WO2020001284A1 - 一种安装座、云台组件及其无人飞行器 - Google Patents

一种安装座、云台组件及其无人飞行器 Download PDF

Info

Publication number
WO2020001284A1
WO2020001284A1 PCT/CN2019/091124 CN2019091124W WO2020001284A1 WO 2020001284 A1 WO2020001284 A1 WO 2020001284A1 CN 2019091124 W CN2019091124 W CN 2019091124W WO 2020001284 A1 WO2020001284 A1 WO 2020001284A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
vibration damping
unmanned aerial
aerial vehicle
mounting base
Prior art date
Application number
PCT/CN2019/091124
Other languages
English (en)
French (fr)
Inventor
梁智颖
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020001284A1 publication Critical patent/WO2020001284A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the present invention relates to the technical field of aircraft, and in particular to a mounting base, a gimbal assembly and an unmanned aerial vehicle.
  • Unmanned aircraft or unmanned aerial vehicle (UAV)
  • UAV unmanned aerial vehicle
  • UAV unmanned aerial vehicle
  • the camera equipment is mounted on the UAV through the mount.
  • the mount includes a vibration damping member and a connecting member.
  • the vibration damping member is generally a vibration ball, and the two ends of the vibration damping member are installed separately.
  • the mounting base also includes an anti-off lever, an anti-off card member, and an anti-off board.
  • the anti-off board is fixedly installed on the UAV.
  • the two ends of the vibration damping member are respectively installed on the anti-off board and the connecting member.
  • the center of the vibrating member passes through the detachment prevention plate and the connecting member respectively.
  • One end of the detachment prevention rod is provided with a finite position structure, and the other end is provided with an detachment prevention clip.
  • the prior art has at least the following problems: the anti-drop bar and the vibration damping member move in the same structural space, the aircraft in a complex attitude, the anti-drop bar interferes with the vibration damping member, and when the aircraft shifts speed Or during the turning process, the load mounted on the connection is not stable. Therefore, the prior art needs to be improved.
  • an embodiment of the present invention provides a mounting base, a gimbal assembly and an unmanned aerial vehicle.
  • the anti-drop structure of the mounting base does not interfere with the vibration damping member, so that the load mounted on the connecting member Work smoothly.
  • the embodiments of the present invention provide the following technical solutions:
  • a mounting base for connecting a gimbal and an unmanned aerial vehicle, characterized in that the mounting base includes a vibration reduction device, the vibration reduction device is connected to the gimbal, and the vibration reduction
  • the vibration device includes a vibration reduction element connected to the unmanned aerial vehicle; a detachment prevention structure for mounting the vibration reduction device and the gimbal to the unmanned aerial vehicle, and the detachment prevention structure is configured to allow The movement distance of the vibration reduction device and the head in at least the vibration direction of the vibration reduction device is not less than the maximum amplitude of the vibration reduction element.
  • the anti-dropoff structure includes a anti-dropoff base and a connecting arm extending from both ends of the anti-dropoff base to the unmanned aerial vehicle and connected to the unmanned aerial vehicle; the connecting arm makes all the There is a distance between the anti-off base and the unmanned aerial vehicle that is not less than the maximum amplitude of the vibration damping element; the vibration damping device further includes a connection piece connected to the gimbal, and the connection piece includes a main body and A mounting arm extending from the main body, the vibration damping element is provided on the mounting arm; the main body is penetrated between the anti-detachment base and the unmanned aerial vehicle, so that the vibration damping device and The gimbal is mounted on the unmanned aerial vehicle by the anti-off structure.
  • the length of the connecting arm in the vibration direction of the vibration reduction element is not less than the maximum amplitude of the vibration reduction element.
  • the connecting arm is elastic.
  • the anti-dropoff structure has elasticity and the maximum elastic deformation of the anti-dropoff structure is not less than the maximum elastic deformation of the vibration damping element, and one end of the anti-dropoff structure is connected to the unmanned aerial vehicle. , The other end is connected to the vibration damping device.
  • the vibration damping device further includes a connection piece connected to the gimbal, the connection piece includes a main body and a mounting arm extending from the main body, and the vibration reduction element is provided on the mounting arm. Up; one end of the anti-dropout structure is connected with the connecting member.
  • each of the mounting arms includes a connecting plate extending from the end of the main body to both sides of the main body, and the connecting plates on the same side of the main body are connected by a mounting plate.
  • each of the connecting plates includes a bent portion extending from the end of the main body toward the gimbal and a mounting portion extending in a horizontal direction from the bent portion; the mounting plate The two ends are connected to the mounting portions on the same side of the main body, respectively.
  • the connecting member is connected to the gimbal through the mounting plate.
  • the vibration reduction element is disposed on the mounting portion.
  • the connecting member is integrally formed with the gimbal.
  • the anti-off structure is integrally formed with the unmanned aerial vehicle.
  • a gimbal assembly for an unmanned aerial vehicle including: the mounting base as described above; and a gimbal for carrying a load, the gimbal is connected to the mounting base.
  • the load includes a camera, an infrared lens, a multispectral sensor, and an agricultural spraying device.
  • an unmanned aerial vehicle comprising a fuselage, an airframe connected to the airframe, a power unit provided on the airframe, and a gimbal assembly as described above.
  • the mounting base includes a vibration damping device, and the vibration damping device is connected to the gimbal,
  • the vibration damping device includes a vibration damping element connected to the unmanned aerial vehicle; an anti-drop structure for mounting the vibration damping device and the gimbal to the unmanned aerial vehicle, and the anti-drop structure is It is configured to allow a movable distance of the vibration reduction device and the head at least in a vibration direction of the vibration reduction device to be not less than a maximum amplitude of the vibration reduction element.
  • the anti-detachment structure of the mounting base does not interfere with the vibration damping member, so that the load work mounted on the connecting member is stable.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention, in which a part of the structure is omitted;
  • FIG. 2 is a disassembly schematic diagram of the unmanned aerial vehicle shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a load component of the unmanned aerial vehicle shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of a mounting base of the load assembly shown in FIG. 3;
  • FIG. 5 is a disassembly schematic diagram of the mounting base shown in FIG. 4;
  • FIG. 6 is a schematic structural diagram of another implementation manner of the unmanned aerial vehicle shown in FIG. 1;
  • FIG. 7 is a schematic structural diagram of a vibration damping member of the mounting base shown in FIG. 4.
  • An embodiment of the present invention provides an unmanned aerial vehicle 400 including a fuselage 10, an arm connected to the fuselage 10, a power device provided on the arm, and a load assembly. 300.
  • the load assembly 300 is mounted on the body 10.
  • the body 10 includes a casing 11 and a control circuit module (not shown) installed in the casing 11.
  • the control circuit module may be composed of an MCU and an electronic device.
  • the control circuit module is used for The UAV 400 is controlled to work, for example, the load assembly 300 is controlled to work.
  • the casing 11 is provided with a first mounting hole 110 and a second mounting hole 112.
  • the first mounting hole 110 penetrates the casing 10, the second mounting hole 112 and the first mounting hole 110 are disposed on the same surface of the casing 10, the first mounting hole 110 and the The second mounting holes 112 are all used for mounting the load assembly 300.
  • the load assembly 300 can be used as a photographing, photographing, testing and sampling device, or an agricultural spraying device assembly, which can be applied to, but not limited to, the unmanned aerial vehicle 400, for example, a handheld device , Unmanned ships or unmanned vehicles.
  • the load component 300 includes a gimbal component 200 and a load 20.
  • the load 20 is installed on the gimbal component 200.
  • the gimbal component 200 is used to change the working direction of the load 20.
  • the load 20 may be an image acquisition device, such as a camera, a video camera, an infrared lens, etc., or other portable electronic devices with a photographing function, such as a collection, a tablet computer, etc. It is understood that the load 20 may also be a sensor, such as a multi-device For a spectral sensor, the load 20 may also be an agricultural spraying device.
