WO2020003452A1 - 運転支援方法及び運転支援装置 - Google Patents

運転支援方法及び運転支援装置 Download PDF

Info

Publication number
WO2020003452A1
WO2020003452A1 PCT/JP2018/024653 JP2018024653W WO2020003452A1 WO 2020003452 A1 WO2020003452 A1 WO 2020003452A1 JP 2018024653 W JP2018024653 W JP 2018024653W WO 2020003452 A1 WO2020003452 A1 WO 2020003452A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
traveling
lane
lane change
area
Prior art date
Application number
PCT/JP2018/024653
Other languages
English (en)
French (fr)
Inventor
洋平 谷口
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US15/734,304 priority Critical patent/US11661062B2/en
Priority to JP2020526815A priority patent/JP6954469B2/ja
Priority to EP18924680.4A priority patent/EP3816962B1/en
Priority to PCT/JP2018/024653 priority patent/WO2020003452A1/ja
Publication of WO2020003452A1 publication Critical patent/WO2020003452A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/40High definition maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Definitions

  • the present disclosure relates to a driving support method and a driving support device.
  • the route from the current position of the vehicle to the destination is divided into multiple block areas, and the detailed information necessary for the current automatic control among the detailed information of the route corresponding to each block area is output in block area units.
  • a driving support method see, for example, Patent Document 1.
  • an area in which high-precision map information is prepared and a lane change can be executed, and a vehicle in which high-precision map information is not prepared When traveling across a region boundary with a region where line change cannot be performed, it is necessary to consider the control of the own vehicle. That is, the control content of the vehicle lane change is switched by straddling the area boundary. Therefore, especially when the vehicle is traveling in the passing lane, the traveling in the overtaking lane may be continued more than expected.
  • the present disclosure has been made in view of the above problem, and an object of the present disclosure is to provide a driving support method and a driving support device that can prevent the traveling of the overtaking lane from continuing more than expected.
  • the present disclosure is a driving support method by a controller that generates a target travel route and performs lane change support that supports lane change of the own vehicle based on the target travel route.
  • an area where the lane change is executable is defined as a first area
  • an area where the lane change is not executable is defined as a second area
  • a boundary between the first area and the second area is defined as an area boundary.
  • the vehicle change support control is performed so that the own vehicle runs on the non-overtaking lane.
  • FIG. 1 is an overall system diagram illustrating an automatic driving control system to which a driving support method and a driving support device according to a first embodiment are applied.
  • FIG. 3 is a control block diagram illustrating a lane change controller provided in the automatic driving control unit according to the first embodiment.
  • 4 is a flowchart illustrating a flow of lane change support control executed by the lane change controller according to the first embodiment. It is explanatory drawing which shows the driving
  • the driving assist method and the driving assist device automatically drive (brake / steer) the driving / braking / steering angle so as to travel along the generated target traveling route (driving assistance).
  • This is applied to an example of a vehicle (own vehicle).
  • the configuration of the first embodiment will be described by dividing it into “overall system configuration”, “control block configuration of lane change controller”, and “processing configuration of lane change support control”.
  • the automatic driving system 100 includes an on-vehicle sensor 1, a map data storage unit 2, an external data communication device 3, an automatic driving control unit 4, an actuator 5, and a display device 6. ing.
  • the vehicle-mounted sensor 1 includes a camera 11, a radar 12, a GPS 13, and a vehicle-mounted data communication device 14. Although not shown, the in-vehicle sensor 1 also includes a sensor for detecting own vehicle information such as a vehicle speed sensor, an accelerator opening sensor, a brake sensor, a steering angle sensor, and the like. The sensor information acquired by the on-vehicle sensor 1 is output to the automatic operation control unit 4.
  • the camera 11 is a surrounding recognition sensor that realizes, as a function required for automatic driving, a function of acquiring surrounding information of the own vehicle such as a lane, a preceding vehicle, or a pedestrian, using image data.
  • the camera 11 is configured by combining, for example, a front recognition camera, a rear recognition camera, a right recognition camera, and a left recognition camera of the own vehicle.
  • objects on the own vehicle traveling road lanes, objects outside the own vehicle traveling road (road structures, preceding vehicles, following vehicles, oncoming vehicles, surrounding vehicles, pedestrians, bicycles, two-wheeled vehicles), own vehicle traveling roads (road white lines) , Road boundaries, stop lines, pedestrian crossings) and road signs (speed limit) are detected.
  • the radar 12 is a distance measuring sensor that realizes, as functions required for automatic driving, a function of detecting the presence of an object around the vehicle and a function of detecting the distance to an object around the vehicle.
  • the “radar 12” is a general term including a radar using radio waves, a rider using light, and a sonar using ultrasonic waves.
  • a laser radar, a millimeter-wave radar, an ultrasonic radar, a laser range finder, or the like can be used.
  • the radar 12 is configured by combining, for example, a forward radar, a backward radar, a right radar, a left radar, and the like of the own vehicle.
  • the radar 12 detects the positions of objects on the own vehicle traveling road and objects outside the own vehicle traveling road (road structures, preceding vehicles, following vehicles, oncoming vehicles, surrounding vehicles, pedestrians, bicycles, two-wheeled vehicles), and the like. The distance to the object is detected. If the viewing angle is insufficient, it may be added as appropriate.
  • the GPS 13 is a vehicle position sensor that has a GNSS antenna 13a and detects the vehicle position (latitude / longitude) of a stopped or running vehicle by using satellite communication.
  • GNSS is an abbreviation for “Global Navigation Satellite System: Global Navigation Satellite System”
  • GPS is an abbreviation for “Global Positioning System: Global Positioning System”.
  • the in-vehicle data communication device 14 is an external data sensor that performs wireless communication with the external data communication device 3 via the transmission / reception antennas 3a and 14a to acquire information that cannot be acquired by the own vehicle from outside. .
  • the external data communication device 3 performs, for example, inter-vehicle communication between the own vehicle and the other vehicle in the case of a data communication device mounted on another vehicle running around the own vehicle. By this inter-vehicle communication, information necessary for the own vehicle can be obtained by a request from the on-vehicle data communication device 14 among various information held by other vehicles.
  • the external data communication device 3 is, for example, a data communication device provided in infrastructure equipment
  • the external data communication equipment 3 performs infrastructure communication between the vehicle and the infrastructure equipment. Through this infrastructure communication, information necessary for the own vehicle can be obtained by a request from the on-vehicle data communication device 14 among various information held by the infrastructure equipment.
  • the missing information / change information Can be supplemented. It is also possible to acquire traffic information such as traffic congestion information and travel regulation information on a target travel route on which the vehicle is to travel.
  • the map data storage unit 2 is constituted by an in-vehicle memory storing so-called electronic map data in which latitude and longitude are associated with map information.
  • the map data storage unit 2 transmits electronic map data centered on the vehicle position to the automatic driving control unit 4.
  • the electronic map data has road information associated with each point, and the road information is defined by nodes and links connecting the nodes.
  • the road information includes information for specifying a road according to the position / area of the road, a road type for each road, a road width for each road, and road shape information.
  • the road information is stored in association with information on the position of the intersection, the approach direction of the intersection, the type of the intersection, and other intersections for each identification information of each road link.
  • the road information includes, for each piece of identification information of each road link, a road type, a road width, a road shape, whether or not to go straight, a priority relationship for traveling, whether or not passing (whether or not to enter an adjacent lane), a speed limit, and a speed limit. Signs and other road information are stored in association with each other.
  • the electronic map data includes GPS map data and high-precision three-dimensional map data (dynamic map).
  • the GPS map data is map data used for normal route guidance, and is maintained in almost all areas where vehicles can travel.
  • high-precision three-dimensional map data is map data having three-dimensional spatial information with higher definition than GPS map data, and having at least a level of accuracy at which a lane can be recognized on a road having a plurality of lanes.
  • the high-precision three-dimensional map data is used to execute a lane change.
  • By using the high-precision three-dimensional map data it is possible to set a target traveling route indicating which lane the vehicle runs in a plurality of lanes in automatic driving.
  • high-precision three-dimensional map data has limited areas in which the data is maintained, such as, for example, specific high-speed motor vehicle national roads and motorways.
  • first region a region having the high-precision three-dimensional map data and in which the lane change can be performed is referred to as a “first region”.
  • second area An area that does not have high-precision three-dimensional map data and in which it is impossible to change lanes is referred to as a “second area”.
  • region boundary a boundary between the “first region” and the “second region” is referred to as a “region boundary”.
  • the "lane change” means that the lane in which the own vehicle travels is automatically determined based on the own vehicle position information and the lane information, without requiring the intervention of the driver's operation, when the predetermined lane change condition is satisfied. It is to change to. That is, the “first area in which the lane change can be performed” is an area in which the position information and the lane information of the own vehicle necessary for performing the lane change can be obtained. The area where the high-precision three-dimensional map data is prepared is an area where lane information can be obtained. On the other hand, the “second area in which the lane change is not executable” is an area in which at least one of the position information of the own vehicle and the lane information necessary for the execution of the lane change cannot be obtained. An area where high-precision three-dimensional map data is not prepared is an area where lane information cannot be obtained. Also, the inside of a tunnel or underground where the position information of the vehicle detected by the GPS 13 cannot be acquired is also the “second area”.
  • the automatic driving control unit 4 integrates input information (own vehicle information, own vehicle position information, own vehicle surrounding information, map data information, destination information, etc.) from the on-vehicle sensor 1 and the map data storage unit 2, and Generate a traveling route. Then, driving support control for supporting driving of the own vehicle is performed based on the target traveling route. That is, the automatic driving control unit 4 generates a target traveling route from the current position to the destination based on the road information from the map data storage unit 2, a route search method, and the like. Then, drive command value / brake command value / steering angle command value is calculated so as to travel along the generated target travel route, and the calculated command value is output to each actuator, and the own vehicle is driven along the target travel route. Run / stop.
  • the calculation result of the drive command value is output to the drive actuator 51
  • the calculation result of the brake command value is output to the brake actuator 52
  • the calculation result of the steering angle command value is output to the steering angle actuator 53.
  • the automatic driving control unit 4 changes the lane (the lane change) so that the own vehicle travels in the traveling lane (non-overtaking lane) when traveling in a predetermined range from the region boundary in the first region.
  • the system includes a lane change controller 40 (controller) that performs control of (assistance). That is, the lane change controller 40 controls the vehicle lane change so that the vehicle travels in the traveling lane within a predetermined range from the region boundary while the vehicle is traveling in the first region.
  • the "overtaking lane” is a lane for passing a vehicle traveling ahead of the own vehicle, and is the rightmost lane when there are a plurality of lanes.
  • the “traveling lane (non-overtaking lane)” is a lane used for normal traveling, and is a lane other than the overtaking lane.
  • the actuator 5 is a control actuator for traveling / stopping the own vehicle along the target traveling route, and includes a driving actuator 51, a braking actuator 52, and a steering angle actuator 53.
  • the drive actuator 51 is an actuator that receives a drive command value from the automatic operation control unit 4 and controls a drive force output to drive wheels.
  • an engine is used for an engine vehicle
  • an engine and a motor / generator (power running) are used for a hybrid vehicle
  • a motor / generator (power running) is used for an electric vehicle.
  • the braking actuator 52 is an actuator that receives a braking command value from the automatic driving control unit 4 and controls a braking force that is output to driving wheels.
  • a hydraulic booster for example, a hydraulic booster, an electric booster, a brake hydraulic actuator, a brake motor actuator, a motor / generator (regeneration), or the like is used.
  • the steering angle actuator 53 is an actuator that inputs a steering angle command value from the automatic driving control unit 4 and controls the steered angle of the steered wheels.
