CN110023684B - 配管直径的确定方法、配管直径的确定装置以及制冷装置 - Google Patents

配管直径的确定方法、配管直径的确定装置以及制冷装置 Download PDF

Info

Publication number
CN110023684B
CN110023684B CN201780073966.XA CN201780073966A CN110023684B CN 110023684 B CN110023684 B CN 110023684B CN 201780073966 A CN201780073966 A CN 201780073966A CN 110023684 B CN110023684 B CN 110023684B
Authority
CN
China
Prior art keywords
liquid
pipe
side refrigerant
refrigerant communication
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780073966.XA
Other languages
English (en)
Other versions
CN110023684A (zh
Inventor
山田拓郎
中川裕介
本田雅裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of CN110023684A publication Critical patent/CN110023684A/zh
Application granted granted Critical
Publication of CN110023684B publication Critical patent/CN110023684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

提供一种能够使所填充的制冷剂减少的制冷装置的配管直径的确定方法、配管直径的确定装置以及制冷装置。在能够执行制冷运转和制热运转的制冷装置(1)的液体侧制冷剂连通配管(5)的配管直径的确定方法中,根据要安装的室外单元(2)和室内单元(4a、4b)所具有的制冷能力以及制热能力来确定液体侧制冷剂连通配管(5)的配管直径。