  • the gimbal assembly 200 can be used as an auxiliary device for photography, photography, monitoring, sampling, and agricultural spraying. It can be applied to, but not limited to, the unmanned aerial vehicle 400, for example, a handheld device, an unmanned ship, or an unmanned vehicle. Cars and other devices.
  • the gimbal assembly 200 is mounted on the casing 11 of the fuselage 10.
  • the gimbal assembly 200 includes a gimbal 30 and a mounting base 100.
  • the gimbal 30 is mounted on the mounting base 100 away from the fuselage 10. s surface.
  • the pan / tilt head 30 is used to fix the load 20, or adjust the attitude of the load 20 (for example, change the height, inclination, and / or direction of the load 20) and keep the load 20 stable at Set attitude.
  • the mounting base 100 can be applied to, but not limited to, the unmanned aerial vehicle 400, for example, it can be applied to a handheld device, an unmanned ship, or an unmanned vehicle.
  • the mounting base 100 is mounted on the housing 11 of the main body 10.
  • the mounting base 100 includes a vibration damping device and an anti-detachment structure 40.
  • the vibration damping device is connected between the casing 11 of the fuselage 10 and the pan / tilt head 30, and the anti-detachment structure 40 is used to mount the vibration damping device and the pan / tilt head 30 to The casing 11 of the body 10.
  • the vibration damping device is used to reduce mutual interference between the gimbal 30 and the fuselage 10 due to vibration.
  • the anti-detachment structure 40 can prevent the vibration damping device from being detached from the body 10, or the anti-dropout structure 40 can prevent the vibration damping device from falling after the vibration damping device is detached from the body 10.
  • the vibration reduction device includes a connection member 50 and a vibration reduction element 60 connected to the connection member 50.
  • the connecting member 50 is connected to the gimbal 30, the vibration-damping element 60, the casing 11 of the fuselage 10, the vibration-damping element 60 is movable in the vibration direction, and the anti-dropout structure 40 is configured to allow The movement distance of the vibration reduction device and the head 30 in at least the vibration direction of the vibration reduction device is not less than the maximum amplitude of the vibration reduction element 60.
  • the unmanned aerial vehicle 400 since the unmanned aerial vehicle 400 is in flight, it may be because the unmanned aerial vehicle 400 is shifting or turning, that the gimbal 30 mounted on the unmanned aerial vehicle 400 due to inertia, the gimbal 30 has a tendency to deviate from the fuselage 10, so that the vibration damping element 60 is elastically deformed, such as telescopic and / or bent, so that the gimbal 30 mounted on the vibration damping device is relative to the machine
  • the body 10 is deviated, for example, tilted and / or displaced, the offset direction of the vibration damping device is the vibration direction of the vibration damping device, and the distance difference between the vibration damping device before and after the displacement is the moving distance.
  • the maximum deformation of the vibration reduction element 60 is the maximum amplitude of the vibration reduction element 60.
  • the anti-detachment structure 40 is separated from the vibration-damping element 60, so that the vibration-damping element 60 is not interfered by the anti-drop-off structure 40, which is mainly a limit or friction.
  • the maximum deformation of the vibration-damping element 60 is It is improved, on the one hand, the gimbal 30 mounted on the connecting member 50 is more flexible with respect to the fuselage 10, and when the fuselage 10 is tilted, the gimbal 30 is not tilted excessively, To ensure that the load 20 is relatively stable; on the other hand, the cushioning effect of the vibration damping element 60 is improved, and the shock absorption performance is improved, so that the load 20 is reduced from the vibration interference of the fuselage 10, the The load 20 works stably.
  • the anti-dropout structure 40 may be disposed separately from the connecting member 50, and the anti-dropping structure 40 does not interfere with the connecting member 50.
  • the detachment prevention structure 40 does not interfere with the connecting member 50.
  • the detachment prevention structure 40 does not transmit vibration between the fuselage 10 and the connection member 50.
  • the anti-dropout structure 40 does not interfere with the connecting member 50, so that the connecting member 50 can be flexibly displaced.
  • the anti-dropoff structure 40 is provided separately from the connecting member 50, so that when the connecting member 50 is offset relative to the anti-dropoff structure 40, the anti-dropoff structure 40 does not interfere with Said connecting member 50 is offset.
  • the anti-detachment structure 40 is connected to the connecting member 50.
  • the anti-dropout structure 40 is a flexible structure such as a chain link or a rope.
  • the anti-dropout structure 40 may have elasticity, and the maximum elastic deformation of the anti-dropout structure 40 is not less than the above.
  • one end of the anti-dropout structure 40 is connected to the housing 11 of the main body 10, and the other end is connected to the vibration damping device.
  • a ring buckle structure is provided on a surface of the connecting member 50 facing the fuselage 10, and one end of the anti-dropout structure 40 is interlocked with the ring buckle structure of the connecting member 50.
  • the anti-detachment structure 40 includes a first movable member and a second movable member.
  • the first movable member is movably connected to the second movable member, and may be a universal joint, a hinge, or the like.
  • the second movable member is mounted on the casing 11 of the main body 10.
  • the detachment prevention structure 40 includes a detachment prevention base 42 and a connecting arm 41 connected to the casing 11 of the fuselage 10 from both ends of the detachment prevention base 42.
  • the connecting arm 41 allows a distance between the anti-detachment base 42 and the casing 11 of the main body 10 to be not less than the maximum amplitude of the vibration damping element 60.
  • the connecting arm 41 has elasticity.
  • the connecting arm 41 may be made of elastic plastic.
  • the length of the connecting arm 41 in the vibration direction of the vibration damping element 60 is not less than the maximum amplitude of the vibration damping element 60.
  • the detachment prevention structure 40 may be provided with other structures.
  • one end of the connection arm 41 facing away from the detachment prevention base 42 is connected to the machine.
  • the housing 11 of the body 10 and the other end of the connecting arm 41 facing away from the detachment prevention base 42 are separated from the housing 11 of the body 10.
  • one end of the connecting arm 41 facing away from the anti-detachment base 42 is connected to the housing 11 of the fuselage 10, and the other end of the connecting arm 41 facing away from the anti-detachment base 42 is bent, and Connected to one of the connecting arms 41, the detachment prevention base 42 and two of the connecting arms 41 form a closed loop structure.
  • the two connecting arms 41 are respectively connected to both ends of the detachment prevention base portion 42 to form a U-shaped structure.
  • each of the connecting arms 41 facing away from the anti-detachment base 42 is assembled to the housing 11 of the body 10.
  • each of the anti-detachment bases 42 faces the housing.
  • the surface of 11 is provided with a first threaded hole 410, the first threaded hole 410 is opposite to the first mounting hole 110, and the bolt head of the first bolt 101 abuts against the housing 11 away from the mounting seat 100.
  • the bolt post of the first bolt 101 passes through the first mounting hole 110 and is screwed into the first threaded hole 410, so that each of the anti-detachment bases 42 is mounted on the housing 11 of the fuselage 10. .
  • the connecting member 50 is first mounted to the housing 11 of the fuselage 10 through the vibration damping device 60, and then the anti-dropout structure 40 is mounted to the housing 10 through the first bolt 101.
  • the housing 11 is such that the connecting member 50 is located between the two connecting arms 41, and the connecting member 50 is located between the detachment prevention base 42 and the housing 11. Since the connecting member 50 is fixed with respect to the housing 11, in order to improve the connection reliability of the anti-detachment structure 40 and the housing 11, in other embodiments, the anti-detachment structure 40 and the housing are improved.
  • 11 is integrally formed, and an end of each of the connecting arms 41 facing away from the anti-detachment base portion 42 extends from the casing 11.
  • the connecting member 50 is a shock-absorbing plate, and the connecting member 50 may be made of an elastic material, for example, a plastic material or a rubber material.
  • the connecting member 50 includes a main body 52 and a mounting arm 51 extending from the main body 52.
  • the vibration reduction element 60 is disposed on the mounting arm 51.