  • a steering motor or the like provided in a steering force transmission system of the steering system is used.
  • the display device 6 is a device that displays on the screen where the vehicle is moving on a map while the vehicle is stopped / running due to automatic driving, and provides visual information of the vehicle position to the driver and the occupant.
  • the display device 6 inputs target travel route information, own vehicle position information, destination information, and the like generated by the automatic driving control unit 4, and displays a map, a road, and a target travel route (the travel route of the own vehicle) on a display screen. ), The vehicle position, the destination, and the like are displayed in an easily recognizable manner.
  • the lane change controller 40 includes a road determination unit 41, an area determination unit 42, a traveling point determination unit 43, and a lane change control unit 44.
  • the road determination unit 41 inputs vehicle position information, map data information, and the like.
  • the road determination unit 41 determines whether or not the current vehicle is a road on which the vehicle is currently traveling and has a plurality of lanes and is capable of performing a lane change based on the various types of input information.
  • Outputs type information is input to the area determination unit 42.
  • the type of the traveling road of the own vehicle is determined by comparing the own vehicle position information with the map data information. The determination may be made based on own vehicle surrounding information acquired from the camera 11 or the like.
  • the area determination unit 42 inputs the determination result (road type information) of the road determination unit 41, the own vehicle position information, the map data information, and the like.
  • the area determination unit 42 when the determination result that the road on which the vehicle is traveling is a multi-lane road having a plurality of lanes is input from the road determination unit 41, based on the input various information, It is determined whether or not the vehicle is traveling in the first area, and area information is output.
  • the output area information is input to the traveling point determination unit 43.
  • whether or not the own vehicle is traveling in the first area that is, the traveling area of the own vehicle is determined by comparing the own vehicle position information with the map data information.
  • the traveling point determination unit 43 inputs the determination result (region information) of the region determination unit 42, the vehicle position information, the map data information, and the like.
  • the traveling point determination unit 43 receives from the region determination unit 42 a result of determination that the region in which the vehicle is traveling is the first region in which lane change can be executed, the various types of input are performed.
  • Based on the information it is determined whether or not the vehicle is traveling within a predetermined range from the area boundary based on the position where the vehicle is traveling, and travel point information is output.
  • the output traveling point information is input to the lane change control unit 44.
  • the traveling position of the own vehicle is determined by comparing the own vehicle position information with the map data information.
  • the lane change control unit 44 inputs the determination result (traveling point information) of the traveling point determining unit 43, the own vehicle position information, the map data information, the own vehicle surrounding information, and the like.
  • the lane change control unit 44 determines whether the vehicle is traveling based on the various information input.
  • the output of the vehicle lane change request is controlled so that the vehicle travels in the traveling lane (non-overtaking lane). Specifically, control is performed as listed below.
  • a request to change lanes to the traveling lane is output.
  • the vehicle does not change lanes in the first area and the time from the last time the vehicle changes lanes to the current time is greater than or equal to the second threshold time, the vehicle overtakes If the vehicle is traveling in the lane, a request to change lanes to the traveling lane is output.
  • the distance from the own vehicle to the area boundary immediately before the front is equal to or less than the third threshold distance, if the own vehicle is traveling in the traveling lane, changing the lane to the passing lane is prohibited.
  • the vehicle may be driven according to the driving situation.
  • the request to change the lane according to the traveling state includes, for example, a request to travel along a target traveling route and a request to overtake a preceding vehicle.
  • the vehicle travels If the vehicle is traveling in a lane, it is possible to output a lane change request according to the traveling situation.
  • the type of the lane in which the vehicle is traveling is determined by comparing the vehicle position information with the map data information. The determination may be based on own vehicle surrounding information acquired from the camera 11 or the like.
  • FIG. 3 is a flowchart showing the flow of the lane change support control. Hereinafter, each step of FIG. 3 will be described.
  • step S1 it is determined whether or not the vehicle is traveling on a multi-lane road having a plurality of lanes. If YES (the vehicle is traveling on a multi-lane road), it is determined that lane change is possible, and the process proceeds to step S2. In the case of NO (running on a one-lane road), it is determined that lane change cannot be executed, and the process proceeds to return. Note that step S1 corresponds to the road determination unit 41.
  • step S2 following the determination in step S1 that the vehicle is traveling on a double lane road, it is determined whether the vehicle is traveling in the first area. If YES (the vehicle is traveling in the first area), the process proceeds to step S3. In the case of NO (running in the second area), it is determined that the lane change cannot be controlled, and the process proceeds to the return.
  • Step S2 corresponds to the area determination unit 42.
  • the "first area” is an area in which high-precision three-dimensional map data is prepared and in which lane change can be performed.
  • the “second area” is an area in which high-precision three-dimensional map data is not prepared and in which lane change cannot be performed. Further, the area in which the own vehicle is running is determined by comparing the own vehicle position information with the map data information.
  • step S3 following the determination in step S2 that the vehicle is traveling in the first area, it is determined whether or not lane change has been performed in the first area, that is, the lane has been started after traveling in the first area. Determine whether you have made any changes. If YES (the lane has been changed), it is determined that the lane currently traveling is different from the lane traveling when moving from the second area to the first area, and the process proceeds to step S4. In the case of NO (no lane change), it is determined that the currently traveling lane is the same as the traveling lane when moving from the second area to the first area, and the process proceeds to step S11.
  • step S4 following the determination that there is a lane change in the first area in step S3, an area boundary existing at a position closest to the own vehicle from among the area boundaries existing in front of the own vehicle (front area). It is determined whether or not the distance (first position index value) to the nearest area boundary is equal to or less than a third threshold distance (third threshold) set in advance.
  • a third threshold distance third threshold set in advance.
  • the process proceeds to step S5.
  • NO the distance to the region border immediately forward> the third threshold distance
  • the flow proceeds to step S14.
  • This step S4 corresponds to the traveling point determination section 43.
  • the “region boundary” is a boundary between the first region and the second region.
  • the third threshold distance is a distance at which it is determined that it is difficult to change the lane twice or more, and is set to, for example, 3 km.
  • step S5 following the determination in step S4 that the distance to the immediately preceding area boundary ⁇ the third threshold distance, it is determined whether the vehicle is traveling in the traveling lane (non-overtaking lane). In the case of YES (during the traveling lane), the process proceeds to step S6. If NO (during the passing lane), the process proceeds to step S7.
  • the lane in which the own vehicle is traveling is determined by comparing the own vehicle position information with the map data information.
  • step S6 following the determination in step S5 that the vehicle is traveling in the traveling lane, a control signal for prohibiting the lane change to the overtaking lane is output, and the routine proceeds to return. As a result, a request to change lanes toward the overtaking lane is not output, and the traveling lane is maintained. In addition, since the lane change between the driving lanes is not prohibited, for example, the lane change from the center lane to the left end lane is possible. Steps S5 and S6 correspond to the lane change control unit 44.
  • step S7 following the determination that the vehicle is traveling in the overtaking lane in step S5, the distance (first position index value) from the own vehicle to the area boundary immediately in front of the own vehicle is set to a first threshold value set in advance. It is determined whether the distance is equal to or less than the distance (first threshold). In the case of YES (distance to the region border immediately forward) ⁇ first threshold distance, the process proceeds to step S8. In the case of NO (the distance to the immediately preceding area boundary> the first threshold distance), the flow proceeds to step S14.
  • step S7 corresponds to the traveling point determination unit 43.
  • the first threshold distance is a distance at which it is determined that it is difficult to perform a lane change due to a driver operation after the execution of the lane change, and is set to, for example, 2 km.
  • step S8 following the determination in step S7 that the distance to the immediately forward area boundary is equal to or less than the first threshold distance, it is determined whether the own vehicle is traveling in the passing lane. If YES (during the passing lane), the process proceeds to step S9. If NO (the vehicle is traveling in the traveling lane), the process proceeds to step S10.
  • the lane in which the own vehicle is traveling is determined by comparing the own vehicle position information with the map data information as in step S5.
  • step S9 following the determination in step S8 that the vehicle is traveling in the overtaking lane, a request to change the lane toward the traveling lane (non-overtaking lane) is output, and the process proceeds to return. As a result, it is determined whether or not the lane change to the travel lane can be performed. If it is determined that the lane change can be performed, the lane change toward the travel lane is performed. .
  • step S10 following the determination in step S8 that the vehicle is traveling in the traveling lane, a control signal for prohibiting lane change to the overtaking lane is output, and the routine proceeds to return. As a result, a request to change lanes toward the overtaking lane is not output, and the traveling lane is maintained. Since changing lanes between traveling lanes is not prohibited, for example, changing lanes from a center lane to a left end lane on a three-lane road is possible. Steps S8 to S10 correspond to the lane change control unit 44.
  • step S11 following the determination that there is no lane change in the first area in step S3, the time (second position index value) from the time of the last lane change to the current time is set to a second threshold value set in advance. It is determined whether or not it is longer than the time (second threshold). If YES (time from last lane change to current time ⁇ second threshold time), it is determined that traveling in the overtaking lane has been continued for a specified time or more, and the process proceeds to step S12. If NO (the time from the last lane change to the present time ⁇ the second threshold time), it is determined that the continuous traveling of the overtaking lane is below the regulation, and the process proceeds to step S14. Note that this step S11 corresponds to the traveling point determination unit 43.
  • the “last lane change” is a lane change that was executed most recently retroactively from the current time. This lane change does not matter whether it is a lane change caused by the driver's operation or a lane change. Whether or not the vehicle has changed lanes can be grasped from, for example, white line information detected by the camera 11, steering angle information detected by the steering angle sensor, and the like. That is, even in the second area where the lane change cannot be executed, the execution itself of the lane change can be grasped.
  • step S12 following the determination that the time from when the lane change was last performed in step S11 to the present time ⁇ the second threshold time, it is determined whether or not the own vehicle is traveling in the passing lane. If YES (during the passing lane), the process proceeds to step S13. If NO (the vehicle is traveling in the traveling lane), the process proceeds to step S14.
  • the lane in which the own vehicle is traveling is determined by comparing the own vehicle position information with the map data information as in steps S5 and S8.
  • step S13 following the determination in step S12 that the vehicle is traveling in the overtaking lane, a request to change lanes to the traveling lane (non-overtaking lane) is output, and the flow proceeds to return. As a result, it is determined whether or not the lane change to the travel lane can be performed. If it is determined that the lane change can be performed, the lane change toward the travel lane is performed. .
  • step S14 the determination is made in step S4 that the distance to the region nearest to the front is greater than the third threshold distance, the distance in the step S7 is that the distance to the region in front of the nearest region is greater than the first threshold distance, and the determination in step S11 is The time from the last lane change to the present time ⁇ the second threshold time, or the determination that the traveling lane is running in step S12, and then an appropriate lane change request according to the traveling situation Is output and the process proceeds to the return. As a result, it is determined whether or not the lane change can be performed based on the lane change request output as necessary. If it is determined that the lane change can be performed, the lane change is performed. The change is made. Steps S12 to S14 correspond to the lane change control unit 44.
  • lane information can be obtained from high-precision three-dimensional map data.