Description

配管直径的确定方法、配管直径的确定装置以及制冷装置
技术领域
本发明涉及一种配管直径的确定方法、配管直径的确定装置以及制冷装置。
背景技术
目前,已知一种室外单元与室内单元通过制冷剂连通配管连接且能够进行制冷运转和制热运转的制冷装置。
在该制冷装置中,例如,如专利文献1(日本专利特开第2000-55483号公报)所记载的那样,通过制冷运转和制热运转使存在于制冷剂连通配管的制冷剂量变化。
发明内容
发明所要解决的技术问题
上述这样的、通过制冷运转和制热运转使存在于制冷剂连通配管的制冷剂量变化的制冷装置在各种环境下施工。例如,存在在制热负载较大的寒冷地带、制冷负载较大的温暖地区或者隔热性能匮乏的建筑物处施工的情况。
在上述各施工场所处具有应根据各自的环境进行处理的制冷负载以及制热负载,作为制冷装置的室外单元和室内单元,需要选定具有能够对上述制冷负载和制热负载这两者进行处理的能力的制冷装置。在如上所述那样选定制冷装置的情况下,作为制冷装置,会产生具有各种制冷能力和各种制热能力的制冷装置。
另一方面,作为一般的需求,存在想要使填充于制冷装置的制冷剂量减少的需求。
然而,在根据制冷负载和制热负载确定了要施工的制冷装置的种类的情况下,关于使填充于上述确定种类的制冷装置的制冷剂量减少这一点,目前为止没有任何研究。
解决技术问题所采用的技术方案
第一观点的配管直径的确定方法是制冷装置的液体侧制冷剂连通配管的配管直径的确定方法。该制冷装置包括室外单元、室内单元、液体侧制冷剂连通配管以及气体侧制冷剂连通配管,并且该制冷装置能够执行制冷运转和制热运转,其中,上述室外单元具有压缩机和室外热交换器,上述室内单元具有室内热交换器,上述液体侧制冷剂连通配管和上述气体侧制冷剂连通配管连通室外单元与室内单元。在该配管直径的确定方法中,根据要安装的室外单元和室内单元所具有的制冷能力以及制热能力来确定液体侧制冷剂连通配管的配管直径。
作为制冷装置,例如,适当地选定、安装能够对根据供制冷装置安装的场所的环境所确定的制冷负载以及制热负载进行处理的制冷装置。
此处,在该配管直径的确定方法中,根据要安装的室外单元和室内单元所具有的制冷能力以及制热能力来确定液体侧制冷剂连通配管的配管直径。因此,与无论制冷能力以及制热能力如何均同样地确定液体侧制冷剂连通配管的配管直径的情况相比,能够减小液体侧制冷剂连通配管的配管直径。
在第一观点所述的配管直径的确定方法的基础上,在第二观点的配管直径的确定方法中,对供制冷装置设置的场所的制冷负载以及制热负载进行掌握,利用制冷装置的制冷能力和制热能力与制冷负载和制热负载的关系来确定液体侧制冷剂连通配管的配管直径。
此处,供制冷装置设置的场所的制冷负载和制热负载的确定方法没有特别限定,例如,能够考虑供制冷装置设置的地区的气象数据、供制冷装置设置的建筑物的隔热性能(等级排名等)、由内部发热产生的热负载等中的至少任意一个因素,利用空调手册等记载的、本领域技术人员所熟知的方法进行确定。
另外,在确定液体侧制冷剂连通配管的配管直径时,没有特别限定,例如,也可将根据制冷装置的制冷能力以及制热能力预先确定的液体侧制冷剂连通配管的配管直径作为基准,利用制冷装置的制冷能力和制热能力与制冷负载和制热负载的关系来将作为该基准的配管直径校正得较小,从而确定液体侧制冷剂连通配管的配管直径。
此外,制冷装置所具有的制冷能力与制热能力之比没有特别限定,较为理想的是,例如,制冷能力:制热能力=1.0:1.0~1.2。
在该配管直径的确定方法中,当确定液体侧制冷剂连通配管的配管直径时,利用制冷装置的制冷能力和制热能力与供制冷装置设置的场所的制冷负载和制热负载的关系。此处,相对于所选定的制冷装置具有的制冷能力和制热能力的、供制冷装置设置的场所的制冷负载和制热负载不必完全对应,有时存在差异,有时制冷装置的制冷能力以及/或者制热能力大于处理所要求的制冷负载以及/或者制热负载。因此,以液体侧制冷剂连通配管的配管直径与相对于处理所要求的制冷负载以及/或者制热负载的、制冷装置的制冷能力以及/或者制热能力的过剩量相应地变小的方式进行确定,从而能够在一定程度上将制冷剂的压力损失抑制得较低,并且使填充于制冷装置的制冷剂量减少。
在第二观点所述的配管直径的确定方法的基础上,在第三观点的配管直径的确定方法中,室外单元具有冷却部,该冷却部使在制冷运转时流过室外热交换器而送往液体侧制冷剂连通配管的制冷剂冷却。此外,以下述方式确定液体侧制冷剂连通配管的配管直径:表示制热负载相对于制冷负载的比例的值越小,或者,从制热能力减去制热负载而得到的值越大,则液体侧制冷剂连通配管的配管直径越小。
此处,作为表示制热负载相对于制冷负载的比例的值,没有特别限定,例如,可以是制热负载除以制冷负载而得到的值即冷热比(制热负载/制冷负载)。
此外,较为理想的是,冷却部使在制冷运转时流过室外热交换器而送往液体侧制冷剂连通配管的制冷剂成为规定的过冷却状态。
在采用该配管直径的确定方法的制冷装置中,在制冷运转时,流过室外热交换器而送往液体侧制冷剂连通配管的制冷剂通过冷却部冷却,从而成为密度较高的制冷剂。另一方面,在制热运转时,在室内热交换器中散热后朝向液体侧制冷剂连通配管的制冷剂未通过冷却部冷却。因此,在该制冷装置中,在制冷运转时,容易将液态制冷剂供给至液体侧制冷剂连通配管,与此相对的是,在制热运转时,供给至液体侧制冷剂连通配管的制冷剂的密度较低,容易供给气液两相状态的制冷剂。因此,在制冷运转时,流过液体侧制冷剂连通配管的制冷剂的压力损失被抑制得较小,与此相对的是,在制热运转时,与制冷运转时相比,在液体侧制冷剂连通配管中流动的制冷剂的压力损失容易变大。
因此,该制冷装置的液态制冷剂连通配管的配管直径能够以将制热运转时的压力损失抑制为能够允许的压力损失的方式而非以将制冷运转时的压力损失抑制得较小的方式来确定配管直径。此处,在表示制冷装置的设置场所的制热负载相对于制冷负载的比例的值较小的情况下,或者在从制热能力减去制热负载而得到的值较大的情况下,在制热运转时在液态制冷剂连通配管中流动的制冷剂的压力损失的大小不会变得那么大。在该情况下,即使进一步减小液体侧制冷剂连通配管的配管直径,也不会使制热运转时在液体侧制冷剂连通配管中流动的制冷剂的压力损失变得太大,往往能够将该压力损失控制在能够允许的压力损失的范围内。此外,如上述那样减小液体侧制冷剂连通配管的配管直径,从而能够使填充于制冷装置的制冷剂量进一步减少。
在第三观点所述的配管直径的确定方法的基础上,在第四观点的配管直径的确定方法中,以下述方式确定液体侧制冷剂连通配管的配管直径:表示制热负载相对于制冷负载的比例的值越小,或者,从制热能力减去制热负载而得到的值越大,则液体侧制冷剂连通配管的配管直径逐级变得越小。
在该配管直径的确定方法中,即使将液体侧制冷剂连通配管的配管直径逐级地减小,也能够对制热负载进行处理,从而能够使填充于制冷装置的制冷剂量逐级地减少。
在第二观点至第四观点中任一观点所述的配管直径的确定方法的基础上,在第五观点的配管直径的确定方法中,在液体侧制冷剂连通配管供给有流过室外热交换器而朝向室内热交换器的制冷剂即处于液体单相状态的制冷剂。
具体而言,能够列举将在制冷运转时在液体侧制冷剂连通配管的入口流动的制冷剂设为液体单相状态。
此处,作为流过室外热交换器而朝向室内热交换器的制冷剂,是指在能够执行制冷运转的制冷剂回路的状态下,从压缩机排出并且流过室外热交换器而朝向室内热交换器的制冷剂。
在该配管直径的确定方法中,在朝向液体侧制冷剂连通配管供给密度比气液两相状态的制冷剂的密度高的液体单相状态的制冷剂的制冷装置中,以液体侧制冷剂连通配管的配管直径变小的方式确定配管直径。因此,由于能够减少密度较高的液体单相状态的制冷剂的填充量,因而能够进一步提高填充于制冷装置的制冷剂量减少的效果。
在第一观点至第五观点中任一观点所述的配管直径的确定方法的基础上,在第六观点的配管直径的确定方法中,在制冷装置填充有微燃性制冷剂。
此处,关于微燃性制冷剂没有特别限定,例如,能够列举R32等制冷剂。
在该配管直径的确定方法中,由于能够减少填充于制冷装置的微燃性制冷剂的量,因此,能够将万一微燃性制冷剂泄漏的情况的危险性抑制得较小。
第七观点的配管直径的确定装置是制冷装置的液体侧制冷剂连通配管的配管直径的确定装置,包括掌握部、配管直径确定部、输出部。制冷装置包括室外单元、室内单元、液体侧制冷剂连通配管以及气体侧制冷剂连通配管,其中,上述室外单元具有压缩机和室外热交换器,上述室内单元具有室内热交换器,上述液体侧制冷剂连通配管和上述气体侧制冷剂连通配管连通室外单元与室内单元。掌握部对要安装的室外单元和室内单元所具有的制冷能力以及制热能力的信息进行掌握。配管直径确定部根据掌握部所掌握的信息来确定液体侧制冷剂连通配管的配管直径。输出部输出配管直径确定部所确定的液体侧制冷剂连通配管的配管直径。
作为制冷装置,例如,适当地选定、安装能够对根据供制冷装置安装的场所的环境所确定的制冷负载以及制热负载进行处理的制冷装置。
此处,在该配管直径的确定装置中,处理部根据掌握部所掌握的、要安装的室外单元和室内单元所具有的制冷能力以及制热能力的信息来确定液体侧制冷剂连通配管的配管直径。此外,输出部输出处理部所确定的液体侧制冷剂连通配管的配管直径。因此,与无论制冷能力以及制热能力如何均同样地确定液体侧制冷剂连通配管的配管直径的情况相比,能够自动地掌握较小的配管直径。
在第七观点所述的配管直径的确定装置的基础上,在第八观点的配管直径的确定装置中,掌握部还对供制冷装置设置的场所的制冷负载以及制热负载的信息进行掌握。配管直径确定部利用制冷装置的制冷能力和制热能力与制冷负载和制热负载的关系来确定液体侧制冷剂连通配管的配管直径。
此处,供制冷装置设置的场所的制冷负载和制热负载的确定方法没有特别限定,例如,能够考虑供制冷装置设置的地区的气象数据、供制冷装置设置的建筑物的隔热性能(等级排名等)、由内部发热产生的热负载等中的至少任意一个因素,利用空调手册等记载的、本领域技术人员所熟知的方法进行确定。
另外,在确定液体侧制冷剂连通配管的配管直径时,没有特别限定,例如,也可将根据制冷装置的制冷能力以及制热能力预先确定的液体侧制冷剂连通配管的配管直径作为基准,利用制冷装置的制冷能力和制热能力与制冷负载和制热负载的关系来将作为该基准的配管直径校正得较小,从而确定液体侧制冷剂连通配管的配管直径。
此外,制冷装置所具有的制冷能力与制热能力之比没有特别限定,较为理想的是,例如,制冷能力:制热能力=1.0:1.0~1.2。
