WO2020003721A1 - SiC部材およびその製造方法 - Google Patents

SiC部材およびその製造方法 Download PDF

Info

Publication number
WO2020003721A1
WO2020003721A1 PCT/JP2019/017416 JP2019017416W WO2020003721A1 WO 2020003721 A1 WO2020003721 A1 WO 2020003721A1 JP 2019017416 W JP2019017416 W JP 2019017416W WO 2020003721 A1 WO2020003721 A1 WO 2020003721A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
region
hole
coat
sic layer
Prior art date
Application number
PCT/JP2019/017416
Other languages
English (en)
French (fr)
Inventor
晋平 千田
Original Assignee
株式会社アドマップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドマップ filed Critical 株式会社アドマップ
Priority to US16/603,698 priority Critical patent/US20200243302A1/en
Publication of WO2020003721A1 publication Critical patent/WO2020003721A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet

Definitions

  • the present invention relates to a SiC member containing a SiC material and a method for producing the same.
  • a SiC coat made of SiC (Silicon Carbide; silicon carbide) has excellent properties such as high durability, high acid resistance, and low specific resistance, and is widely used as a coating of components used in a semiconductor manufacturing apparatus.
  • SiC Silicon Carbide
  • Patent Document 1 discloses that a SiC member is used as an etcher ring or a shower head in a plasma etching apparatus.
  • the wafer processing apparatus may cause a product defect on the SiC wafer due to slight processing variation. Further, since the wafer processing apparatus handles a large number of SiC wafers in a semiconductor manufacturing plant, there is a possibility that not only a single SiC wafer but also a large number of SiC wafers may spread product defects. It is essential that a SiC member, which is a consumable part of a wafer processing apparatus, satisfy required specifications such as durability and impurity concentration. However, if a pattern derived from the crystal structure or the layer structure appears on the surface of the SiC member, the end user of the wafer processing apparatus may be concerned about a problem in some cases.
  • a SiC layer is provided on the surface of a shower head used in a plasma etching apparatus.
  • the shower head is repeatedly used in the plasma etching apparatus, and the SiC layer on the surface is deteriorated.
  • the degraded SiC layer is shaved and the SiC layer is formed again on the surface.
  • a plurality of through holes are provided from the front surface to the back surface, and the SiC layer is formed again with the through holes provided. Therefore, an SiC layer having a crystal structure in which crystals are grown in different directions is formed on the surface around the through hole of the SiC member. As a result, a black dot pattern may appear around the through hole of the SiC member.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a technique for ensuring the appearance of a SiC member in a good and simple manner.
  • a SiC member having a front side and a back side includes a substrate having a reference hole penetrating in the front and back directions, and a first SiC coat formed on at least the front side surface of the substrate.
  • the first SiC coat is adjacent to the first hole connected to the reference hole in the front / back direction, a first region forming an inner peripheral surface of the first hole and extending around the first hole, and a first region.
  • the first region includes a crystal structure grown in a first direction oblique to the front and back direction, and the second region, the third region, and the fourth region are formed in a second direction along the front and back direction. It may include a crystal structure obtained by crystal growth.
  • the first SiC coat has a first region having a crystal structure grown in a first direction oblique to the front and back directions, and a second region having a crystal structure grown in a second direction along the front and back directions.
  • the second SiC coat includes a third region and a fourth region having a crystal structure grown in a second direction along the front and back directions. Accordingly, the first SiC coat including the first region and the second region having the crystal structures grown in different directions is included, and the third region and the fourth region having the crystal structure grown in a certain direction are included. It can be covered with a second SiC coat. For this reason, an SiC coat having a crystal structure in which crystals grow in a certain direction appears on the surface of the SiC member.
  • the first SiC coat and the second SiC coat may be separate films formed in different processes. Further, the first SiC coat and the second SiC coat may be a lower layer portion and an upper layer portion of a single film formed in a single process.
  • the SiC member is a shower head having a plurality of through holes penetrating in the front and back directions, and the reference hole, the first hole, and the second hole are formed of the plurality of through holes. Form one of them.
  • an SiC coat having a crystal structure grown in a certain direction appears on the surface of the showerhead.
  • black spots appearing on the surface of the shower head can be prevented.
  • a step of preparing a substrate having a reference hole penetrating in the front and back directions a step of forming a first SiC coat on at least the front surface of the substrate, and a step of forming the first SiC coat on the front side of the first SiC coat Forming a second SiC coat on the surface.
  • the first SiC coat is adjacent to the first hole connected to the reference hole in the front / back direction, a first region forming an inner peripheral surface of the first hole and extending around the first hole, and a first region.
  • a second region extending around the first region is formed, and the second SiC coat forms a second hole connected to the first hole in the front and back direction and an inner peripheral surface of the second hole.
  • a third region extending around the second hole and a fourth region adjacent to the third region and extending around the third region are formed.
  • the first region is formed to include a crystal structure grown in a first direction oblique to the front and back directions, and the second region, the third region, and the fourth region are formed along a front and back direction.
  • a method of manufacturing a SiC member, such as forming a crystal structure including a crystal structure grown in two directions, is considered.
  • the first SiC coat has a first region having a crystal structure grown in a first direction oblique to the front and back directions, and a second region having a crystal structure grown in a second direction along the front and back directions.
  • the second SiC coat includes a third region and a fourth region having a crystal structure grown in a second direction along the front and back directions.
  • the step of forming the first SiC coat includes a step of depositing a SiC material on the front surface of the substrate to form a first SiC layer, and a step of connecting to the reference hole in the front and back directions. Forming the first hole by removing the first SiC layer formed in the five regions.
  • the step of forming the second SiC coat includes the step of forming the first SiC coat on the front surface of the first SiC coat. Depositing a second SiC layer and forming a second hole by removing the second SiC layer formed in a sixth region connected to the fifth region in the front and back directions, and forming the second hole. Such a method of manufacturing a SiC member can be considered.
  • the first SiC layer is formed on the front surface of the substrate, and the first hole is formed by removing the first SiC layer formed in the fifth region connected to the reference hole in the front and back directions.
  • the second SiC layer is formed on the front surface of the first SiC layer, and the second hole is formed by removing the second SiC layer formed in the sixth region connected to the fifth region in the front and back direction. Accordingly, the first hole and the second hole continuous with the reference hole in the front and back directions can be easily obtained without performing a masking process on a region continuous with the inner peripheral surface of the reference hole in the front and back directions. As a result, it is possible to provide a simple method for manufacturing a SiC member that prevents black spots from appearing on the surface of the SiC member.
  • the first SiC layer is formed including an inner peripheral surface of the reference hole, and the fifth region is formed including an inner peripheral surface of the reference hole.
  • the first SiC layer is formed including the front surface of the substrate and the inner peripheral surface of the reference hole.
  • the first hole is formed by removing the first SiC layer formed in the fifth region including the inner peripheral surface of the reference hole and a region connected to the inner peripheral surface of the reference hole in the front and back directions.
