method of the present embodiment paying attention to the above relationship, the smaller the value of the cooling / heating ratio (heating load / cooling load) in the environment where the refrigeration apparatus 1 is constructed, the pipe of the main liquid side refrigerant communication pipe 50 is.
  • the diameter By reducing the diameter, it is possible to obtain the effect of reducing the amount of refrigerant charged in the refrigeration apparatus 1 while keeping the pressure loss of the refrigerant flowing through the main liquid side refrigerant communication pipe 50 during the heating operation within an allowable range. It has become.
  • the refrigerant flowing through the main liquid side refrigerant communication pipe 50 is a cooled high-density liquid refrigerant during the cooling operation.
  • the pressure loss can be suppressed smaller than that in the heating operation in which the refrigerant in the two-phase state tends to flow, and the cooling capacity is not insufficient.
  • the pipe diameter determining apparatus 100 is for executing the pipe diameter determining method of the above-described embodiment using a computer and automatically grasping the refrigerant amount, and has been described in the pipe diameter determining method.
  • the refrigeration apparatus 1 is used as a target.
  • the pipe diameter determining apparatus 100 includes a receiving unit 110, a pipe diameter determining unit 120, and an output unit 130 as shown in the block configuration diagram of FIG.
  • the receiving unit 110 includes the refrigeration capacity of the refrigeration apparatus 1 installed locally, the number of indoor units (the number of branch pipes), the length of the liquid side refrigerant communication pipe 5 (the length of the main liquid side refrigerant communication pipe 50, The length of the one indoor liquid side branch pipe 51, the length of the second indoor liquid side branch pipe 52), the length of the gas side refrigerant communication pipe 6 (the length of the main gas side refrigerant communication pipe 60), and the first indoor gas side Various information such as the length of the branch pipe 61 and the length of the second indoor gas-side branch pipe 62) is received by an input from the installer. Moreover, the reception part 110 receives the information of the cooling rated capacity and the heating rated capacity of the refrigeration apparatus 1 by an input from the installer. The receiving unit 110 may further receive information on the cooling load and the heating load at a place where the refrigeration apparatus 1 is installed. In the present embodiment, the accepting unit 110 accepts input from a user using a screen such as a touch panel described later.
  • the pipe diameter determining unit 120 determines the pipe diameter of the main liquid side refrigerant communication pipe 50 of the liquid side refrigerant communication pipe 5 used in the refrigerant circuit 10 of the refrigeration apparatus 1 based on various information received by the reception unit 110.
  • the pipe diameter determining unit 120 includes a processing unit 121 configured to include a CPU that performs various types of information processing, and a storage unit 122 configured to include a ROM and a RAM.
  • the processing unit 121 determines a pipe diameter serving as a reference of the main liquid side refrigerant communication pipe 50 according to the refrigerating capacity of the refrigeration apparatus 1 received by the reception unit 110 and the length of the main liquid side refrigerant communication pipe 50.
  • the output unit 130 displays and outputs the pipe diameter determined by the pipe diameter determining unit 120. Specifically, the value of the pipe diameter of the main liquid side refrigerant communication pipe 50 is displayed and output on a screen such as a touch panel.
  • the second indoor liquid side branch pipe 52 increases so that the length of the first indoor liquid side branch pipe 51 increases as the length of the main liquid side refrigerant communication pipe 50 increases so that the length decreases.
  • a predetermined relational expression or list data is stored in the storage unit 122 in advance so that the number of indoor units increases. May be determined based on the relational expression or list data stored in advance in the storage unit 122 and the information received in the receiving unit 110.
  • a pipe diameter determining unit 120 and an output unit 130 having a receiving unit 110, a processing unit 121, and a storage unit 122a having a configuration corresponding to the pipe diameter determining device 100 described above are provided.
  • the controller 30 of the refrigeration apparatus 1 of the above embodiment may be provided.
  • the value indicating the ratio of the heating load to the cooling load in the environment where the refrigeration apparatus 1 is installed is not limited to the cooling / heating ratio.
  • the refrigeration apparatus 1 is installed based on the heating capacity value of the refrigeration apparatus 1.
  • the heating excess value obtained by subtracting the value of the heating load in the environment to be calculated may be calculated, and the pipe diameter of the main liquid side refrigerant communication pipe 50 may be corrected to be smaller as the heating excess value is larger.
  • the pipe diameter serving as a reference for the temporarily determined main gas side refrigerant communication pipe 60 The final pipe diameter of the main gas side refrigerant communication pipe 60 may be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

充填される冷媒を低減化させることが可能な冷凍装置の配管径の決定方法、配管径の決定装置、および冷凍装置を提供する。冷房運転と暖房運転を実行可能な冷凍装置(1)における液側冷媒連絡配管(5)の配管径の決定方法であって、据え付けられる室外ユニット(2)と室内ユニット(4a、4b)が備える冷房能力および暖房能力に基づいて、液側冷媒連絡配管(5)の配管径を決定する。