在该配管直径的确定装置中,当确定液体侧制冷剂连通配管的配管直径时,利用制冷装置的制冷能力和制热能力与供制冷装置设置的场所的制冷负载和制热负载的关系。此处,相对于所选定的制冷装置具有的制冷能力和制热能力的、供制冷装置设置的场所的制冷负载和制热负载不必完全对应,有时存在差异,有时制冷装置的制冷能力以及/或者制热能力大于处理所要求的制冷负载以及/或者制热负载。因此,配管直径的确定装置的配管直径确定部以液体侧制冷剂连通配管的配管直径与相对于处理所要求的制冷负载以及/或者制热负载的、制冷装置的制冷能力以及/或者制热能力的过剩量相应地变小的方式确定配管直径,从而能够在一定程度上将制冷剂的压力损失抑制得较低,并且使填充于制冷装置的制冷剂量减少。
第九观点的制冷装置包括室外单元、室内单元、液体侧制冷剂连通配管以及气体侧制冷剂连通配管、第七观点或第八观点所述的配管直径的确定装置,其中,上述室外单元具有压缩机和室外热交换器,上述室内单元具有室内热交换器,上述液体侧制冷剂连通配管和上述气体侧制冷剂连通配管连通室外单元与室内单元。
在该制冷装置中,由于包括配管直径的确定装置,因此,在对制冷装置进行施工时,能够对液体侧制冷剂连通配管的配管直径进行掌握。
附图说明
图1是应用一实施方式的配管直径的确定方法的制冷装置的整体结构图。
图2是制冷装置的控制系统的方框结构图。
图3是配管直径的确定装置的方框结构图。
图4是变形例(C)的制冷装置的控制系统的方框结构图。
具体实施方式
(1)制冷装置的结构
图1是制冷装置1的示意结构图。
制冷装置1是通过进行蒸汽压缩式的制冷循环运转来进行建筑物等的室内的制冷以及制热的装置。制冷装置1主要包括室外单元2、室内单元4(第一室内单元4a和第二室内单元4b)、连通室外单元2与室内单元4的液体侧制冷剂连通配管5以及气体侧制冷剂连通配管6。也就是说,制冷装置1的蒸汽压缩式制冷剂回路10通过连接室外单元2、室内单元4、液体侧制冷剂连通配管5以及气体侧制冷剂连通配管6而构成。
另外,在本实施方式的制冷剂回路10填充有R32以作为制冷剂。
(1-1)室内单元
室内单元4通过埋入或悬挂于建筑物等的室内的天花板等方式或者通过挂于室内的壁面等方式设置。室内单元4经由液体侧制冷剂连通配管5以及气体侧制冷剂连通配管6与室外单元2连接,从而构成作为主回路的制冷剂回路10的一部分。
另外,在本实施方式中,室内单元4在制冷剂回路10中彼此并联地连接有多个。具体而言,第一室内单元4a与第二室内单元4b在制冷剂回路10中彼此并联地连接,液体侧制冷剂连通配管5以及气体侧制冷剂连通配管6所具有的分岔配管分别与第一室内单元4a侧和第二室内单元4b侧连接。
接着,对第一室内单元4a的结构进行说明。
第一室内单元4a主要具有第一室内侧制冷剂回路10a,该第一室内侧制冷剂回路10a构成作为主回路的制冷剂回路10的一部分。上述第一室内侧制冷剂回路10a主要具有第一室内膨胀阀44a和第一室内热交换器41a。
第一室内膨胀阀44a由电子膨胀阀构成,并且配置于第一室内热交换器41a的液体侧。
第一室内热交换器41a是由导热管和多个翅片构成的交叉翅片式的翅片管热交换器,并且该第一室内热交换器41a是在制冷运转时作为制冷剂的蒸发器起作用而对室内空气进行冷却、并在制热运转时作为制冷剂的散热器或冷凝器起作用而对室内空气进行加热的热交换器。
第一室内单元4a具有第一室内风扇42a,该第一室内风扇42a用于将室内空气吸入单元内,并在使上述室内空气在第一室内热交换器41a中与制冷剂热交换后作为供给空气供给至室内。第一室内风扇42a是离心风扇或多叶片风扇等,具有用于驱动的第一室内风扇用马达43a。
另外,在第一室内单元4a设置有第一室内气体侧制冷剂温度传感器45a,该第一室内气体侧制冷剂温度传感器45a对在第一室内热交换器41a的气体侧流动的制冷剂温度进行检测。此外,在第一室内单元4a设置有第一室内液体侧制冷剂温度传感器49a,该第一室内液体侧制冷剂温度传感器49a对在第一室内热交换器41a的液体侧与第一室内膨胀阀44a之间流动的制冷剂温度进行检测。
此外,第一室内单元4a具有第一室内控制部46a,该第一室内控制部46a对构成第一室内单元4a的各部分的动作进行控制。此外,第一室内侧控制部46a具有为了进行第一室内单元4a的控制而设的微型计算机和存储器等,并且该第一室内侧控制部46a能与用于单独操作第一室内单元4a的遥控器(未图示)之间进行控制信号等的交换,以及与室外单元2之间经由传送线7a进行控制信号等的交换。
另外,第二室内单元4b的结构具有:第二室内侧制冷剂回路10b,该第二室内侧制冷剂回路10b具有第二室内膨胀阀44b和第二室内热交换器41b;第二室内风扇42b,该第二室内风扇42b具有第二室内风扇用马达43b;第二室内气体侧制冷剂温度传感器45b;第二室内液体侧制冷剂温度传感器49b;以及第二室内控制部46b,由于上述第二室内单元4b与第一室内单元4a具有相同的结构,因而在此省略说明。
(1-2)室外单元
室外单元2设置于建筑物等的室外,经由液体侧制冷剂连通管5及气体侧制冷剂连通管6与室内单元4连接,从而在与室内单元4之间构成制冷剂回路10。
接着,对室外单元2的结构进行说明。
室外单元2具有构成制冷剂回路10的一部分的室外侧制冷剂回路10c。该室外侧制冷剂回路10c主要具有压缩机21、室外热交换器22、过冷却回路11、过冷却热交换器12(相当于冷却部)、室外膨胀阀28、储罐29、四通换向阀27、液体侧截止阀24、气体侧截止阀25。
在本实施方式中,压缩机21是通过压缩机用马达21a驱动的容积式压缩机。压缩机用马达21a经由逆变器装置(未图示)接收电力的供给而驱动,并且能够通过改变频率(即,转速)来改变运转容量。
室外热交换器22是由导热管和许多个翅片构成的交叉翅片式的翅片管热交换器,并且该室外热交换器22是在制冷运转时作为制冷剂的散热器或冷凝器起作用并且在制热运转时作为制冷剂的蒸发器起作用的热交换器。室外热交换器22的气体侧与压缩机21连接,室外热交换器22的液体侧经由过冷却热交换器12与室外膨胀阀28连接。
室外机2具有室外风扇26,该室外风扇26作为送风部,用于将室外空气吸入单元内,并在使该室外空气在室外热交换器22中与制冷剂进行热交换后排出到室外。上述室外风扇26是能改变供给至室外热交换器22的作为热源的室外空气的风量的风扇,在本实施方式中,该室外风扇26是通过由DC风扇马达构成的室外风扇用马达26a驱动的螺旋桨风扇等。室外风扇用马达26a经由逆变器装置(未图示)接收电力的供给而被驱动。
过冷却回路11是从室外热交换器22与过冷却热交换器12之间分岔并在四通换向阀27与储罐29之间汇合的回路。在过冷却回路11设置有过冷却膨胀阀13,该过冷却膨胀阀13对在过冷却热交换器12的上游侧流动的制冷剂进行减压。过冷却回路11能够提高从室外热交换器22向室外膨胀阀28的制冷剂的过冷却度。
室外膨胀阀28设置在室外热交换器22与过冷却热交换器12之间以便进行在室外侧制冷剂回路10c内流动的制冷剂的流量的调节等。具体而言,在本实施方式中,制冷剂回路10中的室外膨胀阀28设置在室外热交换器22与过冷却回路11的分岔位置之间。
储罐29设置于从四通换向阀27到压缩机21之间的压缩机21的吸入侧,并且能够将液体状态的制冷剂与气体状态的制冷剂分离。
四通换向阀27能够通过切换连接状态来切换制冷运转连接状态和制热运转连接状态,在制冷运转连接状态下,该四通换向阀27将压缩机21的排出侧与室外热交换器22连接并且将储罐29的下游侧与气体侧截止阀25连接,在制热运转连接状态下,该四通换向阀27将压缩机21的排出侧与气体侧截止阀25连接并且将储罐29的下游侧与室外热交换器22连接。
液体侧截止阀24以及气体侧截止阀25是设置于与外部的设备、配管(具体而言是液体制冷剂连通管5以及气体制冷剂连通管6)连接的连接口的阀。液体侧截止阀24经由配管连接于室外膨胀阀28的与室外热交换器22侧相反一侧。气体侧截止阀25经由配管与四通换向阀27的一个连接端口连接。
另外,在室外单元2中设有各种传感器。具体而言,在室外单元2设置有:吸入压力传感器32,该吸入压力传感器32对压缩机21的吸入压力进行检测;排出压力传感器33,该排出压力传感器33对压缩机21的排出压力进行检测;吸入温度传感器34,该吸入温度传感器34对压缩机21的吸入温度进行检测;排出温度传感器35,该排出温度传感器35对压缩机21的排出温度进行检测;室外热交液体侧温度传感器36,该室外热交液体侧温度传感器36对室外热交换器22的液体侧端的制冷剂的温度(室外热交出口温度)进行检测;液体管温度传感器38,该液体管温度传感器38对在连接室外膨胀阀28与液体侧截止阀24的室外液态制冷剂管23中流动的制冷剂的温度进行检测;外部气体温度传感器39,该外部气体温度传感器39作为检测外部气体温度的温度检测部。
此外,室外单元2具有室外控制部31,该室外控制部31对构成室外单元2的各部分的动作进行控制。此外,室外控制部31具有为了进行室外单元2的控制而设的微型计算机、存储器、以及对压缩机用马达21a、室外风扇用马达26a、室外膨胀阀28等进行控制的逆变器回路等,并且该室外控制部31能够在与第一室内单元4a的第一室内控制部46a以及第二室内单元4b的第二室内控制部46b之间经由传送线7a进行控制信号等的交换。也就是说,通过连接第一室内控制部46a、第二室内控制部46b以及室外控制部31之间的传送线7a构成进行制冷装置1整体的运转控制的控制部7。
如图2所示,控制部7以能够接收各种传感器32~39、45a、45b、49a、49b的检测信号的方式连接,并且以能够根据上述检测信号等来对各种设备、四通换向阀27、压缩机21、室外风扇26、室外膨胀阀28、过冷却膨胀阀13、第一室内膨胀阀44a、第一室内风扇42a、第二室内膨胀阀44b、第二室内风扇42b进行控制的方式连接。此处,图2是制冷装置1的控制框图。另外,控制部7与接收来自用户的各种设定输入并且对制冷装置1进行监视、管理或控制的控制器30连接,具有未图示的存储器。
(1-3)制冷剂连通配管
液体侧制冷剂连通配管5以及气体侧制冷剂连通配管6是在将制冷装置1设置于建筑物等设置场所时在现场施工的制冷剂管,并且上述液体侧制冷剂连通配管5以及气体侧制冷剂连通配管6能根据设置场所、室外单元与室内单元的组合等设置条件而使用具有各种长度和配管直径的制冷剂连通配管。
如上所述,通过将第一室内侧制冷剂回路10a和第二室内侧制冷剂回路10b、室外侧制冷剂回路10c、液体侧制冷剂连通配管5和气体侧制冷剂连通配管6连接,即,通过依次连接压缩机21、室外热交换器22、室外膨胀阀28、液体侧制冷剂连通配管5、室内膨胀阀44、室内热交换器41、气体侧制冷剂连通配管6,从而构成制冷装置1的制冷剂回路10。
液体侧制冷剂连通配管5构成为具有主液体侧制冷剂连通配管50、第一室内液体侧分岔管51、第二室内液体侧分岔管52。主液体侧制冷剂连通配管50以将室外单元2的液体侧截止阀24与分岔点X连接的方式延伸。第一室内液体侧分岔管51以将分岔点X与第一室内单元4a(第一室内单元4a的设置有第一室内膨胀阀44a侧的出口)连接的方式延伸。第二室内液体侧分岔管52以将分岔点X与第二室内单元4b(第二室内单元4b的设置有第二室内膨胀阀44b侧的出口)连接的方式延伸。