  • the main body 52 is interposed between the anti-detachment base 42 and the casing of the fuselage 10, so that the vibration reduction device and the head 30 are mounted on the anti-detachment structure 40 ⁇ 11 of the fuselage 10.
  • the main body 52 includes a first anti-dropout component 520 and a second anti-dropout component 522.
  • the first anti-dropout component 520 is detachably connected to the second anti-dropout component 522, so that the connecting piece 52 can be easily worn between the anti-dropout base 42 and the casing 11 of the fuselage 10.
  • the first anti-offset component 520 and the second anti-offset component 522 may be fixed by a third bolt 104.
  • Each of the mounting arms 51 includes a connecting plate 512 extending from the end of the main body 52 to both sides of the main body, and the connecting plates 512 on the same side of the main body 52 are connected through a mounting plate 510.
  • the mounting arm 51 and the main body 52 form a closed-loop structure, and form a drop-off prevention opening 511.
  • the 41 is passed through the drop-off prevention opening 511.
  • the anti-detachment structure 40 can be linked with the closed-loop structure to prevent the head 30 connected to the vibration damping device from falling.
  • Each of the connecting plates 512 includes a bent portion 512 a bent and extended from the end of the main body 52 toward the head 30 and a mounting portion 512 b of the bent portion 512 a extending in a horizontal direction.
  • the mounting plate 510 Both ends are connected to the mounting portions 512b on the same side of the main body 52, respectively.
  • a gap is formed between the bent portions 512 a on both sides of the main body 52, so that the anti-detachment base portion 42 is located in the gap, and the structure of the mounting base 100 is more compact.
  • the connecting member 50 is assembled with the head 30 through the mounting plate 510.
  • the mounting plate 510 can fix the pan / tilt head 30 by a second bolt 103.
  • the mounting plate 510 is provided with a fourth mounting hole 5102 through which a bolt column of the second bolt 103 can pass.
  • the gimbal 30 is provided with a threaded hole (not shown) that can be threadedly connected to the bolt column of the second bolt 103.
  • the second bolt 103 passes through the fourth mounting hole 5102 and communicates with the gimbal's
  • the screw holes are screwed together, and the bolt head of the second bolt 103 abuts against the mounting plate 510, so that the pan / tilt head 30 is fixed to the mounting plate 510.
  • the connecting member 50 is integrally formed with the head 30.
  • the connecting member 50 and the pan / tilt head 30 can also be fixed by a glue connection or a snap connection.
  • Each of the mounting 512b is provided with a third mounting hole 5100.
  • each of the shock absorbing members 60 is installed on the connecting member 50, one end of each of the shock absorbing members 60 is installed in a corresponding second mounting hole 112, and each of the shock absorbing members is The other end of the member 60 is mounted in a corresponding third mounting hole 5100.
  • Each of the shock absorbing members 60 can be made of an elastic material, such as a plastic material or a rubber material. It can be understood that, in some other embodiments, the number of the shock absorbing members 60 is not limited to four, as long as at least one.
  • Each of the shock absorbing members 60 includes a first mounting portion 61, a second mounting portion 62, and a connection portion 63.
  • the connection portion 63 is connected between the first mounting portion 61 and the second mounting portion 62.
  • Each of the shock absorbing members 60 has a center line O.
  • the first mounting portion 61 is used for mounting in the second mounting hole 112 of the housing 11.
  • the first mounting portion 61 includes a first protruding edge 610 and a first connecting post 612.
  • the first protruding edge 610 Both the first connecting post 612 and the first connecting post 612 are cylindrical.
  • the diameter of the first protruding ridge 610 is larger than the diameter of the first connecting post 612.
  • One end of the first connecting post 612 is connected to the first protruding 610.
  • the other end of the first connecting post 612 is connected to the connecting portion 63, and the central axis of the first convex edge 610 and the central axis of the first connecting post 612 coincide with the center line O.
  • the first mounting portion 61 is provided with a first through hole 614, and the first through hole 614 penetrates the first convex edge 610 and the first connection post 612.
  • the second mounting portion 62 is mounted in the third mounting hole 5100 of the mounting plate 510.
  • the second mounting portion 62 includes a second protruding edge 620 and a second connecting post 622.
  • the second protruding edge 620 and the second connecting post 622 are both cylindrical, and the diameter of the second protruding edge 620 is larger than the diameter of the second connecting post 622, and one end of the second connecting pillar 622 is connected to the second protruding edge 620, the other end of the second connection post 622 is connected to the connection portion 63, and the center axis of the second convex edge 620 and the center axis of the second connection post 622 coincide with the center line O.
  • the second connection post 622 passes through the mounting plate 510, one side of the mounting plate 220 abuts against the second convex edge 620, and the other side of the mounting plate 220 abuts against the connection portion 63.
  • the second mounting portion 62 is provided with a second through hole 624, and the second through hole 624 penetrates the second convex edge 620 and the second connection post 622.
  • Providing the first through hole 614 and the second through hole 624 can enhance the deformation of the first mounting portion 61 and the second mounting portion 62 to absorb vibration, thereby enhancing the damping of the shock absorbing member 60. Earthquake effect.
  • first convex edge 610, the first connecting post 612, the second convex 620, and the second connecting post 622 are not limited to being cylindrical, as long as The cross-sectional area of the first convex edge 610 is larger than the cross-sectional area of the first connecting post 612, so that the first convex edge 610 can be fastened to the second mounting hole 112 of the housing 11; The cross-sectional area of the second convex edge 620 is larger than the cross-sectional area of the second connecting post 622, so that the second convex edge 620 can be fastened to the third mounting hole 5100 of the mounting plate 520.
  • the three connection portions 63 are connected between the first connection post 612 and the second connection post 622.
  • the three connecting portions 63 are provided separately, and the three connecting portions 63 are evenly distributed around the center line O.
  • Each of the connecting portions 63 is in a curved strip shape. In each of the connecting portions 63, the distance between the middle portion and the center line O is the largest, and the width D of each of the connecting portions 63 is from the middle portion to both ends. slowing shrieking.
  • the number of the connecting portions 63 may be increased or decreased according to actual needs, as long as it is at least two.
  • the connecting portion 63 may be made of an elastic material, and the first mounting portion 61 and the second mounting portion 62 may be made of a rigid material.
  • the shock absorbing member 60 may be a shock absorbing element of another structure, as long as it can play a shock absorbing effect, for example, a shock absorbing ball, or the connecting portion 63
  • the first mounting portion 61 and the second mounting portion 62 are fixedly mounted on opposite sides of the elastic sphere.
  • the first connecting post 612 of the first mounting portion 61 is received in the second mounting hole 112, and the first convex edge 610 abuts a surface of the housing 11 facing away from the connecting member 50.
  • the second connecting post 622 of the two mounting portions 62 is received in the third mounting hole 5100, and the second convex edge 620 abuts on a surface of the mounting plate 520 facing away from the casing 11.
  • the first mounting portion 61 can be bent or retracted at any angle relative to the second mounting portion 62, so that the connecting member 50 can be displaced relative to the anti-dropout structure 40.
  • the mounting base 100 includes a vibration damping device, and the vibration damping device and the The gimbal 30 is connected, and the vibration damping device includes a vibration damping element 60 connected to the unmanned aerial vehicle 400; and an anti-detachment structure 40 for mounting the vibration damping device and the gimbal 30 to the
  • the anti-detachment structure 40 is configured to allow a movement distance of the vibration damping device and the head 30 at least in a vibration direction of the vibration damping device not less than a maximum amplitude of the vibration damping element 60 .
  • the anti-detachment structure 40 of the mounting base 100 does not interfere with the vibration damping member 60, so that the load 20 mounted on the connecting member 50 works smoothly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本发明涉及飞行器技术领域,公开了一种安装座、云台组件及其无人飞行器,其中所述安装座包括:减振装置,所述减振装置与所述云台相连,所述减振装置包括与所述无人飞行器相连的减振元件;防脱结构,用于将所述减振装置和所述云台挂载至所述无人飞行器,所述防脱结构被配置为允许所述减振装置和所述云台至少在所述减振装置的震动方向上的活动距离不小于所述减振元件的最大振幅。通过上述方式,所述安装座的防脱结构不干涉所述减振件,使得挂载于连接件的负载工作平稳。