Description

配管径の決定方法、配管径の決定装置、および冷凍装置
 本開示は、配管径の決定方法、配管径の決定装置、および冷凍装置に関する。
 従来より、室外ユニットと室内ユニットとが冷媒連絡配管によって接続されており、冷房運転と暖房運転が可能な冷凍装置が用いられている。
 このような冷凍装置においては、例えば、特許文献1(特開2000-55483号公報)に記載されているように、冷房運転と暖房運転とで冷媒連絡配管に存在する冷媒量が変化するものがある。
 このような冷房運転と暖房運転とで冷媒連絡配管に存在する冷媒量が変化する冷凍装置は、様々な環境下に施工される。例えば、暖房負荷の大きな寒冷地や、冷房負荷の大きな温暖な地域や、断熱機能が乏しい建物に施工される場合がある。
 このような各施工場所には、それぞれの環境に応じた処理されるべき冷房負荷および暖房負荷があり、冷凍装置の室外ユニットと室内ユニットとしては、このような冷房負荷と暖房負荷の両方を処理できる能力を有するものを選定することが求められる。このように冷凍装置を選定する場合には、冷凍装置としてさまざまな冷房能力とさまざまな暖房能力を有するものが生じることになる。
 他方で、一般的なニーズとして、冷凍装置に充填される冷媒量を低減させたいというニーズが存在する。
 ところが、冷房負荷や暖房負荷に応じて施工する冷凍装置の種類を定めた場合において、当該定められた種類の冷凍装置に充填される冷媒量を低減化させることについては、これまでなんら検討されていない。
 第1観点に係る配管径の決定方法は、冷凍装置における液側冷媒連絡配管の配管径の決定方法である。この冷凍装置は、圧縮機と室外熱交換器を有する室外ユニットと、室内熱交換器を有する室内ユニットと、室外ユニットと室内ユニットとを連絡する液側冷媒連絡配管およびガス側冷媒連絡配管と、を備えており、冷房運転と暖房運転を実行可能である。この配管径の決定方法では、据え付けられる室外ユニットと室内ユニットが備える冷房能力および暖房能力に基づいて、液側冷媒連絡配管の配管径を決定する。
 冷凍装置としては、例えば、冷凍装置が据え付けられる場所の環境に応じて定まる冷房負荷および暖房負荷を処理できるものが適宜選定され、据え付けられる。
 ここで、この配管径の決定方法では、据え付けられる室外ユニットと室内ユニットが備える冷房能力および暖房能力に基づいて、液側冷媒連絡配管の配管径を決定する。このため、冷房能力および暖房能力に無関係に一律に液側冷媒連絡配管の配管径を決定する場合よりも、液側冷媒連絡配管の配管径を小さくすることが可能になる。
 第2観点に係る配管径の決定方法は、第1観点に係る配管径の決定方法であって、冷凍装置が設置される場所における冷房負荷および暖房負荷を把握し、冷凍装置の冷房能力および暖房能力と、冷房負荷および暖房負荷と、の関係を用いて液側冷媒連絡配管の配管径を決定する。
 ここで、冷凍装置が設置される場所における冷房負荷や暖房負荷の定め方は、特に限定されるものではないが、例えば、冷凍装置が設置される地域の気象データ、冷凍装置が設置される建物の断熱性能(等級ランク等)、内部発熱による熱負荷等の少なくともいずれか1つを考慮して、空気調和ハンドブック等に記載の当業者に周知の方法を用いて定めることができる。
 なお、液側冷媒連絡配管の配管径の決定に際しては、特に限定されないが、例えば、冷凍装置の冷房能力および暖房能力に応じて予め定められた液側冷媒連絡配管の配管径を基準として、冷凍装置の冷房能力および暖房能力と冷房負荷および暖房負荷との関係を用いて当該基準となる配管径を小さく修正することで、液側冷媒連絡配管の配管径を決定するようにしてもよい。
 また、冷凍装置が備える冷房能力に対する暖房能力の比は、特に限定されないが、例えば、冷房能力:暖房能力=1.0:1.0~1.2であることが好ましい。
 この配管径の決定方法では、液側冷媒連絡配管の配管径を決定する際に、冷凍装置の冷房能力および暖房能力と、冷凍装置が設置される場所における冷房負荷および暖房負荷と、の関係が用いられる。ここで、選定される冷凍装置が備える冷房能力と暖房能力とに対する、冷凍装置が設置される場所における冷房負荷と暖房負荷とは、必ずしも完全に対応するものではなく、相違し、冷凍装置の冷房能力および/または暖房能力が、処理が求められる冷房負荷および/または暖房負荷を上回ることがある。このため、処理が求められる冷房負荷および/または暖房負荷に対する冷凍装置の冷房能力および/または暖房能力の過剰分に応じて、液側冷媒連絡配管の配管径が小さくなるように決定することで、冷媒の圧力損失をある程度低く抑えつつ、冷凍装置に充填される冷媒量を削減化させることが可能になる。
 第3観点に係る配管径の決定方法は、第2観点に係る配管径の決定方法であって、室外ユニットは、冷房運転時に室外熱交換器を通過して液側冷媒連絡配管に送られる冷媒を冷却させる冷却部を有している。そして、冷房負荷に対する暖房負荷の割合を示す値が小さいほど、または、暖房能力から暖房負荷を差し引いて得られる値が大きいほど、液側冷媒連絡配管の配管径が小さくなるように、液側冷媒連絡配管の配管径を決定する。
 ここで、冷房負荷に対する暖房負荷の割合を示す値としては、特に限定されるものではなく、例えば、暖房負荷を冷房負荷で除して得られる値である冷暖比(暖房負荷/冷房負荷)であってもよい。
 また、冷却部は、冷房運転時に室外熱交換器を通過して液側冷媒連絡配管に送られる冷媒を所定の過冷却状態にすることが好ましい。
 この配管径の決定方法が用いられる冷凍装置では、冷房運転時に、室外熱交換器を通過して液側冷媒連絡配管に送られる冷媒が冷却部によって冷却され、密度の高い冷媒になっている。他方で、暖房運転時は、室内熱交換器において放熱した後に液側冷媒連絡配管に向かう冷媒は、冷却部によって冷却されることはない。このため、この冷凍装置では、冷房運転時には液側冷媒連絡配管に対して液冷媒を供給しやすいのに対して、暖房運転時には液側冷媒連絡配管に供給される冷媒の密度が低く、気液二相状態の冷媒が供給されがちになる。したがって、冷房運転時には液側冷媒連絡配管を通過する冷媒の圧力損失が小さく抑えられるのに対して、暖房運転時には、冷房運転時に比べて、液側冷媒連絡配管を流れる冷媒の圧力損失が大きくなりがちになる。
 このため、この冷凍装置の液冷媒連絡配管の配管径は、冷房運転時の圧力損失を小さく抑えるようにするよりも、むしろ暖房運転時の圧力損失を許容できる圧力損失に抑えることができるように配管径が定めることができる。ここで、冷凍装置の設置場所の冷房負荷に対する暖房負荷の割合を示す値が小さい場合または暖房能力から暖房負荷を差し引いて得られる値が大きい場合には、暖房運転時に液冷媒連絡配管を流れる冷媒の圧力損失の大きさがさほど大きくならない。この場合は、液側冷媒連絡配管の配管径をより小さくしたとしても、暖房運転時に液側冷媒連絡配管を流れる冷媒の圧力損失は大きくなりすぎることなく、許容できる圧力損失の範囲内に納めることができる傾向がある。そして、このように液側冷媒連絡配管の配管径を小さくすることで、冷凍装置に充填される冷媒量をより削減させることが可能になる。
 第4観点に係る配管径の決定方法は、第3観点に係る配管径の決定方法であって、冷房負荷に対する暖房負荷の割合を示す値が小さいほど、または、暖房能力から暖房負荷を差し引いて得られる値が大きいほど、液側冷媒連絡配管の配管径が段階的に小さくなるように、液側冷媒連絡配管の配管径を決定する。
 この配管径の決定方法では、液側冷媒連絡配管の配管径を段階的に小さくしたとしても、暖房負荷を処理することが可能であり、冷凍装置に充填される冷媒量を段階的に削減させることが可能になる。
 第5観点に係る配管径の決定方法は、第2観点から第4観点のいずれかに係る配管径の決定方法であって、液側冷媒連絡配管には、室外熱交換器を通過して室内熱交換器に向かう冷媒であって液単相状態である冷媒が供給される。
 具体的には、冷房運転時の液側冷媒連絡配管の入口を流れる冷媒を液単相状態とすることが挙げられる。
 ここで、室外熱交換器を通過して室内熱交換器に向かう冷媒としては、冷房運転を実行可能な冷媒回路の状態において、圧縮機から吐出され、室外熱交換器を通過して室内熱交換器に向かう冷媒を意味する。
 この配管径の決定方法では、液側冷媒連絡配管に向けて気液二相状態の冷媒よりも密度の高い液単相状態の冷媒が供給される冷凍装置において、液側冷媒連絡配管の配管径が小さくなるように配管径を決定する。このため、密度の高い液単相状態の冷媒の充填量を削減することができるため、冷凍装置に充填される冷媒量の削減効果をさらに高めることが可能になる。
 第6観点に係る配管径の決定方法は、第1観点から第5観点のいずれかに係る配管径の決定方法であって、冷凍装置には微燃性冷媒が充填されている。
 ここで、微燃性冷媒については、特に限定されないが、例えば、R32等の冷媒を挙げることができる。
 この配管径の決定方法では、冷凍装置において充填される微燃性冷媒の量を削減することができているため、万が一、微燃性冷媒が漏れた場合の危険性を小さく抑えることが可能になる。
 第7観点に係る配管径の決定装置は、冷凍装置における液側冷媒連絡配管の配管径の決定装置であり、把握部と、配管径決定部と、出力部と、を備えている。冷凍装置は、圧縮機と室外熱交換器を有する室外ユニットと、室内熱交換器を有する室内ユニットと、室外ユニットと室内ユニットとを連絡する液側冷媒連絡配管およびガス側冷媒連絡配管と、を備えている。把握部は、据え付けられる室外ユニットと室内ユニットが備える冷房能力および暖房能力の情報を把握する。配管径決定部は、把握部が把握した情報に基づいて、液側冷媒連絡配管の配管径を決定する。出力部は、配管径決定部が決定した液側冷媒連絡配管の配管径を出力する。
 冷凍装置としては、例えば、冷凍装置が据え付けられる場所の環境に応じて定まる冷房負荷および暖房負荷を処理できるものが適宜選定され、据え付けられる。
 ここで、この配管径の決定装置では、把握部が把握した、据え付けられる室外ユニットと室内ユニットが備える冷房能力および暖房能力の情報に基づいて、処理部が、液側冷媒連絡配管の配管径を決定する。さらに、出力部は、処理部が決定した液側冷媒連絡配管の配管径を出力する。このため、冷房能力および暖房能力に無関係に一律に液側冷媒連絡配管の配管径を決定する場合よりも、小さい配管径を自動的に把握することが可能になる。
 第8観点に係る配管径の決定装置は、第7観点に係る配管径の決定装置であって、握部は、冷凍装置が設置される場所における冷房負荷および暖房負荷の情報をさらに把握する。配管径決定部は、冷凍装置の冷房能力および暖房能力と、冷房負荷および暖房負荷と、の関係を用いて液側冷媒連絡配管の配管径を決定する。
 ここで、冷凍装置が設置される場所における冷房負荷や暖房負荷の定め方は、特に限定されるものではないが、例えば、冷凍装置が設置される地域の気象データ、冷凍装置が設置される建物の断熱性能(等級ランク等)、内部発熱による熱負荷等の少なくともいずれか1つを考慮して、空気調和ハンドブック等に記載の当業者に周知の方法を用いて定めることができる。
 なお、液側冷媒連絡配管の配管径の決定に際しては、特に限定されないが、例えば、冷凍装置の冷房能力および暖房能力に応じて予め定められた液側冷媒連絡配管の配管径を基準として、冷凍装置の冷房能力および暖房能力と冷房負荷および暖房負荷との関係を用いて当該基準となる配管径を小さく修正することで、液側冷媒連絡配管の配管径を決定するようにしてもよい。
 また、冷凍装置が備える冷房能力に対する暖房能力の比は、特に限定されないが、例えば、冷房能力:暖房能力=1.0:1.0~1.2であることが好ましい。