  • a method of manufacturing an SiC member, in which the first SiC layer is formed by closing the reference hole, may be considered.
  • the first SiC layer is formed by closing the reference hole of the substrate.
  • the front surface of the first SiC layer can be formed flat along the front surface of the substrate. Therefore, it is possible to prevent the crystal structure of the second SiC layer formed on the front surface of the first SiC layer from growing in the first direction oblique to the front and back directions due to the undulation of the front surface of the first SiC layer. .
  • the step of forming the first hole and the step of forming the second hole include, after forming the second SiC layer, the fifth region of the first SiC layer and the second region of the second SiC layer.
  • a method of manufacturing a SiC member, such as forming the sixth region by removing the sixth region, may be considered.
  • the first hole and the second hole are formed.
  • the crystal structure that grows in the second direction along the front and back directions appears on the front side of the SiC member.
  • FIG. 4 is a schematic cross-sectional view taken along the line AA of the SiC member according to the present invention.
  • Enlarged view of one of the through holes of the SiC member according to the present invention The figure which shows the crystal growth direction of the 1st SiC layer around the reference hole of the SiC member concerning this invention.
  • the SiC member 1 includes a substrate 3, a first SiC coat 5, and a second SiC coat 7. As shown in FIGS. 1 and 2, the SiC member 1 has a front side 2 and a back side 4, and is formed by arranging a plurality of through holes 13 penetrating from the front side 2 to the back side 4.
  • the SiC member 1 is a shower head that discharges a reaction gas or an inert gas into a processing container in a plasma processing apparatus used for an etching step or a film forming step in a semiconductor manufacturing process.
  • the through holes 13 are gas injection holes through which a reaction gas or an inert gas of the shower head, which is the SiC member 1, flows.
  • front and back direction N the direction from the back side 4 to the front side 2 is referred to as front and back direction N.
  • the substrate 3 has a front surface S1, a back surface S4, and a reference hole 15.
  • the reference hole 15 penetrates from the back surface S4 of the substrate 3 to the front surface S1 in the front-back direction N.
  • the reference hole 15 includes a first reference hole 15a disposed on the back side 4 and a second reference hole 15b disposed on the front surface S1 of the substrate 3.
  • the first reference hole 15a has, for example, a diameter D1 and is formed as a column having a center O.
  • the second reference hole 15b has a diameter D2 smaller than the diameter D1 of the first reference hole 15a, and is formed of a column having the same center O as the first reference hole 15a.
  • the diameter D1 is about 1 to 2 mm, and the diameter D2 is about 0.5 to 1 mm.
  • the first SiC coat 5 is formed on the front surface S1 of the substrate 3.
  • the surface S4 on the back side of the substrate 3 becomes the back side 4 of the SiC member 1.
  • the first SiC coat 5 has a front surface S2, a first hole 16, a first region 20, and a second region 22.
  • the first SiC coat 5 is made of CVD-SiC generated by a chemical vapor deposition method (hereinafter, referred to as a CVD method).
  • the first hole 16 is continuous with the reference hole 15 in the front-back direction N.
  • the first hole 16 has, for example, the same diameter D1 as the second reference hole 15b, and is formed of a column having the same center O as the first reference hole 15a and the second reference hole 15b.
  • FIG. 3 is an enlarged view of a portion C in FIG.
  • the arrow in FIG. 3 indicates the direction in which the SiC crystal grows by the CVD method.
  • the first region 20 forms the inner peripheral surface of the first hole 16 and extends around the first hole 16 as shown in FIG.
  • the first region 20 includes a crystal structure grown in a first direction M oblique to the front-back direction N.
  • the second region 22 is adjacent to the first region 20 and extends around the first region.
  • the second region 22 includes a crystal structure grown in a second direction L along the front-back direction N. For this reason, on the front surface S2 of the first SiC coat 5, a crystal structure in which crystals have grown in different directions appears. It has been found by the present inventors that black spots as shown in FIG. 7 appear when the oxidation treatment is performed after processing the front surface S2 in such a state. Therefore, as shown in FIGS. 2 and 3, a second SiC coat 7 is formed on the front surface S2 of the first SiC coat 5 so as to cover the crystal structure that has grown in different directions that has appeared on the front surface S2. You.
  • the second SiC coat 7 has a front surface S3, a second hole 18, a third region 24, and a fourth region 26, as shown in FIG.
  • the second SiC coat 7 is made of CVD-SiC generated by a CVD method.
  • the front surface S3 of the second SiC coat 7 is the front surface 2 of the SiC member 1.
  • the second hole 18 is continuous with the first hole 16 in the front-back direction N.
  • the second hole 18 has, for example, the same diameter D2 as the second reference hole 15b, and is formed of a column having the same center O as the first reference hole 15a and the second reference hole 15b. That is, the reference hole 15, the first hole 16, and the second hole 18 form one of the plurality of through holes 13 of the SiC member 1.
  • the third region 24 forms the inner peripheral surface of the second hole 18 and extends around the second hole 18 as shown in FIG.
  • the fourth region 26 is adjacent to the third region 24 and extends around the third region.
  • the third region 24 and the fourth region 26 include a crystal structure grown in a second direction L along the front and back directions. That is, the second SiC coat 7 has the third region 24 and the fourth region 26 including the crystal structure grown in a certain direction. For this reason, on the surface S3 on the front side of the second SiC coat 7, that is, on the front side 2 of the SiC member 1, a crystal structure that has grown in a certain direction appears.
  • FIGS. 4 to 6 are enlarged views of one of the through holes 13 in a portion C in FIG. 4 to 6 indicate the direction in which the SiC crystal grows by the CVD method, that is, the direction of the crystal growth of the crystal structure.
  • the SiC member 1 may be manufactured by the following steps. First, the substrate 3 having the reference hole 15 penetrating in the front-back direction N is prepared.
  • the substrate 3 is a shower head in which the surface SiC layer is deteriorated by being used a plurality of times in a plasma processing apparatus used for an etching step and a film forming step in a semiconductor manufacturing process.
  • the substrate 3 is prepared in a state in which the front surface S1 and the back surface S4 (not shown) are polished by machining to remove the deteriorated SiC layer.
  • a SiC material is deposited on the front surface S1 of the substrate 3 using a CVD method to form a first SiC layer 28 made of a CVD-SiC layer.
  • the first SiC layer 28 is formed by growing a SiC crystal from the front surface S1 of the substrate 3 and the inner peripheral surface of the reference hole 15 along the shape of the substrate 3.
  • the first SiC layer 28 is formed including a first portion 281 and a second portion 282.
  • the first portion 281 is a portion of the CVD-SiC layer formed from the inner peripheral surface of the reference hole 15 of the substrate 3 to the periphery of the edge E which is the boundary between the reference hole 15 of the substrate 3 and the front surface S1.
  • the SiC crystal grows toward the center O of the reference hole 15 of the substrate 3. That is, the first portion 281 is formed to include a crystal structure grown in the first direction M oblique to the front-back direction N.
  • the first portion 281 is formed by closing the reference hole 15. That is, the first portion 281 is formed by forming the CVD-SiC layer up to the center O of the reference hole 15. Thereby, the surface on the front side 2 of the first portion 281 can be formed flat along a surface substantially parallel to the front surface S1 of the substrate 3.
  • the second portion 282 is a portion of the CVD-SiC layer formed on the front surface S1 of the substrate 3 adjacent to the first portion 281.
  • the SiC crystal grows in a direction perpendicular to the front surface S1 of the substrate 3. That is, the second portion 282 includes a crystal structure grown in the second direction L along the front-back direction N.
  • the second portion 282 is formed by stacking the CVD-SiC layers while forming a surface substantially parallel to the front surface S1 of the substrate 3. Thereby, the surface on the front side 2 of the second portion 282 can be formed flat along a surface substantially parallel to the front surface S1 of the substrate 3.