  • high-precision three-dimensional map data is not always provided for all routes on which the vehicle travels. It is also conceivable to permit lane change on the premise that high-accuracy map data is prepared. Therefore, the area where the high-precision three-dimensional map data is prepared is the area where the lane change is executable (first area), and the area where the high-precision three-dimensional map data is not prepared is the area where the high-precision three-dimensional map data is not prepared. This is a possible area (second area).
  • the vehicle travels from the second region to the first region across the region boundary, if the vehicle is controlled to change lanes when the normal lane change condition is satisfied, the vehicle continues to run in the overtaking lane.
  • the traveling time and the traveling distance of the overtaking lane are longer than expected when entering the first area.
  • the traveling time (or traveling distance) traveling in the overtaking lane in the second area is determined. ) The traveling in the overtaking lane will be continued more than expected.
  • the traveling of the overtaking lane may be continued more than expected.
  • step S1 the time ⁇ t from the time point t2 at which the last lane change was performed to the current time point t1 is the second threshold time set in advance. It is determined whether or not this is the case.
  • this time ⁇ t is equal to or longer than the second threshold time. That is, it is considered that the vehicle V is traveling continuously in the lane in which the vehicle V is traveling for the second threshold time or longer.
  • step S12 it is determined whether or not the vehicle V is traveling in the passing lane L1.
  • the vehicle is traveling on the passing lane L1. That is, it can be determined that the own vehicle V is currently traveling in the overtaking lane L1 for the second threshold time or longer. Accordingly, the process proceeds to step S13, and an automobile lane change request for the traveling lane (non-overtaking lane) L2 is output.
  • the target travel path is set to the travel lane L2, and the lane change toward the travel lane L2 is performed.
  • the vehicle lane change request for the traveling lane L2 is output.
  • the vehicle can quickly move to the traveling lane, and the traveling of the overtaking lane L1 can be prevented from continuing. Therefore, it is possible to prevent the traveling of the overtaking lane L1 from continuing more than expected.
  • step S11 if the time ⁇ t from the last time point t2 when the lane change is performed to the current time point t1 is less than the second threshold time, the own vehicle V is currently traveling. It is considered that the traveling of the current lane has not been continued for the second threshold time or more. Therefore, as shown in FIG. 4, for example, even when the vehicle is traveling in the passing lane L1, the traveling time of the passing lane L1 can be determined to be less than the second threshold time. Therefore, it is not necessary to forcibly change the lane to the travel lane L2, and the process proceeds to step S14 to enable output of an appropriate lane change request according to the traveling situation.
  • step S11 even if the time ⁇ t from the time point t2 when the last lane change is performed to the current time point t1 is equal to or longer than the second threshold time, as shown by the broken line in FIG. If the lane in which the vehicle V is traveling is not the overtaking lane L1 (the traveling lane L2), it is considered that the vehicle is not traveling continuously on the overtaking lane L1 for the second threshold time or longer. That is, it can be determined that the traveling lane L2, which is the non-overtaking lane, continuously travels for the second threshold time or more. Therefore, the process proceeds to step S14 to enable output of an appropriate lane change request according to the driving situation.
  • step S1 the process proceeds to step S1, step S2, step S3, and step S4 in order, and the distance ⁇ from the host vehicle V to the area boundary ⁇ immediately in front of the host vehicle is equal to or less than the third threshold distance set in advance. It is determined whether or not there is.
  • the distance ⁇ is equal to or less than the third threshold distance. That is, it is considered that the vehicle V is relatively close to the area boundary ⁇ immediately before the vehicle, and it is difficult to freely change lanes.
  • step S5 it is determined whether or not the vehicle V is traveling on the traveling lane L2.
  • the vehicle is traveling on the passing lane L1.
  • step S7 it is determined whether or not the distance ⁇ from the vehicle V to the area boundary ⁇ immediately before the front is equal to or smaller than a first threshold distance set in advance.
  • step S8 it is determined whether or not the own vehicle V is traveling in the passing lane L1.
  • An automobile lane change request toward L2 is output.
  • the target travel path is set to the travel lane L2, and the lane change toward the travel lane L2 is performed.
  • step S4 when it is determined in the process of step S4 that the distance ⁇ is equal to or less than the third threshold distance, and the process proceeds to step S5, the own vehicle V is traveling in the traveling lane L2 as indicated by a broken line in FIG. In this case, the process proceeds to step S6.
  • step S7 when it is determined in the processing of step S7 that the distance ⁇ is equal to or less than the first threshold distance and the process proceeds to step S8, as shown by a broken line in FIG. Then, the process proceeds to step S10.
  • the lane change toward the overtaking lane L1 is prohibited. That is, even if the overtaking condition is established in accordance with, for example, the relative speed and the relative distance from the preceding vehicle, a request to change the lane toward the overtaking lane L1 is not output, and the traveling of the traveling lane L2 is maintained. You.
  • the lane change caused by the driver's operation is not prohibited even if the lane is changed to the overtaking lane L1. Therefore, it is possible to prevent the occurrence of a lane change that returns to the traveling lane, suppress the occurrence of the lane change, and prevent the driver from feeling uncomfortable.
  • step S4 If the distance ⁇ is longer than the third threshold distance, it can be determined that the distance ⁇ from the vehicle V to the area boundary is sufficiently secured, and the lane can be changed freely. Therefore, the process proceeds from step S4 to step S14 to enable output of an appropriate lane change request according to the driving situation.
  • step S7 the traveling state It is possible to output an appropriate lane change request according to the vehicle. That is, in this case, since the vehicle is already traveling on the overtaking lane L1, it is not possible to prohibit the lane change toward the overtaking lane. On the other hand, since the distance to the region boundary ⁇ remains to the extent that the lane change caused by the driver's operation can be performed after the execution of the lane change, the lane change toward the traveling lane is unnecessary. The driver may change lanes to the overtaking lane at his own will.
  • a controller (lane change controller 40) that generates a target travel route and performs lane change support for supporting lane change of the vehicle V based on the target travel route
  • An area where the lane change is executable is defined as a first area X
  • an area where the lane change is not executable is defined as a second area Y
  • a boundary between the first area X and the second area Y is defined as an area boundary ⁇ .
  • step S4 it is determined whether the vehicle V is traveling within a predetermined range from the area boundary ⁇ (step S4, step S7, step S11).
  • the lane change support (automobile lane) is performed so that the own vehicle V travels in a non-overtaking lane (travel lane L2).
  • step S6 step S9, step S10, step S13. This can prevent the traveling of the overtaking lane L1 from continuing more than expected.
  • the first position index value (distance ⁇ ) from the own vehicle V to the area boundary ⁇ immediately in front of the host vehicle V is equal to a first threshold ( It is determined whether the distance is equal to or less than the first threshold distance (step S7), When it is determined that the first position index value (distance ⁇ ) is equal to or less than the first threshold value (first threshold distance), it is determined whether or not the own vehicle V is traveling in the passing lane L1 (step S8), When it is determined that the vehicle V is traveling in the passing lane L1, lane change support (vehicle lane change) to the non-passing lane (traveling lane L2) is performed (step S9). Accordingly, the vehicle can travel in the traveling lane in advance before entering the second area Y. When the vehicle enters the second area Y where the lane change cannot be executed, the traveling of the passing lane L1 is assumed. It can be prevented from continuing as described above.
  • step S3 When it is determined that the vehicle V is traveling in the first area X, it is determined whether or not a lane change is performed in the first area X (step S3). When it is determined that the lane change has not been performed in the first area X, the second position index value (time ⁇ t) from the time t2 when the host vehicle V last performed the lane change to the current time t1 is equal to the second lane change.
  • step S11 It is determined whether it is equal to or more than a threshold (second threshold time) (step S11), When it is determined that the second position index value (time ⁇ t) is equal to or greater than the second threshold value (second threshold time), it is determined whether or not the own vehicle V is running in the passing lane L1 (step S12), When it is determined that the vehicle V is traveling in the passing lane L1, lane change support (vehicle lane change) to the non-passing lane (traveling lane L2) is performed (step S13). Thereby, when the vehicle enters the first area X from the second area Y, the traveling of the overtaking lane L1 can be promptly moved to the traveling lane L2 without unnecessarily continuing the traveling of the overtaking lane L1. It is possible to prevent the traveling from continuing more than expected.
  • second threshold time a threshold
  • the first position index value (distance ⁇ ) from the host vehicle V to the area border immediately forward is the third threshold value (the distance ⁇ ). 3 threshold distance) or less (step S4).
  • the first position index value (distance ⁇ ) is equal to or less than the third threshold value (third threshold distance)
  • lane change support automobile lane change to the overtaking lane L1 is prohibited (step S6, step S10).
  • a driving support device including a controller (lane change controller 40) that executes a lane change support control that generates a target travel route and supports lane change of the vehicle V based on the target travel route.
  • a controller lane change controller 40
  • An area where the lane change is executable is defined as a first area X
  • an area where the lane change is not executable is defined as a second area Y
  • a boundary between the first area X and the second area Y is defined as an area boundary ⁇ .
  • the controller (lane change controller 40) A road determination unit 41 that determines whether or not the vehicle V is traveling on a lane-changeable road having a plurality of lanes; When the road determination unit 41 determines that the vehicle V is traveling on the road, a region determination unit 42 that determines whether the vehicle V is traveling in the first region X; A traveling point determining unit that determines whether the vehicle V is traveling in a predetermined range from the region boundary ⁇ when the vehicle V is traveling in the first region X by the region determining unit 42; 43, When the traveling point determination unit 43 determines that the vehicle V is traveling within a predetermined range from the area boundary ⁇ , the lane is moved so that the vehicle travels in a non-overtaking lane (traveling lane L2). And a lane change control unit 44 for controlling change support (vehicle lane change). This can prevent the traveling of the overtaking lane L1 from continuing more than expected.
  • lane change support is not limited to lane change.
  • guidance on lane change according to the target travel route such as displaying the target lane on the display device 6 or notifying the target lane by voice, may be merely required to prompt the driver to change lanes.
  • the user before entering the second area where the execution of the lane change is not possible, the user is prompted to move to the traveling lane L2, or after entering the first area X from the second area Y, It is possible to promptly move to the lane L2. This makes it possible to prevent the vehicle from traveling in the overtaking lane more than expected.
  • the driving support vehicle need not be an automatic driving vehicle.
  • the first area where the lane change can be performed and the second area where the lane change cannot be performed are identified by determining whether the high-precision three-dimensional map data is provided.
  • the example performed based on the crab was shown. However, if it is an area in which the position information and the lane information of the own vehicle necessary for executing the lane change can be obtained, it can be determined as the “first area”. That is, the first area and the second area are identified based on not only the presence / absence of the high-accuracy three-dimensional map data but also whether the lane information can be acquired with high accuracy by the in-vehicle sensor 1 or the like. Is also good.
  • the driver when outputting the lane change request for the traveling lane, the driver may be informed that the lane change is to be performed so as not to continue traveling in the overtaking lane.
  • the driver can understand the significance of executing the lane change, and can prevent the lane change toward the overtaking lane from being performed by the driver.
  • the driver when prohibiting the lane change to the overtaking lane, the driver is notified of the prohibition of execution of the lane so as not to continue the overtaking lane so that the driver can understand the intention of the control. Can be.
  • the first position index value may be any value that can grasp the positional relationship between the host vehicle V and the nearest area boundary ⁇ . Therefore, as the first position index value, for example, the arrival time to the area boundary ⁇ obtained by dividing the distance ⁇ from the vehicle V to the nearest area boundary ⁇ by the traveling speed may be used. In this case, the values of the first threshold and the third threshold may be changed according to the traveling speed.
  • the second position index value may be any value as long as it can grasp the positional relationship between the position at which the lane was changed last and the current vehicle position. Therefore, as the second position index value, for example, the distance from the position at which the last lane change was performed to the current vehicle position may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