Description

一种安装座、云台组件及其无人飞行器
【相关申请交叉引用】
本申请要求于2018年6月25日申请的、申请号为201810659783.2、申请名称为“一种安装座、云台组件及其无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及飞行器技术领域,尤其涉及一种安装座、云台组件及其无人飞行器。
【背景技术】
无人驾驶飞机,简称无人飞行器(UAV),是一种处在迅速发展中的新概念装备,其具有机动灵活、反应快速、无人驾驶、操作要求低的优点。无人飞行器通过搭载多类传感器或摄像设备,可以实现影像实时传输、高危地区探测功能,是卫星遥感与传统航空遥感的有力补充。目前,无人飞行器的使用范围已经扩宽到军事、科研、民用三大领域,具体在电力通信、气象、农业、海洋、勘探、摄影、防灾减灾、农作物估产、缉毒缉私、边境巡逻、治安反恐等领域应用甚广。
摄像设备通过安装座搭载于无人飞行器,为使摄像设备在飞行器飞行时能够平稳工作,安装座包括减振件和连接件,减振件一般为减震球,减振件的两端分别安装于无人飞行器和连接件,摄像设备搭载于连接件。而由于减震球连接强度不高,在复杂的飞行姿势下减振件容易脱落。故安装座还包括防脱杆、防脱卡件以及防脱板,防脱板固定安装于无人飞行器,减振件的两端分别安装于防脱板与连接件,防脱杆穿过减振件的中心,并且分别穿过防脱板与连接件,防脱杆的一端设置有限位结构,另一端设置有防脱卡件。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:防脱杆与减振件在同一结构空间下活动,飞行器在复杂姿态下,防脱杆干涉减振件,当飞行器变速或者转向的过程中,挂载于连接件的负载工作不平稳。因此,现有技术需要改进。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种安装座、云台组件及其无人飞行器,其中所述安装座的防脱结构不干涉所述减振件,使得挂载于连接件的负载工作平稳。
为了解决上述技术问题,本发明实施例提供以下技术方案:
在第一方面,提供一种安装座,用于连接云台和无人飞行器,其特征在于,所述安装座包括:减振装置,所述减振装置与所述云台相连,所述减振装置包括与所述无人飞行器相连的减振元件;防脱结构,用于将所述减振装置和所述云台挂载至所述无人飞行器,所述防脱结构被配置为允许所述减振装置和所述云台至少在所述减振装置的震动方向上的活动距离不小于所述减振元件的最大振幅。
在一些实施例中,所述防脱结构包括防脱基部和自所述防脱基部的两端向所述无人飞行器延伸且与所述无人飞行器相连的连接臂;所述连接臂使得所述防脱基部与所述无人飞行器之间具有不小于所述减振元件的最大振幅的间距;所述减振装置还包括与所述云台相连的连接件,所述连接件包括主体和自所述主体延伸的安装臂,所述减振元件设于所述安装臂上;所述主体穿设于所述防脱基部与所述无人飞行器之间,从而使得所述减振装置和所述云台被所述防脱结构挂载于所述无人飞行器。
在一些实施例中,所述连接臂在所述减振元件的振动方向上的长度不小于所述减振元件的最大振幅。
在一些实施例中,所述连接臂具有弹性。
在一些实施例中,所述防脱结构具有弹性且所述防脱结构的最大弹性形变量不小于所述减振元件的最大弹性形变量,所述防脱结构一端与所述无人飞行器相连,另一端与所述减振装置相连。
在一些实施例中,所述减振装置还包括与所述云台相连的连接件,所述连接件包括主体和自所述主体延伸的安装臂,所述减振元件设于所述安装臂上;所述防脱结构的一端与所述连接件相连。
在一些实施例中,每一所述安装臂均包括自所述主体末端分别向所述主体两侧延伸的连接板,位于所述主体同一侧的所述连接板通过安装板相连。
在一些实施例中,每一所述连接板包括自所述主体末端向靠近所述云台弯折延伸的弯折部以及自所述弯折部沿水平方向延伸的安装部;所述安装板的两端分别与位于所述主体同一侧的所述安装部相连。
在一些实施例中,所述连接件通过所述安装板与所述云台相连。
在一些实施例中,所述减振元件设于所述安装部上。
在一些实施例中,所述连接件与所述云台一体成型。
在一些实施例中,所述防脱结构与所述无人飞行器一体成型。
在第二方面,提供一种云台组件,用于无人飞行器,包括:如上所述的安装座;云台,用于搭载负载,所述云台与所述安装座相连。
在一些实施例中,所述负载包括相机、红外线镜头、多光谱传感器、农用喷洒设备。
在第三方面,提供一种无人飞行器,包括机身、与所述机身相连的机臂、设于所述机臂的动力装置以及如上所述的云台组件。
与现有技术相比较,本发明实施例提供的所述安装座、云台组件及其无人飞行器中,所述安装座包括:减振装置,所述减振装置与所述云台相连,所述减振装置包括与所述无人飞行器相连的减振元件;防脱结构,用于将所述减振装置和所述云台挂载至所述无人飞行器,所述防脱结构被配置为允许所述减振装置和所述云台至少在所述减振装置的震动方向上的活动距离不小于所述减振元件的最大振幅。通过上述方式,所述安装座的防脱结构不干涉所述减振件,使得挂载于连接件的负载工作平稳。
【附图说明】
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种无人飞行器的结构示意图,其中部分结构被省略;
图2为图1所示的无人飞行器的拆解示意图;
图3为图1所示的无人飞行器的负载组件的结构示意图;
图4为图3所示的负载组件的安装座的结构示意图;
图5为图4所示的安装座的拆解示意图;
图6为图1所示的无人飞行器的另一种实现方式的结构示意图;
图7为图4所示的安装座的减振件的结构示意图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施方式,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1和图2,本发明其中一实施例提供一种无人飞行器400,包括机身10、与所述机身10相连的机臂、设于所述机臂的动力装置以及负载组件300,所述负载组件300安装于所述机身10。
所述机身10包括壳体11以及安装于所述壳体11内的控制电路模组(图未示),所述控制电路模组可由MCU以及电子器件组成,所述控制电路模组用于控制所述无人飞行器400工作,例如,控制所述负载组件300进行工作。
所述壳体11设置有第一安装孔110和第二安装孔112。
所述第一安装孔110贯穿所述壳体10,所述第二安装孔112与所述第一安装孔110设置于所述壳体10的同一表面,所述第一安装孔110和所述第二安装孔112均用于安装所述负载组件300。
请一并参阅图3,所述负载组件300可作为摄影、照相、检测采样装置, 或者为农用喷洒设备组件,其可应用在但不限于所述无人飞行器400上,例如,应用在手持设备、无人船或者无人车等装置中。