 この配管径の決定装置では、液側冷媒連絡配管の配管径を決定する際に、冷凍装置の冷房能力および暖房能力と、冷凍装置が設置される場所における冷房負荷および暖房負荷と、の関係が用いられる。ここで、選定される冷凍装置が備える冷房能力と暖房能力とに対する、冷凍装置が設置される場所における冷房負荷と暖房負荷とは、必ずしも完全に対応するものではなく、相違し、冷凍装置の冷房能力および/または暖房能力が、処理が求められる冷房負荷および/または暖房負荷を上回ることがある。このため、配管径の決定装置の配管径決定部が、処理が求められる冷房負荷および/または暖房負荷に対する冷凍装置の冷房能力および/または暖房能力の過剰分に応じて、液側冷媒連絡配管の配管径が小さくなるように決定することで、冷媒の圧力損失をある程度低く抑えつつ、冷凍装置に充填される冷媒量を削減化させることが可能になる。
 第9観点に係る冷凍装置は、圧縮機と室外熱交換器を有する室外ユニットと、室内熱交換器を有する室内ユニットと、室外ユニットと室内ユニットとを連絡する液側冷媒連絡配管およびガス側冷媒連絡配管と、第7観点または第8観点に係る配管径の決定装置と、を備えている。
 この冷凍装置では、配管径の決定装置を備えているため、冷凍装置を施工する際に、液側冷媒連絡配管の配管径を把握することが可能になる。
一実施形態に係る配管径の決定方法が用いられる冷凍装置の全体構成図。 冷凍装置の制御系統のブロック構成図。 配管径の決定装置のブロック構成図。 変形例(C)に係る冷凍装置の制御系統のブロック構成図。
 (1)冷凍装置の構成
 図1は、冷凍装置1の概略構成図である。
 冷凍装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の室内の冷房および暖房に使用される装置である。冷凍装置1は、主として、室外ユニット2と、室内ユニット4(第1室内ユニット4aと第2室内ユニット4b)と、室外ユニット2と室内ユニット4とを連絡する液側冷媒連絡配管5およびガス側冷媒連絡配管6とを備えている。すなわち、冷凍装置1の蒸気圧縮式の冷媒回路10は、室外ユニット2と、室内ユニット4と、液側冷媒連絡配管5およびガス側冷媒連絡配管6とが接続されることによって構成されている。
 なお、本実施形態の冷媒回路10には、冷媒としてR32が充填される。
  (1-1)室内ユニット
 室内ユニット4は、ビル等の室内の天井に埋め込みや吊り下げ等により、又は、室内の壁面に壁掛け等により設置されている。室内ユニット4は、液側冷媒連絡配管5およびガス側冷媒連絡配管6を介して室外ユニット2に接続されており、主回路としての冷媒回路10の一部を構成している。
 なお、本実施形態において、室内ユニット4は、冷媒回路10において互いに並列に複数接続されている。具体的には、第1室内ユニット4aと第2室内ユニット4bとが冷媒回路10において互いに並列に接続されており、液側冷媒連絡配管5およびガス側冷媒連絡配管6が有する分岐配管がそれぞれ第1室内ユニット4a側と第2室内ユニット4b側とに接続されている。
 次に、第1室内ユニット4aの構成について説明する。
 第1室内ユニット4aは、主として、主回路としての冷媒回路10の一部を構成する第1室内側冷媒回路10aを有している。この第1室内側冷媒回路10aは、主として、第1室内膨張弁44aと、第1室内熱交換器41aとを有している。
 第1室内膨張弁44aは、電子膨張弁によって構成されており、第1室内熱交換器41aの液側に配置されている。
 第1室内熱交換器41aは、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時は冷媒の蒸発器として機能して室内空気の冷却を行い、暖房運転時は冷媒の放熱器又は凝縮器として機能して室内空気を暖める熱交換器である。
 第1室内ユニット4aは、ユニット内に室内空気を吸入して、第1室内熱交換器41aにおいて冷媒と熱交換させた後に、供給空気として室内に供給するための第1室内ファン42aを有している。第1室内ファン42aは、遠心ファンや多翼ファン等であり、駆動するための第1室内ファン用モータ43aを有している。
 なお、第1室内ユニット4aには、第1室内熱交換器41aのガス側を流れる冷媒温度を検知する第1室内ガス側冷媒温度センサ45aが設けられている。また、第1室内ユニット4aには、第1室内熱交換器41aの液側と第1室内膨張弁44aとの間を流れる冷媒温度を検知する第1室内液側冷媒温度センサ49aが設けられている。
 また、第1室内ユニット4aは、第1室内ユニット4aを構成する各部の動作を制御する第1室内制御部46aを有している。そして、第1室内制御部46aは、第1室内ユニット4aの制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、第1室内ユニット4aを個別に操作するためのリモコン(図示せず)との間で制御信号等のやりとりや、室外ユニット2との間で伝送線7aを介して制御信号等のやりとりを行うことができるようになっている。
 なお、第2室内ユニット4bの構成は、第2室内膨張弁44bと第2室内熱交換器41bを有する第2室内側冷媒回路10b、第2室内ファン用モータ43bを有する第2室内ファン42b、第2室内ガス側冷媒温度センサ45b、第2室内液側冷媒温度センサ49b、および第2室内制御部46bを有しており、第1室内ユニット4aと同様の構成であるため、ここでは記載を省略する。
  (1-2)室外ユニット
 室外ユニット2は、ビル等の室外に設置されており、液側冷媒連絡配管5およびガス側冷媒連絡配管6を介して室内ユニット4に接続されており、室内ユニット4との間で冷媒回路10を構成している。
 次に、室外ユニット2の構成について説明する。
 室外ユニット2は、冷媒回路10の一部を構成する室外側冷媒回路10cを有している。この室外側冷媒回路10cは、主として、圧縮機21と、室外熱交換器22と、過冷却回路11と、過冷却熱交換器12(冷却部に相当)と、室外膨張弁28と、アキュームレータ29と、四路切換弁27と、液側閉鎖弁24と、ガス側閉鎖弁25とを有している。
 圧縮機21は、本実施形態において、圧縮機用モータ21aによって駆動される容積式圧縮機である。圧縮機用モータ21aは、インバータ装置(図示せず)を介して電力の供給を受けて駆動されるようになっており、周波数(すなわち、回転数)を可変することによって、運転容量を可変することが可能になっている。
 室外熱交換器22は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時に冷媒の放熱器又は凝縮器として機能し、暖房運転時に冷媒の蒸発器として機能する熱交換器である。室外熱交換器22は、そのガス側が圧縮機21に接続され、その液側が過冷却熱交換器12を介して室外膨張弁28に接続されている。
 室外ユニット2は、ユニット内に室外空気を吸入して、室外熱交換器22において冷媒と熱交換させた後に、室外に排出するための送風部としての室外ファン26を有している。この室外ファン26は、室外熱交換器22に供給する熱源としての室外空気の風量を可変することが可能なファンであり、本実施形態において、DCファンモータからなる室外ファン用モータ26aによって駆動されるプロペラファン等である。室外ファン用モータ26aは、インバータ装置(図示せず)を介して電力の供給を受けて駆動されるようになっている。
 過冷却回路11は、室外熱交換器22と過冷却熱交換器12の間から分岐しており、四路切換弁27とアキュームレータ29との間に合流する回路である。過冷却回路11には、過冷却熱交換器12の上流側を流れる冷媒を減圧する過冷却膨張弁13が設けられている。過冷却回路11は、室外熱交換器22から室外膨張弁28に向かう冷媒の過冷却度を高めることができる。
 室外膨張弁28は、室外側冷媒回路10c内を流れる冷媒の流量の調節等を行うために、室外熱交換器22と過冷却熱交換器12の間に設けられている。具体的には、本実施形態では、冷媒回路10における室外膨張弁28は、室外熱交換器22と過冷却回路11の分岐位置との間に設けられている。
 アキュームレータ29は、四路切換弁27から圧縮機21までの間のうち、圧縮機21の吸入側に設けられており、液体状態の冷媒と気体状態の冷媒とを分離することができる。
 四路切換弁27は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器22とを接続しつつアキュームレータ29の下流側とガス側閉鎖弁25とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁25とを接続しつつアキュームレータ29の下流側と室外熱交換器22とを接続する暖房運転接続状態と、を切り換えることができる。
 液側閉鎖弁24およびガス側閉鎖弁25は、外部の機器・配管(具体的には、液側冷媒連絡配管5およびガス側冷媒連絡配管6)との接続口に設けられた弁である。液側閉鎖弁24は、室外膨張弁28の室外熱交換器22側とは反対側において配管を介して接続されている。ガス側閉鎖弁25は、四路切換弁27の接続ポートの1つに配管を介して接続されている。
 また、室外ユニット2には、各種のセンサが設けられている。具体的には、室外ユニット2には、圧縮機21の吸入圧力を検出する吸入圧力センサ32と、圧縮機21の吐出圧力を検出する吐出圧力センサ33と、圧縮機21の吸入温度を検出する吸入温度センサ34と、圧縮機21の吐出温度を検出する吐出温度センサ35と、室外熱交換器22の液側端における冷媒の温度(室外熱交出口温度)を検出する室外熱交液側温度センサ36と、室外膨張弁28と液側閉鎖弁24とを接続する室外液冷媒管23を流れる冷媒の温度を検出する液管温度センサ38と、外気温度を検知する温度検知部としての外気温度センサ39と、が設けられている。
 また、室外ユニット2は、室外ユニット2を構成する各部の動作を制御する室外制御部31を有している。そして、室外制御部31は、室外ユニット2の制御を行うために設けられたマイクロコンピュータ、メモリや圧縮機用モータ21a、室外ファン用モータ26a、室外膨張弁28等を制御するインバータ回路等を有しており、第1室内ユニット4aの第1室内制御部46aや第2室内ユニット4bの第2室内制御部46bとの間で伝送線7aを介して制御信号等のやりとりを行うことができるようになっている。すなわち、第1室内制御部46aと第2室内制御部46bと室外制御部31との間を接続する伝送線7aとによって、冷凍装置1全体の運転制御を行う制御部7が構成されている。
 制御部7は、図2に示されるように、各種センサ32~39、45a、45b、49a、49bの検出信号を受けることができるように接続されるとともに、これらの検出信号等に基づいて各種機器、四路切換弁27、圧縮機21、室外ファン26、室外膨張弁28、過冷却膨張弁13、第1室内膨張弁44a、第1室内ファン42a、第2室内膨張弁44b、第2室内ファン42bを制御することができるように接続されている。ここで、図2は、冷凍装置1の制御ブロック図である。なお、制御部7は、ユーザからの各種設定入力を受け付け、冷凍装置1を監視、管理または制御するコントローラ30と接続されており、図示しないメモリを有している。
  (1-3)冷媒連絡配管
 液側冷媒連絡配管5およびガス側冷媒連絡配管6は、冷凍装置1をビル等の設置場所に設置する際に、現地にて施工される冷媒管であり、設置場所や室外ユニットと室内ユニットとの組み合わせ等の設置条件に応じて種々の長さや配管径を有するものが使用される。
 以上のように、第1室内側冷媒回路10aおよび第2室内側冷媒回路10bと室外側冷媒回路10cと液側冷媒連絡配管5およびガス側冷媒連絡配管6とが接続されること、すなわち、圧縮機21と、室外熱交換器22と、室外膨張弁28と、液側冷媒連絡配管5と、室内膨張弁44と、室内熱交換器41と、ガス側冷媒連絡配管6が順次接続されることによって、冷凍装置1の冷媒回路10が構成されている。