气体侧制冷剂连通配管6构成为具有主气体侧制冷剂连通配管60、第一室内气体侧分岔管61、第二室内气体侧分岔管62。主气体侧制冷剂连通配管60以将室外单元2的气体侧截止阀25与分岔点Y连接的方式延伸。第一室内气体侧分岔管61以将分岔点Y与第一室内单元4a(第一室内单元4a的设置有第一室内热交换器41a侧的出口)连接的方式延伸。第二室内气体侧分岔管62以将分岔点Y与第二室内单元4b(第二室内单元4b的设置有第二室内热交换器41b侧的出口)连接的方式延伸。
(2)制冷剂回路10中的制冷循环
在制冷装置1的制冷剂回路10中,通过切换四通换向阀27的连接状态,进行制冷运转和制热运转。
(2-1)制冷运转
在四通换向阀27的连接状态切换成压缩机21的排出侧位于室外热交换器22侧且压缩机21的吸入侧位于各室内热交换器41a、41b侧的状态下进行制冷运转。
压缩机21的频率通过控制部7控制,以形成目标低压压力,从而能够对规定的各室内单元中的制冷负载进行处理。由此,吸入压缩机21的低压压力的制冷剂从压缩机21排出而成为高压压力的制冷剂,并且经由四通换向阀27流入室外热交换器22。
流入室外热交换器22的制冷剂将制冷剂的热量发散而冷凝。
在制冷运转时,从室外热交换器22向室外膨胀阀28流动的制冷剂流过由控制部7控制成完全打开状态的室外膨胀阀28,并流入过冷却热交换器12。
流入过冷却热交换器12的制冷剂在过冷却热交换器12中与在过冷却回路11中流动的制冷剂(在过冷却膨胀阀13中减压后的制冷剂)进行热交换而成为过冷却度增加的液体单相状态的制冷剂,从而朝向液体侧截止阀24流动。另外,由于能够将在过冷却热交换器12中充分冷却后的制冷剂送至各室内单元4a、4b,因而即使不提高循环量也易于处理制冷负载,并且能够有效地运送由于冷却而密度上升的液态制冷剂,因此,还能够将流过液体侧制冷剂连通配管5的制冷剂量抑制得较少而使压力损失降低。
在制冷运转下,过冷却膨胀阀13的阀开度通过控制部7进行开度控制,以使流过过冷却热交换器12而向液体侧截止阀24流动的制冷剂的过冷却度成为目标过冷却度。具体而言,控制部7对过冷却膨胀阀13的阀开度进行控制,以使从液体管温度传感器38所掌握的温度减去与从排出压力传感器33掌握的压力相当的饱和温度而得到的过冷却度成为目标过冷却度。由此,流过过冷却热交换器12的制冷剂成为具有充分的过冷却度的液体单相状态的制冷剂。
流过过冷却热交换器12的制冷剂流过室外液态制冷剂管23以及液体侧截止阀24并送往液体侧制冷剂连通配管5。
在液体侧制冷剂连通配管5中流动的制冷剂被送往各室内单元4a、4b。此处,由于流过室外液态制冷剂管23以及液体侧制冷剂连通配管5的制冷剂在流过时会产生压力损失,因此,制冷剂的压力将降低。另外,流过室外液态制冷剂管23以及液体侧制冷剂连通配管5的制冷剂所受到的压力损失根据要施工的液体侧制冷剂连通配管5的长度、配管直径以及制冷剂的流速而不同,液体侧制冷剂连通配管5越长、液体侧制冷剂连通配管5的配管直径(内径)越小、而且流动的制冷剂的流速越快,则上述制冷剂受到的压力损失越大。
流过液体侧制冷剂连通配管5的主液体侧制冷剂连通配管50并流动至分岔点X的制冷剂分岔并经由第一室内液体侧分岔管51流入第一室内单元4a,并且经由第二室内液体侧分岔管52流入第二室内单元4b。流入第一室内单元4a的制冷剂在第一室内膨胀阀44a中减压为制冷循环的低压压力,流入第二室内单元4b的制冷剂也同样在第二室内膨胀阀44b中减压为制冷循环的低压压力。另外,虽然没有特别限定,但第一室内膨胀阀44a的阀开度可以通过控制部7控制成第一室内热交换器41a的出口侧的制冷剂的过热度成为规定的目标过热度。在该情况下,控制部7可通过从第一室内气体侧制冷剂温度传感器45a的检测温度减去对吸入压力传感器32的检测压力进行换算而得到的制冷剂的饱和温度,从而求出第一室内热交换器41a的气体侧出口的制冷剂的过热度。另外,第二室内膨胀阀44b的阀开度的控制同样如此。
在第一室内单元4a的第一室内膨胀阀44a中减压后的制冷剂在第一室内热交换器41a中蒸发后向第一室内气体侧分岔管61流动,同样地,在第二室内单元4b的第二室内膨胀阀44b中减压后的制冷剂在第二室内热交换器41b中蒸发后向第二室内气体侧分岔管62流动。接着,在第一室内热交换器41a和第二室内热交换器41b中蒸发后的制冷剂在连接有第一室内气体侧分岔管61、第二室内气体侧分岔管62、气体侧制冷剂连通配管6中的主气体侧制冷剂连通配管60的分岔点Y处汇合并在主气体侧制冷剂连通配管60中流动,然后,经由室外单元2的气体侧截止阀25、四通换向阀27、储罐29再次被吸入压缩机21。另外,上述在过冷却回路11中流动的制冷剂在四通换向阀27与储罐29之间汇合。
(2-2)制热运转
在四通换向阀27的连接状态切换成压缩机21的排出侧位于各室内热交换器41a、41b侧且压缩机21的吸入侧位于室外热交换器22侧的状态下进行制热运转。
压缩机21的频率通过控制部7控制,以形成目标高压压力,从而能够对规定的各室内单元中的制热负载进行处理。由此,从压缩机21排出的高压压力的制冷剂经由四通换向阀27、气体侧制冷剂连通配管6向各室内单元4a、4b流动。
此处,流过气体侧制冷剂连通配管6的主气体侧制冷剂连通配管60并流动至分岔点Y的制冷剂分岔并经由第一室内气体侧分岔管61流入第一室内单元4a,并且经由第二室内气体侧分岔管62流入第二室内单元4b。流入第一室内单元4a的制冷剂在第一室内热交换器41a中散热、冷凝。同样地,流入第二室内单元4b的制冷剂在第二室内热交换器41b中散热、冷凝。另外,虽然没有特别限定,但在制热运转时,第一室内膨胀阀44a以及第二室内膨胀阀44b的阀开度通过控制部7控制成在第一室内热交换器41a的出口和第二室内热交换器41b的出口流动的制冷剂的过冷却度成为规定的值。在该情况下,例如,控制部7能够控制第一室内膨胀阀44a和第二室内膨胀阀44b的阀开度,以使从与排出压力传感器33检测的制冷剂压力相当的饱和温度减去第一室内液体侧制冷剂温度传感器49a、第二室内液体侧制冷剂传感器49b的检测温度而得到的值成为规定的值。另外,除上述控制以外,基于控制部7的第一室内膨胀阀44a和第二室内膨胀阀44b的开度控制例如也可以向液体侧制冷剂连通配管5的入口供给液态制冷剂的方式进行控制,还可以在液体侧制冷剂连通配管5的入口处流过液态制冷剂并且在液体侧制冷剂连通配管5的出口处流过受到压力损失后的气液两相状态的制冷剂的方式进行控制。
这样,在第一室内热交换器41a中冷凝、流过第一室内膨胀阀44a并且进一步在第一室内液体侧分岔管51中流动的制冷剂与在第二室内热交换器41b中冷凝、流过第二室内膨胀阀44b并且进一步在第二室内液体侧分岔管52中流动的制冷剂在分岔点X处汇合,然后,被送往液体侧制冷剂连通配管5的主液体侧制冷剂连通配管50。此处,流过第一室内热交换器41a的制冷剂和流过第二室内热交换器41b的制冷剂未被特别冷却(制冷剂密度未被提高)而供给至液体侧制冷剂连通配管5。
在液体侧制冷剂连通配管5的主液体侧制冷剂连通配管50中流动的制冷剂经由液体侧截止阀24供给至室外单元2。
流过液体侧截止阀24、在室外液态制冷剂管23流动并且流过过冷却热交换器12的制冷剂在室外膨胀阀28中减压至制冷循环的低压压力。具体而言,通过控制部7控制室外膨胀阀28的阀开度,以使吸入压缩机21的制冷剂的过热度成为目标过热度。在该情况下,控制部7也可通过从吸入温度传感器34的检测温度减去利用吸入压力传感器32的检测压力换算得到的制冷剂的饱和温度,从而求出压缩机21吸入的制冷剂的过热度。
送至室外热交换器22的制冷剂蒸发并经由四通换向阀27、储罐29被再次吸入压缩机21。
(3)对制冷装置1进行施工的场所的制冷负载以及制热负载的确定
在对制冷装置1进行施工前,首先,求出要对制冷装置1进行施工的场所的制冷负载和制热负载。
制冷负载和制热负载的确定方法没有特别限定,能够采用公知的确定方法。例如,能够分别采用下述负载来进行确定:从根据对制冷装置1进行施工的地域的气候特性预先确定的关系确定的制冷负载和制热负载;从根据要施工的建筑物的隔热性能预先确定的关系确定的制冷负载和制热负载。
(4)具有能够处理制冷负载的制冷额定能力以及能够处理制热负载的制热额定能力的制冷装置1的确定
接着,确定一种制冷装置1,该制冷装置1具有制冷额定能力和制热额定能力,其中,上述制冷额定能力能够对在上述(3)中确定的对制冷装置1进行施工的场所的制冷负载进行处理,上述制热额定能力能够对在上述(3)中确定的对制冷装置1进行施工的场所的制热负载进行处理。
具体而言,确定一种室外单元2与室内单元4a、4b的组合,该组合具有能制冷额定能力和制热额定能力,其中,上述制冷额定能力能够处理对制冷装置1进行施工的场所的制冷负载,上述制热额定能力能够处理对制冷装置1进行施工的场所的制热负载。
此处,通过确定一种室外单元2与室内单元4a、4b的组合,从而确定包括该室外单元2与室内单元4a、4b的制冷装置1的制冷额定能力和制热额定能力,其中,上述组合具有一种制冷额定能力和制热额定能力,上述制冷额定能力能够处理对制冷装置1进行施工的场所的制冷负载,上述制热额定能力能够处理对制冷装置1进行施工的场所的制热负载。
另外,制冷额定能力和制热额定能力的值是通过基于标准等的公知的方法确定的值,也可采用记载于产品目录的值。
此处,较为理想的是,制冷额定能力与制热额定能力之比即制冷额定能力:制热额定能力在1.0:1.0~1.2的范围内。
(5)要施工的制冷装置1的液体侧制冷剂连通配管5的配管直径的确定等
根据上述(4)确定构成制冷装置1的室外单元2的种类以及室内单元4a、4b的种类,接着,对连接上述室外单元与室内单元的液体侧制冷剂连通配管5和气体侧制冷剂连通配管6进行确定。
另外,关于构成液体侧制冷剂连通配管5的主液体侧制冷剂连通配管50的配管长度以及构成气体侧制冷剂连通配管6的主气体侧制冷剂连通配管60的配管长度,根据供制冷装置1施工的物件确定。
此外,第一室内液体侧分岔管51和第二室内液体侧分岔管52的配管直径、第一室内气体侧分岔管61和第二室内气体侧分岔管62的配管直径(内径)根据所连接的室内单元的能力以及各分岔管的长度确定。