所述负载组件300包括云台组件200和负载20,所述负载20安装于所述云台组件200,所述云台组件200用于改变所述负载20的工作方向。
所述负载20可以为图像获取装置,例如相机、摄影机、红外镜头等,或为其他具有拍摄功能的便携式电子装置,例如收集、平板电脑等,可以理解的是,也可以为传感器等,例如多光谱传感器,所述负载20还可以为农用喷洒设备。
所述云台组件200可作为摄影、照相、监测、采样以及农用喷洒的辅助装置,其可应用在但不限于所述无人飞行器400上,例如,应用在手持设备、无人船或者无人车等装置中。
所述云台组件200安装于所述机身10的外壳11,所述云台组件200包括云台30和安装座100,所述云台30安装于所述安装座100背离所述机身10的表面。
所述云台30用于实现所述负载20的固定、或随意调节所述负载20的姿态(例如,改变所述负载20的高度、倾角和/或方向)以及使所述负载20稳定保持在设定的姿态上。
请一并参阅图4和图5,所述安装座100可应用在但不限于所述无人飞行器400上,例如,应用在手持设备、无人船或者无人车等装置中。
所述安装座100安装于所述机身10的壳体11,所述安装座100包括减振装置和防脱结构40。其中,所述减振装置连接于所述机身10的壳体11和所述云台30之间,所述防脱结构40用于将所述减振装置和所述云台30挂载至所述机身10的壳体11。
需要说明的是,由于所述无人飞行器400在飞行的过程中,飞行情况复杂,所述减振装置用于降低所述云台30与所述机身10由于震动产生的相互干扰,所述防脱结构40可避免所述减振装置与所述机身10脱离,或者所述减振装置脱离机身10后,所述防脱结构40可避免所述减振装置坠落。
所述减振装置包括连接件50以及连接于所述连接件50的减振元件60。
所述连接件50连接所述云台30,所述减振元件60所述机身10的外壳11,所述减振元件60可在震动方向上活动,所述防脱结构40被配置为允许所述减振装置和所述云台30至少在所述减振装置的震动方向上的活动距离不小于所述减振元件60的最大振幅。
需要说明的是,由于所述无人飞行器400在飞行的过程中,可能由于所述无人飞行器400变速或者转向,挂载于所述无人飞行器400的云台30由于惯性,所述云台30具备相对于所述机身10偏移的趋势,使所述减振元件60弹性形变,比如伸缩和/或弯折,使得挂载于所述减振装置的云台30相对于所述机身10偏移,例如倾斜和/或位移,所述减振装置的偏移方向即为所述减振装置的震动方向,所述减振装置偏移前后的距离差即为活动距离。所述无人飞行器400在飞行的过程中,所述减振元件60的最大形变量即为所述减振元件60的最大振幅。
所述防脱结构40与所述减振元件60相分离设置,使得所述减振元件60不被所述防脱结构40干涉,主要为限位或者摩擦,所述减振元件60最大形变量得到提升,一方面使挂载于所述连接件50的云台30相对于所述机身10偏移更加灵活,在所述机身10倾斜时,使所述云台30不会过量倾斜,保证所述负载20相对平稳,另一方面,所述减振元件60的缓冲效果得到提升,使减震性能得到提升,使所述负载20受到所述机身10的震动干扰减小,所述负载20工作稳定。
所述防脱结构40可与所述连接件50相分离设置,所述防脱结构40不干涉所述连接件50。
值得说明的是,所述防脱结构40不干涉所述连接件50,一方面,所述防脱结构40不传递所述机身10与所述连接件50之间的震动,另一方面,在所述连接件50相对于所述机身10偏移时,所述防脱结构40不干涉所述连接件50,使所述连接件50偏移灵活。
在本实施例中,所述防脱结构40与所述连接件50相分离设置,使得在所述连接件50相对于所述防脱结构40偏移时,所述防脱结构40不干涉所述 连接件50偏移。
在其它一些实施例中,所述防脱结构40连接所述连接件50。具体地,所述防脱结构40为节链、绳索等柔性结构,在一些实现方式中,所述防脱结构40可以具有弹性,并且所述防脱结构40的最大弹性形变量不小于所述减振元件60的最大弹性形变量,所述防脱结构40一端与所述机身10的壳体11相连,另一端与所述减振装置相连。具体地,所述连接件50朝向所述机身10的表面设置有环扣结构,所述防脱结构40的一端与所述连接件50的环扣结构相扣,所述防脱结构40的另一端安装于所述机身10。或者,所述防脱结构40包括第一活动件和第二活动件,所述第一活动件与所述第二活动件活动连接,可以为万向节、铰接等,所述第一活动件安装于所述机身10的外壳11,所述第二活动件安装于所述连接件50。
所述防脱结构40包括防脱基部42和自所述防脱基部42的两端向所述机身10的外壳11相连的连接臂41。所述连接臂41使得所述防脱基部42与所述机身10的外壳11之间具有不小于所述减振元件60的最大振幅的间距。
所述连接臂41具有弹性,所述连接臂41可由弹性塑胶制得,所述连接臂41在所述减振元件60的振动方向上的长度不小于所述减振元件60的最大振幅。
可以理解的是,根据实际情况,所述防脱结构40还可以设置为其他结构,在其他一些实施例中,其中一个所述连接臂41背离所述防脱基部42的一端连接于所述机身10的壳体11,另一个所述连接臂41背离所述防脱基部42的一端与所述机身10的壳体11分离设置。或者,其中一个所述连接臂41背离所述防脱基部42的一端连接于所述机身10的壳体11,另一个所述连接臂41背离所述防脱基部42的一端弯曲设置,并连接于其中一个所述连接臂41,所述防脱基部42与两个所述连接臂41构成闭环结构。只要两个所述连接臂41分别连接于所述防脱基部42的两端,构成U形结构即可。
在本实施例中,每个所述连接臂41背离所述防脱基部42的一端装配于所述机身10的壳体11,具体地,每个所述防脱基部42朝向所述壳体11的表面设置有第一螺纹孔410,所述第一螺纹孔410与所述第一安装孔110相对,通过第一螺栓101的螺栓头抵接于所述壳体11背离所述安装座100的表面, 所述第一螺栓101的螺栓柱穿过所述第一安装孔110并拧入第一螺纹孔410,使得每个所述防脱基部42安装于所述机身10的壳体11。
可以理解的是,先将所述连接件50通过所述减振装置60安装于所述机身10的壳体11,再将所述防脱结构40通过所述第一螺栓101安装于所述壳体11,以使所述连接件50位于所述两个所述连接臂41之间,并且所述连接件50位于防脱基部42与所述壳体11之间。由于所述连接件50相对于所述壳体11固定,为提高防脱结构40与所述壳体11的连接可靠性,在其它一些实施例中,所述防脱结构40与所述壳体11一体化成型,每个所述连接臂41背离所述防脱基部42的一端延伸于所述壳体11。
所述连接件50为一减震板,所述连接件50可由弹性材料制得,例如,塑胶材料或橡胶材料等。所述连接件50包括主体52和自所述主体52延伸的安装臂51,所述减振元件60设于所述安装臂51上。