 液側冷媒連絡配管5は、主液側冷媒連絡配管50と、第1室内液側分岐管51と、第2室内液側分岐管52と、を有して構成されている。主液側冷媒連絡配管50は、室外ユニット2の液側閉鎖弁24と分岐点Xとを接続するように伸びている。第1室内液側分岐管51は、分岐点Xと第1室内ユニット4a(第1室内ユニット4aの第1室内膨張弁44aが設けられている側の出口)とを接続するように伸びている。第2室内液側分岐管52は、分岐点Xと第2室内ユニット4b(第2室内ユニット4bの第2室内膨張弁44bが設けられている側の出口)とを接続するように伸びている。
 ガス側冷媒連絡配管6は、主ガス側冷媒連絡配管60と、第1室内ガス側分岐管61と、第2室内ガス側分岐管62と、を有して構成されている。主ガス側冷媒連絡配管60は、室外ユニット2のガス側閉鎖弁25と分岐点Yとを接続するように伸びている。第1室内ガス側分岐管61は、分岐点Yと第1室内ユニット4a(第1室内ユニット4aの第1室内熱交換器41aが設けられている側の出口)とを接続するように伸びている。第2室内ガス側分岐管62は、分岐点Yと第2室内ユニット4b(第2室内ユニット4bの第2室内熱交換器41bが設けられている側の出口)とを接続するように伸びている。
 (2)冷媒回路10における冷凍サイクル
 冷凍装置1の冷媒回路10では、四路切換弁27の接続状態を切り換えることで、冷房運転と暖房運転とが行われる。
 (2-1)冷房運転
 冷房運転は、圧縮機21の吐出側が室外熱交換器22側に、圧縮機21の吸入側が各室内熱交換器41a、41b側となるように、四路切換弁27の接続状態が切り換えられた状態で行われる。
 圧縮機21は、所定の各室内ユニットにおける冷房負荷を処理できるように目標低圧圧力となるように周波数が制御部7によって制御されている。これにより、圧縮機21に吸入された低圧圧力の冷媒は、圧縮機21から吐出されて高圧圧力の冷媒となり、四路切換弁27を経て室外熱交換器22に流入する。
 室外熱交換器22に流入した冷媒は、冷媒の熱を放熱し、凝縮する。
 室外熱交換器22から室外膨張弁28に向けて流れた冷媒は、冷房運転時において制御部7によって全開状態に制御された室外膨張弁28を通過し、過冷却熱交換器12に流入する。
 過冷却熱交換器12に流入した冷媒は、過冷却熱交換器12において過冷却回路11を流れる冷媒(過冷却膨張弁13において減圧された冷媒)と熱交換を行って過冷却度が増した液単相状態の冷媒となって、液側閉鎖弁24に向けて流れる。なお、過冷却熱交換器12において十分に冷却された冷媒を各室内ユニット4a、4bに送ることができるため、循環量を上げなくても冷房負荷を処理しやすくなり、冷却により密度が上昇した液冷媒を効率的に送ることができるため、液側冷媒連絡配管5を通過する冷媒量を少なく抑えて圧力損失を低減させることも可能になっている。
 冷房運転では、過冷却膨張弁13の弁開度は、過冷却熱交換器12を通過して液側閉鎖弁24に向けて流れる冷媒の過冷却度が目標過冷却度となるように、制御部7によって開度制御される。具体的には、液管温度センサ38が把握する温度から吐出圧力センサ33から把握される圧力に相当する飽和温度を差し引くことによって得られる過冷却度が目標過冷却度となるように、制御部7が過冷却膨張弁13の弁開度を制御する。これにより、過冷却熱交換器12を通過した冷媒は、十分に過冷却度がついた液単相状態の冷媒となる。
 過冷却熱交換器12を通過した冷媒は、室外液冷媒管23および液側閉鎖弁24を通過して、液側冷媒連絡配管5に送られる。
 液側冷媒連絡配管5を流れる冷媒は、各室内ユニット4a、4bに送られる。ここで、室外液冷媒管23および液側冷媒連絡配管5を通過する冷媒は、通過時に圧力損失が生じるため、冷媒の圧力が低下していくことになる。なお、室外液冷媒管23および液側冷媒連絡配管5を通過する冷媒が受ける圧力損失は、施工される液側冷媒連絡配管5の長さや配管径や冷媒の流速によって異なり、液側冷媒連絡配管5が長ければ長いほど、液側冷媒連絡配管5の配管径(内径)が小さければ小さいほど、さらには流れる冷媒の流速が速ければ速いほど、より大きな圧力損失を受けることになる。
 液側冷媒連絡配管5の主液側冷媒連絡配管50を通過して分岐点Xまで流れた冷媒は、分岐して、第1室内液側分岐管51を介して第1室内ユニット4aに流入し、第2室内液側分岐管52を介して第2室内ユニット4bに流入する。第1室内ユニット4aに流入した冷媒は、第1室内膨張弁44aにおいて冷凍サイクルの低圧圧力となるまで減圧され、第2室内ユニット4bに流入した冷媒も同様に第2室内膨張弁44bにおいて冷凍サイクルの低圧圧力となるまで減圧される。なお、特に限定されないが、第1室内膨張弁44aの弁開度は、制御部7によって、第1室内熱交換器41aの出口側の冷媒の過熱度が所定の目標過熱度となるように制御されてもよい。この場合、制御部7は、第1室内ガス側冷媒温度センサ45aの検知温度から、吸入圧力センサ32の検知圧力を換算して得られる冷媒の飽和温度を差し引くことによって、第1室内熱交換器41aのガス側出口の冷媒の過熱度を求めてもよい。なお、第2室内膨張弁44bの弁開度の制御についても同様である。
 第1室内ユニット4aの第1室内膨張弁44aで減圧された冷媒は、第1室内熱交換器41aにおいて蒸発し、第1室内ガス側分岐管61に向けて流れ、第2室内ユニット4bの第2室内膨張弁44bで減圧された冷媒も同様に、第2室内熱交換器41bにおいて蒸発し、第2室内ガス側分岐管62に向けて流れる。そして、第1室内熱交換器41aや第2室内熱交換器41bにおいて蒸発した冷媒は、第1室内ガス側分岐管61と第2室内ガス側分岐管62とガス側冷媒連絡配管6における主ガス側冷媒連絡配管60とが接続された分岐点Yにおいて合流し、主ガス側冷媒連絡配管60を流れた後、室外ユニット2のガス側閉鎖弁25、四路切換弁27、アキュームレータ29を介して圧縮機21に再び吸入される。なお、四路切換弁27とアキュームレータ29との間には、上述した過冷却回路11を流れた冷媒が合流する。
 (2-2)暖房運転
 暖房運転は、圧縮機21の吐出側が各室内熱交換器41a、41b側に、圧縮機21の吸入側が室外熱交換器22側となるように、四路切換弁27の接続状態が切り換えられた状態で行われる。
 圧縮機21は、所定の各室内ユニットにおける暖房負荷を処理できるように目標高圧圧力となるように周波数が制御部7によって制御されている。これにより、圧縮機21から吐出された高圧圧力の冷媒は、四路切換弁27、ガス側冷媒連絡配管6を介して各室内ユニット4a、4bに向けて流れる。
 ここで、ガス側冷媒連絡配管6の主ガス側冷媒連絡配管60を通過して分岐点Yまで流れた冷媒は、分岐して、第1室内ガス側分岐管61を介して第1室内ユニット4aに流入し、第2室内ガス側分岐管62を介して第2室内ユニット4bに流入する。第1室内ユニット4aに流入した冷媒は、第1室内熱交換器41aにおいて放熱し、凝縮する。第2室内ユニット4bに流入した冷媒も同様に、第2室内熱交換器41bにおいて放熱し、凝縮する。なお、特に限定されないが、第1室内膨張弁44aおよび第2室内膨張弁44bの弁開度は、暖房運転時は、制御部7によって、第1室内熱交換器41aの出口や第2室内熱交換器41bの出口を流れる冷媒の過冷却度が所定の値となるように制御してもよい。この場合には、例えば、吐出圧力センサ33の検知する冷媒圧力相当の飽和温度から、第1室内液側冷媒温度センサ49a、第2室内液側冷媒温度センサ49bの検知温度を指し引いて得られる値が所定の値となるように、制御部7が第1室内膨張弁44aおよび第2室内膨張弁44bの弁開度を制御することができる。なお、制御部7による第1室内膨張弁44aおよび第2室内膨張弁44bの開度制御は、上記の他に、例えば、液側冷媒連絡配管5の入口に対して液冷媒が供給されるように制御してもよいし、液側冷媒連絡配管5の入口は液冷媒が通過しつつ出口では圧力損失を受けた後の気液二相状態の冷媒が通過することとなるように制御してもよい。
 このようにして、第1室内熱交換器41aにおいて凝縮し、第1室内膨張弁44aを通過し、さらに、第1室内液側分岐管51を流れた冷媒と、第2室内熱交換器41bにおいて凝縮し、第2室内膨張弁44bを通過し、さらに、第2室内液側分岐管52を流れた冷媒と、は、分岐点Xにおいて合流し、液側冷媒連絡配管5の主液側冷媒連絡配管50に送られる。ここで、第1室内熱交換器41aを通過した冷媒および第2室内熱交換器41bを通過した冷媒は、特に冷却されることなく(冷媒密度が高められることなく)液側冷媒連絡配管5に供給される。
 液側冷媒連絡配管5の主液側冷媒連絡配管50を流れた冷媒は、液側閉鎖弁24を通じて室外ユニット2に供給される。
 液側閉鎖弁24を通過し、室外液冷媒管23を流れ、過冷却熱交換器12を通過した冷媒は、室外膨張弁28において冷凍サイクルの低圧圧力まで減圧される。具体的には、圧縮機21に吸入される冷媒の過熱度が目標過熱度となるように、制御部7によって室外膨張弁28の弁開度が制御される。この場合、制御部7は、吸入温度センサ34の検知温度から、吸入圧力センサ32の検知圧力を用いて換算して得られる冷媒の飽和温度を差し引くことによって、圧縮機21が吸入する冷媒の過熱度を求めてもよい。
 室外熱交換器22に送られた冷媒は、蒸発し、四路切換弁27、アキュームレータ29を介して圧縮機21に再び吸入される。
 (3)冷凍装置1を施工する場所の冷房負荷および暖房負荷の特定
 冷凍装置1を施工する前に、まず、冷凍装置1を施工しようとする場所の冷房負荷および暖房負荷を求める。
 冷房負荷や暖房負荷の特定方法は、特に限定されず、公知の特定方法を用いることができる。例えば、冷凍装置1を施工する地域の気候特性に基づいて予め定めた関係から特定される冷房負荷および暖房負荷と、施工される建物の断熱性能に基づいて予め定めた関係から特定される冷房負荷および暖房負荷と、をそれぞれ用いて特定することができる。
 (4)冷房負荷を処理可能な冷房定格能力及び暖房負荷を処理可能な暖房定格能力を有する冷凍装置1の決定
 次に、上記(3)において特定された冷凍装置1を施工する場所の冷房負荷を処理可能な冷房定格能力及び暖房負荷を処理可能な暖房定格能力を備えた冷凍装置1を決定する。
 具体的には、冷凍装置1を施工する場所の冷房負荷を処理可能な冷房定格能力及び暖房負荷を処理可能な暖房定格能力を備える室外ユニット2と室内ユニット4a、4bの組み合わせを決定する。
 ここで、冷凍装置1を施工する場所の冷房負荷を処理可能な冷房定格能力及び暖房負荷を処理可能な暖房定格能力を備える室外ユニット2と室内ユニット4a、4bの組み合わせが決定されることにより、当該室外ユニット2と室内ユニット4a、4bを備える冷凍装置1の冷房定格能力と暖房定格能力が定まる。
 なお、冷房定格能力および暖房定格能力の値は、規格等に準じた公知の手法により定まる値であり、カタログに記載されている値を用いてもよい。
 ここで、冷房定格能力に対する暖房定格能力の比である冷房定格能力:暖房定格能力=1.0:1.0~1.2の範囲内であることが好ましい。
 (5)施工される冷凍装置1の液側冷媒連絡配管5の配管径の決定等
 以上の(4)によって冷凍装置1を構成する室外ユニット2の種類および室内ユニット4a、4bの種類が定まることになるが、次に、これらを接続する液側冷媒連絡配管5とガス側冷媒連絡配管6を定める。
 なお、液側冷媒連絡配管5を構成する主液側冷媒連絡配管50の配管長と、ガス側冷媒連絡配管6を構成する主ガス側冷媒連絡配管60の配管長については、冷凍装置1が施工される物件に応じて定まっている。
 また、第1室内液側分岐管51、第2室内液側分岐管52の配管径や、第1室内ガス側分岐管61や第2室内ガス側分岐管62の配管径(内径)は、接続されている室内ユニットの能力および各分岐管の長さに応じて定められる。