  • the front surface S5 of the first SiC layer 28 can be formed flat along the front surface S1 of the substrate 3.
  • the first SiC layer 28 is formed including the inner peripheral surface of the reference hole 15. Further, the first SiC layer 28 is formed by closing the reference hole 15.
  • a SiC material is deposited on the front surface S5 of the first SiC layer 28 using a CVD method to form a second SiC layer 30 made of a CVD-SiC layer. I do.
  • the second SiC layer 30 is formed by growing a SiC crystal from the front surface S5 of the first SiC layer 28 along the shape of the front surface S5.
  • the second SiC layer 30 is formed to include a third portion 301 and a fourth portion 302.
  • the third portion 301 is a portion of the CVD-SiC layer formed on the surface of the front side 2 of the first portion 281 of the first SiC layer 28.
  • the SiC crystal grows perpendicular to the surface on the front side 2 of the first portion 281 of the first SiC layer 28. That is, the third portion 301 is formed to include a crystal structure grown in the second direction L along the front-back direction N.
  • the third portion 301 is formed by laminating the CVD-SiC layer while forming a surface substantially parallel to the front surface S1 of the substrate 3. Thereby, the surface on the front side 2 of the third portion 301 can be formed flat along a plane substantially parallel to the front surface S5 of the first SiC layer 28.
  • the fourth portion 302 is a portion of the CVD-SiC layer formed on the surface on the front side 2 of the second portion 282 of the first SiC layer 28 adjacent to the third portion 301.
  • the SiC crystal grows perpendicular to the surface on the front side 2 of the second portion 282 of the first SiC layer 28. That is, the fourth portion 302 includes a crystal structure grown in the second direction L along the front-back direction N.
  • the fourth portion 302 is formed by laminating the CVD-SiC layer while forming a surface substantially parallel to the front surface S1 of the substrate 3.
  • the surface on the front side 2 of the fourth portion 302 can be formed flat along a plane substantially parallel to the front surface S5 of the first SiC layer 28. Therefore, the front surface S6 of the second SiC layer can be formed flat along a surface substantially parallel to the front surface S5 of the first SiC layer 28.
  • the first hole 16 is formed by removing the first SiC layer 28 formed in the fifth region 32 connected to the reference hole 15 in the front-back direction N.
  • the second hole 18 is formed by removing the second SiC layer 30 formed in the sixth region 34 connected to the fifth region 32 in the front-back direction N.
  • the first hole 16 and the second hole 18 are formed by machining such as ultrasonic machining.
  • the material surface on the front side 2 of the second SiC layer 30 is shaved to form the surface on the front side 2 of the SiC member 1.
  • the fifth region 32 is a region of the first SiC layer 28 that is continuous with the reference hole 15 in the front-back direction N. That is, the fifth region 32 is a part of the first portion 281 of the first SiC layer 28. When the first SiC layer 28 formed in the fifth region 32 is removed, a part of the first portion 281 and the second portion 282 of the first SiC layer 28 remain. A part of the first portion 281 is a first region 20 that forms the inner peripheral surface of the first hole 16 and extends around the first hole 16. The second portion 282 becomes the second region 22 adjacent to the first region 20 and extending around the first region 20.
  • the finally remaining first SiC layer 28 forms the first hole 16 connected to the reference hole 15 in the front-back direction N, and the inner peripheral surface of the first hole 16, and forms the periphery of the first hole 16.
  • the sixth region 34 is a region of the second SiC layer 30 that is continuous with the fifth region 32 in the front-back direction N. That is, the sixth region 34 is a part of the third portion 301 of the second SiC layer 30.
  • the second SiC layer 30 formed in the sixth region 34 is removed, a part of the third portion 301 and the fourth portion 302 of the second SiC layer 30 remain.
  • Part of the third portion 301 forms the third region 24 that forms the inner peripheral surface of the second hole 18 and extends around the second hole 18.
  • the fourth portion 302 becomes the fourth region 26 adjacent to the third region 24 and extending around the third region 24.
  • the second SiC layer 30 finally remaining forms the second hole 18 connected to the first hole 16 in the front-back direction N and the inner peripheral surface of the second hole 18 to form the second hole 18.
  • the second SiC coat 7 has a third region 24 extending to the periphery and a fourth region 26 adjacent to the third region 24 and extending to the periphery of the third region 24.
  • the shower head used in the plasma processing apparatus provided with the through-holes 13 is illustrated as the SiC member 1.
  • the SiC member is not limited to a shower head, and may be a member having a different shape as long as a base member provided with a reference hole is used.
  • the first SiC coat 5 has the first region 20 having the crystal structure grown in the first direction M oblique to the front-back direction N and the front-back direction N. And a second region 22 having a crystal structure grown in the second direction L.
  • the second SiC coat 7 includes a third region 24 and a fourth region 26 having a crystal structure grown in a second direction L along the front-back direction N.
  • the first SiC coat 5 has the first region 20 having a crystal structure grown in the first direction M oblique to the front-back direction N and the second region L along the front-back direction N.
  • the second SiC coat 7 includes a second region 22 having a crystal structure and a fourth region 26 having a crystal structure grown in a second direction L along the front-back direction N. including.
  • the first SiC coat 5 including the first region 20 and the second region 22 having the crystal structures grown in different directions from the first region 20 and the fourth region 24 having the crystal structure grown in a certain direction and the fourth region 24 are formed.
  • the second SiC coat 7 including the region 26.
  • the first SiC layer 28 is formed on the front surface S1 of the substrate 3 and the first hole 16 is formed in the first SiC layer formed in the fifth region 32 that is continuous with the reference hole 15 in the front-back direction N. It is formed by removing the layer 28.
  • the second SiC layer 30 is formed on the front surface S5 of the first SiC layer 28, and the second hole 18 is formed on the second SiC layer 30 formed on the sixth region 34 that is continuous with the fifth region 32 in the front-back direction N. It is formed by removing.
  • the first hole 16 and the second hole 18 continuous with the reference hole 15 in the front-back direction N can be easily obtained without performing a mask process in advance on a region continuous with the reference hole 15 in the front-back direction N.
  • the first SiC layer 28 is formed including the front surface S1 of the substrate 3 and the inner peripheral surface of the reference hole 15. It is formed by removing the first SiC layer 28 formed in the fifth region 32 which is a region continuous with the inner peripheral surface of the reference hole 15 in the front and back direction N. This makes it possible to easily obtain the first hole 16 and the second hole 18 that are continuous with the reference hole 15 in the front-back direction N without performing a mask process on the inner peripheral surface of the reference hole 15 in advance.
  • the first SiC layer 28 is formed by closing the reference hole 15 of the substrate 3. Thereby, the front surface S5 of the first SiC layer 28 can be formed flat along the front surface S1 of the substrate 3. For this reason, the crystal structure of the second SiC layer 30 formed on the front surface S5 of the first SiC layer 28 grows in the first direction M oblique to the front-back direction N due to the undulation of the front surface S5 of the first SiC layer 28. Can be prevented. As a result, it is possible to provide a simple method of manufacturing the SiC member 1 that prevents black spots from appearing on the surface of the SiC member 1.
  • the first hole 16 and the second hole 18 are formed after the second SiC layer 30 is formed.
  • the crystal structure that grows in the second direction L along the front-back direction N appears on the front side 2 of the SiC member 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本発明は、SiC部材の外観を良好かつ簡易に確保するための技術を提供することをを目的とする。本発明は、表裏方向に貫通する基準孔を有する基板と、第1SiCコートと、第2SiCコートと、を備え、前記第1SiCコートは、前記表裏方向において前記基準孔に連なる第1孔と、前記第1孔の内周面を形成し前記第1孔周辺に拡がる第1領域と、前記第1領域と隣り合い前記第1領域の周辺に拡がる第2領域と、を有し、前記第2SiCコートは、前記表裏方向において前記第1孔に連なる第2孔と、前記第2孔の内周面を形成し前記第2孔周辺に拡がる第3領域と、前記第3領域と隣り合い前記第3領域の周辺に拡がる第4領域と、を有し、前記第1領域は、前記表裏方向に斜交する第1方向に結晶成長した結晶構造を含み、前記第2領域、前記第3領域および前記第4領域は、前記表裏方向に沿う第2方向に結晶成長した結晶構造を含む、SiC部材である。