所述主体52穿设于所述防脱基部42与所述机身10的壳体之间,从而使得所述减振装置和所述云台30被所述防脱结构40挂载于所述机身10的壳体11。
请参阅图6,在其它一些实施例中,所述主体52包括第一防脱组件520和第二防脱组件522。所述第一防脱组件520可拆卸连接于所述第二防脱组件522,可使得所述连接件52较为方便地穿设与所述防脱基部42与所述机身10的外壳11之间,具体地,所述第一防脱组件520与所述第二防脱组件522可通过第三螺栓104相固定。
每一所述安装臂51均包括自所述主体52末端分别向所述主体两侧延伸的连接板512,位于所述主体52同一侧的所述连接板512通过安装板510相连。
值得说明的是,所述安装臂51与所述主体52构成闭环结构,并形成防脱口511,所述41穿设于所述防脱口511,当所述减振装置脱离所述机身10,所述防脱结构40可与所述闭环结构相环扣,可避免与所述减振装置相连接的所述云台30坠落。
每一所述连接板512包括自所述主体52末端向靠近所述云台30弯折延伸的弯折部512a以及所述弯折部512a沿水平方向延伸的安装部512b,所述 安装板510的两端分别与位于所述主体52同一侧的所述安装部512b相连接。所述主体52的两侧的弯折部512a之间形成间隙,可使得所述防脱基部42位于所述间隙,使所述安装座100的结构更加紧凑。
在本实施例中,所述连接件50通过所述安装板510与所述云台30相装配。所述安装板510可通过第二螺栓103固定所述云台30,具体地,所述安装板510设置有可供所述第二螺栓103的螺栓柱穿过的第四安装孔5102,所述云台30设置有可与所述第二螺栓103的螺栓柱螺纹连接的螺纹孔(图未示),通过所述第二螺栓103穿过所述第四安装孔5102并与所述云台的螺纹孔相螺纹连接,所述第二螺栓103的螺栓头抵接于所述安装板510,使得所述云台30与所述安装板510相固定。
在其他一些实施例中,所述连接件50与所述云台30一体成型。
可以理解的是,根据实际情况,所述连接件50与所述云台30还可通过胶合连接,或者卡扣连接等方式固定。
每个所述安装512b设置有一第三安装孔5100。
请一并参阅图7,四个所述减震件60安装于所述连接件50,每个所述减震件60的一端安装于一个相应的第二安装孔112,每个所述减震件60的另一端安装于一个相应的第三安装孔5100,每个所述减震件60可由弹性材料制得,例如,塑胶材料或橡胶材料等。可以理解的是,在一些其它实施例中,所述减震件60的数量不限为四个,只要至少一个即可。
每个所述减震件60包括第一安装部61、第二安装部62以及连接部63,所述连接部63连接于所述第一安装部61和所述第二安装部62之间。每个所述减震件60具有中心线O。
所述第一安装部61用于安装于所述壳体11的第二安装孔112,所述第一安装部61包括第一凸沿610和第一连接柱612,所述第一凸沿610和所述第一连接柱612皆为圆柱形,所述第一凸沿610的直径大于所述第一连接柱612的直径,所述第一连接柱612的一端连接所述第一凸沿610,所述第一连接柱612的另一端连接所述连接部63,所述第一凸沿610的中轴线与所述第一连接柱612的中轴线皆与所述中心线O重合。所述第一安装部61设有第一通孔614,所述第一通孔614贯穿所述第一凸沿610和所述第一连接柱612。
相似地,所述第二安装部62安装于所述安装板510的第三安装孔5100,所述第二安装部62包括第二凸沿620和第二连接柱622,所述第二凸沿620和所述第二连接柱622皆为圆柱形,所述第二凸沿620的直径大于所述第二连接柱622的直径,所述第二连接柱622的一端连接所述第二凸沿620,所述第二连接柱622的另一端连接所述连接部63,所述第二凸沿620的中轴线与所述第二连接柱622的中轴线皆与所述中心线O重合。所述第二连接柱622穿过所述安装板510,所述安装板220的一侧抵靠所述第二凸沿620,所述安装板220的另一侧抵靠所述连接部63。所述第二安装部62设有第二通孔624,所述第二通孔624贯穿所述第二凸沿620和所述第二连接柱622。
设置所述第一通孔614和所述第二通孔624,可增强所述第一安装部61和所述第二安装部62的形变来吸收振动,从而增强所述减震件60的减震效果。
可以理解的是,在一些其它实施例中,所述第一凸沿610,所述第一连接柱612,所述第二凸沿620以及所述第二连接柱622不限于为圆柱形,只要所述第一凸沿610的横截面积大于所述第一连接柱612的横截面积,使得所述第一凸沿610能扣于所述壳体11的第二安装孔112即可;所述第二凸沿620的横截面积大于所述第二连接柱622的横截面积,使得所述第二凸沿620能扣于所述安装板520的第三安装孔5100即可。
三个所述连接部63都连接于所述第一连接柱612和所述第二连接柱622之间。三个所述连接部63分离设置,三个所述连接部63围绕所述中心线O均匀分布。每个所述连接部63为弯曲条状,在每个所述连接部63中,其中部与所述中心线O的距离最大,每个所述连接部63的宽度D从其中部向两端逐渐减小。
可以理解的是,在一些其它实施例中,所述连接部63的数量可以根据实际需要增加或减少,只要为至少两个即可。
可以理解的是,在一些其它实施例中,所述连接部63可由弹性材料制得,所述第一安装部61和所述第二安装部62可由刚性材料制得。
可以理解的是,在一些其它实施例中,所述减震件60可为其它结构的减震元件,只要能起到减震作用即可,例如,减震球,或者,所述连接部63被替换成弹性球体,所述第一安装部61和所述第二安装部62固定安装于所述 弹性球体的相对两侧。
所述第一安装部61的第一连接柱612收容于所述第二安装孔112,所述第一凸沿610抵接于所述壳体11背离所述连接件50的表面,所述第二安装部62的第二连接柱622收容于所述第三安装孔5100,所述第二凸沿620抵接于所述安装板520背离所述壳体11的表面。
所述第一安装部61可相对于所述第二安装部62朝任意角度弯折或者伸缩,以使得所述连接件50可相对于所述防脱结构40可偏移。
与现有技术相比较,本发明实施例提供的所述安装座100、云台组件200及其无人飞行器400中,所述安装座100包括:减振装置,所述减振装置与所述云台30相连,所述减振装置包括与所述无人飞行器400相连的减振元件60;防脱结构40,用于将所述减振装置和所述云台30挂载至所述无人飞行器400,所述防脱结构40被配置为允许所述减振装置和所述云台30至少在所述减振装置的震动方向上的活动距离不小于所述减振元件60的最大振幅。通过上述方式,所述安装座100的防脱结构40不干涉所述减振件60,使得挂载于连接件50的负载20工作平稳。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