 具体的には、主ガス側冷媒連絡配管60の配管径(内径)は、上述のようにして定めた冷凍装置1の冷凍能力(冷凍装置1が有している室外ユニット2の冷凍能力を用いることとしてもよいし、冷凍装置1が室内ユニット4を1台有している場合には当該室内ユニット4の冷凍能力を用いることとしてもよいし、冷凍装置1が室内ユニット4を複数台(第1室内ユニット4aと第2室内ユニット4b)有している場合には当該室内ユニット4の各冷凍能力の合計を用いることとしてもよい。)および、主ガス側冷媒連絡配管60の長さに応じて、予め定められている配管径に決定される。具体的には、冷凍能力が大きいほど主ガス側冷媒連絡配管60の配管径が大きくなるように、且つ、主ガス側冷媒連絡配管60の長さが長いほど主ガス側冷媒連絡配管60の配管径が大きくなるように、冷凍能力毎および長さ毎の配管径の対応関係が予め定められており、この対応関係に基づいて、主ガス側冷媒連絡配管60の配管径を決定する。なお、本実施形態では、このようにして決定された主ガス側冷媒連絡配管60の配管径は、冷凍装置1の設置位置の暖房負荷と冷房負荷の関係によらず、一律に定められている。
 また、主液側冷媒連絡配管50の配管径(内径)については、ひとまず、上述のようにして定めた冷凍装置1の冷凍能力(冷凍装置1が有している室外ユニット2の冷凍能力を用いることとしてもよいし、冷凍装置1が室内ユニット4を1台有している場合には当該室内ユニット4の冷凍能力を用いることとしてもよいし、冷凍装置1が室内ユニット4を複数台(第1室内ユニット4aと第2室内ユニット4b)有している場合には当該室内ユニット4の各冷凍能力の合計を用いることとしてもよい。)および、主液側冷媒連絡配管50の長さに応じて、予め定められている基準となる配管径に仮に定められる。具体的には、冷凍能力が大きいほど主液側冷媒連絡配管50の配管径が大きくなるように、且つ、主液側冷媒連絡配管50の長さが長いほど主液側冷媒連絡配管50の配管径が大きくなるように、冷凍能力毎および長さ毎の配管径の対応関係が予め定められており、この対応関係に基づいて、主液側冷媒連絡配管50の基準となる配管径が仮に定められる。
 ここで、仮に定めた主液側冷媒連絡配管50の基準となる配管径は、上記(3)において求めた冷凍装置1を施工する場所の冷房負荷及び暖房負荷から把握される値であって暖房負荷を冷房負荷で除して得られる値である冷暖比(暖房負荷/冷房負荷)が小さいほど、主液側冷媒連絡配管50の基準となる配管径よりも小さい配管径となるように配管径を修正し、このように修正された配管径を主液側冷媒連絡配管50の最終的な配管径として決定する。
 ここで、この「冷暖比が小さいほど基準となる配管径を小さく修正する」程度は、設置する冷凍装置1が備える冷凍能力によって異なることが好ましい。すなわち、冷凍装置1が施工される環境における冷暖比が同程度である場合には、冷凍装置1の冷凍能力に応じて、基準となる配管径を小さく修正する程度が異なるように対応関係が定められていることが好ましい。より具体的には、冷凍装置1が施工される環境における冷暖比が同程度に小さい場合には、冷凍装置1の冷凍能力が大きい場合ほど、基準となる配管径を小さく修正する程度が大きくなるように対応関係が定められていることが好ましい。
 また、このように冷暖比に応じて主液側冷媒連絡配管50の配管径が異なることを、例えば、冷凍装置1の据付説明書に掲載するようにしてもよい。
 なお、冷暖比に応じて仮に定めた主液側冷媒連絡配管50の基準となる配管径を小さくする際の具体的な程度については、主液側冷媒連絡配管50を通過する冷媒の圧力損失が許容される限度で主液側冷媒連絡配管50の配管径をできるだけ小さくすることができるように、予め定められる。すなわち、上記暖房負荷を処理するように行われる暖房運転において、主液側冷媒連絡配管50に液冷媒を流す場合に許容される圧力損失より小さい圧力損失が実現されるように主液側冷媒連絡配管50の配管径の下限が定められる。
 この主液側冷媒連絡配管50に液冷媒を流す場合に許容される圧力損失は、例えば、冷凍装置1を構成する室外ユニット2の冷凍能力、第1室内ユニット4aの冷凍能力、第2室内ユニット4bの冷凍能力、冷凍装置1が設置される箇所の冷暖比、液側冷媒連絡配管5の最も長い部分(液側閉鎖弁24から最も遠い室内ユニットの入口まで)の長さ、液側冷媒連絡配管5における分岐点の数等に応じた値として予め定めた関係式から求めるようにしてもよい。具体的には、室外ユニット2の冷凍能力、第1室内ユニット4aの冷凍能力、第2室内ユニット4bの冷凍能力が大きく、冷凍装置1が設置される箇所の冷暖比も大きい場合には、冷媒回路10を流れる冷媒の流速が上がる傾向にあるため、主液側冷媒連絡配管50に液冷媒を流した際の圧力損失は大きな値となる傾向にある。また、液側冷媒連絡配管5の最も長い部分(液側閉鎖弁24から最も遠い室内ユニットの入口まで)の長さが長いほど、液側冷媒連絡配管5を流れる液冷媒が受ける圧力損失は大きくなる傾向にある。さらに、液側冷媒連絡配管5における分岐点の数が多ければ多いほど、液側冷媒連絡配管5を流れる液冷媒が受ける圧力損失は大きくなる傾向にある。以上の冷凍能力と負荷と配管長と分岐数に対する圧力損失の関係に基づいて予め定めた関係式にしたがって、主液側冷媒連絡配管50に液冷媒を流す場合に許容される圧力損失(圧力損失の上限)を定めるようにしてもよい。
 なお、暖房負荷と冷房負荷から定まる冷暖比と、基準となる配管径を小さく修正する程度と、は予め対応関係を定めて一覧表としておくことが好ましい。すなわち、「冷暖比」の複数の範囲毎に段階的に定められた「主液側冷媒連絡配管50の基準となる配管径の減少修正率」が予め定められた一覧表を、冷凍装置1の種類毎に用意しておいてもよい。また、このような方法で定められる一覧表は、例えば、冷凍装置1の据付説明書に掲載するようにしてもよい。
 (6)冷媒量の決定
 以上のようにして室外ユニット2、第1室内ユニット4a、第2室内ユニット4bの各能力、液側冷媒連絡配管5およびガス側冷媒連絡配管6の配管長および配管径が特定された冷凍装置1に対して、冷凍装置1の冷媒回路10において冷凍サイクルを適切に行うことが可能となる冷媒量が決定される。
 ここで、冷媒回路10の冷媒量の具体的な決定方法は、特に限定されず、公知の方法が用いられる。例えば、室外ユニット2の能力、第1室内ユニット4aの能力、第2室内ユニット4bの冷凍能力が大きいほど多くなるように、主液側冷媒連絡配管50の配管径が小さいほど少なくなるように、主液側冷媒連絡配管50の長さが長いほど多くなるように、第1室内液側分岐管51の長さが長いほど多くなるように、第2室内液側分岐管52の長さが長いほど多くなるように、室内ユニットの数(分岐管の数)が多いほど多くなるように、冷媒回路10の冷媒量を決定してもよい。
 なお、室外ユニット2において、液側冷媒連絡配管5、ガス側冷媒連絡配管6、第1室内ユニット4a、第2室内ユニット4b等が接続されていない状態で、予め所定量の冷媒が充填されている場合には、決定された冷媒量から当該室外ユニット2に予め充填されている冷媒量を差し引いて、冷媒回路10に冷媒を追加充填するようにしてもよい。
 (7)配管径の決定方法の特徴
 従来より、冷凍装置を施工する際には、施工する現地の冷房負荷および暖房負荷を調べ、これらをいずれも処理可能な冷凍能力を備えた室外ユニットおよび室内ユニットから構成される冷凍装置が選定される。ここで、従来の施工では、特定の室外ユニットおよび特定の室内ユニットから構成される冷凍装置が選定された場合に、室外ユニットと室内ユニットとを接続するための主液側冷媒連絡配管および主ガス側冷媒連絡配管の各内径は、いずれも一律に定められていた。
 これに対して、上記実施形態の配管径の決定方法では、施工する現地の冷房負荷および暖房負荷をいずれも処理可能な冷凍能力を備えた室外ユニット2および室内ユニット4から構成される冷凍装置1が選定された後、当該冷凍装置1に用いられる主液側冷媒連絡配管50の配管径を一律に定めるのではなく、当該冷凍装置1の冷凍能力および主液側冷媒連絡配管50の長さに応じて、主液側冷媒連絡配管50の基準となる配管径を仮に定め、冷暖比(暖房負荷/冷房負荷)の値が小さいほど仮に定めた基準となる配管径が小さく修正されるようにして、主液側冷媒連絡配管50の配管径を決定している。これにより、主液側冷媒連絡配管50を通過する冷媒の圧力損失を許容範囲に抑えつつ、冷凍装置1に充填される冷媒量を少なく抑えることが可能になっている。
 より具体的には、本実施形態の配管径の決定方法が用いられる冷凍装置1では、冷房運転時に、室外熱交換器22を通過して液側冷媒連絡配管5に送られる冷媒が過冷却熱交換器12によって冷却され、密度の高い冷媒になっている。他方で、暖房運転時は、第1室内熱交換器41a、第2室内熱交換器41bにおいて放熱した後に液側冷媒連絡配管5に向かう冷媒は、冷房運転時における過冷却熱交換器12による冷却処理に対応する冷却は行われない。このため、この冷凍装置1では、冷房運転時には液側冷媒連絡配管5に対して密度の高い液冷媒を供給しやすいのに対して、暖房運転時には液側冷媒連絡配管5に供給される冷媒の密度が低く、気液二相状態の冷媒が供給されがちになる。したがって、冷房運転時には液側冷媒連絡配管5を通過する冷媒の圧力損失が小さく抑えられるのに対して、暖房運転時には、冷房運転時に比べて、液側冷媒連絡配管5を流れる冷媒の圧力損失が大きくなりがちになる。
 ここで、本実施形態では、冷凍装置1が施工される環境の冷房負荷および暖房負荷を処理可能な冷房定格能力および暖房定格能力を有する冷凍装置1を選んで施工している。そして、このように冷房負荷も暖房負荷も処理可能な冷房定格能力および暖房定格能力を備える冷凍装置1が選定された場合に、比較的暖房負荷が小さな環境で用いられる場合のように、暖房負荷に対する暖房能力が過剰になる場合がある。このように、暖房能力が過剰になる場合について、本実施形態では、同じ冷凍能力を備える冷凍装置1であっても、施工される環境における冷暖比(暖房負荷/冷房負荷)の値が小さいほど、用いられる主液側冷媒連絡配管50の配管径が小さいものとなるようにしている。このように、冷凍装置1の暖房能力が過剰になる場合には、暖房運転時における主液側冷媒連絡配管50を流れる冷媒の圧力損失を許容される範囲内としたままで、採用される主液側冷媒連絡配管50の配管径を小さくすることが可能になっている。
 本実施形態の配管径の決定方法では、以上の関係に着目し、冷凍装置1が施工される環境における冷暖比(暖房負荷/冷房負荷)の値が小さいほど主液側冷媒連絡配管50の配管径を小さくすることにより、暖房運転時における主液側冷媒連絡配管50を流れる冷媒の圧力損失を許容される範囲内としたままで、冷凍装置1の充填冷媒量の削減効果を得ることが可能になっている。
 なお、主液側冷媒連絡配管50の配管径を小さく修正した場合であっても、冷房運転時には主液側冷媒連絡配管50を流れる冷媒は冷却された密度の高い液冷媒であるため、気液二相状態の冷媒が流れがちな暖房運転時よりも圧力損失を小さく抑えることができており、冷房能力の不足は生じにくい。
 さらに、上記実施形態の冷凍装置1では、冷房運転時には、液側冷媒連絡配管5には、過冷却熱交換器12において冷却された密度の高い液単相状態となった冷媒が供給される。このように密度の高い液単相状態の冷媒が供給される液側冷媒連絡配管5の配管径を小さくすることにより、冷媒回路10に充填される冷媒量の削減効果を顕著なものとすることができている。
 このように、冷凍装置1の冷媒回路10に充填される冷媒量を削減することにより、冷媒コストを低く抑えることができるだけでなく、微燃性冷媒であるR32が万が一漏洩した場合であっても、漏洩量を少なく抑えることができ、発火に到りにくくすることができる。