Description

SiC部材およびその製造方法
 本発明は、SiC材料を含有するSiC部材およびその製造方法に関する。
 SiC(Silicon Carbide;炭化ケイ素)からなるSiCコートは、高耐久性、高耐強酸性、低比抵抗などの優れた特性を有し、半導体製造装置に利用される部品の被膜として広く利用されている。例えば、特許文献1は、プラズマエッチング装置内のエッチャーリングまたはシャワーヘッドとしてSiC部材を利用することを開示している。
特開2008-252045号公報
 ウェハ処理装置は、僅かな処理のばらつきにより、SiCウェハに製品不良を引き起こす可能性がある。また、ウェハ処理装置は、半導体製造工場内で大量のSiCウェハを扱うため、一枚のSiCウェハだけに留まらず、大量のSiCウェハに製品不良を波及させる可能性がある。ウェハ処理装置の消耗部品であるSiC部材は、耐久性や不純物濃度などの要求仕様を満たしていることが必須である。しかし、SiC部材の表面に結晶構造または層構造に由来する模様が現れると、場合によってはウェハ処理装置のエンドユーザーに不具合の懸念を生じさせることがある。
 例えば、特許文献1のSiC部材においては、プラズマエッチング処理装置に用いられるシャワーヘッドの表面にSiC層が設けられている。
 特許文献1においては、シャワーヘッドは、プラズマエッチング処理装置の中で繰り返し使用され、表面のSiC層が劣化する。劣化したSiC層を再生させるために、劣化したSiC層を削り、その表面に再度SiC層を形成する。このようなシャワーヘッドは、表面から裏面にかけて複数の貫通孔が設けられており、該貫通孔を設けた状態でSiC層が再形成される。このため、SiC部材の貫通孔周囲の表面に異なる向きに結晶成長した結晶構造を有するSiC層が形成される。この結果、SiC部材の貫通孔周囲に黒点模様が現れることがある。
 本願発明は、このような課題を解決するためになされたものであり、その目的は、SiC部材の外観を良好かつ簡易に確保するための技術を提供することである。
 上記課題を解決するための第1局面としては、表側と裏側を有するSiC部材は、表裏方向に貫通する基準孔を有する基板と、前記基板の少なくとも前記表側の表面に形成された第1SiCコートと、前記第1SiCコートの前記表側の表面に形成された第2SiCコートと、を備える。前記第1SiCコートは、前記表裏方向において前記基準孔に連なる第1孔と、前記第1孔の内周面を形成し前記第1孔周辺に拡がる第1領域と、前記第1領域と隣り合い前記第1領域の周辺に拡がる第2領域と、を有し、前記第2SiCコートは、前記表裏方向において前記第1孔に連なる第2孔と、前記第2孔の内周面を形成し前記第2孔周辺に拡がる第3領域と、前記第3領域と隣り合い前記第3領域の周辺に拡がる第4領域と、を有する。前記第1領域は、前記表裏方向に斜交する第1方向に結晶成長した結晶構造を含み、前記第2領域、前記第3領域および前記第4領域は、前記表裏方向に沿う第2方向に結晶成長した結晶構造を含む、といったものが考えられる。
 この局面においては、第1SiCコートは、表裏方向に斜交する第1方向に結晶成長した結晶構造を有する第1領域と、表裏方向に沿う第2方向に結晶成長した結晶構造を有する第2領域とを含む。また、第2SiCコートは、表裏方向に沿った第2方向に結晶成長した結晶構造を有する第3領域と第4領域とを含む。これにより、互いに異なる向きに結晶成長した結晶構造を有する第1領域と第2領域とを含む第1SiCコートを、一定の方向に結晶成長した結晶構造を有する第3領域と第4領域とを含む第2SiCコートで被覆することができる。このため、SiC部材の表面には、一定の方向に結晶成長した結晶構造を有するSiCコートが現れる。この結果、SiC部材の表面に現れる黒点模様を防止することができ、SiC部材の外観を良好かつ簡易に確保することができる。第1SiCコートおよび第2SiCコートは、それぞれ異なる工程で形成された別々の膜であってもよい。また、第1SiCコートおよび第2SiCコートは、単一の工程で形成された単一の膜の下層部分と上層部分であってもよい。
 第2の局面においては、前記SiC部材は、前記表裏方向に貫通する複数の貫通孔を備えるシャワーヘッドであり、前記基準孔、前記第1孔および前記第2孔は、前記複数の貫通孔のうちの一つを形成する、といったものが考えられる。
 この局面においては、シャワーヘッドの表面には、一定の方向に結晶成長した結晶構造を有するSiCコートが現れる。この結果、シャワーヘッドの表面に現れる黒点模様を防止することができる。
 上述したSiC部材を製造する方法として、第3の局面のようにすることが考えられる。
 第3の局面においては、前記表裏方向に貫通する基準孔を有する基板を準備する工程と、前記基板の少なくとも前記表側の表面に第1SiCコートを形成する工程と、前記第1SiCコートの前記表側の表面に第2SiCコートを形成する工程と、を備える。前記第1SiCコートは、前記表裏方向において前記基準孔に連なる第1孔と、前記第1孔の内周面を形成し前記第1孔周辺に拡がる第1領域と、前記第1領域と隣り合い前記第1領域の周辺に拡がる第2領域と、が形成され、前記第2SiCコートは、前記表裏方向において前記第1孔に連なる第2孔と、前記第2孔の内周面を形成し前記第2孔周辺に拡がる第3領域と、前記第3領域と隣り合い前記第3領域周辺に拡がる第4領域と、が形成される。前記第1領域は、前記表裏方向に斜交する第1方向に結晶成長した結晶構造を含んで形成され、前記第2領域、前記第3領域および前記第4領域は、前記表裏方向に沿う第2方向に結晶成長した結晶構造を含んで形成される、といったSiC部材の製造方法が考えられる。
 この局面においては、第1SiCコートは、表裏方向に斜交する第1方向に結晶成長した結晶構造を有する第1領域と、表裏方向に沿う第2方向に結晶成長した結晶構造を有する第2領域とを含む。また、第2SiCコートは、表裏方向に沿う第2方向に結晶成長した結晶構造を有する第3領域と第4領域とを含む。これにより、互いに異なる向きに結晶成長した結晶構造を有する第1領域と第2領域とを含む第1SiCコートを、一定の方向に結晶成長した結晶構造を有する第3領域と第4領域とを含む第2SiCコートで被覆することができる。このため、SiC部材の表面には、一定の方向に結晶成長した結晶構造を有するSiCコートが現れる。この結果、SiC部材の表面に現れる黒点模様を防止するSiC部材の製造方法を提供することができる。
 また上記製造方法では、第1孔および第2孔をどのように製造するかを想定した工程としておく必要がある。そのためには、さらに以下に示す第4の局面のようにすることが考えられる。
 第4の局面においては、前記第1SiCコートを形成する工程は、前記基板の前記表側の表面にSiC材料を堆積させて第1SiC層を形成する工程と、前記表裏方向において前記基準孔に連なる第5領域に形成された前記第1SiC層を除去して前記第1孔を形成する工程とを有し、前記第2SiCコートを形成する工程は、前記第1SiCコートの前記表側の表面に前記SiC材料を堆積させて第2SiC層を形成する工程と、前記表裏方向において前記第5領域に連なる第6領域に形成された前記第2SiC層を除去して前記第2孔を形成する工程とを有する、といったSiC部材の製造方法が考えられる。
 この局面においては、第1SiC層は基板の表側の表面に形成され、第1孔は、表裏方向において基準孔に連なる第5領域に形成された第1SiC層を除去して形成される。また、第2SiC層は第1SiC層の表側の表面に形成され、第2孔は、表裏方向において第5領域に連なる第6領域に形成された第2SiC層を除去して形成される。これにより、表裏方向において基準孔の内周面に連なる領域に予めマスク処理を施すことなく、簡易に基準孔と表裏方向において連なる第1孔および第2孔を得ることができる。この結果、SiC部材の表面に現れる黒点模様を防止するSiC部材の簡易な製造方法を提供することができる。
 第5の局面においては、前記第1SiC層は、前記基準孔の内周面を含んで形成され、前記第5領域は前記基準孔の内周面を含んで形成される、といったSiC部材の製造方法が考えられる。
 この局面においては、第1SiC層は基板の表側の表面と基準孔の内周面を含んで形成される。また、第1孔は、基準孔の内周面と表裏方向において基準孔の内周面に連なる領域からなる第5領域に形成された第1SiC層を除去して形成される。これにより、基準孔の内周面に予めマスク処理を施すことなく、簡易に基準孔と表裏方向において連なる第1孔および第2孔を得ることができる。この結果、SiC部材の表面に現れる黒点模様を防止するSiC部材の簡易な製造方法を提供することができる。
 第6の局面においては、前記第1SiC層は、前記基準孔を閉塞して形成される、といったSiC部材の製造方法が考えられる。