追越車線の走行が想定以上に継続してしまうことを防止できる運転支援方法を提供すること。 生成した目標走行経路に基づいて自車(V)の車線変更を支援する車線変更支援を実行する車線変更コントローラ(40)による運転支援方法において、自車(V)が、複数の車線を有する車線変更が可能な道路を走行中であると判断したとき、自動車線変更が実行可能な第1領域(X)を走行中であるか否かを判断する。次に、自車(V)が第1領域(X)を走行中であると判断したとき、第1領域(X)と自動車線変更が実行不可能な第2領域(Y)との境である領域境界(α)から所定の範囲内を走行中であるか否かを判断する。そして、自車(V)が領域境界(α)から所定の範囲内を走行中であると判断したとき、自車(V)が走行車線(L2)を走行するように自動車線変更の制御を行う。

Description

運転支援方法及び運転支援装置
 本開示は、運転支援方法及び運転支援装置に関する発明である。
 従来、自車の現在位置から目的地までの経路を複数のブロック領域に分割し、各ブロック領域に対応する経路の詳細情報のうち、現在の自動制御に必要な詳細情報をブロック領域単位で出力する運転支援方法が知られている(例えば、特許文献1参照)。
特開2017-83446号公報
 ここで、高精度地図情報等の詳細情報に基づいて自動車線変更を行う車両にとっては、高精度地図情報が整備され自動車線変更が実行できる領域と、高精度地図情報が整備されておらず自動車線変更が実行できない領域との領域境界を跨いで走行するとき、自車の制御を考慮する必要がある。すなわち、領域境界を跨ぐことで自動車線変更の制御内容が切り替わる。そのため、特に、追越車線を走行しているときには、この追越車線の走行が想定以上に継続される可能性がある。
 本開示は、上記問題に着目してなされたもので、追越車線の走行が想定以上に継続してしまうことを防止できる運転支援方法及び運転支援装置を提供することを目的とする。
 上記目的を達成するため、本開示は、目標走行経路を生成し、この目標走行経路に基づいて自車の車線変更を支援する車線変更支援を実行するコントローラによる運転支援方法である。
 ここで、自動車線変更が実行可能な領域を第1領域とし、自動車線変更が実行不可能な領域を第2領域とし、第1領域と第2領域との境を領域境界とする。
 そして、この運転支援方法では、自車が、複数の車線を有する車線変更が可能な道路を走行中であるか否かを判断し、この道路を走行中であると判断したとき、第1領域を走行中であるか否かを判断する。自車が第1領域を走行中であると判断したとき、領域境界から所定の範囲内を走行中であるか否かを判断する。
 そして、自車が領域境界から所定の範囲内を走行中であると判断したとき、自車が非追越車線を走行するように車線変更支援の制御を行う。
 よって、本開示では、追越車線の走行が想定以上に継続してしまうことを防止できる。
実施例1の運転支援方法及び運転支援装置が適用された自動運転制御システムを示す全体システム図である。 実施例1の自動運転制御ユニットに備える車線変更コントローラを示す制御ブロック図である。 実施例1の車線変更コントローラにて実行される車線変更支援制御の流れを示すフローチャートである。 第2領域から領域境界を跨いで第1領域へと進入したときの走行状態を示す説明図である。 第1領域を第2領域に向かって走行中の走行状態を示す説明図である。
 以下、本開示による運転支援方法及び運転支援装置を実施するための形態を、図面に示す実施例1に基づいて説明する。
 (実施例1)
 実施例1における運転支援方法及び運転支援装置は、自動運転モードを選択すると、生成された目標走行経路に沿って走行するように駆動/制動/舵角が自動制御される自動運転車両(運転支援車両の一例、自車)に適用したものである。以下、実施例1の構成を、「全体システム構成」、「車線変更コントローラの制御ブロック構成」、「車線変更支援制御の処理構成」に分けて説明する。
 [全体システム構成]
 自動運転システム100は、図1に示すように、車載センサ1と、地図データ記憶部2と、外部データ通信器3と、自動運転制御ユニット4と、アクチュエータ5と、表示デバイス6と、を備えている。
 車載センサ1は、カメラ11と、レーダー12と、GPS13と、車載データ通信器14と、を有する。また、車載センサ1には、図示しないが、車速センサやアクセル開度センサ、ブレーキセンサ、舵角センサ等の自車情報を検出するセンサも含まれる。車載センサ1により取得したセンサ情報は、自動運転制御ユニット4へ出力される。
 カメラ11は、自動運転で求められる機能として、車線、先行車、歩行者等の自車の周囲情報を画像データにより取得する機能を実現する周囲認識センサである。このカメラ11は、例えば、自車の前方認識カメラ、後方認識カメラ、右方認識カメラ、左方認識カメラ等を組み合わせることにより構成される。
 カメラ11では、自車走行路上物体・車線・自車走行路外物体(道路構造物、先行車、後続車、対向車、周囲車両、歩行者、自転車、二輪車)・自車走行路(道路白線、道路境界、停止線、横断歩道)・道路標識(制限速度)等が検知される。
 レーダー12は、自動運転で求められる機能として、自車周囲の物体の存在を検知する機能と共に、自車周囲の物体までの距離を検知する機能を実現する測距センサである。ここで、「レーダー12」とは、電波を用いたレーダーと、光を用いたライダーと、超音波を用いたソナーと、を含む総称をいう。レーダー12としては、例えば、レーザーレーダー、ミリ波レーダー、超音波レーダー、レーザーレンジファインダー等を用いることができる。このレーダー12は、例えば、自車の前方レーダー、後方レーダー、右方レーダー、左方レーダー等を組み合わせることにより構成される。
 レーダー12では、自車走行路上物体・自車走行路外物体(道路構造物、先行車、後続車、対向車、周囲車両、歩行者、自転車、二輪車)等の位置が検知されると共に、各物体までの距離が検知される。なお、視野角が不足すれば、適宜追加しても良い。
 GPS13は、GNSSアンテナ13aを有し、衛星通信を利用することで停車中/走行中の自車位置(緯度・経度)を検知する自車位置センサである。なお、「GNSS」は「Global Navigation Satellite System:全地球航法衛星システム」の略称であり、「GPS」は「Global Positioning System:グローバル・ポジショニング・システム」の略称である。
 車載データ通信器14は、外部データ通信器3との間で送受信アンテナ3a,14aを介して無線通信を行うことで、自車で取得することができない情報を外部から取得する外部データセンサである。
 外部データ通信器3は、例えば、自車の周辺を走行する他車に搭載されたデータ通信器の場合、自車と他車の間で車車間通信を行う。この車車間通信により、他車が保有する様々な情報のうち、自車で必要な情報を車載データ通信器14からのリクエストにより取得することができる。また、この外部データ通信器3は、例えば、インフラストラクチャ設備に設けられたデータ通信器の場合、自車とインフラストラクチャ設備の間でインフラ通信を行う。このインフラ通信により、インフラストラクチャ設備が保有する様々な情報のうち、自車で必要な情報を車載データ通信器14からのリクエストにより取得することができる。
 すなわち、外部データ通信器3による外部機器との通信によって、例えば、地図データ記憶部2に保存されている地図データでは不足する情報や地図データから変更された情報がある場合、不足情報/変更情報を補うことができる。また、自車が走行を予定している目標走行経路上での渋滞情報や走行規制情報等の交通情報を取得することもできる。
 地図データ記憶部2は、緯度経度と地図情報が対応づけられた、いわゆる電子地図データが格納された車載メモリにより構成される。地図データ記憶部2は、GPS13にて検知される自車位置を認識すると、この自車位置を中心とする電子地図データを自動運転制御ユニット4へと送信する。
 電子地図データは、各地点に対応づけられた道路情報を有し、道路情報は、ノードと、ノード間を接続するリンクにより定義される。道路情報は、道路の位置/領域により道路を特定する情報と、道路ごとの道路種別、道路ごとの道路幅、道路の形状情報とを含む。道路情報は、各道路リンクの識別情報ごとに、交差点の位置、交差点の進入方向、交差点の種別その他の交差点に関する情報を対応づけて記憶されている。また、道路情報は、各道路リンクの識別情報ごとに、道路種別、道路幅、道路形状、直進の可否、進行の優先関係、追越しの可否(隣接車線への進入の可否)、制限速度、道路標識、その他の道路に関する情報を対応づけて記憶されている。
 ここで、電子地図データには、GPS地図データと、高精度三次元地図データ(ダイナミックマップ)を含む。GPS地図データは、通常の経路案内に用いる地図データであり、車両が走行可能なほぼすべての領域で整備されている。一方、高精度三次元地図データは、GPS地図データよりもさらに高精細な三次元空間情報を持ち、少なくとも複数車線を有する道路で各車線の認識ができるレベルの精度を持つ地図データである。高精度三次元地図データは、自動車線変更の実行に用いる。この高精度三次元地図データを用いることにより、自動運転において複数車線の中で自車がどの車線を走るかという目標走行経路を設定することができる。しかしながら、高精度三次元地図データは、例えば特定の高速自動車国道や自動車専用道路等のように、データが整備された領域が限られている。
 そして、以下では、この高精度三次元地図データを持ち、自動車線変更が実行可能な領域を「第1領域」という。また、高精度三次元地図データを持たず、自動車線変更が実行不可能な領域を「第2領域」という。さらに、「第1領域」と「第2領域」の境を「領域境界」という。
 なお、「自動車線変更」とは、自車位置情報及び車線情報に基づいて、ドライバー操作の介入を必要とせずに、所定の車線変更条件を満たしたことで自車が走行する車線を自動的に変更することである。つまり、「自動車線変更が実行可能な第1領域」とは、自動車線変更の実行に必要な自車の位置情報及び車線情報をそれぞれ取得できる領域である。高精度三次元地図データが整備された領域は、車線情報を取得できる領域となる。一方、「自動車線変更が実行不可能な第2領域」とは、自動車線変更の実行に必要な自車の位置情報及び車線情報の少なくともいずれかが取得できない領域である。高精度三次元地図データが整備されていない領域は、車線情報を取得できない領域となる。また、GPS13にて検知される自車の位置情報が取得できないトンネル内や地下等も「第2領域」となる。