  1. 一种安装座(100),用于连接云台(30)和无人飞行器(400),其特征在于,所述安装座(100)包括:
    减振装置,所述减振装置与所述云台(30)相连,所述减振装置包括与所述无人飞行器(400)相连的减振元件(60);
    防脱结构(40),用于将所述减振装置和所述云台(30)挂载至所述无人飞行器(400),所述防脱结构(40)被配置为允许所述减振装置和所述云台(30)至少在所述减振装置的震动方向上的活动距离不小于所述减振元件(60)的最大振幅。
  2. 根据权利要求1所述的安装座(100),其特征在于,所述防脱结构(40)包括防脱基部(42)和自所述防脱基部(42)的两端向所述无人飞行器(400)延伸且与所述无人飞行器(400)相连的连接臂(41);所述连接臂(41)使得所述防脱基部(42)与所述无人飞行器(400)之间具有不小于所述减振元件(60)的最大振幅的间距;
    所述减振装置还包括与所述云台(30)相连的连接件(50),所述连接件(50)包括主体(52)和自所述主体(52)延伸的安装臂(51),所述减振元件(60)设于所述安装臂(51)上;
    所述主体(52)穿设于所述防脱基部(42)与所述无人飞行器(400)之间,从而使得所述减振装置和所述云台(30)被所述防脱结构(40)挂载于所述无人飞行器(400)。
  3. 根据权利要求2所述的安装座(100),其特征在于,所述连接臂(41)在所述减振元件(60)的振动方向上的长度不小于所述减振元件(60)的最大振幅。
  4. 根据权利要求2或3所述的安装座(100),其特征在于,所述连接臂(41)具有弹性。
  5. 根据权利要求1所述的安装座(100),其特征在于,所述防脱结构(40)具有弹性且所述防脱结构(40)的最大弹性形变量不小于所述减振元件(60)的最大弹性形变量,所述防脱结构(40)一端与所述无人飞行器(400)相连,另一端与所述减振装置相连。
  6. 根据权利要求5所述的安装座(100),其特征在于,所述减振装置还包括与所述云台(30)相连的连接件(50),所述连接件(50)包括主体(52)和自所述主体(52)延伸的安装臂(51),所述减振元件(60)设于所述安装臂(51)上;所述防脱结构(40)的一端与所述连接件(50)相连。
  7. 根据权利要求2-4、6中任一项所述的安装座(100),其特征在于,每一所述安装臂(51)均包括自所述主体(52)末端分别向所述主体(52)两侧延伸的连接板(512),位于所述主体(52)同一侧的所述连接板(512)通过安装板(510)相连。
  8. 根据权利要求7所述的安装座(100),其特征在于,每一所述连接板(512)包括自所述主体(52)末端向靠近所述云台(30)弯折延伸的弯折部(512a)以及自所述弯折部(512a)沿水平方向延伸的安装部(512b);
    所述安装板(510)的两端分别与位于所述主体(52)同一侧的所述安装部(512b)相连。
  9. 根据权利要求8所述的安装座(100),其特征在于,所述连接件(50)通过所述安装板(510)与所述云台(30)相连。
  10. 根据权利要求8或9所述的安装座(100),其特征在于,所述减振元件(60)设于所述安装部(512b)上。
  11. 根据权利要求2-4、6中任一项所述的安装座(100),其特征在于,所述连接件(50)与所述云台(30)一体成型。
  12. 根据权利要求1-11中任一项所述的安装座(100),其特征在于,所述防脱结构(40)与所述无人飞行器(400)一体成型。
  13. 一种云台组件(200),用于无人飞行器(400),其特征在于,包括:
    权利要求1至12中任一项所述的安装座(100);
    云台(30),用于搭载负载(20),所述云台(30)与所述安装座(100)相连。
  14. 根据权利要求13所述的云台组件(200),其特征在于,所述负载(20)包括相机、红外线镜头、多光谱传感器、农用喷洒设备。
  15. 一种无人飞行器(400),其特征在于,包括机身(10)、与所述机身(10)相连的机臂、设于所述机臂的动力装置以及权利要求13或14所述的云台组件(200)。
PCT/CN2019/091124 2018-06-25 2019-06-13 一种安装座、云台组件及其无人飞行器 WO2020001284A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810659783.2 2018-06-25
CN201810659783.2A CN108583918A (zh) 2018-06-25 2018-06-25 一种安装座、云台组件及其无人飞行器