 この局面においては、第1SiC層は基板の基準孔を閉塞して形成される。これにより、第1SiC層の表側の表面を基板の表側の表面に沿って平坦に形成することができる。このため、第1SiC層の表側の表面に形成される第2SiC層の結晶構造が第1SiC層の表側の表面の起伏によって表裏方向に斜交する第1方向に結晶成長することを防ぐことができる。この結果、SiC部材の表面に現れる黒点模様を防止するSiC部材の簡易な製造方法を提供することができる。
 第7の局面においては、第1孔を形成する工程と前記第2孔を形成する工程は、前記第2SiC層を形成した後、前記第1SiC層の前記第5領域と前記第2SiC層の前記第6領域を除去して形成する、といったSiC部材の製造方法が考えられる。
 この局面においては、第2SiC層を形成したのち、第1孔と第2孔を形成する。これにより、SiC部材の表側には表裏方向に沿う第2方向に結晶成長する結晶構造だけが現れる。この結果、SiC部材の表面に現れる黒点模様を防止するSiC部材の簡易な製造方法を提供することができる。
本発明に係るSiC部材の構造を示す斜視図 本発明に係るSiC部材のA―A断面における断面の模式図 本発明に係るSiC部材の貫通孔の一つの拡大図 本発明に係るSiC部材の基準孔周辺の第1SiC層の結晶成長方向を示す図 本発明に係るSiC部材の基準孔周辺の第1SiC層と第2SiC層の結晶成長方向を示す図 本発明に係るSiC部材の第5領域および第6領域を示す図 SiC部材の表面に現れる黒点を示す写真
 以下に本発明の実施形態を図面と共に説明する。
(1)全体構成
 SiC部材1は、基板3と、第1SiCコート5と、第2SiCコート7と、備える。SiC部材1は、図1と図2に示すように、表側2と裏側4を有し、表側2から裏側4までを貫通する複数の貫通孔13が配列して形成される。本実施形態では、SiC部材1は、半導体製造プロセスにおけるエッチング工程や成膜工程に用いるプラズマ処理装置において、処理容器内に反応ガスや不活性ガスを放出させるシャワーヘッドである。また、貫通孔13は、SiC部材1であるシャワーヘッドの反応ガスや不活性ガスが流通するガス噴射孔である。なお、以下において、裏側4から表側2に向かう方向を、表裏方向Nとする。
 基板3は、表側の表面S1と、裏側の表面S4と、基準孔15と、を有する。基準孔15は、基板3の裏側の表面S4から表側の表面S1までを、表裏方向Nに貫通する。基準孔15は、裏側4に配置される第1基準孔15aと、基板3の表側の表面S1側に配置される第2基準孔15bと、を含む。第1基準孔15aは、例えば、直径D1であり、中心Oの円柱で形成される。第2基準孔15bは、第1基準孔15aの直径D1より小さい直径D2であり、第1基準孔15aと同じ中心Oの円柱で形成される。本実施形態では、直径D1は約1~2mm程度であり、直径D2は約0.5~1mm程度の大きさである。基板3の表側の表面S1には、第1SiCコート5が形成される。基板3の裏側の表面S4は、SiC部材1の裏側4となる。
 第1SiCコート5は、表側の表面S2と、第1孔16と、第1領域20と、第2領域22と、を有する。第1SiCコート5は、化学気相成長法(chemical vapor deposition:以下CVD法)によって生成されたCVD-SiCからなる。
 第1孔16は、表裏方向Nにおいて基準孔15に連なる。第1孔16は、例えば、第2基準孔15b同じ直径D1であり、第1基準孔15aおよび第2基準孔15bと同じ中心Oの円柱で形成される。
 図3は、貫通孔13の一つで図2におけるC部分の拡大図である。図3の矢印は、CVD法によってSiC結晶が成長する方向を示している。第1領域20は、図3に示すように、第1孔16の内周面を形成し第1孔16周辺に拡がる。また、第1領域20は、表裏方向Nに斜交する第1方向Mに結晶成長した結晶構造を含む。
 第2領域22は、第1領域20と隣り合い第1領域の周辺に拡がる。第2領域22は、表裏方向Nに沿う第2方向Lに結晶成長した結晶構造を含む。このため、第1SiCコート5の表側の表面S2には、互いに異なる方向に結晶成長した結晶構造が現れる。このような状態で、表側の表面S2を加工したのち酸化処理を施した場合、図7に示すような黒点が現れることが、発明者らによって発見されている。そこで、図2および図3に示すように、第1SiCコート5の表側の表面S2には、表側の表面S2に現れた異なる方向に結晶成長した結晶構造を覆うように第2SiCコート7が形成される。
 第2SiCコート7は、図2に示すように、表側の表面S3と、第2孔18と、第3領域24と、第4領域26と、を有する。第2SiCコート7は、CVD法によって生成されたCVD-SiCからなる。本実施形態では、第2SiCコート7の表側の表面S3は、SiC部材1の表側2となる。
 第2孔18は、表裏方向Nにおいて第1孔16に連なる。第2孔18は、例えば、第2基準孔15bと同じ直径D2であり、第1基準孔15aおよび第2基準孔15bと同じ中心Oの円柱で形成される。すなわち、基準孔15、第1孔16および第2孔18は、SiC部材1の複数の貫通孔13のうちの一つを形成する。
 第3領域24は、図3に示すように、第2孔18の内周面を形成し第2孔周辺に拡がる。第4領域26は、第3領域24と隣り合い第3領域の周辺に拡がる。第3領域24および第4領域26は、表裏方向に沿う第2方向Lに結晶成長した結晶構造を含む。すなわち、第2SiCコート7は、一定の方向に結晶成長した結晶構造を含む第3領域24と第4領域26とを有する。このため、第2SiCコート7の表側の表面S3、すなわち、SiC部材1の表側2には、一定の方向に結晶成長した結晶構造が現れる。
 (2)製造方法
 図4から図6は、貫通孔13の一つで図2におけるC部分の拡大図である。図4から図6の矢印は、CVD法によってSiC結晶が成長する方向、すなわち、結晶構造の結晶成長の向きを示している。
 SiC部材1は、次のような工程で製造されてもよい。まず、表裏方向Nに貫通する基準孔15を有する基板3を準備する。本実施形態では、基板3は、半導体製造プロセスにおけるエッチング工程や成膜工程に用いるプラズマ処理装置の中で複数回使用されて、表面のSiC層が劣化したシャワーヘッドである。この場合、基板3は、表側の表面S1および図示しない裏側の表面S4が機械加工により研磨され、劣化したSiC層が除去された状態で準備される。
 基板3が準備されると、図4に示すように、CVD法を用いて、基板3の表側の表面S1にSiC材料を堆積させてCVD-SiC層からなる第1SiC層28を形成する。第1SiC層28は、基板3の表側の表面S1および基準孔15の内周面から基板3の形状に沿ってSiC結晶が成長することで形成される。第1SiC層28は、第1部分281と、第2部分282と、を含んで形成される。
 第1部分281は、基板3の基準孔15の内周面から基板3の基準孔15と表側の表面S1の境界である縁Eの周辺にかけて形成されたCVD-SiC層の部分である。第1部分281は、SiC結晶が基板3の基準孔15の中心Oに向けて成長する。すなわち、第1部分281は、表裏方向Nに斜交する第1方向Mに結晶成長した結晶構造を含んで形成される。また、第1部分281は、基準孔15を閉塞して形成される。すなわち、第1部分281は、基準孔15の中心Oまで、CVD-SiC層が形成されることで形成される。これにより、第1部分281の表側2の表面は、基板3の表側の表面S1と略平行な面に沿って平坦に形成することができる。
 第2部分282は、第1部分281と隣り合って基板3の表側の表面S1に形成されたCVD-SiC層の部分である。第2部分282は、SiC結晶が基板3の表側の表面S1に対して垂直方向に成長する。すなわち、第2部分282は、表裏方向Nに沿う第2方向Lに結晶成長した結晶構造を含む。また、第2部分282は、CVD-SiC層が基板3の表側の表面S1と略平行な面を形成しながら積層されることで、形成される。これにより、第2部分282の表側2の表面は、基板3の表側の表面S1と略平行な面に沿って平坦に形成することができる。
 このようにして、第1SiC層28の表側の表面S5は、基板3の表側の表面S1に沿って平坦に形成することができる。また、第1SiC層28は、基準孔15の内周面を含んで形成される。さらに、第1SiC層28は、基準孔15を閉塞して形成される。
 第1SiC層28が形成されると、図5に示すように、CVD法を用いて第1SiC層28の表側の表面S5にSiC材料を堆積させてCVD-SiC層からなる第2SiC層30を形成する。第2SiC層30は、第1SiC層28の表側の表面S5から、表側の表面S5の形状に沿ってSiC結晶が成長することで、形成される。第2SiC層30は、第3部分301と、第4部分302と、を含んで形成される。