具体而言,主气体侧制冷剂连通配管60的配管直径(内径)根据如上所述那样确定的制冷装置1的制冷能力(可以利用制冷装置1具有的室外单元2的制冷能力作为制冷装置1的制冷能力,在制冷装置1具有一台室内单元4的情况下,也可利用该室内单元4的制冷能力作为制冷装置1的制冷能力,在制冷装置1具有多台室内单元4(第一室内单元4a和第二室内单元4b)的情况下,还可利用上述室内单元4的各制冷能力的总和作为制冷装置1的制冷能力)以及主气体侧制冷剂连通配管60的长度而确定为预先确定的配管直径。具体而言,以下述方式预先确定每个制冷能力与每个长度的配管直径的对应关系:制冷能力越大则主气体侧制冷连通配管60的配管直径越大,并且主气体侧制冷剂连通配管60的长度越长则主气体侧制冷剂连通配管60的配管直径越大,接着,根据上述对应关系来确定主气体侧制冷剂连通配管60的配管直径。另外,在本实施方式中,无论制冷装置1的设置位置的制热负载与制冷负载的关系如何,如上所述那样确定的主气体侧制冷剂连通配管60的配管直径都一样地确定。
此外,关于主液体侧制冷剂连通配管50的配管直径(内径),暂且根据如上所述那样确定的制冷装置1的制冷能力(可以利用制冷装置1具有的室外单元2的制冷能力作为制冷装置1的制冷能力,在制冷装置1具有一台室内单元4的情况下,也可利用该室内单元4的制冷能力作为制冷装置1的制冷能力,在制冷装置1具有多台室内单元4(第一室内单元4a和第二室内单元4b)的情况下,还可利用上述室内单元4的各制冷能力的总和作为制冷装置1的制冷能力)以及主液体侧制冷剂连通配管50的长度而暂时地确定为作为预先确定的基准的配管直径。具体而言,以下述方式预先确定每个制冷能力与每个长度的配管直径的对应关系:制冷能力越大则主液体侧制冷连通配管50的配管直径越大,并且主液体侧制冷剂连通配管50的长度越长则主液体侧制冷剂连通配管50的配管直径越大,接着,根据上述对应关系来暂时地确定主液体侧制冷剂连通配管50的作为基准的配管直径。
此处,对于暂时确定的、主液体侧制冷剂连通配管50的作为基准的配管直径,以下述方式对该配管直径进行校正:冷热比(制热负载/制冷负载)越小,则越成为比主液体侧制冷剂连通配管50的作为基准的配管直径小的配管直径,其中,上述冷热比是从上述(3)中求出的、对制冷装置1进行施工的场所的制冷负载和制热负载掌握的值、即制热负载除以制冷负载得到的值,将如上所述那样校正后的配管直径确定为主液体侧制冷剂连通配管50的最终配管直径。
此处,较为理想的是,上述“冷热比越小,则将作为基准的配管直径校正得越小”的程度根据要设置的制冷装置1所具备的制冷能力而不同。也就是说,在供制冷装置1施工的环境的冷热比为相同程度的情况下,较为理想的是,根据制冷装置1的制冷能力,以使将作为基准的配管直径校正得较小的程度不同的方式来确定对应关系。更具体而言,在供制冷装置1施工的环境的冷热比相同程度地小的情况下,较为理想的是,以在制冷装置1的制冷能力越大的情况下,将作为基准的配管直径校正得较小的程度越大的方式来确定对应关系。
此外,例如,也可将如上所述那样主液体侧制冷剂连通配管50的配管直径根据冷热比而不同这一点刊载于制冷装置1的安装说明书。
另外,关于将根据冷热比而暂时确定的、主液体侧制冷剂连通配管50的作为基准的配管直径减小时的具体程度,以能够在流过主液体侧制冷剂连通配管50的制冷剂的压力损失得到允许的限度下尽可能减小主液体侧制冷剂连通配管50的配管直径的方式预先确定。也就是说,在以处理上述制热负载的方式进行的制热运转中,主液体侧制冷剂连通配管50的配管直径的下限以实现比在液态制冷剂流动于主液体侧制冷剂连通配管50的情况下所允许的压力损失小的压力损失的方式确定。
液态制冷剂流动于上述主液体侧制冷剂连通配管50的情况下所允许的压力损失例如也可根据一种关系式求出,上述关系式预先确定为与构成制冷装置1的室外单元2的制冷能力、第一室内单元4a的制冷能力、第二室内单元4b的制冷能力、供制冷装置1设置的部位的冷热比、液体侧制冷剂连通配管5的最长部分(从液体侧截止阀24到最远离的室内单元的入口为止)的长度、液体侧制冷剂连通配管5处的分岔点的个数等相应的值。具体而言,在室外单元2的制冷能力、第一室内单元4a的制冷能力、第二室内单元4b的制冷能力较大且供制冷装置1设置的部位的冷热比也较大的情况下,由于在制冷剂回路10中流动的制冷剂的流速趋于上升,因此,液态制冷剂流动于主液体侧制冷剂连通配管50时的压力损失趋于成为较大的值。此外,液体侧制冷剂连通配管5的最长部分(从液体侧截止阀24到最远离的室内单元的入口为止)的长度越长,则在液体侧制冷剂连通配管5中流动的液态制冷剂所受到的压力损失趋于变得越大。此外,液体侧制冷剂连通配管5处的分岔点的个数越多,则在液体侧制冷剂连通配管5中流动的液态制冷剂所受到的压力损失趋于变得越大。可以根据基于上述压力损失相对于制冷能力、负载、配管长度、分岔数的关系而预先确定的关系式来确定液态制冷剂流动于主液体侧制冷剂连通配管50的情况下所允许的压力损失(压力损失的上限)。
另外,较为理想的是,通过制热负载和制冷负载确定的冷热比与将作为基准的配管直径校正得较小的程度预先确定对应关系并设为一览表。也就是说,对于制冷装置1的每个种类而言,可以预先准备一览表,该一览表预先确定有对于“冷热比”的多个范围中的每个范围逐级确定的“主液体侧制冷剂连通配管50的作为基准的配管直径的减小校正率”。此外,通过上述方法确定的一览表例如可以刊载于制冷装置1的安装说明书。
(6)制冷剂量的确定
如上所述那样,对于确定了室外单元2、第一室内单元4a、第二室内单元4b各自的能力,液体侧制冷剂连通配管5和气体侧制冷剂连通配管6的配管长度以及配管直径的制冷装置1,确定在制冷装置1的制冷剂回路10中能够适当地进行制冷循环的制冷剂量。
此处,制冷剂回路10的制冷剂量的具体确定方法没有特别限定,可采用公知的方法。例如,可以以下述方式确定制冷剂回路10的制冷剂量:室外单元2的能力、第一室内单元4a的能力、第二室内单元4b的制冷能力越大,则该制冷剂回路10的制冷剂量越多;主液体侧制冷剂连通配管50的配管直径越小,则该制冷剂回路10的制冷剂量越少;主液体侧制冷剂连通配管50的长度越长,则该制冷剂回路10的制冷剂量越多;第一室内液体侧分岔管51的长度越长,则该制冷剂回路10的制冷剂量越多;第二室内液体侧分岔管52的长度越长,则该制冷剂回路10的制冷剂量越多;室内单元的台数(分岔管的个数)越多,则该制冷剂回路10的制冷剂量越多。
另外,在室外单元2中,在未连接液体侧制冷剂连通配管5、气体侧制冷剂连通配管6、第一室内单元4a、第二室内单元4b等的状态下预先填充有规定量的制冷剂的情况下,可以从所确定的制冷剂量减去预先填充于该室外单元2的制冷剂量,从而将制冷剂追加填充至制冷剂回路10。
(7)配管直径的确定方法的特征
目前,在对制冷装置进行施工时,对施工现场的制冷负载和制热负载进行调查,从而选定由具有对上述制冷负载和制热负载均能够进行处理的制冷能力的室外单元以及室内单元构成的制冷装置。此处,在现有的施工中,在选定了由特定的室外单元以及特定的室内单元构成的制冷装置的情况下,用于连接室外单元与室内单元的主液体侧制冷剂连通配管以及主气体侧制冷剂连通配管的各内径均被一样地确定。
与此相对的是,在上述实施方式的配管直径的确定方法中,在选定了由具有对施工现场的制冷负载和制热负载均能够进行处理的制冷能力的室外单元2以及室内单元4构成的制冷装置1后,并非将用于该制冷装置1的主液体侧制冷剂连通配管50的配管直径一样地确定,而是以下述方式确定主液体侧制冷剂连通配管50的配管直径:根据该制冷装置1的制冷能力以及主液体侧制冷剂连通配管50的长度暂时地确定主液体侧制冷剂连通配管50的作为基准的配管直径,并且冷热比(制热负载/制冷负载)的值越小,则将临时确定的、作为基准的配管直径校正得越小。由此,能够将流过主液体侧制冷剂连通配管50的制冷剂的压力损失抑制在允许范围内,并且将填充于制冷装置1的制冷剂量抑制得较少。
更具体而言,在采用本实施方式的配管直径的确定方法的制冷装置1中,在制冷运转时,流过室外热交换器22而送往液体侧制冷剂连通配管5的制冷剂通过过冷却热交换器12冷却,从而成为密度较高的制冷剂。另一方面,在制热运转时,在第一室内热交换器41a、第二室内热交换器41b中散热后朝向液体侧制冷剂连通配管5的制冷剂不进行与在制冷运转时基于过冷却热交换器12的冷却处理对应的冷却。因此,在该制冷装置1中,在制冷运转时,容易将密度较高的液态制冷剂供给至液体侧制冷剂连通配管5,与此相对的是,在制热运转时,供给至液体侧制冷剂连通配管5的制冷剂的密度较低,容易供给气液两相状态的制冷剂。因此,在制冷运转时,流过液体侧制冷剂连通配管5的制冷剂的压力损失被抑制得较小,与此相对的是,在制热运转时,与制冷运转时相比,在液体侧制冷剂连通配管5中流动的制冷剂的压力损失容易变大。
此处,在本实施方式中,选择具有能够对供制冷装置1施工的环境的制冷负载以及制热负载进行处理的制冷额定能力以及制热额定能力的制冷装置1,并且对该制冷装置1进行施工。此外,在如上所述那样选定了具有对制冷负载和制热负载均能够进行处理的制冷额定能力以及制热额定能力的制冷装置1的情况下,存在在制热负载比较小的环境下使用该制冷装置1的情况下的、制热能力相对于制热负载过剩的情况。这样,对于制热能力过剩的情况而言,在本实施方式下,在具有相同的制冷能力的制冷装置1中,要施工的环境的冷热比(制热负载/制冷负载)的值越小,则所采用的主液体侧制冷剂连通配管50的配管直径越小。这样,在制冷装置1的制热能力过剩的情况下,能够在将制热运转时在主液体侧制冷剂连通配管50中流动的制冷剂的压力损失设置在允许的范围内的状态下,减小所采用的主液体侧连通配管50的配管直径。
在本实施方式的配管直径的确定方法中,着眼于上述关系,供制冷装置1施工的环境的冷热比(制热负载/制冷负载)的值越小,则将主液体侧制冷剂连通配管50的配管直径设得越小,从而能够在将制热运转时在主液体侧制冷剂连通配管50中流动的制冷剂的压力损失设置在允许的范围内的状态下,获得制冷装置1的填充制冷剂量减少的效果。
另外,在将主液体侧制冷剂连通配管50的配管直径校正得较小的情况下,由于在制冷运转时在主液体侧制冷剂连通配管50中流动的制冷剂是冷却后的、密度较高的液态制冷剂,因此,与气液两相状态的制冷剂容易流动的制热运转时相比,能够将压力损失抑制得较小,从而不容易产生制冷能力的不足。
此外,在上述实施方式的制冷装置1中,在制冷运转时,在液体侧制冷剂连通配管5供给有在过冷却热交换器12中冷却后的、处于密度较高的液体单相状态的制冷剂。这样,通过将供给密度较高的液体单相状态的制冷剂的液体侧制冷剂连通配管5的配管直径减小,能够使填充于制冷剂回路10的制冷剂量减少的效果显著。
这样,通过减少填充于制冷装置1的制冷剂回路10的制冷剂量,不仅能够将制冷剂成本抑制得较低,而且,即使万一在微燃性制冷剂即R32泄漏的情况下,也能够将泄漏量抑制得较少,从而能够不容易引起着火。
(8)配管直径的确定装置
以下,参照附图对配管直径的确定装置100进行说明。
配管直径的确定装置100利用计算机执行上述实施方式的配管直径的确定方法,以用于自动地掌握制冷剂量,并且以在上述配管直径的确定方法中说明的制冷装置1作为对象进行应用。