 自動運転制御ユニット4は、車載センサ1や地図データ記憶部2からの入力情報(自車情報、自車位置情報、自車周囲情報、地図データ情報、目的地情報等)を統合処理し、目標走行経路を生成する。そして、この目標走行経路に基づいて自車の運転を支援する運転支援制御を行う。すなわち、この自動運転制御ユニット4は、現在地から目的地までの目標走行経路を、地図データ記憶部2からの道路情報やルート検索手法等に基づいて生成する。そして、生成した目標走行経路に沿って走行するように駆動指令値/制動指令値/舵角指令値を演算し、演算した指令値を各アクチュエータに出力し、自車を目標走行経路に沿って走行/停止させる。具体的には、駆動指令値の演算結果を駆動アクチュエータ51へ出力し、制動指令値の演算結果を制動アクチュエータ52へ出力し、舵角指令値の演算結果を舵角アクチュエータ53へ出力する。このとき、走行状況に応じて自動車線変更要求が出力された場合には、要求に応じた自動車線変更を実行する。
 さらに、自動運転制御ユニット4は、第1領域内において、領域境界から所定の範囲を走行しているときには、自車が走行車線(非追越車線)を走行するように自動車線変更(車線変更支援)の制御を行う車線変更コントローラ40(コントローラ)を備える。すなわち、車線変更コントローラ40は、自動車線変更を制御することで、自車が第1領域を走行中、領域境界から所定の範囲では走行車線を走行させる。
 なお、「追越車線」とは、自車の前方を走行している車両を追い越すための車線であり、ここでは、複数車線がある場合の最右端の車線とする。また、「走行車線(非追越車線)」とは、通常走行する際に使用する車線であり、追越車線以外の車線である。ここでは、複数車線がある場合の最右端以外の車線とする。
 アクチュエータ5は、自車を目標走行経路に沿って走行/停止させる制御アクチュエータであり、駆動アクチュエータ51と、制動アクチュエータ52と、舵角アクチュエータ53と、を有する。
 駆動アクチュエータ51は、自動運転制御ユニット4から駆動指令値を入力し、駆動輪へ出力する駆動力を制御するアクチュエータである。駆動アクチュエータ51としては、例えば、エンジン車の場合にエンジンを用い、ハイブリッド車の場合にエンジンとモータ/ジェネレータ(力行)を用い、電気自動車の場合にモータ/ジェネレータ(力行)を用いる。
 制動アクチュエータ52は、自動運転制御ユニット4から制動指令値を入力し、駆動輪へ出力する制動力を制御するアクチュエータである。制動アクチュエータ52としては、例えば、油圧ブースタや電動ブースタやブレーキ液圧アクチュエータやブレーキモータアクチュエータやモータ/ジェネレータ(回生)等を用いる。
 舵角アクチュエータ53は、自動運転制御ユニット4から舵角指令値を入力し、操舵輪の転舵角を制御するアクチュエータである。なお、舵角アクチュエータ53としては、ステアリングシステムの操舵力伝達系に設けられる転舵モータ等を用いる。
 表示デバイス6は、自動運転による停車中/走行中、自車が地図上で何処を移動しているか等を画面表示し、ドライバーや乗員に自車位置視覚情報を提供するデバイスである。この表示デバイス6は、自動運転制御ユニット4により生成された目標走行経路情報や自車位置情報や目的地情報等を入力し、表示画面に、地図と道路と目標走行経路(自車の走行ルート)と自車位置と目的地等を視認しやすく表示する。
 [車線変更コントローラの制御ブロック構成]
 車線変更コントローラ40は、図2に示すように、道路判断部41と、領域判断部42と、走行地点判断部43と、車線変更制御部44と、を備えている。
 道路判断部41は、自車位置情報と地図データ情報等を入力する。この道路判断部41では、入力された各種の情報に基づき、自車が、現在走行している道路が複数の車線を有する車線変更の実行が可能な道路であるか否かを判断し、道路種別情報を出力する。出力された道路種別情報は、領域判断部42に入力される。ここで、自車の走行道路の種別は、自車位置情報と地図データ情報とを照合することで判断する。なお、カメラ11等から取得した自車周囲情報に基づいて判断してもよい。
 領域判断部42は、道路判断部41の判断結果(道路種別情報)と、自車位置情報、地図データ情報等を入力する。この領域判断部42では、道路判断部41から、自車が走行中の道路が複数の車線を有する複数車線道路であるとの判断結果が入力されたとき、入力された各種の情報に基づき、自車が第1領域を走行中であるか否かを判断し、領域情報を出力する。出力された領域情報は、走行地点判断部43に入力される。ここで、自車が第1領域を走行しているか否か、つまり自車の走行領域は、自車位置情報と地図データ情報とを照合することで判断する。
 走行地点判断部43は、領域判断部42の判断結果(領域情報)と、自車位置情報、地図データ情報等を入力する。この走行地点判断部43では、領域判断部42から、自車が走行中の領域が自動車線変更の実行が可能な第1領域であるとの判断結果が入力されたとき、入力された各種の情報に基づき、自車が走行している位置に基づいて領域境界から所定の範囲内を走行中であるか否かを判断し、走行地点情報を出力する。出力された走行地点情報は、車線変更制御部44に入力される。ここで、自車の走行位置は、自車位置情報と地図データ情報とを照合することで判断する。
 車線変更制御部44は、走行地点判断部43の判断結果(走行地点情報)と、自車位置情報、地図データ情報、自車周囲情報等を入力する。この車線変更制御部44では、走行地点判断部43から、自車が領域境界から所定の範囲内を走行中であるとの判断結果が入力されたとき、入力された各種の情報に基づき、自車が走行車線(非追越車線)を走行するように自動車線変更要求の出力を制御する。具体的には、以下に列挙するように制御する。
 ・自車から前方直近の領域境界までの距離が第1閾値距離以下であるとき、自車が追越車線を走行していれば、走行車線への自動車線変更要求を出力する。
 ・自車が第1領域内での車線変更を実行しておらず、自車が最後に車線変更を行った時点から現時点までの時間が第2閾値時間以上であるとき、自車が追越車線を走行していれば、走行車線への自動車線変更要求を出力する。
 ・自車から前方直近の領域境界までの距離が第3閾値距離以下であるとき、自車が走行車線を走行していれば、追越車線への自動車線変更を禁止する。
 ・自車から前方直近の領域境界までの距離が第1閾値距離以下であるとき、自車が走行車線を走行していれば、追越車線への自動車線変更を禁止する。
 ・自車が第1領域内での車線変更を実行していなくても、自車が最後に車線変更を行った時点から現時点までの時間が第2閾値時間未満であるときには、走行状況に応じた自動車線変更要求の出力を可能とする。ここで、走行状況に応じた自動車線変更要求とは、例えば、目標走行経路に沿って走行させる要求や、先行車を追い越す要求がある。
 ・自車が第1領域内での車線変更を実行しておらず、自車が最後に車線変更を行った時点から現時点までの時間が第2閾値時間以上であっても、自車が走行車線を走行していれば、走行状況に応じた自動車線変更要求の出力を可能とする。
 なお、自車が走行している車線の種別(走行車線又は追越車線)は、自車位置情報と地図データ情報とを照合することで判断する。カメラ11等から取得した自車周囲情報に基づいて判断してもよい。
[車線変更支援制御の処理構成]
 図3は、車線変更支援制御の流れを示すフローチャートである。以下、図3の各ステップを説明する。
 ステップS1では、自車が複数の車線を有する複数車線の道路を走行中であるか否かを判断する。YES(複数車線道路を走行中)の場合には、車線変更が可能であるとしてステップS2へ進む。NO(一車線道路を走行中)の場合には、車線変更は実行できないとしてリターンへ進む。なお、このステップS1が道路判断部41に相当する。
 ステップS2では、ステップS1での自車が複車線道路を走行中との判断に続き、自車が第1領域を走行中であるか否かを判断する。YES(第1領域を走行中)の場合にはステップS3へ進む。NO(第2領域を走行中)の場合には、自動車線変更を制御することはできないとしてリターンへ進む。なお、ステップS2が領域判断部42に相当する。
ここで、「第1領域」とは、高精度三次元地図データが整備されており、自動車線変更が実行可能な領域である。また、「第2領域」とは、高精度三次元地図データが整備されておらず、自動車線変更が実行不可能な領域である。さらに、自車が走行中の領域は、自車位置情報と地図データ情報とを照合して判断する。
 ステップS3では、ステップS2での自車が第1領域を走行中との判断に続き、第1領域内で車線変更を実行したか否か、つまり第1領域での走行を開始してから車線変更を行ったか否かを判断する。YES(車線変更あり)の場合には、現在走行している車線が、第2領域から第1領域へ移動したときに走行していた車線とは異なるとして、ステップS4へ進む。NO(車線変更なし)の場合には、現在走行している車線が、第2領域から第1領域へ移動したときに走行していた車線と同じであるとして、ステップS11へ進む。
 ステップS4では、ステップS3での第1領域内の車線変更ありとの判断に続き、自車から、自車の前方に存在する領域境界のうち最も自車に近い位置に存在する領域境界(前方直近の領域境界)までの距離(第1位置指標値)が、予め設定した第3閾値距離(第3閾値)以下であるか否かを判断する。YES(前方直近の領域境界までの距離≦第3閾値距離)の場合には、ステップS5へ進む。NO(前方直近の領域境界までの距離>第3閾値距離)の場合には、ステップS14へ進む。なお、このステップS4が走行地点判断部43に相当する。
ここで、「領域境界」とは、第1領域と第2領域の境である。また、第3閾値距離は、2回以上の自動車線変更を行うことが困難であると判断される距離であり、例えば3kmに設定される。
 ステップS5では、ステップS4での前方直近の領域境界までの距離≦第3閾値距離との判断に続き、自車が走行車線(非追越車線)を走行中であるか否かを判断する。YES(走行車線を走行中)の場合には、ステップS6へ進む。NO(追越車線を走行中)の場合には、ステップS7へ進む。
ここで、自車が走行中の車線は、自車位置情報と地図データ情報とを照合して判断する。
 ステップS6では、ステップS5での走行車線を走行中との判断に続き、追越車線に向かう自動車線変更を禁止する制御信号を出力し、リターンへ進む。この結果、追越車線に向かう自動車線変更要求が出力されることはなく、走行車線の走行が維持される。なお、走行車線間の自動車線変更は禁止されないため、例えば中央車線から左端車線への自動車線変更は可能である。また、ステップS5及びステップS6が車線変更制御部44に相当する。
 ステップS7では、ステップS5での追越車線を走行中との判断に続き、自車から、自車の前方直近の領域境界までの距離(第1位置指標値)が、予め設定した第1閾値距離(第1閾値)以下であるか否かを判断する。YES(前方直近の領域境界までの距離≦第1閾値距離)の場合には、ステップS8へ進む。NO(前方直近の領域境界までの距離>第1閾値距離)の場合には、ステップS14へ進む。なお、このステップS7が走行地点判断部43に相当する。
ここで、第1閾値距離は、自動車線変更の実行後にドライバーの操作を起因とする車線変更を行うことが困難であると判断される距離であり、例えば2kmに設定される。