 第3部分301は、第1SiC層28の第1部分281の表側2の表面に形成されたCVD-SiC層の部分である。第3部分301は、SiC結晶が第1SiC層28の第1部分281の表側2の表面に対して垂直に成長する。すなわち、第3部分301は、表裏方向Nに沿う第2方向Lに結晶成長した結晶構造を含んで形成される。また、第3部分301は、CVD-SiC層が基板3の表側の表面S1と略平行な面を形成しながら積層されることで、形成される。これにより、第3部分301の表側2の表面は、第1SiC層28の表側の表面S5と略平行な面に沿って平坦に形成することができる。
 第4部分302は、第3部分301と隣り合って第1SiC層28の第2部分282の表側2の表面に形成されたCVD-SiC層の部分である。第4部分302は、SiC結晶が第1SiC層28の第2部分282の表側2の表面に対して垂直に成長する。すなわち、第4部分302は、表裏方向Nに沿う第2方向Lに結晶成長した結晶構造を含む。また、第4部分302は、CVD-SiC層が基板3の表側の表面S1と略平行な面を形成しながら積層されることで、形成される。これにより、第4部分302の表側2の表面は、第1SiC層28の表側の表面S5と略平行な面に沿って平坦に形成することができる。このため、第2SiC層の表側の表面S6は、第1SiC層28の表側の表面S5と略平行な面に沿って平坦に形成することができる。
 第2SiC層30が形成されると、図6に示すように、表裏方向Nにおいて基準孔15に連なる第5領域32に形成された第1SiC層28を除去して第1孔16が形成される。また、表裏方向Nにおいて第5領域32に連なる第6領域34に形成された第2SiC層30を除去して第2孔18が形成される。本実施形態では、超音波加工などの機械加工によって、第1孔16と第2孔18が形成される。第2SiC層30の表側2の材料面を削り、SiC部材1の表側2の表面を形成する。
 第5領域32は、第1SiC層28のうち、表裏方向Nにおいて基準孔15に連なる領域である。すなわち、第5領域32は、第1SiC層28の第1部分281の一部である。第5領域32に形成された第1SiC層28を除去すると、第1SiC層28のうち第1部分281の一部と第2部分282が残る。当該第1部分281の一部は、第1孔16の内周面を形成し第1孔16周辺に拡がる第1領域20となる。また、第2部分282は、第1領域20と隣り合い第1領域20の周辺に拡がる第2領域22となる。
 このような製造方法を経て、最終的に残存した第1SiC層28が、表裏方向Nにおいて基準孔15に連なる第1孔16と、第1孔16の内周面を形成し第1孔16周辺に拡がる第1領域20と、第1領域20と隣り合い第1領域20の周辺に拡がる第2領域22と、を有する第1SiCコート5として形成される。
 第6領域34は、第2SiC層30のうち、表裏方向Nにおいて第5領域32に連なる領域である。すなわち、第6領域34は、第2SiC層30の第3部分301の一部である。第6領域34に形成された第2SiC層30を除去すると、第2SiC層30のうち第3部分301の一部と第4部分302が残る。当該第3部分301の一部は、第2孔18の内周面を形成し第2孔18周辺に拡がる第3領域24となる。また、第4部分302は、第3領域24と隣り合い第3領域24の周辺に拡がる第4領域26となる。
 このような製造方法を経て、最終的に残存した第2SiC層30が、表裏方向Nにおいて第1孔16に連なる第2孔18と、第2孔18の内周面を形成し第2孔18周辺に拡がる第3領域24と、第3領域24と隣り合い第3領域24の周辺に拡がる第4領域26と、を有する第2SiCコート7として形成される。
 (3)変形例
 本願発明の実施の形態は、以上の実施例に限定されることなく、本発明の技術的範囲に属する限り種々の形態をとりうることは言うまでもない。
 例えば、上記実施形態では、SiC部材1として、貫通孔13が設けられたプラズマ処理装置に用いられるシャワーヘッドを例示した。しかし、SiC部材は、シャワーヘッドに限定されず、基準孔を設けた基材を用いるものであれば、形状が異なる部材であってもよい。
 (4)作用、効果
 このような構成であれば、第1SiCコート5は、表裏方向Nに斜交する第1方向Mに結晶成長した結晶構造を有する第1領域20と、表裏方向Nに沿う第2方向Lに結晶成長した結晶構造を有する第2領域22とを含む。また、第2SiCコート7は、表裏方向Nに沿う第2方向Lに結晶成長した結晶構造を有する第3領域24と第4領域26とを含む。これにより、互いに異なる向きに結晶成長した結晶構造を有する第1領域20と第2領域22とを含む第1SiCコート5を、一定の方向に結晶成長した結晶構造を有する第3領域24と第4領域26とを含む第2SiCコート7で被覆することができる。このため、SiC部材1の表面には、一定の方向に結晶成長した結晶構造を有するSiCコートが現れる。この結果、SiC部材1の表面に現れる黒点模様を防止することができ、SiC部材の外観を良好かつ簡易に確保することができる。
 また、上記構成であれば、SiC部材1であるシャワーヘッドの表面には、一定の方向に結晶成長した結晶構造を有するSiCコートが現れる。この結果、シャワーヘッドの表面に現れる黒点模様を防止することができる。
 このような製造方法であれば、第1SiCコート5は、表裏方向Nに斜交する第1方向Mに結晶成長した結晶構造を有する第1領域20と、表裏方向Nに沿う第2方向Lに結晶成長した結晶構造を有する第2領域22とを含む、また、第2SiCコート7は、表裏方向Nに沿う第2方向Lに結晶成長した結晶構造を有する第3領域24と第4領域26とを含む。これにより、互いに異なる向きに結晶成長した結晶構造を有する第1領域20と第2領域22とを含む第1SiCコート5を、一定の方向に結晶成長した結晶構造を有する第3領域24と第4領域26とを含む第2SiCコート7で被覆することができる。このため、SiC部材1の表面には、一定の方向に結晶成長した結晶構造を有するSiCコートが現れる。この結果、SiC部材1の表面に現れる黒点模様を防止でき、SiC部材1の外観を良好かつ簡易に確保できるSiC部材1の製造方法を提供することができる。
 また、上記製造方法であれば、第1SiC層28は基板3の表側の表面S1に形成され、第1孔16は、表裏方向Nにおいて基準孔15に連なる第5領域32に形成された第1SiC層28を除去して形成される。また、第2SiC層30は、第1SiC層28の表側の表面S5に形成され、第2孔18は、表裏方向Nにおいて第5領域32に連なる第6領域34に形成された第2SiC層30を除去して形成される。これにより、表裏方向Nにおいて基準孔15に連なる領域に予めマスク処理を施すことなく、簡易に基準孔15と表裏方向Nにおいて連なる第1孔16および第2孔18を得ることができる。この結果、SiC部材1の表面に現れる黒点模様を防止するSiC部材1の簡易な製造方法を提供することができる。
 また、上記製造方法であれば、第1SiC層28は基板3の表側の表面S1と基準孔15の内周面を含んで形成される、また、第1孔16は、基準孔15の内周面と表裏方向Nにおいて基準孔15の内周面に連なる領域からなる第5領域32に形成された第1SiC層28を除去して形成される。これにより、基準孔15の内周面に予めマスク処理を施すことなく、簡易に基準孔15と表裏方向Nにおいて連なる第1孔16および第2孔18を得ることができる。
 また、上記製造方法であれば、第1SiC層28は基板3の基準孔15を閉塞して形成される。これにより、第1SiC層28の表側の表面S5を基板3の表側の表面S1に沿って平坦に形成することができる。このため、第1SiC層28の表側の表面S5に形成される第2SiC層30の結晶構造が第1SiC層28の表側の表面S5の起伏によって表裏方向Nに斜交する第1方向Mに結晶成長することを防ぐことができる。この結果、SiC部材1の表面に現れる黒点模様を防止するSiC部材1の簡易な製造方法を提供することができる。
 また、上記製造方法であれば、第2SiC層30を形成したのち、第1孔16と第2孔18を形成する。これにより、SiC部材1の表側2には表裏方向Nに沿う第2方向Lに結晶成長する結晶構造だけが現れる。この結果、SiC部材1の表面に現れる黒点模様を防止するSiC部材1の簡易な製造方法を提供することができる。
1…SiC部材、2…表側、3…基板、4…裏側、5…第1SiCコート、7…第2SiCコート、13…貫通孔、15…基準孔、16…第1孔、18…第2孔、20…第1領域、22…第2領域、24…第3領域、26…第4領域、28…第1SiC層、30…第2SiC層、32…第5領域、34…第6領域、S1…基板3の表側の表面、S2…第1SiCコートの表側の表面、S3…第2SiCコートの表側の表面、M…第1方向、L…第2方向