Publications (1)

Publication Number Publication Date
WO2020001284A1 true WO2020001284A1 (zh) 2020-01-02

Family

ID=63633682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091124 WO2020001284A1 (zh) 2018-06-25 2019-06-13 一种安装座、云台组件及其无人飞行器

Country Status (2)

Country Link
CN (1) CN108583918A (zh)
WO (1) WO2020001284A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108583918A (zh) * 2018-06-25 2018-09-28 深圳市道通智能航空技术有限公司 一种安装座、云台组件及其无人飞行器
CN109533371B (zh) * 2018-12-17 2020-08-25 北京淳一航空科技有限公司 一种测绘巡检固定翼垂直起降无人机
CN110329484A (zh) * 2019-08-16 2019-10-15 深圳市道通智能航空技术有限公司 一种无人机骨架及其无人机
WO2021253287A1 (zh) * 2020-06-17 2021-12-23 深圳市大疆创新科技有限公司 云台、摄像载体及可移动平台

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109060A (ja) * 1999-10-01 2001-04-20 Yoshiko Corp カメラホルダー
CN204674844U (zh) * 2015-05-15 2015-09-30 深圳市大疆创新科技有限公司 减震板及具有该减震板的无人飞行器
CN205113734U (zh) * 2015-10-27 2016-03-30 四川豪斯特电子技术有限责任公司 一种防脱落云台悬挂结构
CN205507006U (zh) * 2016-02-02 2016-08-24 湖北省超能超高压电力科技开发有限公司 一种机载紫外检测云台
CN205872502U (zh) * 2016-07-29 2017-01-11 深圳市大疆创新科技有限公司 减震结构及使用该减震结构的云台组件、无人机
US9561870B2 (en) * 2013-12-10 2017-02-07 SZ DJI Technology Co., Ltd. Carrier having non-orthogonal axes
CN207496955U (zh) * 2017-10-24 2018-06-15 深圳市中航佳智能科技有限公司 一种无人机的云台固定架装置
CN108583918A (zh) * 2018-06-25 2018-09-28 深圳市道通智能航空技术有限公司 一种安装座、云台组件及其无人飞行器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204312600U (zh) * 2014-11-21 2015-05-06 无锡市华东减震器有限公司 一种减振吊架
CN204956943U (zh) * 2015-07-13 2016-01-13 深圳一电科技有限公司 无人飞行器的减震结构及无人飞行器
KR20170072673A (ko) * 2015-12-17 2017-06-27 모터웰 주식회사 자력을 이용한 짐벌 댐퍼
WO2017143595A1 (en) * 2016-02-26 2017-08-31 Sz Dji Osmo Technology Co., Ltd. Method and system for stabilizing a payload
CN206072225U (zh) * 2016-10-09 2017-04-05 中国电建集团成都勘测设计研究院有限公司 钢丝减震球以及用于无人飞行器的减震机构
CN207315970U (zh) * 2017-07-07 2018-05-04 昊翔电能运动科技(昆山)有限公司 减震模组以及电子设备
CN107956837B (zh) * 2017-11-15 2024-03-19 深圳市科比特航空科技有限公司 无人机云台减震装置
CN107740847A (zh) * 2017-11-28 2018-02-27 深圳市道通智能航空技术有限公司 减震装置、具有此减震装置的云台组件及无人机
CN107975556B (zh) * 2017-12-27 2024-04-12 深圳市道通智能航空技术股份有限公司 减震元件、减震装置、摄像组件及无人飞行器
CN208868308U (zh) * 2018-06-25 2019-05-17 深圳市道通智能航空技术有限公司 一种安装座、云台组件及其无人飞行器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109060A (ja) * 1999-10-01 2001-04-20 Yoshiko Corp カメラホルダー
US9561870B2 (en) * 2013-12-10 2017-02-07 SZ DJI Technology Co., Ltd. Carrier having non-orthogonal axes
CN204674844U (zh) * 2015-05-15 2015-09-30 深圳市大疆创新科技有限公司 减震板及具有该减震板的无人飞行器
CN205113734U (zh) * 2015-10-27 2016-03-30 四川豪斯特电子技术有限责任公司 一种防脱落云台悬挂结构
CN205507006U (zh) * 2016-02-02 2016-08-24 湖北省超能超高压电力科技开发有限公司 一种机载紫外检测云台
CN205872502U (zh) * 2016-07-29 2017-01-11 深圳市大疆创新科技有限公司 减震结构及使用该减震结构的云台组件、无人机
CN207496955U (zh) * 2017-10-24 2018-06-15 深圳市中航佳智能科技有限公司 一种无人机的云台固定架装置
CN108583918A (zh) * 2018-06-25 2018-09-28 深圳市道通智能航空技术有限公司 一种安装座、云台组件及其无人飞行器

Also Published As

Publication number Publication date
CN108583918A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2020001284A1 (zh) 一种安装座、云台组件及其无人飞行器
US11343443B2 (en) Unmanned aerial vehicle and multi-ocular imaging system
US10194061B2 (en) Pan-tilt-zoom camera and unmanned aerial vehicle
US9789976B2 (en) Carrier having non-orthogonal axes
CN109219558B (zh) 减震结构及使用该减震结构的云台组件、无人机
RU2572946C2 (ru) Двухосная платформа для использования в беспилотном летательном аппарате, трехосная платформа для использования в беспилотном летательном аппарате и многовинтовой летательный аппарат
US11155344B2 (en) Load assembly and unmanned aerial vehicle
US20200172226A1 (en) Arm and unmanned aerial vehicle
US20200283118A1 (en) Unmanned aerial vehicle
US10919646B2 (en) Unmanned vehicle
KR101484613B1 (ko) 영상장비 고정장치
WO2021253750A1 (zh) 云台、摄像载体及可移动平台
WO2019105117A1 (zh) 减振装置、具有此减振装置的云台组件及无人机
WO2019128401A1 (zh) 起落架及具有该起落架的无人飞行器
KR101236994B1 (ko) 항공사진 촬영용 카메라의 초점위치 안정화 지지대
KR20110139912A (ko) 전방향 충격 흡수 메커니즘을 구비한 투척형 정찰 로봇
CN111634430A (zh) 一种无人机光学防抖摄像机
CN107975556B (zh) 减震元件、减震装置、摄像组件及无人飞行器
CN211685663U (zh) 三轴吊舱
WO2020037791A1 (zh) 云台减震结构、云台系统及无人飞行器
CN208868308U (zh) 一种安装座、云台组件及其无人飞行器
WO2019113775A1 (zh) 一种无人机及其云台减震机构、云台组件
CN207961408U (zh) 减震装置、具有此减震装置的云台组件及无人机
CN111348208A (zh) 面向机载广域侦察监视应用的反扫稳定一体化多环架平台
TWI741741B (zh) 攝影裝置及無人載具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824742

Country of ref document: EP

Kind code of ref document: A1