 ステップS8では、ステップS7での前方直近の領域境界までの距離≦第1閾値距離との判断に続き、自車が追越車線を走行中であるか否かを判断する。YES(追越車線を走行中)の場合には、ステップS9へ進む。NO(走行車線を走行中)の場合には、ステップS10へ進む。
ここで、自車が走行中の車線は、ステップS5と同様に自車位置情報と地図データ情報とを照合して判断する。
 ステップS9では、ステップS8での追越車線を走行中との判断に続き、走行車線(非追越車線)に向かう自動車線変更要求を出力し、リターンへ進む。この結果、走行車線への自動車線変更の実行が可能であるか否かが判断され、自動車線変更の実行が可能であると判断された場合には走行車線に向かう自動車線変更が実行される。
 ステップS10では、ステップS8での走行車線を走行中との判断に続き、追越車線に向かう自動車線変更を禁止する制御信号を出力し、リターンへ進む。この結果、追越車線に向かう自動車線変更要求が出力されることはなく、走行車線の走行が維持される。なお、走行車線間の自動車線変更は禁止されないため、例えば三車線道路における中央車線から左端車線への自動車線変更は可能である。なお、ステップS8~ステップS10が車線変更制御部44に相当する。
 ステップS11では、ステップS3での第1領域内の車線変更なしとの判断に続き、最後に車線変更を行った時点から現時点までの時間(第2位置指標値)が、予め設定した第2閾値時間(第2閾値)以上であるか否かを判断する。YES(最後に車線変更を行ってから現時点までの時間≧第2閾値時間)の場合には、追越車線の走行が規定以上に継続されているとして、ステップS12へ進む。NO(最後に車線変更を行ってから現時点までの時間<第2閾値時間)の場合には、継続した追越車線の走行は規定を下回っているとして、ステップS14へ進む。なお、このステップS11が走行地点判断部43に相当する。
ここで、「最後の車線変更」とは、現時点から過去に遡って直近に実行した車線変更である。この車線変更は、ドライバーの操作に起因して行った車線変更であるか、自動車線変更であるかは問わない。また、自車が車線変更を行ったか否かは、例えばカメラ11によって検知した白線情報や、舵角センサによって検知した舵角情報等から把握可能である。つまり、自動車線変更が実行不可能な第2領域であっても、車線変更の実行自体は把握できる。
 ステップS12では、ステップS11での最後に車線変更を行った時点から現時点までの時間≧第2閾値時間との判断に続き、自車が追越車線を走行中であるか否かを判断する。YES(追越車線を走行中)の場合には、ステップS13へ進む。NO(走行車線を走行中)の場合には、ステップS14へ進む。
ここで、自車が走行中の車線は、ステップS5及びステップS8と同様に自車位置情報と地図データ情報とを照合して判断する。
 ステップS13では、ステップS12での追越車線を走行中との判断に続き、走行車線(非追越車線)に向かう自動車線変更要求を出力し、リターンへ進む。この結果、走行車線への自動車線変更の実行が可能であるか否かが判断され、自動車線変更の実行が可能であると判断された場合には走行車線に向かう自動車線変更が実行される。
 ステップS14では、ステップS4での前方直近の領域境界までの距離>第3閾値距離との判断、ステップS7での前方直近の領域境界までの距離>第1閾値距離との判断、ステップS11での最後に車線変更を行ってから現時点までの時間<第2閾値時間との判断、ステップS12での走行車線を走行中との判断のいずれかに続き、走行状況に応じた適切な自動車線変更要求を出力し、リターンへ進む。この結果、必要に応じて出力された自動車線変更要求に基づく自動車線変更の実行が可能であるか否かが判断され、自動車線変更の実行が可能であると判断された場合には自動車線変更が実行される。なお、ステップS12~ステップS14が車線変更制御部44に相当する。
 次に、「自動車線変更を実行するための課題」を説明し、続いて、実施例1の運転支援方法及び運転支援装置の作用を、「第1領域内での車線変更実行前の制御作用」と、「第1領域内での車線変更実行後の制御作用」に分けて説明する。
 [自動車線変更を実行するための課題]
 ドライバー操作の介入を必要とせずに、所定の車線変更条件を満たしたことで自車が走行する車線を自動的に変更する自動車線変更を実行するには、自車位置情報と車線情報とが必要である。すなわち、道路内に設定された車線と、この車線に対する自車の走行位置とを正確に把握する必要がある。
 ここで、車線情報は、高精度三次元地図データから取得することが可能である。しかしながら、高精度三次元地図データは、自車が走行する全てのルートに整備されているとは限らない。また、高精度地図データが整備されていることを前提として自動車線変更を許可することも考えられる。そこで、高精度三次元地図データが整備された領域が、自動車線変更が実行可能な領域(第1領域)となり、高精度三次元地図データが整備されてない領域は、自動車線変更が実行不可能な領域(第2領域)となる。
 そして、領域境界を跨いで第1領域から第2領域へと走行する際、第2領域への進入前に追越車線を走行していると、第2領域内では自動車線変更を制御することができないことから、追越車線の走行が継続してしまう可能性がある。その結果、追越車線を想定以上に継続して走行する可能性が生じる。
 一方、領域境界を跨いで第2領域から第1領域へと走行する場合においては、通常の自動車線変更条件が成立したときに車線変更するように制御すると、追越車線の走行を続けてしまう可能性がある。つまり、自動車線変更の実行が不可能な第2領域において追越車線を走行していた場合に、第1領域に入った時点で、すでに追越車線の走行時間や走行距離が想定以上になっている可能性がある。そのため、第1領域に進入した時点からの走行時間(又は走行距離)で追越車線の走行が継続可能か否かを判断すると、第2領域で追越車線を走行していた時間(又は距離)と合計した場合に、追越車線の走行が想定以上に継続されてしまうことなる。
 このように、第1領域と第2領域の領域境界を跨いで走行する際、追越車線の走行が想定以上に継続される可能性がある。
 [第1領域内での車線変更実行前の制御作用]
 図4に示すように、自車Vが領域境界αを跨いで第2領域Yから第1領域Xに向かって走行し、第1領域Xに進入した場合を考える。このとき、第1領域X及び第2領域Yにおいて、道路はいずれも車線変更が可能な3車線とする。また、第1領域Xを走行してからは、ドライバー操作を起因とする車線変更及び自動車線変更のいずれも実行していないとする。
 そのため、図3に示すフローチャートにおいて、ステップS1、ステップS2、ステップS3、ステップS11へと順に進み、最後に車線変更を行った時点t2から現時点t1までの時間Δtが、予め設定した第2閾値時間以上であるか否かを判断する。
 図4に示すシーンでは、この時間Δtが第2閾値時間以上であるとする。つまり、現在自車Vが走行している車線を、第2閾値時間以上継続して走行していると考えられる。
 そのため、ステップS12へと進み、自車Vが追越車線L1を走行しているか否かを判断する。ここで、図4に示すシーンでは、追越車線L1を走行している。すなわち、自車Vは、現時点で追越車線L1を第2閾値時間以上継続して走行していると判断できる。これにより、ステップS13へと進み、走行車線(非追越車線)L2に向かう自動車線変更要求が出力される。そして、自動車線変更の実行が可能であると判断された場合には、目標走行路を走行車線L2に設定し、この走行車線L2に向かう自動車線変更が実行される。
 このように、第1領域Xにおいて、追越車線L1を第2閾値時間以上継続して走行していると判断できる状況となったときには、走行車線L2に向かう自動車線変更要求を出力する。これにより、走行車線へと速やかに移動することができ、追越車線L1の走行が継続されることを防止できる。よって、追越車線L1の走行が想定以上に継続してしまうことを防止できる。
 なお、ステップS11へと処理が進んだ時点で、最後に車線変更を行った時点t2から現時点t1までの時間Δtが第2閾値時間未満である場合には、自車Vは、現在走行している車線の走行を第2閾値時間以上継続していないと考えられる。そのため、例えば図4に示すように、追越車線L1を走行していても、この追越車線L1の走行時間は第2閾値時間未満と判断できる。そのため、走行車線L2への車線変更を強制的に行う必要はなく、ステップS14へと進んで走行状況に応じた適切な自動車線変更要求の出力を可能とする。
 また、ステップS11へと処理が進んだ時点で、最後に車線変更を行った時点t2から現時点t1までの時間Δtが第2閾値時間以上であっても、図4に破線で示すように、現在自車Vが走行している車線が追越車線L1でない(走行車線L2である)場合には、追越車線L1を第2閾値時間以上継続して走行しているものではないと考えられる。つまり、第2閾値時間以上継続して走行しているのは、非追越車線である走行車線L2であると判断できる。そのため、ステップS14へと進んで走行状況に応じた適切な自動車線変更要求の出力を可能とする。
 [第1領域内での車線変更実行後の制御作用]
 図5に示すように、自車Vが第1領域Xを第2領域Yに向かって走行している場合を考える。このとき、第1領域X及び第2領域Yにおいて、道路はいずれも車線変更が可能な3車線とする。また、自車Vは、第1領域Xの走行中、ドライバー操作を起因とする車線変更又は自動車線変更のいずれかをすでに実行しているとする。
 そのため、図3に示すフローチャートにおいて、ステップS1、ステップS2、ステップS3、ステップS4へと順に進み、自車Vから前方直近の領域境界αまでの距離βが、予め設定した第3閾値距離以下であるか否かを判断する。
 図5に示すシーンでは、距離βが第3閾値距離以下であるとする。つまり、自車Vは前方直近の領域境界αまで比較的近接しており、車線変更を自由に行うことが難しくなってきていると考えられる。
 そのため、ステップS5へと進み、自車Vが走行車線L2を走行しているか否かを判断する。ここで、図5に示すシーンでは、追越車線L1を走行している。これにより、ステップS7へと進み、自車Vから前方直近の領域境界αまでの距離βが、予め設定した第1閾値距離以下であるか否かを判断する。
 図5に示すシーンでは、距離βが第1閾値距離以下であるとする。つまり、自車Vは前方直近の領域境界αまでかなり近接しており、車線変更を複数回行うことは難しいと考えられる。そのため、ステップS8へ進み、自車Vが追越車線L1を走行しているか否かを判断し、追越車線L1を走行している図5に示すシーンではステップS9へと進んで、走行車線(非追越車線)L2に向かう自動車線変更要求が出力される。そして、自動車線変更の実行が可能であると判断された場合には、目標走行路を走行車線L2に設定し、この走行車線L2に向かう自動車線変更が実行される。