Claims (7)

  1.  表側と裏側を有するSiC部材であって、
     表裏方向に貫通する基準孔を有する基板と、前記基板の少なくとも前記表側の表面に形成された第1SiCコートと、前記第1SiCコートの前記表側の表面に形成された第2SiCコートと、を備え、
     前記第1SiCコートは、前記表裏方向において前記基準孔に連なる第1孔と、前記第1孔の内周面を形成し前記第1孔周辺に拡がる第1領域と、前記第1領域と隣り合い前記第1領域の周辺に拡がる第2領域と、を有し、
     前記第2SiCコートは、前記表裏方向において前記第1孔に連なる第2孔と、前記第2孔の内周面を形成し前記第2孔周辺に拡がる第3領域と、前記第3領域と隣り合い前記第3領域の周辺に拡がる第4領域と、を有し、
     前記第1領域は、前記表裏方向に斜交する第1方向に結晶成長した結晶構造を含み、
     前記第2領域、前記第3領域および前記第4領域は、前記表裏方向に沿う第2方向に結晶成長した結晶構造を含む、
     SiC部材。
  2.  前記SiC部材は、前記表裏方向に貫通する複数の貫通孔を備えるシャワーヘッドであり、
     前記基準孔、前記第1孔および前記第2孔は、前記複数の貫通孔のうちの一つを形成する、
     請求項1に記載のSiC部材。
  3.  表側と裏側を有するSiC部材の製造方法であって、
     前記表裏方向に貫通する基準孔を有する基板を準備する工程と、前記基板の少なくとも前記表側の表面に第1SiCコートを形成する工程と、前記第1SiCコートの前記表側の表面に第2SiCコートを形成する工程と、を備え、
     前記第1SiCコートは、前記表裏方向において前記基準孔に連なる第1孔と、前記第1孔の内周面を形成し前記第1孔周辺に拡がる第1領域と、前記第1領域と隣り合い前記第1領域の周辺に拡がる第2領域と、が形成され、
     前記第2SiCコートは、前記表裏方向において前記第1孔に連なる第2孔と、前記第2孔の内周面を形成し前記第2孔周辺に拡がる第3領域と、前記第3領域と隣り合い前記第3領域周辺に拡がる第4領域と、が形成され、
     前記第1領域は、前記表裏方向に斜交する第1方向に結晶成長した結晶構造を含んで形成され、
     前記第2領域、前記第3領域および前記第4領域は、前記表裏方向に沿う第2方向に結晶成長した結晶構造を含んで形成される、
     SiC部材の製造方法。
  4.  前記第1SiCコートを形成する工程は、
     前記基板の前記表側の表面にSiC材料を堆積させて第1SiC層を形成する工程と、
     前記表裏方向において前記基準孔に連なる第5領域に形成された前記第1SiC層を除去して前記第1孔を形成する工程と、を有し、
     前記第2SiCコートを形成する工程は、
     前記第1SiCコートの前記表側の表面に前記SiC材料を堆積させて第2SiC層を形成する工程と、前記表裏方向において前記第5領域に連なる第6領域に形成された前記第2SiC層を除去して前記第2孔を形成する工程と、を有する、
     請求項3に記載のSiC部材の製造方法。
  5.  前記第1SiC層は、前記基準孔の内周面を含んで形成され、
     前記第5領域は前記基準孔の内周面を含んで形成される、
     請求項4に記載のSiC部材の製造方法。
  6.  前記第1SiC層は、前記基準孔を閉塞して形成される、
     請求項4または5のいずれか1項に記載のSiC部材の製造方法。
  7.  前記第1孔を形成する工程と前記第2孔を形成する工程は、
     前記第2SiC層を形成した後、前記第1SiC層の前記第5領域と前記第2SiC層の前記第6領域を除去して形成される、
     請求項4から請求項6のいずれか一項に記載のSiC部材の製造方法。
PCT/JP2019/017416 2018-06-27 2019-04-24 SiC部材およびその製造方法 WO2020003721A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/603,698 US20200243302A1 (en) 2018-06-27 2019-04-24 SiC MEMBER AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018121520A JP6794405B2 (ja) 2018-06-27 2018-06-27 SiC部材およびその製造方法
JP2018-121520 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020003721A1 true WO2020003721A1 (ja) 2020-01-02