如图3的方框结构图所示,配管直径的确定装置100包括接收部110、配管直径确定部120、输出部130。
接收部110通过来自施工者的输入而接收下述各种信息:现场要施工的制冷装置1的制冷能力、室内单元的台数(分岔管的个数)、液体侧制冷剂连通配管5的长度(主液体侧制冷剂连通配管50的长度、第一室内液体侧分岔管51的长度、第二室内液体侧分岔管52的长度)以及气体侧制冷剂连通配管6的长度(主气体侧制冷剂连通配管60的长度、第一室内气体侧分岔管61的长度、第二室内气体侧分岔管62的长度)等。此外,接收部110还通过来自施工者的输入接收制冷装置1的制冷额定能力和制热额定能力的信息。接收部110也可进一步接收供制冷装置1施工的场所的制冷负载和制热负载的信息。在本实施方式中,接收部110利用后述触摸面板等的画面来接收来自用户的输入。
配管直径确定部120根据接收部110接收到的各种信息来确定用于制冷装置1的制冷剂回路10的液体侧制冷剂连通配管5的主液体侧制冷剂连通配管50的配管直径。配管直径确定部120具有处理部121和存储部122,上述处理部121构成为具有进行各种信息处理的CPU等,上述存储部122构成为具有ROM或RAM。
配管直径确定部120的处理部121利用接收部110接收到的信息和保存于存储部122的信息,与在上述配管直径的确定方法中说明的内容相同地进行配管直径的确定处理。
具体而言,在存储部122保存有:(A)表示与制冷装置1的制冷能力和主气体侧制冷剂连通配管60的长度相应的、主气体侧制冷剂连通配管60的配管直径的数据(表示下述关系的数据:制冷能力越大,则主气体侧制冷剂连通配管60的配管直径越大,并且,主气体侧制冷剂连通配管60的长度越长,则主气体侧制冷剂连通配管60的配管直径越大);(B)表示与制冷装置1的制冷能力和主液体侧制冷剂连通配管50的长度相应的、主液体侧制冷剂连通配管50的作为基准的配管直径的数据(表示下述关系的数据:制冷能力越大,则主液体侧制冷剂连通配管50的作为基准的配管直径越大,并且,主液体侧制冷剂连通配管50的长度越长,则主液体侧制冷剂连通配管50的作为基准的配管直径越大);(C)表示与冷热比(制热负载/制冷负载)相应的、主液体侧制冷剂连通配管50的作为基准的配管直径的校正率的数据(表示对应于冷热比的多个范围的每个范围的缩小校正率的数据)。
接着,处理部121暂且确定与接收部110接收到的制冷装置1的制冷能力以及主气体侧制冷剂连通配管60的长度相应的主气体侧制冷剂连通配管60的配管直径。
此外,处理部121确定与接收部110接收到的制冷装置1的制冷能力以及主液体侧制冷剂连通配管50的长度相应的、主液体侧制冷剂连通配管50的作为基准的配管直径。
此外,处理部121算出接收部110接收到的、供制冷装置1施工的环境的冷热比(制热负载/制冷负载)的值。接着,处理部121以算出的冷热比越小则将主液体侧制冷剂连通配管50的作为基准的配管直径校正得越小的方式来确定最终的主液体侧制冷剂连通配管50的配管直径。
输出部130对配管直径确定部120所确定的配管直径进行显示、输出。具体而言,在触摸面板等的画面显示、输出主液体侧制冷剂连通配管50的配管直径的值。
(9)变形例
上述实施方式能够如下述变形例所述那样进行适当变形。另外,各变形例也可在不产生矛盾的范围内与其它的变形例组合应用。
(9-1)变形例A
在上述实施方式中,以在制冷装置1填充有微燃性制冷剂即R32的情况为例进行了说明。
与此相对的是,作为填充于制冷装置1的微燃性制冷剂,不限定于R32,也可采用R143a、R717、NH3、R1234yf混合制冷剂,R1234ze混合制冷剂等微燃性制冷剂。另外,在微燃性制冷剂中不包括通常被认为是不易燃的R410A、R134a、R22、R125。
(9-2)变形例B
在上述实施方式的配管直径的确定装置100中,以根据接收部110接收到的信息来确定主液体侧制冷剂连通配管50的配管直径的情况为例进行了说明。
与此相对的是,在配管直径的确定装置中,也可使处理部121不仅能够对配管直径进行确定,而且还能够根据接收部110接收到的信息来确定填充于制冷装置1的制冷剂量。
具体而言,也可将下述规定的关系式或一览数据预先存储于存储部122:室外单元2的制冷能力、第一室内单元4a的制冷能力、第二室内单元4b的制冷能力越大,则制冷剂回路10的制冷剂量越多;主液体侧制冷剂连通配管50的配管直径越小,则制冷剂回路10的制冷剂量越少;主液体侧制冷剂连通配管50的长度越长,则制冷剂回路10的制冷剂量越多;第一室内液体侧分岔管51的长度越长,则制冷剂回路10的制冷剂量越多;第二室内液体侧分岔管52的长度越长,则制冷剂回路10的制冷剂量越多;室内单元的台数(分岔管的个数)越多,则制冷剂回路10的制冷剂量越多,处理部121根据预先存储于存储部122的关系式或一览数据以及接收部110接收到的信息来确定制冷剂回路10的制冷剂量。
(9-3)变形例C
在上述实施方式的配管直径的确定装置100中,以通过计算机自动地确定制冷装置1的主液体侧制冷剂连通配管50的配管直径的独立的装置为例进行了说明。
与此相对的是,例如,如图4所示,也可使上述实施方式的制冷装置1的控制器30具有与上述配管直径的确定装置100对应结构的接收部110、具有处理部121和存储部122a的配管直径确定部120以及输出部130。
此处,在控制器30的配管直径确定部120所具有的存储部122a不仅可预先保存有上述存储部122所保存的数据,而且还可预先保存有表示制冷装置1的制冷能力的数据。
在该情况下,不需要进行向控制器30的接收部110输入制冷装置1的制冷能力的处理。
另外,配管直径确定部120的处理部121根据室内单元的台数(分岔管的个数)、液体侧制冷剂连通配管5的长度以及气体侧制冷剂连通配管6的长度等通过接收部110接收的各种数据以及保存于存储部122a的数据,与上述实施方式相同地确定主液体侧制冷剂连通配管5的配管直径。
(9-4)变形例D
在上述实施方式中,以下述情况为例进行了说明:以制冷装置1的制冷能力越大则主液体侧制冷剂连通配管50的配管直径越大,并且主液体侧制冷剂连通配管50的长度越长则主液体侧制冷剂连通配管50的配管直径越大的方式暂时确定主液体侧制冷剂连通配管50的作为基准的配管直径,并且冷热比越小,则将主液体侧制冷剂连通配管50的作为基准的配管直径校正得越小,由此来确定主液体侧制冷剂连通配管50的配管直径。
与此相对的是,主液体侧制冷剂连通配管50的配管直径的确定方法不限于以上述步骤确定的方法,例如,也可预先准备由制冷装置1的制冷能力、主液体侧制冷剂连通配管50的长度以及冷热比构成的规定的关系式,并且利用该关系式来求出主液体侧制冷剂连通配管50的配管直径。
(9-5)变形例E
在上述实施方式中,作为表示供制冷装置1施工的环境的制热负载相对于制冷负载的比例的值,以制热负载除以制冷负载而得到的值即冷热比(制热负载/制冷负载)为例,对以冷热比越小则主液体侧制冷剂连通配管50的配管直径越细的方式校正的情况进行了说明。
与此相对的是,作为表示供制冷装置1施工的环境的制热负载相对于制冷负载的比例的值,不限于冷热比,例如,也可算出从制冷装置1所具有的制热能力值减去供制冷装置1施工的环境的制热负载值而得到的制热过剩值,并且以该制热过剩值越大则主液体侧制冷剂连通配管50的配管直径越细的方式进行校正。
(9-6)变形例F
在上述实施方式中,作为表示供制冷装置1施工的环境的制热负载相对于制冷负载的比例的值,以制热负载除以制冷负载而得到的值即冷热比(制热负载/制冷负载)为例,对以冷热比越小则主液体侧制冷剂连通配管50的配管直径越细的方式校正,并且无论制冷负载与制热负载的关系如何,都将主气体侧制冷剂连通配管60的配管直径一样地确定的情况进行了说明。
与此相对的是,对于主气体侧制冷剂连通配管60的配管直径,也可以根据制冷装置1的制冷能力以及主气体侧制冷剂连通配管60的长度来暂时地确定预先确定的、作为基准的配管直径,并且根据制冷负载与制热负载的关系等来对上述暂时确定的配管直径进行校正,从而确定最终的主气体侧制冷剂连通配管60的配管直径。例如,也可以下述方式确定最终的主气体侧制冷剂连通配管60的配管直径:在供制冷装置1施工的环境的制冷负载比制热负载大的情况下,制冷负载大于制热负载的程度越大,或者,在与供制冷装置1施工的环境的制冷负载相比制冷装置1所具备的制冷能力较大的情况下,制冷能力大于制冷负载的程度越大,那么,将暂时确定的、主气体侧制冷剂连通配管60的作为基准的配管直径校正得越细。
能够如上所述那样校正制冷装置1的主气体侧制冷剂连通配管60的配管直径的原因在于,制冷运转时在主气体侧制冷剂连通配管60中流动的气态制冷剂的密度为制热运转时气态制冷剂的密度的1/2倍以下(或者1/3倍以下),并且在制冷运转时在主气体侧制冷剂连通配管60中流动的气态制冷剂所受到的压力损失为制热运转时的压力损失的2倍以上(或者3倍以上),因此,对制冷运转时制冷剂受到的压力损失进行限速(日文:律速)来确定主气体侧制冷剂连通配管60的配管直径。
以上,对本发明的实施方式进行了说明,但应当理解的是,能够在不脱离权利要求书记载的本发明的主旨和范围的情况下进行形式和细节的各种变更。
符号说明
1 制冷装置;
2 室外单元;
4a、4b 室内单元;
5 液体侧制冷剂连通配管;
6 气体侧制冷剂连通配管;
7 控制部;
10 制冷剂回路;
12 过冷却热交换器(冷却部);
21 压缩机;
22 室外热交换器;
23 室外液态制冷剂管;
24 液体侧截止阀;
25 气体侧截止阀;
27 四通换向阀;
28 室外膨胀阀;
29 储罐;
30 控制器(配管直径的确定装置);
31 室外控制部;
32 吸入压力传感器;
33 排出压力传感器;
34 吸入温度传感器;
35 排出温度传感器;
36 室外热交液体侧温度传感器;
38 液体管温度传感器;
39 外部气体温度传感器;
41a 第一室内热交换器;
41b 第二室内热交换器;
44a 第一室内膨胀阀;
44b 第二室内膨胀阀;
45a 第一室内气体侧制冷剂温度传感器;
45b 第二室内气体侧制冷剂温度传感器;
46a 第一室内控制部;
46b 第二室内控制部;
49a 第一室内液体侧制冷剂温度传感器;
49b 第二室内液体侧制冷剂温度传感器;
50 主液体侧制冷剂连通配管;
51 第一室内液体侧分岔管;
52 第二室内液体侧分岔管;
60 主气体侧制冷剂连通配管;
61 第一室内气体侧分岔管;
62 第二室内气体侧分岔管;
100 配管直径的确定装置;
110 接收部(掌握部);
120 配管直径确定部;
121 处理部(掌握部);
122 存储部;
122a 存储部(掌握部);
130 输出部。
现有技术文献
专利文献
专利文献1:日本专利特开2000-55483号公报。