 これにより、第2領域Yに進入する手前で予め走行車線L2を走行させておくことができる。そのため、自動車線変更が実行できない第2領域Yに進入した後で、追越車線L1の走行が想定以上に継続してしまうことを防止できる。そして、例えば法規で定められた時間以上に自車Vが追越車線L1を走行しているかどうかを、ドライバーが監視する負担を軽減することができる。
 また、ステップS4の処理において距離βが第3閾値距離以下であると判断し、ステップS5へと進んだとき、図5に破線で示すように、自車Vが走行車線L2を走行している場合では、ステップS6へ進む。
 また、ステップS7の処理において距離βが第1閾値距離以下であると判断し、ステップS8へと進んだとき、図5に破線で示すように、自車Vが走行車線を走行している場合では、ステップS10へ進む。
 これにより、いずれの場合であっても、追越車線L1に向かう自動車線変更は禁止される。つまり、例えば先行車との相対速度や相対距離に応じて追越条件が成立しても、追越車線L1に向かう自動車線変更要求が出力されることはなく、走行車線L2の走行が維持される。なお、ドライバーの操作に起因する車線変更は、追越車線L1に向かう車線変更であっても禁止されない。よって、走行車線に戻らせる自動車線変更の発生を防ぐことができ、自動車線変更の発生を抑制して、ドライバーに違和感を与えることを防止できる。
 なお、距離βが第3閾値距離よりも長い場合には、自車Vから領域境界までの距離βが、十分に確保されており、車線変更を自由に行うことができると判断できる。そのため、ステップS4からステップS14へと進んで走行状況に応じた適切な自動車線変更要求の出力を可能とする。
 さらに、距離βが第3閾値距離以下であっても、追越車線L1を走行中であって、距離βが第1閾値距離より長い場合には、ステップS7からステップS14へと進んで走行状況に応じた適切な自動車線変更要求の出力を可能とする。すなわち、この場合では、すでに追越車線L1を走行しているので、追越車線に向かう自動車線変更を禁止することはできない。一方、領域境界αまでの距離は、自動車線変更の実行後にドライバーの操作を起因とする車線変更の実行が可能な程度残っているので、走行車線に向かう自動車線変更を不要に行ってしまうと、ドライバーが自らの意志で追越車線への車線変更を行う可能性がある。その場合には、再び走行車線に向かう自動車線変更を実行する必要が生じることが想定され、車線変更が立て続けに実行されるおそれがある。そのため、距離βが第3閾値距離以下であっても、追越車線L1を走行中であって、距離βが第1閾値距離より長い場合には、走行状況に応じた適切な自動車線変更要求の出力を可能とすることで、無用な車線変更の実行を抑制することができる。
 次に、効果を説明する。
 実施例1の運転支援方法及び運転支援装置にあっては、下記に列挙する効果を得ることができる。
 (1)目標走行経路を生成し、前記目標走行経路に基づいて自車Vの車線変更を支援する車線変更支援を実行するコントローラ(車線変更コントローラ40)による運転支援方法(図3)において、
 自動車線変更が実行可能な領域を第1領域Xとし、前記自動車線変更が実行不可能な領域を第2領域Yとし、前記第1領域Xと前記第2領域Yとの境を領域境界αとするとき、
 前記自車Vが、複数の車線を有する車線変更が可能な道路を走行中であるか否かを判断し(ステップS1)、
 前記自車Vが前記道路を走行中であると判断したとき、前記第1領域Xを走行中であるか否かを判断し(ステップS2)、
 前記自車Vが前記第1領域Xを走行中であると判断したとき、前記領域境界αから所定の範囲内を走行中であるか否かを判断し(ステップS4,ステップS7,ステップS11)、
 前記自車Vが前記領域境界αから所定の範囲内を走行中であると判断したとき、前記自車Vが非追越車線(走行車線L2)を走行するように前記車線変更支援(自動車線変更)の制御を行う(ステップS6,ステップS9,ステップS10,ステップS13)構成とした。
  これにより、追越車線L1の走行が想定以上に継続してしまうことを防止できる。
 (2)前記自車Vが前記第1領域Xを走行中であると判断したとき、前記自車Vから前方直近の領域境界αまでの第1位置指標値(距離β)が第1閾値(第1閾値距離)以下であるか否かを判断し(ステップS7)、
 前記第1位置指標値(距離β)が前記第1閾値(第1閾値距離)以下であると判断したとき、前記自車Vが追越車線L1を走行しているか否かを判断し(ステップS8)、
 前記自車Vが追越車線L1を走行していると判断したとき、前記非追越車線(走行車線L2)への車線変更支援(自動車線変更)を行う(ステップS9)構成とした。
  これにより、第2領域Yに進入する前に予め走行車線を走行させておくことができ、自動車線変更を実行不可能な第2領域Yに進入したときに、追越車線L1の走行が想定以上に継続してしまうことを防止できる。
 (3)前記自車Vが前記第1領域Xを走行中であると判断したとき、前記第1領域X内での車線変更の実行有無を判断し(ステップS3)、
 前記第1領域X内で車線変更を実行していないと判断したとき、前記自車Vが最後に車線変更を行った時点t2から現時点t1までの第2位置指標値(時間Δt)が第2閾値(第2閾値時間)以上であるか否かを判断し(ステップS11)、
 前記第2位置指標値(時間Δt)が前記第2閾値(第2閾値時間)以上であると判断したとき、前記自車Vが追越車線L1を走行しているか否かを判断し(ステップS12)、
 前記自車Vが追越車線L1を走行していると判断したとき、前記非追越車線(走行車線L2)への車線変更支援(自動車線変更)を行う(ステップS13)構成とした。
  これにより、第2領域Yから第1領域Xに進入した際に、追越車線L1の走行を不要に継続させることなく、速やかに走行車線L2へと移動させることができ、追越車線L1の走行が想定以上に継続してしまうことを防止できる。
 (4)前記自車Vが前記第1領域Xを走行中であると判断したとき、前記自車Vから前方直近の領域境界までの第1位置指標値(距離β)が第3閾値(第3閾値距離)以下であるか否かを判断し(ステップS4)、
 前記第1位置指標値(距離β)が前記第3閾値(第3閾値距離)以下であると判断したとき、前記自車Vが前記非追越車線(走行車線L2)を走行しているか否かを判断し(ステップS5)、
 前記自車Vが前記非追越車線(走行車線L2)を走行していると判断したとき、追越車線L1への車線変更支援(自動車線変更)を禁止する(ステップS6,ステップS10)構成とした。
 これにより、第2領域Yに進入する前に車線変更が生じることを抑制し、追越車線L1の走行が想定以上に継続してしまうことを防止しつつ、車線変更の発生を防止することができる。
 (5)目標走行経路を生成し、前記目標走行経路に基づいて自車Vの車線変更を支援する車線変更支援制御を実行するコントローラ(車線変更コントローラ40)を備えた運転支援装置において、
 自動車線変更が実行可能な領域を第1領域Xとし、前記自動車線変更が実行不可能な領域を第2領域Yとし、前記第1領域Xと前記第2領域Yとの境を領域境界αとするとき、
 前記コントローラ(車線変更コントローラ40)は、
 前記自車Vが、複数の車線を有する車線変更が可能な道路を走行中であるか否かを判断する道路判断部41と、
 前記道路判断部41により前記自車Vが前記道路を走行中であると判断したとき、前記第1領域Xを走行中であるか否かを判断する領域判断部42と、
 前記領域判断部42により前記自車Vが前記第1領域Xを走行中であると判断したとき、前記領域境界αから所定の範囲内を走行中であるか否かを判断する走行地点判断部43と、
 前記走行地点判断部43により前記自車Vが前記領域境界αから所定の範囲内を走行中であると判断したとき、前記自車が非追越車線(走行車線L2)を走行するように車線変更支援(自動車線変更)を制御する車線変更制御部44と、を有する構成とした。
  これにより、追越車線L1の走行が想定以上に継続してしまうことを防止できる。
 以上、本開示の運転支援方法及び運転支援装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、車線変更コントローラ40が行う車線変更支援が自動車線変更である例を示した。しかしながら、「車線変更支援」は、自動車線変更に限らない。例えば、目標車線を表示デバイス6に表示することや、音声にて目標車線を報知する等、目標走行経路に応じた車線変更の案内を行い、車線変更することを促すだけであってもよい。この場合であっても、自動車線変更の実行が不可能な第2領域に進入する前に、走行車線L2への移動を促したり、第2領域Yから第1領域Xに進入した後、走行車線L2への速やかな移動を促したりすることが可能となる。これにより、追越車線を想定以上に継続して走行することを防止することが可能となる。なお、車線変更支援として、車線変更の案内を行う場合には、運転支援車両は自動運転車両でなくてもよい。
 また、実施例1では、自動車線変更が実行可能な第1領域と、自動車線変更が実行不可能な第2領域との識別を、高精度三次元地図データが整備された領域であるか否かに基づいて行う例を示した。しかしながら、自動車線変更の実行に必要な自車の位置情報及び車線情報をそれぞれ取得できる領域であれば、「第1領域」と判断することができる。つまり、高精度三次元地図データの有無だけでなく、例えば車載センサ1等によって車線情報を高精度に取得できる領域であるか否かに基づいて、第1領域及び第2領域の識別を行ってもよい。
 また、実施例1において、走行車線に向かう自動車線変更要求を出力する際、ドライバーに対して、追越車線の走行を継続させないために自動車線変更を実行する旨を報知してもよい。これにより、ドライバーは、自動車線変更が実行される意義を把握することができ、ドライバーの意志による追越車線に向かう車線変更が実行されることを防止できる。また、追越車線に向かう自動車線変更を禁止する場合にも、追越車線の走行を継続させないために自動車線の実行を禁止する旨を報知することで、ドライバーは制御の意図を把握することができる。
 また、実施例1では、自車Vから直近の領域境界αまでの第1位置指標値として、距離βを用いる例を示した。しかしながら、第1位置指標値は、自車Vと直近の領域境界αとの位置関係を把握できる値であればよい。そのため、第1位置指標値として、例えば自車Vから直近の領域境界αまでの距離βを走行速度で除算して求められる領域境界αまでの到達時間を用いてもよい。この場合、第1閾値や第3閾値の値を、走行速度に応じて変えてもよい。
 また、実施例1では、自車Vが最後に車線変更を行った時点から現時点までの第2位置指標値として、最後に車線変更を行った時点から現時点までの時間を用いる例を示した。しかしながら、第2位置指標値は、最後に車線変更を行った位置と現在の自車位置との位置関係を把握できる値であればよい。そのため、第2位置指標値として、例えば最後に車線変更を行った位置から現在の自車位置までの距離を用いてもよい。