Family

ID=68987053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017416 WO2020003721A1 (ja) 2018-06-27 2019-04-24 SiC部材およびその製造方法

Country Status (4)

Country Link
US (1) US20200243302A1 (ja)
JP (1) JP6794405B2 (ja)
TW (1) TW202000965A (ja)
WO (1) WO2020003721A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024803A1 (ja) * 2022-07-28 2024-02-01 東京エレクトロン株式会社 製造方法、および部品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012563A (ja) * 1996-06-21 1998-01-16 Toshiba Ceramics Co Ltd 高純度CVD−SiC質の半導体熱処理用部材及びその製造方法
JP2004307253A (ja) * 2003-04-07 2004-11-04 New Japan Radio Co Ltd 半導体基板の製造方法
WO2008146918A1 (ja) * 2007-06-01 2008-12-04 Mitsui Engineering & Shipbuilding Co., Ltd. プラズマ処理装置用電極の製造方法および再生方法
JP2011018894A (ja) * 2009-06-12 2011-01-27 Tokyo Electron Ltd プラズマ処理装置用の消耗部品の再利用方法
JP2012049220A (ja) * 2010-08-25 2012-03-08 Mitsui Eng & Shipbuild Co Ltd 耐プラズマ部材およびその再生方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012563A (ja) * 1996-06-21 1998-01-16 Toshiba Ceramics Co Ltd 高純度CVD−SiC質の半導体熱処理用部材及びその製造方法
JP2004307253A (ja) * 2003-04-07 2004-11-04 New Japan Radio Co Ltd 半導体基板の製造方法
WO2008146918A1 (ja) * 2007-06-01 2008-12-04 Mitsui Engineering & Shipbuilding Co., Ltd. プラズマ処理装置用電極の製造方法および再生方法
JP2011018894A (ja) * 2009-06-12 2011-01-27 Tokyo Electron Ltd プラズマ処理装置用の消耗部品の再利用方法
JP2012049220A (ja) * 2010-08-25 2012-03-08 Mitsui Eng & Shipbuild Co Ltd 耐プラズマ部材およびその再生方法

Also Published As

Publication number Publication date
US20200243302A1 (en) 2020-07-30
TW202000965A (zh) 2020-01-01
JP2020004810A (ja) 2020-01-09
JP6794405B2 (ja) 2020-12-02

Similar Documents

Publication Publication Date Title
US8414974B2 (en) Method of manufacturing silicon nanotubes using doughnut-shaped catalytic metal layer
JP6219238B2 (ja) サセプタ及びその製造方法
WO2015133064A1 (ja) 半導体エピタキシャルウェーハの製造方法及び半導体エピタキシャルウェーハ
JP6772300B2 (ja) コーティングされた半導体ウエハを製造するための方法および装置
WO2020003721A1 (ja) SiC部材およびその製造方法
TWI668862B (zh) 具有透射率不同的多個層的SiC半導體製造用部件
CA2775065A1 (en) Silicon carbide substrate and method for manufacturing same
JP7221302B2 (ja) 半導体素子の製造方法、半導体素子および半導体デバイス
KR102061955B1 (ko) 반도체 웨이퍼들을 코팅하기 위한 방법
KR101050679B1 (ko) 표면 처리 방법, 실리콘 에피텍셜 웨이퍼의 제조 방법 및 실리콘 에피텍셜 웨이퍼
JP3649597B2 (ja) 化学蒸着法SiC膜の製造方法
JP2019091848A (ja) 気相成長装置の炉内部品の洗浄方法
TW201251107A (en) Method of manufacturing semiconductor light emitting device
JP2022100086A (ja) 半導体熱処理部材及びその製造方法
JP7562800B1 (ja) エッチャーリング、およびエッチャーリングの製造方法
JP7477424B2 (ja) SiCの気相成長装置用部材及び気相成長装置用部材の再生方法
WO2020003668A1 (ja) SiC部材およびその製造方法
JP2011187887A (ja) エピタキシャルウエハの製造方法
CN118621299A (zh) 半导体部件及其制造方法
JP2006313774A (ja) 半導体装置の製造方法
JP5458190B2 (ja) エピタキシャルウェーハの製造方法及びエピタキシャルウェーハ
JP2011171615A (ja) 半導体素子製造方法
JPH0794428A (ja) 半導体薄膜気相成長装置
KR20170119554A (ko) 박막의 형성방법
JP2010003735A (ja) エピタキシャルウェーハの製造方法及びエピタキシャルウェーハ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825465

Country of ref document: EP

Kind code of ref document: A1