 (8)配管径の決定装置
 以下、図面を参照しながら、配管径の決定装置100について説明する。
 配管径の決定装置100は、上述した実施形態の配管径の決定方法を、コンピュータを用いて実行させ、自動的に冷媒量を把握するためのものであり、上記配管径の決定方法において説明した冷凍装置1を対象として用いられる。
 配管径の決定装置100は、図3のブロック構成図に示すように、受付部110と、配管径決定部120と、出力部130と、を備えている。
 受付部110は、現地で施工される冷凍装置1の冷凍能力、室内ユニットの数(分岐管の数)、液側冷媒連絡配管5の長さ(主液側冷媒連絡配管50の長さと、第1室内液側分岐管51の長さと、第2室内液側分岐管52の長さ)およびガス側冷媒連絡配管6の長さ(主ガス側冷媒連絡配管60の長さと、第1室内ガス側分岐管61の長さと、第2室内ガス側分岐管62の長さ)等の各種情報を、施工者からの入力により受け付ける。また、受付部110は、さらに、冷凍装置1の冷房定格能力と暖房定格能力の情報を施工者からの入力により受け付ける。受付部110は、冷凍装置1が施工される場所の冷房負荷と暖房負荷の情報をさらに受け付けるものであってもよい。受付部110は、本実施形態では、後述するタッチパネル等の画面を用いてユーザからの入力を受け付けるものである。
 配管径決定部120は、受付部110が受け付けた各種情報に基づいて、冷凍装置1の冷媒回路10に用いられる液側冷媒連絡配管5の主液側冷媒連絡配管50の配管径を決定する。配管径決定部120は、各種情報処理を行うCPU等を有して構成された処理部121と、ROMやRAMを有して構成された記憶部122と、を有している。
 配管径決定部120の処理部121は、受付部110において受け付けた情報と、記憶部122に格納されている情報と、を用いて上記配管径の決定方法で説明した内容と同様に配管径の決定処理を行う。
 具体的には、記憶部122には、(A)冷凍装置1の冷凍能力と主ガス側冷媒連絡配管60の長さとに応じた、主ガス側冷媒連絡配管60の配管径を示すデータ(冷凍能力が大きいほど主ガス側冷媒連絡配管60の配管径が大きくなり、且つ、主ガス側冷媒連絡配管60の長さが長いほど主ガス側冷媒連絡配管60の配管径が大きくなる関係を示すデータ)と、(B)冷凍装置1の冷凍能力と主液側冷媒連絡配管50の長さとに応じた、主液側冷媒連絡配管50の基準となる配管径を示すデータ(冷凍能力が大きいほど主液側冷媒連絡配管50の基準となる配管径が大きくなり、且つ、主液側冷媒連絡配管50の長さが長いほど主液側冷媒連絡配管50の基準となる配管径が大きくなる関係を示すデータ)と、(C)冷暖比(暖房負荷/冷房負荷)に応じた、主液側冷媒連絡配管50の基準となる配管径の修正率を示すデータ(冷暖比の複数範囲毎に対応した縮小修正率を示すデータ)と、が格納されている。
 そして、処理部121は、ひとまず、受付部110が受け付けた冷凍装置1の冷凍能力および主ガス側冷媒連絡配管60の長さに応じた主ガス側冷媒連絡配管60の配管径を定める。
 また、処理部121は、受付部110が受け付けた冷凍装置1の冷凍能力および主液側冷媒連絡配管50の長さに応じた主液側冷媒連絡配管50の基準となる配管径を定める。
 さらに、処理部121は、受付部110が受け付けた冷凍装置1が施工される環境における冷暖比(暖房負荷/冷房負荷)の値を算出する。そして、処理部121は、算出した冷暖比が小さいほど主液側冷媒連絡配管50の基準となる配管径を小さく修正して、最終的な主液側冷媒連絡配管50の配管径を決定する。
 出力部130は、配管径決定部120が決定した配管径を表示出力する。具体的には、タッチパネル等の画面に主液側冷媒連絡配管50の配管径の値を表示出力する。
 (9)変形例
 上記実施形態は、以下の変形例に示すように適宜変形が可能である。なお、各変形例は、矛盾が生じない範囲で他の変形例と組み合わせて適用されてもよい。
 (9-1)変形例A
 上記実施形態では、冷凍装置1に微燃性冷媒であるR32が充填されている場合を例に挙げて説明した。
 これに対して、冷凍装置1に充填される微燃性冷媒としては、R32に限定されず、R143a、R717、NH、R1234yf混合冷媒、R1234ze混合冷媒等の微燃性冷媒を用いるようにしてもよい。なお、微燃性冷媒には、通常不燃性とされるR410A、R134a、R22、R125は含まれない。
 (9-2)変形例B
 上記実施形態に係る配管径の決定装置100では、受付部110が受け付けた情報に基づいて主液側冷媒連絡配管50の配管径を決定する場合を例に挙げて説明した。
 これに対して、配管径の決定装置では、配管径を決定するだけでなく、さらに、受付部110が受け付けた情報に基づいて処理部121が冷凍装置1に充填される冷媒量を決定できるようにしてもよい。
 具体的には、室外ユニット2の冷凍能力、第1室内ユニット4aの冷凍能力、第2室内ユニット4bの冷凍能力が大きいほど多くなるように、主液側冷媒連絡配管50の配管径が小さいほど少なくなるように、主液側冷媒連絡配管50の長さが長いほど多くなるように、第1室内液側分岐管51の長さが長いほど多くなるように、第2室内液側分岐管52の長さが長いほど多くなるように、室内ユニットの数(分岐管の数)が多いほど多くなるように、所定の関係式または一覧データを予め記憶部122に記憶させておき、処理部121が記憶部122に予め記憶されている関係式や一覧データと受付部110において受け付けた情報とに基づいて冷媒回路10の冷媒量を決定するようにしてもよい。
 (9-3)変形例C
 上記実施形態に係る配管径の決定装置100では、冷凍装置1の主液側冷媒連絡配管50の配管径をコンピュータによって自動的に定める独立した装置として例に挙げて説明した。
 これに対して、例えば、図4に示すように、上述した配管径の決定装置100に対応する構成の受付部110、処理部121と記憶部122aを有する配管径決定部120及び出力部130を、上記実施形態の冷凍装置1のコントローラ30において備えさせてもよい。
 ここで、コントローラ30の配管径決定部120が有する記憶部122aには、上述した記憶部122が格納しているデータだけでなく、さらに冷凍装置1の冷凍能力を示すデータが予め格納されていてもよい。
 この場合には、コントローラ30の受付部110に対する冷凍装置1の冷凍能力の入力処理が不要になる。
 なお、配管径決定部120の処理部121は、室内ユニットの数(分岐管の数)、液側冷媒連絡配管5の長さおよびガス側冷媒連絡配管6の長さ等の受付部110を介して受け付ける各種情報と、記憶部122aに格納されているデータと、に基づいて、上記実施形態と同様にして主液側冷媒連絡配管5の配管径を決定することになる。
 (9-4)変形例D
 上記実施形態では、冷凍装置1の冷凍能力が大きいほど主液側冷媒連絡配管50の配管径が大きくなるように、且つ、主液側冷媒連絡配管50の長さが長いほど主液側冷媒連絡配管50の配管径が大きくなるように、主液側冷媒連絡配管50の基準となる配管径を仮に定め、冷暖比が小さいほど主液側冷媒連絡配管50の基準となる配管径を小さく修正することで、主液側冷媒連絡配管50の配管径を決定する場合を例に挙げて説明した。
 これに対して、主液側冷媒連絡配管50の配管径の決定方法は、この手順で決定される方法に限られるものではなく、例えば、冷凍装置1の冷凍能力、主液側冷媒連絡配管50の長さ、及び、冷暖比からなる所定の関係式を予め用意しておき、当該関係式を用いて、主液側冷媒連絡配管50の配管径を求めるようにしてもよい。
 (9-5)変形例E
 上記実施形態では、冷凍装置1が施工される環境における冷房負荷に対する暖房負荷の割合を示す値として、暖房負荷を冷房負荷で除して得られる値である冷暖比(暖房負荷/冷房負荷)を例に挙げ、冷暖比が小さいほど主液側冷媒連絡配管50の配管径が細くなるように修正する場合を説明した。
 これに対して、冷凍装置1が施工される環境における冷房負荷に対する暖房負荷の割合を示す値としては、冷暖比に限られず、例えば、冷凍装置1の有する暖房能力の値から冷凍装置1が施工される環境における暖房負荷の値を差し引いて得られる暖房過剰値を算出し、当該暖房過剰値が大きいほど、主液側冷媒連絡配管50の配管径が細くなるように修正してもよい。
 (9-6)変形例F
 上記実施形態では、冷凍装置1が施工される環境における冷房負荷に対する暖房負荷の割合を示す値として、暖房負荷を冷房負荷で除して得られる値である冷暖比(暖房負荷/冷房負荷)を例に挙げ、冷暖比が小さいほど主液側冷媒連絡配管50の配管径が細くなるように修正し、主ガス側冷媒連絡配管60の配管径については冷房負荷と暖房負荷との関係によらずに一律に定める場合を説明した。
 これに対して、主ガス側冷媒連絡配管60の配管径についても、冷凍装置1の冷凍能力および、主ガス側冷媒連絡配管60の長さに応じて、予め定められている基準となる配管径に仮決めし、冷房負荷や暖房負荷の関係等によって当該仮決めした配管径を修正することで、最終的な主ガス側冷媒連絡配管60の配管径を決定するようにしてもよい。例えば、冷凍装置1が施工される環境における冷房負荷が暖房負荷よりも大きい場合には冷房負荷が暖房負荷を上回る程度が大きいほど、または、冷凍装置1が施工される環境における冷房負荷よりも冷凍装置1が備える冷房能力の方が大きい場合には冷房能力が冷房負荷を上回る程度が大きいほど、仮決めされた主ガス側冷媒連絡配管60の基準となる配管径を細く修正するようにして、最終的な主ガス側冷媒連絡配管60の配管径を決定するようにしてもよい。
 このように冷凍装置1の主ガス側冷媒連絡配管60の配管径を修正できるのは、冷房運転時における主ガス側冷媒連絡配管60を流れるガス冷媒の密度が暖房運転時におけるガス冷媒の密度の1/2倍以下(または1/3倍以下)となり、冷房運転時において主ガス側冷媒連絡配管60を流れるガス冷媒が受ける圧力損失が暖房運転時の圧力損失の2倍以上(または3倍以上)となることから、冷房運転時に冷媒が受ける圧力損失に律速して主ガス側冷媒連絡配管60の配管径が定められることによる。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
  1 冷凍装置
  2 室外ユニット
  4a、4b 室内ユニット
  5 液側冷媒連絡配管
  6 ガス側冷媒連絡配管
  7 制御部
 10 冷媒回路
 12 過冷却熱交換器(冷却部)
 21 圧縮機
 22 室外熱交換器
 23 室外液冷媒管
 24 液側閉鎖弁
 25 ガス側閉鎖弁
 27 四路切換弁
 28 室外膨張弁
 29 アキュームレータ
 30 コントローラ(配管径の決定装置)
 31 室外制御部
 32 吸入圧力センサ
 33 吐出圧力センサ
 34 吸入温度センサ
 35 吐出温度センサ
 36 室外熱交液側温度センサ
 38 液管温度センサ
 39 外気温度センサ
 41a 第1室内熱交換器
 41b 第2室内熱交換器
 44a 第1室内膨張弁
 44b 第2室内膨張弁
 45a 第1室内ガス側冷媒温度センサ
 45b 第2室内ガス側冷媒温度センサ
 46a 第1室内制御部
 46b 第2室内制御部
 49a 第1室内液側冷媒温度センサ
 49b 第2室内液側冷媒温度センサ
 50  主液側冷媒連絡配管
 51 第1室内液側分岐管
 52 第2室内液側分岐管
 60  主ガス側冷媒連絡配管
 61 第1室内ガス側分岐管
 62 第2室内ガス側分岐管
 100 配管径の決定装置
 110 受付部(把握部)
 120 配管径決定部
 121 処理部(把握部)
 122 記憶部
 122a 記憶部(把握部)
 130 出力部
特開2000-55483号公報