Claims (5)

  1.  目標走行経路を生成し、前記目標走行経路に基づいて自車の車線変更を支援する車線変更支援を実行するコントローラによる運転支援方法において、
     自動車線変更が実行可能な領域を第1領域とし、前記自動車線変更が実行不可能な領域を第2領域とし、前記第1領域と前記第2領域との境を領域境界とするとき、
     前記自車が、複数の車線を有する車線変更が可能な道路を走行中であるか否かを判断し、
     前記自車が前記道路を走行中であると判断したとき、前記第1領域を走行中であるか否かを判断し、
     前記自車が前記第1領域を走行中であると判断したとき、前記領域境界から所定の範囲内を走行中であるか否かを判断し、
     前記自車が前記領域境界から所定の範囲内を走行中であると判断したとき、前記自車が非追越車線を走行するように前記車線変更支援の制御を行う
     ことを特徴とする運転支援方法。
  2.  請求項1に記載された運転支援方法において、
     前記自車が前記第1領域を走行中であると判断したとき、前記自車から前方直近の領域境界までの第1位置指標値が第1閾値以下であるか否かを判断し、
     前記第1位置指標値が前記第1閾値以下であると判断したとき、前記自車が追越車線を走行しているか否かを判断し、
     前記自車が追越車線を走行していると判断したとき、前記非追越車線への車線変更支援を行う
     ことを特徴とする運転支援方法。
  3.  請求項1又は請求項2に記載された運転支援方法において、
     前記自車が前記第1領域を走行中であると判断したとき、前記第1領域内での車線変更の実行有無を判断し、
     前記第1領域内で車線変更を実行していないと判断したとき、前記自車が最後に車線変更を行った地点から前記自車までの第2位置指標値が第2閾値以上であるか否かを判断し、
     前記第2位置指標値が前記第2閾値以上であると判断したとき、前記自車が追越車線を走行しているか否かを判断し、
     前記自車が追越車線を走行していると判断したとき、前記非追越車線への車線変更支援を行う
     ことを特徴とする運転支援方法。
  4.  請求項1から請求項3のいずれか一項に記載された運転支援方法において、
     前記自車が前記第1領域を走行中であると判断したとき、前記自車から前方直近の領域境界までの第1位置指標値が第3閾値以下であるか否かを判断し、
     前記第1位置指標値が前記第3閾値以下であると判断したとき、前記自車が前記非追越車線を走行しているか否かを判断し、
     前記自車が前記非追越車線を走行していると判断したとき、追越車線への車線変更支援を禁止する
     ことを特徴とする運転支援方法。
  5.  目標走行経路を生成し、前記目標走行経路に基づいて自車の車線変更を支援する車線変更支援を実行するコントローラを備えた運転支援装置において、
     自動車線変更が実行可能な領域を第1領域とし、前記自動車線変更が実行不可能な領域を第2領域とし、前記第1領域と前記第2領域との境を領域境界とするとき、
     前記コントローラは、
     前記自車が、複数の車線を有する車線変更が可能な道路を走行中であるか否かを判断する道路判断部と、
     前記道路判断部により前記自車が前記道路を走行中であると判断したとき、前記第1領域を走行中であるか否かを判断する領域判断部と、
     前記領域判断部により前記自車が前記第1領域を走行中であると判断したとき、前記領域境界から所定の範囲内を走行中であるか否かを判断する走行地点判断部と、
     前記走行地点判断部により前記自車が前記領域境界から所定の範囲内を走行中であると判断したとき、前記自車が非追越車線を走行するように前記車線変更支援を制御する車線変更制御部と、を有する
     ことを特徴とする運転支援装置。
PCT/JP2018/024653 2018-06-28 2018-06-28 運転支援方法及び運転支援装置 WO2020003452A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/734,304 US11661062B2 (en) 2018-06-28 2018-06-28 Driving assist method and driving assist device
JP2020526815A JP6954469B2 (ja) 2018-06-28 2018-06-28 運転支援方法及び運転支援装置
EP18924680.4A EP3816962B1 (en) 2018-06-28 2018-06-28 Driving assistance method and driving assistance device
PCT/JP2018/024653 WO2020003452A1 (ja) 2018-06-28 2018-06-28 運転支援方法及び運転支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024653 WO2020003452A1 (ja) 2018-06-28 2018-06-28 運転支援方法及び運転支援装置

Publications (1)

Publication Number Publication Date
WO2020003452A1 true WO2020003452A1 (ja) 2020-01-02

Family

ID=68986776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024653 WO2020003452A1 (ja) 2018-06-28 2018-06-28 運転支援方法及び運転支援装置

Country Status (4)

Country Link
US (1) US11661062B2 (ja)
EP (1) EP3816962B1 (ja)
JP (1) JP6954469B2 (ja)
WO (1) WO2020003452A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021169307A (ja) * 2020-06-29 2021-10-28 ベイジン バイドゥ ネットコム サイエンス アンド テクノロジー カンパニー リミテッド 車両クルーズ制御方法、装置、電子機器及び記憶媒体
WO2022249470A1 (ja) * 2021-05-28 2022-12-01 日産自動車株式会社 運転支援方法及び運転支援装置
WO2023089837A1 (ja) * 2021-11-22 2023-05-25 日産自動車株式会社 車両の走行支援方法及び走行支援装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026231B2 (ja) * 2018-07-16 2022-03-01 日産自動車株式会社 走行支援方法及び走行支援装置
US11597393B2 (en) * 2020-03-26 2023-03-07 Intel Corporation Systems, methods, and devices for driving control
JP7359127B2 (ja) * 2020-10-20 2023-10-11 トヨタ自動車株式会社 自動運転システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063383A1 (ja) * 2014-10-22 2016-04-28 日産自動車株式会社 運転支援装置
JP2017083446A (ja) 2015-10-28 2017-05-18 本田技研工業株式会社 自動運転システム及びナビケーションシステム
JP2017142223A (ja) * 2016-11-04 2017-08-17 株式会社ゼンリン 地図データのデータ構造及び車線変更支援装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6063319B2 (ja) * 2013-03-27 2017-01-18 富士重工業株式会社 車線変更支援装置
JP6328254B2 (ja) * 2014-09-05 2018-05-23 三菱電機株式会社 自動走行管理システム、サーバおよび自動走行管理方法
DE102015208007A1 (de) * 2015-04-30 2016-11-03 Conti Temic Microelectronic Gmbh Verfahren zur Durchführung eines Fahrspurwechsels bei einem Kraftfahrzeug
JP6355111B2 (ja) * 2016-04-28 2018-07-11 本田技研工業株式会社 車両制御システム
US10328935B2 (en) * 2016-06-08 2019-06-25 GM Global Technology Operations LLC Adaptive cruise control system and method of operating the same
DE102016009763A1 (de) * 2016-08-11 2018-02-15 Trw Automotive Gmbh Steuerungssystem und Steuerungsverfahren zum Bestimmen einer Trajektorie und zum Erzeugen von zugehörigen Signalen oder Steuerbefehlen
CN110248861B (zh) * 2018-01-07 2023-05-30 辉达公司 在车辆操纵过程中使用机器学习模型来引导车辆

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063383A1 (ja) * 2014-10-22 2016-04-28 日産自動車株式会社 運転支援装置
JP2017083446A (ja) 2015-10-28 2017-05-18 本田技研工業株式会社 自動運転システム及びナビケーションシステム
JP2017142223A (ja) * 2016-11-04 2017-08-17 株式会社ゼンリン 地図データのデータ構造及び車線変更支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816962A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021169307A (ja) * 2020-06-29 2021-10-28 ベイジン バイドゥ ネットコム サイエンス アンド テクノロジー カンパニー リミテッド 車両クルーズ制御方法、装置、電子機器及び記憶媒体
JP7214794B2 (ja) 2020-06-29 2023-01-30 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド 車両クルーズ制御方法、装置、電子機器及び記憶媒体
WO2022249470A1 (ja) * 2021-05-28 2022-12-01 日産自動車株式会社 運転支援方法及び運転支援装置
WO2023089837A1 (ja) * 2021-11-22 2023-05-25 日産自動車株式会社 車両の走行支援方法及び走行支援装置

Also Published As

Publication number Publication date
JPWO2020003452A1 (ja) 2021-07-15
US20210155243A1 (en) 2021-05-27
EP3816962B1 (en) 2023-05-10
EP3816962A1 (en) 2021-05-05
EP3816962A4 (en) 2021-08-11
JP6954469B2 (ja) 2021-10-27
US11661062B2 (en) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2020003452A1 (ja) 運転支援方法及び運転支援装置
RU2760714C1 (ru) Способ содействия вождению и устройство содействия вождению
WO2020016621A1 (ja) 走行支援方法及び走行支援装置
US9026356B2 (en) Vehicle navigation system and method
EP3816966B1 (en) Driving assistance method and driving assistance device
US20200103903A1 (en) Automatic drive assist apparatus
US10902729B2 (en) Vehicle, travel control device, and travel control method
JP7293628B2 (ja) 運転支援車両の合流方法及び合流装置
JP7331450B2 (ja) 車両の走行制御方法及び走行制御装置
JP2019059262A (ja) 車両走行制御方法及び装置
JPWO2019142312A1 (ja) 車両制御装置、それを有する車両、および制御方法
CN114761300A (zh) 驾驶控制方法及驾驶控制装置
WO2020148561A1 (ja) 運転支援方法及び運転支援装置
JP2020045039A (ja) 車両制御方法及び車両制御装置
JP2019209902A (ja) 走行支援方法及び走行支援装置
WO2019008648A1 (ja) 運転支援車両の目標車速生成方法及び目標車速生成装置
JP7162464B2 (ja) 運転支援方法及び運転支援装置
JP2022060075A (ja) 運転支援装置
JP2020021295A (ja) 運転支援方法及び運転支援装置
JP2020175821A (ja) 走行支援方法及び走行支援装置
US20220402484A1 (en) Driving assistance apparatus
JP2023075667A (ja) 運転支援方法及び運転支援装置
JP2023167861A (ja) 車両の運転支援方法及び運転支援装置
WO2020039224A1 (ja) 運転計画表示方法及び運転計画表示装置
CN118266018A (en) Vehicle travel support method and travel support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020526815

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018924680

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018924680

Country of ref document: EP

Effective date: 20210128