Claims (7)

1.一种配管直径的确定方法,是制冷装置(1)中的液体侧制冷剂连通配管(5)的配管直径的确定方法,所述制冷装置包括室外单元(2)、室内单元(4a、4b)、所述液体侧制冷剂连通配管(5)以及气体侧制冷剂连通配管(6),所述制冷装置能够执行制冷运转和制热运转,所述室外单元具有压缩机(21)和室外热交换器(22),所述室内单元具有室内热交换器(41a、41b),所述液体侧制冷剂连通配管和所述气体侧制冷剂连通配管连通所述室外单元(2)与所述室内单元(4a、4b),所述配管直径的确定方法的特征在于,
利用要安装的所述室外单元(2)和所述室内单元(4a、4b)具有的制冷能力以及制热能力与供所述制冷装置设置的场所的制冷负载以及制热负载的关系来确定所述液体侧制冷剂连通配管(5)的配管直径。
2.如权利要求1所述的配管直径的确定方法,其特征在于,
所述室外单元(2)具有冷却部(12),所述冷却部使在制冷运转时流过所述室外热交换器(22)而送往所述液体侧制冷剂连通配管(5)的制冷剂冷却,
以下述方式确定所述液体侧制冷剂连通配管(5)的配管直径:表示所述制热负载相对于所述制冷负载的比例的值越小,或者,从所述制热能力减去所述制热负载而得到的值越大,则所述液体侧制冷剂连通配管(5)的配管直径越小。
3.如权利要求2所述的配管直径的确定方法,其特征在于,
以下述方式确定所述液体侧制冷剂连通配管(5)的配管直径:表示所述制热负载相对于所述制冷负载的比例的值越小,或者,从所述制热能力减去所述制热负载而得到的值越大,则所述液体侧制冷剂连通配管(5)的配管直径逐级变得越小。
4.如权利要求1至3中任一项所述的配管直径的确定方法,其特征在于,
在所述液体侧制冷剂连通配管(5)供给有作为流过所述室外热交换器(22)而朝向所述室内热交换器(41a、41b)的制冷剂的、处于液体单相状态的制冷剂。
5.如权利要求1至3中任一项所述的配管直径的确定方法,其特征在于,
在所述制冷装置填充有微燃性制冷剂。
6.一种配管直径的确定装置(100、30),是制冷装置(1)中的液体侧制冷剂连通配管(5)的配管直径的确定装置(100、30),所述制冷装置包括室外单元(2)、室内单元(4a、4b)、所述液体侧制冷剂连通配管(5)以及气体侧制冷剂连通配管(6),所述室外单元具有压缩机(21)和室外热交换器(22),所述室内单元具有室内热交换器(41a、41b),所述液体侧制冷剂连通配管和所述气体侧制冷剂连通配管连通所述室外单元与所述室内单元,所述配管直径的确定装置的特征在于,包括:
配管直径确定部(120),所述配管直径确定部确定所述液体侧制冷剂连通配管的配管直径;以及
输出部(130),所述输出部输出所述配管确定部所确定的所述液体侧制冷剂连通配管的配管直径,
所述配管直径确定部利用要安装的所述室外单元和所述室内单元具有的制冷能力以及制热能力与供所述制冷装置设置的场所的制冷负载以及制热负载的关系来确定所述液体侧制冷剂连通配管的配管直径。
7.一种制冷装置(1),其特征在于,包括:
所述室外单元(2),所述室外单元具有所述压缩机(21)和所述室外热交换器(22);
所述室内单元(4a、4b),所述室内单元具有所述室内热交换器(41a、41b);
所述液体侧制冷剂连通配管(5)和所述气体侧制冷剂连通配管(6),所述液体侧制冷剂连通配管和所述气体侧制冷剂连通配管连通所述室外单元与所述室内单元;以及
权利要求6所述的配管直径的确定装置(30)。
CN201780073966.XA 2016-11-30 2017-11-30 配管直径的确定方法、配管直径的确定装置以及制冷装置 Active CN110023684B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016232207 2016-11-30
JP2016-232207 2016-11-30
PCT/JP2017/043173 WO2018101439A1 (ja) 2016-11-30 2017-11-30 配管径の決定方法、配管径の決定装置、および冷凍装置