Claims (9)

  1.  圧縮機(21)と室外熱交換器(22)を有する室外ユニット(2)と、室内熱交換器(41a、41b)を有する室内ユニット(4a、4b)と、前記室外ユニット(2)と前記室内ユニット(4a、4b)とを連絡する液側冷媒連絡配管(5)およびガス側冷媒連絡配管(6)と、を備え、冷房運転と暖房運転を実行可能な冷凍装置(1)における前記液側冷媒連絡配管(5)の配管径の決定方法であって、
     据え付けられる前記室外ユニット(2)と前記室内ユニット(4a、4b)が備える冷房能力および暖房能力に基づいて、前記液側冷媒連絡配管(5)の配管径を決定する、
    配管径の決定方法。
  2.  前記冷凍装置が設置される場所における冷房負荷および暖房負荷を把握し、
     前記冷凍装置の前記冷房能力および前記暖房能力と、前記冷房負荷および前記暖房負荷と、の関係を用いて前記液側冷媒連絡配管(5)の配管径を決定する、
    請求項1に記載の配管径の決定方法。
  3.  前記室外ユニット(2)は、冷房運転時に前記室外熱交換器(22)を通過して前記液側冷媒連絡配管(5)に送られる冷媒を冷却させる冷却部(12)を有しており、
     前記冷房負荷に対する前記暖房負荷の割合を示す値が小さいほど、または、前記暖房能力から前記暖房負荷を差し引いて得られる値が大きいほど、前記液側冷媒連絡配管(5)の配管径が小さくなるように決定する、
    請求項2に記載の配管径の決定方法。
  4.  前記冷房負荷に対する前記暖房負荷の割合を示す値が小さいほど、または、前記暖房能力から前記暖房負荷を差し引いて得られる値が大きいほど、前記液側冷媒連絡配管(5)の配管径が段階的に小さくなるように決定する、
    請求項3に記載の配管径の決定方法。
  5.  前記液側冷媒連絡配管(5)には、前記室外熱交換器(22)を通過して前記室内熱交換器(41a、41b)に向かう冷媒として液単相状態である冷媒が供給される、
    請求項2から4のいずれか1項に記載の配管径の決定方法。
  6.  前記冷凍装置には微燃性冷媒が充填されている、
    請求項1から5のいずれか1項に記載の配管径の決定方法。
  7.  圧縮機(21)と室外熱交換器(22)を有する室外ユニット(2)と、室内熱交換器(41a、41b)を有する室内ユニット(4a、4b)と、前記室外ユニットと前記室内ユニットとを連絡する液側冷媒連絡配管(5)およびガス側冷媒連絡配管(6)と、を備えた冷凍装置(1)における前記液側冷媒連絡配管(5)の配管径の決定装置(100、30)であって、
     据え付けられる前記室外ユニットと前記室内ユニットが備える冷房能力および暖房能力の情報を把握する把握部(110、121、122a)と、
     前記把握部が把握した情報に基づいて、前記液側冷媒連絡配管の配管径を決定する配管径決定部(120)と、
     前記配管径決定部が決定した前記液側冷媒連絡配管の配管径を出力する出力部(130)と、
    を備えた配管径の決定装置(100、30)。
  8.  前記把握部は、前記冷凍装置が設置される場所における冷房負荷および暖房負荷の情報をさらに把握し、
     前記配管径決定部は、前記冷凍装置の前記冷房能力および前記暖房能力と、前記冷房負荷および前記暖房負荷と、の関係を用いて前記液側冷媒連絡配管(5)の配管径を決定する、
    請求項7に記載の配管径の決定装置。
  9.  前記圧縮機(21)と前記室外熱交換器(22)を有する前記室外ユニット(2)と、
     前記室内熱交換器(41a、41b)を有する前記室内ユニット(4a、4b)と、
     前記室外ユニットと前記室内ユニットとを連絡する前記液側冷媒連絡配管(5)および前記ガス側冷媒連絡配管(6)と、
     請求項7または8に記載の配管径の決定装置(30)と、
    を備えた冷凍装置(1)。
PCT/JP2017/043173 2016-11-30 2017-11-30 配管径の決定方法、配管径の決定装置、および冷凍装置 WO2018101439A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17875459.4A EP3550215A4 (en) 2016-11-30 2017-11-30 METHOD AND DEVICE FOR DETERMINING PIPE DIAMETER, AS WELL AS REFRIGERATION DEVICE
KR1020197018155A KR102091098B1 (ko) 2016-11-30 2017-11-30 배관 직경의 결정 방법, 배관 직경의 결정 장치, 및 냉동 장치
JP2018554265A JP6680366B2 (ja) 2016-11-30 2017-11-30 配管径の決定方法、配管径の決定装置、および冷凍装置
CN201780073966.XA CN110023684B (zh) 2016-11-30 2017-11-30 配管直径的确定方法、配管直径的确定装置以及制冷装置
BR112019010854-8A BR112019010854B1 (pt) 2016-11-30 2017-11-30 Método de determinação de diâmetro do tubo, aparelho de determinação de diâmetro do tubo e aparelho de refrigeração
AU2017369485A AU2017369485B2 (en) 2016-11-30 2017-11-30 Pipe diameter determination method, pipe diameter determination apparatus, and refrigeration apparatus
US16/465,483 US11105620B2 (en) 2016-11-30 2017-11-30 Pipe diameter determination method, pipe diameter determination apparatus, and refrigerating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-232207 2016-11-30
JP2016232207 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101439A1 true WO2018101439A1 (ja) 2018-06-07

Family

ID=62242505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043173 WO2018101439A1 (ja) 2016-11-30 2017-11-30 配管径の決定方法、配管径の決定装置、および冷凍装置

Country Status (7)

Country Link
US (1) US11105620B2 (ja)
EP (1) EP3550215A4 (ja)
JP (1) JP6680366B2 (ja)
KR (1) KR102091098B1 (ja)
CN (1) CN110023684B (ja)
AU (1) AU2017369485B2 (ja)
WO (1) WO2018101439A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188756A1 (ja) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 空気調和機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870633B (zh) * 2018-06-28 2019-10-25 珠海格力电器股份有限公司 空调系统的控制方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055483A (ja) 1998-08-11 2000-02-25 Matsushita Electric Ind Co Ltd 空気調和装置およびその施工方法
JP2001304702A (ja) * 2000-04-19 2001-10-31 Daikin Ind Ltd 冷凍装置
WO2013146103A1 (ja) * 2012-03-26 2013-10-03 日立アプライアンス株式会社 冷凍サイクル装置
WO2016051606A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 空気調和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138859A (en) 1977-11-02 1979-02-13 General Electric Company Split heat pump outdoor fan arrangement
AU766695B2 (en) 1999-03-02 2003-10-23 Daikin Industries, Ltd. Refrigerating device
JP2001248941A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
JP4815656B2 (ja) * 2000-04-19 2011-11-16 ダイキン工業株式会社 冷凍装置
GB0121375D0 (en) * 2001-09-04 2001-10-24 Ashe Morris Ltd Temperature control systems
JP3775358B2 (ja) * 2002-07-12 2006-05-17 ダイキン工業株式会社 冷凍装置
US7606683B2 (en) * 2004-01-27 2009-10-20 Emerson Climate Technologies, Inc. Cooling system design simulator
JP3963190B2 (ja) * 2005-04-07 2007-08-22 ダイキン工業株式会社 空気調和装置の冷媒量判定システム
JP3963192B1 (ja) * 2006-03-10 2007-08-22 ダイキン工業株式会社 空気調和装置
WO2008058400A1 (en) * 2006-11-14 2008-05-22 The University Of Calgary Catalytic down-hole upgrading of heavy oil and oil sand bitumens
CN102483272A (zh) * 2009-09-10 2012-05-30 三菱电机株式会社 空气调节装置
JPWO2011161720A1 (ja) * 2010-06-23 2013-08-19 三菱電機株式会社 空気調和装置
JP6064412B2 (ja) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル 空気調和装置
JP5972397B2 (ja) 2012-11-30 2016-08-17 三菱電機株式会社 空気調和装置、その設計方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055483A (ja) 1998-08-11 2000-02-25 Matsushita Electric Ind Co Ltd 空気調和装置およびその施工方法
JP2001304702A (ja) * 2000-04-19 2001-10-31 Daikin Ind Ltd 冷凍装置
WO2013146103A1 (ja) * 2012-03-26 2013-10-03 日立アプライアンス株式会社 冷凍サイクル装置
WO2016051606A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550215A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188756A1 (ja) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 空気調和機
JPWO2020188756A1 (ja) * 2019-03-19 2021-04-30 日立ジョンソンコントロールズ空調株式会社 ルームエアコン

Also Published As

Publication number Publication date
KR102091098B1 (ko) 2020-03-19
AU2017369485B2 (en) 2019-07-18
JP6680366B2 (ja) 2020-04-15
JPWO2018101439A1 (ja) 2019-10-24
BR112019010854A2 (pt) 2019-10-01
EP3550215A4 (en) 2019-12-25
US11105620B2 (en) 2021-08-31
CN110023684A (zh) 2019-07-16
EP3550215A1 (en) 2019-10-09
KR20190080958A (ko) 2019-07-08
AU2017369485A1 (en) 2019-07-18
US20190293417A1 (en) 2019-09-26
CN110023684B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
JP4968373B2 (ja) 空気調和装置
WO2017203606A1 (ja) 空気調和装置
GB2569898A (en) Air conditioner
WO2014103028A1 (ja) 空気調和装置
US9494363B2 (en) Air-conditioning apparatus
JP6699746B2 (ja) 冷媒量の決定方法および冷媒量の決定装置
US11371743B2 (en) Air conditioning system
US11293647B2 (en) Air conditioner
AU2009248466A1 (en) Refrigeration Apparatus
CN110741208A (zh) 空调装置
JP6479181B2 (ja) 空気調和装置
US11906191B2 (en) Air-conditioning apparatus
WO2018101439A1 (ja) 配管径の決定方法、配管径の決定装置、および冷凍装置
JP2008032275A (ja) 空気調和装置
US9587861B2 (en) Air-conditioning apparatus
JP2018087677A (ja) 配管径の決定方法、配管径の決定装置、および冷凍装置
JP2009139012A (ja) 冷凍空調装置
WO2020188756A1 (ja) 空気調和機
JP6413447B2 (ja) 冷凍装置
WO2017110339A1 (ja) 空気調和装置
JP7150198B2 (ja) 冷凍装置
JP5884422B2 (ja) 冷凍装置
WO2023120448A1 (ja) 熱源ユニット及び冷凍装置
BR112019010854B1 (pt) Método de determinação de diâmetro do tubo, aparelho de determinação de diâmetro do tubo e aparelho de refrigeração

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019010854

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197018155

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017875459

Country of ref document: EP

Effective date: 20190701

ENP Entry into the national phase

Ref document number: 2017369485

Country of ref document: AU

Date of ref document: 20171130

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019010854

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190528