Publications (2)

Publication Number Publication Date
CN110023684A CN110023684A (zh) 2019-07-16
CN110023684B true CN110023684B (zh) 2020-08-11

Family

ID=62242505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780073966.XA Active CN110023684B (zh) 2016-11-30 2017-11-30 配管直径的确定方法、配管直径的确定装置以及制冷装置

Country Status (7)

Country Link
US (1) US11105620B2 (zh)
EP (1) EP3550215A4 (zh)
JP (1) JP6680366B2 (zh)
KR (1) KR102091098B1 (zh)
CN (1) CN110023684B (zh)
AU (1) AU2017369485B2 (zh)
WO (1) WO2018101439A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870633B (zh) * 2018-06-28 2019-10-25 珠海格力电器股份有限公司 空调系统的控制方法和装置
JPWO2020188756A1 (ja) * 2019-03-19 2021-04-30 日立ジョンソンコントロールズ空調株式会社 ルームエアコン
JP7154420B2 (ja) * 2019-08-07 2022-10-17 三菱電機株式会社 冷凍サイクル装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304702A (ja) * 2000-04-19 2001-10-31 Daikin Ind Ltd 冷凍装置
CN2486923Y (zh) * 1999-03-02 2002-04-17 大金工业株式会社 制冷装置
WO2013146103A1 (ja) * 2012-03-26 2013-10-03 日立アプライアンス株式会社 冷凍サイクル装置
CN104797887A (zh) * 2012-11-30 2015-07-22 三菱电机株式会社 空调装置、空调装置的设计方法
WO2016051606A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 空気調和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138859A (en) 1977-11-02 1979-02-13 General Electric Company Split heat pump outdoor fan arrangement
JP2000055483A (ja) 1998-08-11 2000-02-25 Matsushita Electric Ind Co Ltd 空気調和装置およびその施工方法
JP2001248941A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
JP4815656B2 (ja) * 2000-04-19 2011-11-16 ダイキン工業株式会社 冷凍装置
GB0121375D0 (en) * 2001-09-04 2001-10-24 Ashe Morris Ltd Temperature control systems
JP3775358B2 (ja) * 2002-07-12 2006-05-17 ダイキン工業株式会社 冷凍装置
US7606683B2 (en) * 2004-01-27 2009-10-20 Emerson Climate Technologies, Inc. Cooling system design simulator
JP3963190B2 (ja) * 2005-04-07 2007-08-22 ダイキン工業株式会社 空気調和装置の冷媒量判定システム
JP3963192B1 (ja) * 2006-03-10 2007-08-22 ダイキン工業株式会社 空気調和装置
WO2008058400A1 (en) * 2006-11-14 2008-05-22 The University Of Calgary Catalytic down-hole upgrading of heavy oil and oil sand bitumens
JP5188629B2 (ja) * 2009-09-10 2013-04-24 三菱電機株式会社 空気調和装置
WO2011161720A1 (ja) * 2010-06-23 2011-12-29 三菱電機株式会社 空気調和装置
JP6064412B2 (ja) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル 空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2486923Y (zh) * 1999-03-02 2002-04-17 大金工业株式会社 制冷装置
JP2001304702A (ja) * 2000-04-19 2001-10-31 Daikin Ind Ltd 冷凍装置
WO2013146103A1 (ja) * 2012-03-26 2013-10-03 日立アプライアンス株式会社 冷凍サイクル装置
CN104797887A (zh) * 2012-11-30 2015-07-22 三菱电机株式会社 空调装置、空调装置的设计方法
WO2016051606A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
US11105620B2 (en) 2021-08-31
EP3550215A4 (en) 2019-12-25
AU2017369485A1 (en) 2019-07-18
WO2018101439A1 (ja) 2018-06-07
AU2017369485B2 (en) 2019-07-18
KR20190080958A (ko) 2019-07-08
CN110023684A (zh) 2019-07-16
BR112019010854A2 (pt) 2019-10-01
JP6680366B2 (ja) 2020-04-15
US20190293417A1 (en) 2019-09-26
KR102091098B1 (ko) 2020-03-19
JPWO2018101439A1 (ja) 2019-10-24
EP3550215A1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
EP2669597B1 (en) Air conditioner
JP7186845B2 (ja) 空気調和装置
US11371743B2 (en) Air conditioning system
CN109791012B (zh) 制冷剂量的确定方法以及制冷剂量的确定装置
EP2672199A1 (en) Air-conditioning device
US9732992B2 (en) Air-conditioning apparatus for preventing the freezing of non-azeotropic refrigerant
JPWO2011125111A1 (ja) 空調給湯複合システム
JP6479181B2 (ja) 空気調和装置
KR101901540B1 (ko) 공기 조화 장치
CN110023684B (zh) 配管直径的确定方法、配管直径的确定装置以及制冷装置
JP6038382B2 (ja) 空気調和装置
US20230057478A1 (en) Refrigeration cycle apparatus
CN113454408B (zh) 空气调节装置
CN113439188B (zh) 空调装置
CN114127479B (zh) 制冷装置
JP2018087677A (ja) 配管径の決定方法、配管径の決定装置、および冷凍装置
JP6537629B2 (ja) 空気調和装置
WO2022029845A1 (ja) 空気調和装置
WO2019021406A1 (ja) 空調システムおよび熱媒体封入方法
JP2004170048A (ja) 空気調和装置
JP6413447B2 (ja) 冷凍装置
US20240191900A1 (en) Outdoor unit, indoor unit, and air conditioning system
JP2022118482A (ja) 冷凍装置及び冷媒量判定方法
JP2023034884A (ja) 冷凍サイクル装置及び冷媒漏洩を判定する方法
BR112019010854B1 (pt) Método de determinação de diâmetro do tubo, aparelho de determinação de diâmetro do tubo e aparelho de refrigeração

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant