WO2020000888A1 - 一种锂离子电池阻燃电解液 - Google Patents

一种锂离子电池阻燃电解液 Download PDF

Info

Publication number
WO2020000888A1
WO2020000888A1 PCT/CN2018/117556 CN2018117556W WO2020000888A1 WO 2020000888 A1 WO2020000888 A1 WO 2020000888A1 CN 2018117556 W CN2018117556 W CN 2018117556W WO 2020000888 A1 WO2020000888 A1 WO 2020000888A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
electrolyte
lithium
flame
ion battery
Prior art date
Application number
PCT/CN2018/117556
Other languages
English (en)
French (fr)
Inventor
丁祥欢
江卫健
殷俊
张丽兰
郝敬磊
Original Assignee
南通新宙邦电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通新宙邦电子材料有限公司 filed Critical 南通新宙邦电子材料有限公司
Publication of WO2020000888A1 publication Critical patent/WO2020000888A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium battery electrolyte for lithium ion batteries containing a variety of flame retardant additives, which can effectively improve the safety performance and cycle performance of the battery.
  • Lithium battery electrolyte is a key material of new energy devices—lithium ion batteries, which is equivalent to the “blood” of the battery, and plays a key role in the performance of lithium batteries.
  • Flame retardant electrolyte is an improved high-tech product for lithium ion battery electrolyte. It has significant help for the safety of lithium ion batteries and is conducive to improving the safety of electric vehicles. With the increasing maturity of lithium-ion batteries in electric vehicles, concerns about the safety of lithium-ion battery packs remain. Due to the high energy density of the lithium battery, its internal electrolyte / negative electrode is also very flammable. Once the battery ruptures or accidentally shorts out and fires, it will easily cause a chain reaction of the dense battery pack, resulting in severe combustion and serious Security incident.
  • Lithium-ion battery electrolyte plays a key role in battery performance. It has always been an important factor affecting battery capacity, safety performance and cycle life, restricting the development and application of lithium-ion batteries.
  • Lithium-ion battery electrolytes commonly used today are organic electrolytes.
  • the organic solvents commonly used in electrolytes are alkyl carbonates, and linear carbonates are dimethyl carbonate (DMC), EMC (ethyl methyl carbonate), and DEC. (Diethyl carbonate), etc.
  • the cyclic carbonates are EC (ethylene carbonate), PC (propylene carbonate), etc. These organic solvents have low flash points, which makes the electrolyte of lithium ion batteries extremely flammable. Improving the nonflammability and thermal stability of the electrolyte is an important way to improve the safety of the battery. Therefore, it is urgent to develop a new type of electrolyte with high safety.
  • the technical problem to be solved by the present invention is to provide an improved lithium-ion battery electrolyte for the problems that the electrolyte in the prior art cannot be flame retarded and the cycle performance is insufficient.
  • An electrolyte for a lithium ion battery including a non-aqueous organic solvent, a lithium salt, and an additive.
  • the additive includes a phosphazene compound, perfluorohexanone, and a perfluoroalkyl ether compound.
  • the inventors have found that the flame retardant electrolytes currently on the market have problems such as high viscosity, relatively insufficient battery cycle performance, and high cost, which are still difficult to industrialize.
  • the present inventors have found a method of adding a perfluoroalkyl ketone additive, such as perfluorohexanone, to the electrolyte containing phosphazene, which can greatly enhance the flame retardant effect, so that The electrolyte is flame retardant and improves cycle performance to some extent.
  • a phosphazene compound, perfluorohexanone and a perfluoroalkyl ether compound are used in combination.
  • the solubility of perfluorohexanone is greatly improved by the phosphazene compound, and perfluorohexanone is ensured through the synergy of the two.
  • the vapor pressures of both methyl ethyl ester (EMC) and dimethyl carbonate (DMC) are high, which is very beneficial to increase the vapor pressure ratio of the flame-retardant components of the electrolyte, and is beneficial to the flame retardancy of the electrolyte.
  • EMC methyl ethyl ester
  • DMC dimethyl carbonate
  • perfluorohexanone and perfluoroalkyl ether compounds have lower viscosities, mainly due to multiple fluorine atoms in their structure and their low viscosity.
  • the addition of perfluoroalkyl ether compounds is conducive to the use of high-density density pole pieces to achieve better cycle performance and rate performance. It can also reduce the cost of the electrolyte by replacing part of the fluorophosphazene.
  • the conductivity, wettability and flame retardancy of the electrolyte are significantly improved, so that the electrolyte has better Room temperature and high temperature cycling performance and flame retardant safety.
  • Storage in a 60 ° C hot box is non-flat, the internal resistance growth rate is small, and it maintains good storage performance and cycle performance.
  • the lithium ion battery electrolyte provided by the present invention includes a non-aqueous organic solvent, a lithium salt, and an additive, and the additive includes a phosphazene compound, a perfluorohexanone, and a perfluoroalkyl ether compound.
  • the phosphazene compound is known in the prior art.
  • the phosphazene compound includes a compound having a structure shown in Formula 1:
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from the group consisting of a fluorine atom, a fluorine-containing or non-fluorine-containing phenoxy group, and a fluorine-containing or non-fluorine-containing carbon atom having 1- 3 alkoxy, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 may be the same or different.
  • the phosphazene compound is selected from perfluorocyclotriphosphazene, methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, n-propoxypentafluorocyclotriphosphazene, isopropyl Propoxy pentafluorocyclotriphosphazene, phenoxy (pentafluoro) cyclotriphosphazene, pentafluoroethoxy pentafluorocyclotriphosphazene, trifluoromethoxy pentafluorocyclotriphosphazene, trifluoroethoxy One or more of pentafluorocyclotriphosphazene, bis (trifluoromethoxy) tetrafluorocyclotriphosphazene.
  • preferred substituents R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are fluorine atoms or groups having no more than 6 carbon atoms, such as ethoxy-substituted ethoxy Pentafluorocyclotriphosphazene.
  • the flame retardant effect of phosphazene compounds in the electrolyte is related to its amount, and also to the volatility of the solvent.
  • volatility or vapor pressure
  • phosphazene compounds, especially cyclic phosphazene compounds are still not ideally volatile due to their structural reasons. Therefore, it is still necessary to improve the flame retardant effect in the electrolytic solution.
  • the excessively low amount of phosphazene compound is not sufficient to improve the flame retardant effect.
  • the concentration is lower than 1% (mass percentage content, the same below).
  • the dosage range is 1% -20%, preferably 5-15%.
  • an excessively high content of the phosphazene compound may bring disadvantages such as poor solubility to lithium salts and excessive cost.
  • the electrolyte provided by the present invention also contains perfluorohexanone.
  • perfluorohexanone theoretically helps to improve the flame retardancy of the electrolyte.
  • solubility of perfluorohexanone was very low in an electrolyte solution containing carbonates as the main solvent.
  • the solubility of perfluorohexanone can be increased by adding a surfactant or a solubilizing agent to the electrolytic solution.
  • the addition of the above-mentioned surfactant or solubilizing agent will definitely affect the electrochemical performance of the electrolytic solution.
  • the phosphazene compound and perfluorohexanone are simultaneously added to the electrolytic solution, and it is surprisingly found that with the addition of the phosphazene compound, the solubility of perfluorohexanone has been correspondingly improved.
  • the concentration of hexanone that can be used in the electrolyte far exceeds 1%, and can even reach 6%, so that perfluorohexanone can fully exert its effect in the electrolyte.
  • the electrolyte cannot be ignited by an open flame.
  • the phosphazene compound When 1% -20% of the phosphazene compound is added to the electrolyte containing perfluorohexanone, it is preferably 5-15%, which can promote the dissolution of perfluorohexanone in the electrolyte. On the other hand, due to the higher oxidation potential and flame retardancy of the phosphazene compound, it can help inhibit the oxidative decomposition of the electrolyte on the electrode surface, thereby further improving the high temperature performance and safety performance of the battery.
  • the inventors have found a new type of additive, a perfluoroalkyl ether compound.
  • a perfluoroalkyl ether compound When the perfluoroalkyl ether compound is added to the electrolyte, the battery cycle performance can be further improved.
  • the perfluoroalkyl ether compound includes a compound having a structure shown in Formula 2:
  • R 1 is an alkyl group having 1 to 3 carbon atoms
  • R 2 is a perfluoroalkyl group having 3 to 6 carbon atoms.
  • the perfluoroalkyl ether compound is selected from the group consisting of perfluoropropyl methyl ether, perfluoropropyl ethyl ether, perfluoropropyl propyl ether, perfluoro isopropyl methyl ether, and perfluoroisopropyl ether.
  • the mass percentage content of the perfluoroalkyl ether compound is 1% -15%.
  • the more preferred mass percentage content of the perfluoroalkyl ether compound is 2% -10%.
  • the lithium ion battery electrolyte provided by the present invention further includes one or more of vinylene carbonate, 1,3-propane sultone, vinyl sulfate, and lithium difluorophosphate. .
  • the above various additives can be selectively added according to the actual situation.
  • the mass percentage content of the vinylene carbonate is 0% -3%, preferably 0.1% -3%.
  • the mass percentage content of the 1,3-propane sultone is 0% -3%, preferably 0.1% -3%.
  • the mass percentage content of the vinyl sulfate is 0% -3%, preferably 0.1% -3%.
  • the mass percentage content of the lithium difluorophosphate is 0% -3%, preferably 0.1% -3%.
  • the organic solvent may be an existing solvent, and preferably, the organic solvent includes one or more of a chain carbonate, a cyclic carbonate, and a carboxylic acid ester.
  • the chain carbonate is selected from one or more of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
  • the cyclic carbonate is selected from one or more of ethylene carbonate, propylene carbonate, and fluoroethylene carbonate.
  • the carboxylic acid ester is selected from ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, propanoic acid, ethyl propionate, n-propionic acid propionate, isopropyl propionate, and methyl butyrate One or more of esters and ethyl butyrate.
  • a solvent with a lower vapor pressure is preferred, and the cyclic carbonate has a lower vapor pressure, which is conducive to the flame retardancy of the electrolyte.
  • Vinyl carbonate, propylene carbonate, and fluoroethylene carbonate are all Preferred.
  • chain carbonates diethyl carbonate is preferred.
  • carboxylic acid esters n-propyl propionate, isopropyl propionate, and ethyl butyrate are preferable.
  • the content of a single solvent can be adjusted from 5% to 50%, and the content can be the same or different between different solvents.
  • the lithium salt is selected from one or more of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bisoxalate borate, lithium bisfluorosulfonimide, and lithium bis (trifluoromethanesulfonyl) imide.
  • the concentration of the lithium salt is 0.5 mol / L-2.5 mol / L, preferably 0.8 mol / L-1.5 mol / L.
  • the most commonly used is lithium hexafluorophosphate from 1.0 mol / L to 1.3 mol / L.
  • the salt can also be used as an auxiliary lithium salt, its properties are equivalent to additives, and its amount is in the range of 0.1 to 5% by mass, and a more common amount is 0.5 to 3%.
  • This embodiment is used to explain the lithium ion battery electrolyte disclosed in the present invention.
  • EC ethylene carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • This embodiment is used to explain the lithium ion battery electrolyte disclosed in the present invention.
  • EC ethylene carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • This embodiment is used to explain the lithium ion battery electrolyte disclosed in the present invention.
  • EC ethylene carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • This comparative example is used for comparison and description of the lithium ion battery electrolyte disclosed in the present invention.
  • This embodiment is used to explain the lithium ion battery electrolyte disclosed in the present invention.
  • This embodiment is used to explain the lithium ion battery electrolyte disclosed in the present invention.
  • Test item 1 solubility test
  • Test item 2 flame retardant performance test
  • the lithium battery electrolytes prepared in Comparative Examples 1 to 3 and Examples 1 to 3 were each placed in 50 mL of the electrolyte, and then the corresponding electrolyte was ignited with an open flame. The flame retardancy of the electrolyte is judged by whether the electrolyte can be ignited and smoked by an open flame. The test results are shown in Table 2.
  • the lithium battery electrolyte prepared in the above Comparative Examples 1 to 3 and the lithium ion battery electrolyte prepared in Examples 1 to 3 were respectively injected into a soft-packed battery whose positive electrode was a LiNi 0.5 Co 0.2 Mn 0.3 O 2 ternary material and whose negative electrode was an artificial graphite.
  • the battery has a rated capacity of 1000mAh, and the battery is tested.
  • Test item 3 Cycling performance test at room temperature
  • the battery was placed in a constant temperature box at a constant temperature of 25 ° C, and was charged to 4.4V with a constant current of 1C and a constant voltage of 0.03C, and then discharged to 3.0V with a constant current of 1C. After 500 cycles, the discharge capacity of the first week and the discharge capacity of the 500th week were recorded, and the capacity retention rate was calculated by the following formula.
  • Capacity retention rate (%) (500th cycle discharge capacity / 1st cycle discharge capacity) ⁇ 100%
  • Test item 4 High temperature cycle performance test
  • test conditions are the same as those in test item 3 except that the temperature of the incubator is 45 ° C.
  • the test results are shown in Table 2.
  • Comparative Example 1 and Comparative Example 2 at normal temperature cycle capacity retention rate of the battery are significantly nickel cobalt manganese Ni x Co y Mn (1- xy) ternary material as a positive electrode, a graphite It is smaller than Comparative Example 3, which fully shows that when the phosphazene compound is separately added to the conventional electrolyte, although the flame retardant effect can be partially achieved, the cycle performance of the battery is weakened. With perfluorohexanone, the flame retardant effect of the electrolyte can be improved, and the cycle performance of the battery is also improved.
  • the lithium ion battery prepared by the lithium ion battery electrolytes of Examples 1 to 3 has a significant capacity decay rate when it is cycled at room temperature. Slower, the battery capacity retention rate is significantly improved, and it is significantly better than that of Comparative Example 3, which further illustrates that when the phosphazene compound, perfluorohexanone, and perfluoroalkyl ether compounds are used in combination, the cycle performance of the battery is further improved. improve.
  • Comparative Example 3 After high temperature (45 ° C) cycling, the capacity retention rate of Comparative Example 3 is higher than that of Comparative Examples 1 and 2, which illustrates that perfluorohexanone helps improve the problem of poor high temperature performance caused by phosphazene, Example 1
  • the capacity retention rate of ⁇ 3 is higher than that of Comparative Example 3, which further indicates that the synergistic effect of perfluorohexanone and perfluoroalkyl ether compounds is more conducive to improving the high-temperature cycling performance of the battery.
  • Test item 5 High temperature storage test
  • the fully charged lithium ion batteries of Examples 1 to 5 and Comparative Examples 1 to 3 were stored in an oven at 60 ° C. for 30 days, and the capacity, internal resistance, and thickness changes of the batteries were tested.
  • Example 1 89.26 97.02 0.16 17.70
  • Example 2 86.48 97.91 0.27 17.54
  • Example 3 86.39 97.82 0.18 17.82
  • Comparative Example 1 82.05 93.45 0.49 26.47
  • Comparative Example 3 84.43 96.14 0.22 19.45

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

为克服现有技术中电解液难以兼顾阻燃性能和循环等电化学性能的问题,提供了一种具有阻燃功能和改善循环性能的锂离子电池电解液,该电解液包括非水有机溶剂、锂盐和添加剂,所述添加剂包括磷腈化合物、全氟己酮和全氟烷基醚类化合物。使用该锂离子电池电解液可以使得锂离子电池具有优越的常温与高温循环性能,在高温存储条件下不气胀,内阻变化小,可达到兼顾阻燃效果和改善循环的目的。

Description

一种锂离子电池阻燃电解液 技术领域
本发明涉及一种锂离子电池用的含有多种阻燃性添加剂的锂电池电解液,能够有效地改善电池的安全性能和循环性能。
背景技术
锂电池电解液属于新能源器件—锂离子电池的关键材料,相当于电池的“血液”,对锂电池的性能发挥起到关键的作用。阻燃型电解液是锂离子电池电解液的一个改进型的高技术产品,对于锂离子电池的安全性具有显著的帮助,有利于提高电动汽车的安全性。目前随着锂离子电池在电动汽车方面的应用日益成熟,但对锂电池组的安全性担忧仍然存在。由于锂电池能量密度高,其内部的电解液/负极等又具有极易燃烧的特点,一旦电池破裂或意外短路失火,极易引起密集的电池组的连锁反应,产生剧烈的燃烧从而产生严重的安全事故。
锂离子电池电解液作为传递锂离子的媒介对电池的性能起关键作用,一直是一个重要的因素影响着电池的容量,安全性能和循环寿命,制约着锂离子电池的发展和应用。现在普遍采用的锂离子电池电解液为有机电解液,电解液中常用的有机溶剂为烷基碳酸酯类化合物,线性碳酸酯为碳酸二甲酯(DMC)、EMC(碳酸甲乙酯)、DEC(碳酸二乙酯)等,环状碳酸酯为EC(碳酸乙烯酯)、PC(碳酸丙烯酯)等,这些有机溶剂的闪点都很低,使锂离子电池的电解液极易燃烧。改善电解液的不燃性和热稳定性是提高电池安全性的一个重要途径,因此迫切需要开发一种高安全性的新型电解液。
为了实现电解液的阻燃,在使用碳酸酯类作为电解液主要溶剂的情况下,必须依赖加入一定含量的阻燃性添加剂,才能实现电解液的阻燃化,这对于提高锂离子电池的安全性能至关重要。目前常用的阻燃剂是磷腈类阻燃剂,但磷腈仍然存在阻燃性不足的问题,特别是当电解液中含有较高浓度的易挥发且易燃烧的有机溶剂时,比如含50%以上的EMC或DMC时,即使加入15%的磷腈也无法有效阻燃。
发明内容
本发明所要解决的技术问题是针对现有技术中的电解液无法阻燃和循环性能不足等问题,提供一种改善的锂离子电池电解液。
本发明解决上述技术问题所采用的技术方案如下:
提供一种锂离子电池电解液,包括非水有机溶剂、锂盐和添加剂,所述添加剂包括磷腈化合物、全氟己酮和全氟烷基醚类化合物。
发明人发现目前市场上的阻燃电解液存在粘度较高,电池循环性能相对不足,成本较高等问题,产业化起来仍然困难重重。为了解决这一问题,本发明人找到了一种方法,即在含有磷腈的电解液中,再加入全氟烷基酮类添加剂,比如全氟己酮,可以大大提升阻燃的效果,使得电解液得以阻燃,并在一定程度上改善循环性能。但是,循环性能和阻燃性能仍具有进一步提高的空间。本发明通过将磷腈化合物、全氟己酮和全氟烷基醚类化合物配合使用,一方面,通过磷腈化合物大大提高全氟己酮的溶解度,通过二者的协同作用保证全氟己酮能有效发挥作用;另一方面,在充分溶解的情况下,使用全氟己酮和全氟烷基醚类新型阻燃或不燃型添加剂,它们具有较高的蒸气压,比常用的有机溶剂碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)的蒸气压都高,非常有利于提高电解液的阻燃性成分蒸气压比例,有利于电解液的阻燃。将它们与现在的磷腈类阻燃剂进行联用,弥补现有的磷腈类阻燃剂与常规高挥发性溶剂搭配时无法完全阻燃的缺限,将有望实现更好的阻燃效果。
发明人发现全氟己酮和全氟烷基醚类化合物具有较低的粘度,主要是由于其结构中的多个氟原子以及自身的低粘度。全氟烷基醚类化合物的加入有利于高压实密度的极片容量发挥,实现更好循环性能和倍率性能等,也能通过替代部分氟代磷腈降低电解液的成本。通过将磷腈化合物、全氟己酮和全氟烷基醚类化合物三种配合使用,电解液的电导率、浸润性及阻燃性都有明显的提高,从而使得该电解液具有更好的常温和高温循环性能和阻燃安全性。在60℃热箱中贮存不气胀,内阻增长率较小,并保持良好的存储性能和循环性能。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的锂离子电池电解液包括非水有机溶剂、锂盐和添加剂,所述 添加剂包括磷腈化合物、全氟己酮和全氟烷基醚类化合物。
其中,磷腈化合物为现有技术中已知的,例如,所述磷腈化合物包含如式1所示结构的化合物:
式1:
Figure PCTCN2018117556-appb-000001
其中R 1、R 2、R 3、R 4、R 5、R 6各自独立的选自氟原子、含氟或不含氟的苯氧基、含氟或不含氟的碳原子数为1-3的烷氧基,且R 1、R 2、R 3、R 4、R 5、R 6可以相同或不同。
优选情况下,所述磷腈化合物选自全氟环三磷腈、甲氧基五氟环三磷腈、乙氧基五氟环三磷腈、正丙氧基五氟环三磷腈、异丙氧基五氟环三磷腈、苯氧基(五氟)环三磷腈、五氟乙氧基五氟环三磷腈、三氟甲氧基五氟环三磷腈、三氟乙氧基五氟环三磷腈、双(三氟甲氧基)四氟环三磷腈中的一种或多种。
当磷腈化合物上的取代基体积随取代基的碳原子数上升而变大之后,磷腈化合物的粘度和沸点都随之上升,会给电解液的导电性带来不良影响,其阻燃效果也会因为挥发性的下降而受到损害。对于上述磷腈化合物,优选的取代基R 1、R 2、R 3、R 4、R 5、R 6是氟原子或不超过6个碳原子的基团,如乙氧基取代的乙氧基五氟环三磷腈。
磷腈化合物在电解液中的阻燃效果与其用量有关,同时也和溶剂的挥发性相关。当磷腈化合物的挥发性(或称蒸汽压)高于溶剂的挥发性时,容易形成高浓度的阻燃性气团,有利于实现较好的阻燃效果。但磷腈化合物特别是环状磷腈化合物,由于自身结构原因,其挥发性仍不够理想。因此在电解液中其阻燃效果仍有改善的必要,过低的磷腈化合物用量对于阻燃效果的改善也不充分,一般而言,浓度低于1%(质量百分比含量,下同)已经难以观察到磷腈化合物对于电解液的阻燃性的改善效果。试验表明,其用量范围在1%-20%,优选5-15%。但是过高的磷腈化合物含量又会带来对锂盐的溶解性不利,成本过高等缺点。
同时,本发明提供的电解液中还含有全氟己酮。
发明人发现,全氟己酮理论上对提高电解液的阻燃性能有一定的帮助。但 是,通过实验发现,在以碳酸酯类为主要溶剂的电解液中,全氟己酮的溶解度非常低。而添加量过小的情况下,全氟己酮的加入对电解液的阻燃性能改善效果并不明显。理论上可通过向电解液中添加表面活性剂或增溶剂等提高全氟己酮的溶解度,但是,上述表面活性剂或增溶剂的加入势必将严重影响电解液的电化学性能。
本发明向电解液中同时添加磷腈化合物和全氟己酮后惊讶的发现,随着磷腈化合物的加入,全氟己酮的溶解度得到了相应的提高,通过二者的协同作用,全氟己酮在电解液中可以使用的浓度远远超过1%,甚至可以达到6%,从而可以使全氟己酮能在电解液中充分发挥其效果。详而言之,在含磷腈化合物的电解液中加入0.5-10%的全氟己酮,优选加入1-6%的全氟己酮后,该电解液无法用明火点燃。在含全氟己酮的电解液中加入1%-20%的磷腈类化合物时,优选5-15%,可以促进全氟己酮在电解液中的溶解。另一方面,由于磷腈化合物有较高的氧化电位和阻燃性,可以帮助抑制电解液在电极表面氧化分解,从而进一步改善电池的高温性能和安全性能。实验证明,在电解液中加入全氟己酮时,可以显著弥补磷腈化合物的挥发不足,促进阻燃性气团的形成,从而提高阻燃能力,并且可降低磷腈化合物的添加量。
为了进一步改善电池循环性能,本发明人又找到了一种新型添加剂全氟烷基醚类化合物,在电解液中加入全氟烷基醚类化合物时,可以进一步改善电池循环性能。
根据本发明,所述全氟烷基醚类化合物包含如式2所示结构的化合物:
式2:R 1——O——R 2
其中R 1为碳原子数为1~3的烷基,R 2为碳原子数为3~6的全氟烷基。
具体的,所述全氟烷基醚类化合物选自全氟丙基甲基醚、全氟丙基乙基醚、全氟丙基丙基醚、全氟异丙基甲基醚、全氟异丙基乙基醚、全氟异丙基丙基醚、全氟丁基甲基醚、全氟丁基乙基醚、全氟丁基丙基醚、全氟异丁基甲基醚、全氟异丁基乙基醚、全氟异丁基丙基醚、全氟戊基甲基醚、全氟戊基乙基醚、全氟戊基丙基醚、全氟异戊基甲基醚、全氟异戊基乙基醚、全氟异戊基丙基醚、全氟己基甲基醚、全氟己基乙基醚、全氟己基丙基醚、全氟异己基甲基醚、全氟异己基乙基醚、全氟异己基丙基醚的一种或多种。
本发明中,所述全氟烷基醚类化合物的质量百分比含量为1%-15%。所述全氟烷基醚类化合物的更优选的质量百分比含量为2%-10%。
为提高电解液的综合性能,本发明提供的锂离子电池电解液中还包括碳酸亚乙烯酯、1,3-丙烷磺酸内酯、硫酸乙烯酯、二氟磷酸锂中的一种或多种。上述各种添加剂可根据实际情况选择性添加,所述电解液中,以电解液总重量为基准,所述碳酸亚乙烯酯的质量百分比含量为0%-3%,优选为0.1%-3%。所述1,3-丙烷磺酸内酯的质量百分比含量为0%-3%,优选为0.1%-3%。所述硫酸乙烯酯的质量百分比含量为0%-3%,优选为0.1%-3%。所述二氟磷酸锂的质量百分比含量为0%-3%,优选为0.1%-3%。
本发明中,有机溶剂可以采用现有的,优选情况下,所述有机溶剂包括链状碳酸酯、环状碳酸酯、羧酸酯中的一种或多种。
所述链状碳酸酯选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯中的一种或多种。
所述环状碳酸酯选自碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯中的一种或多种。
所述羧酸酯选自乙酸乙酯、乙酸正丙酯、乙酸异丙酯、乙酸正丁酯、丙酸甲酸、丙酸乙酯、丙酸正丙酸、丙酸异丙酯、丁酸甲酯、丁酸乙酯中的一种或多种。
为了保证较好的阻燃效果,蒸汽压较低的溶剂是优选的,环状碳酸酯的蒸汽压低,有利于电解液的阻燃,碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯都是优选的。链状碳酸酯中,碳酸二乙酯是优选的。羧酸酯中,丙酸正丙酯、丙酸异丙酯、丁酸乙酯是优选的。以电解液总重量为基准,单个溶剂其含量从5%-50%范围内可调,不同溶剂之间其含量可以相同或不相同。
所述锂盐选自六氟磷酸锂、四氟硼酸锂、二氟草酸硼酸锂、双草酸硼酸锂、双氟磺氟酰亚胺锂、双(三氟甲磺酰)亚胺锂中的一种或多种;所述电解液中,以电解液总重量为基准,所述锂盐的浓度为0.5mol/L-2.5mol/L,优选为0.8mol/L-1.5mol/L。最为常用的是1.0mol/L-1.3mol/L的六氟磷酸锂。当然,所述盐也可以作为辅助性的锂盐使用,其性质相当于添加剂,其用量在质量百分比0.1-5%范围内,比较常见的用量是0.5-3%。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的锂离子电池电解液。
在氮气保护的手套箱内(水分<1ppm,氧分<1ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)按照质量比为EC:PC:EMC=25:5:45的比例进行混合,加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,再加入按电解液的总质量计的1%的碳酸亚乙烯酯、7%的乙氧基五氟环三磷腈、1%的全氟己酮和5%的全氟戊基甲基醚,搅拌均匀后得到实施例1的锂离子电池电解液。
实施例2
本实施例用于说明本发明公开的锂离子电池电解液。
在氮气保护的手套箱内(水分<1ppm,氧分<1ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)按照质量比为EC:PC:EMC=25:5:47的比例进行混合,加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,再加入按电解液的总质量计的1%的碳酸亚乙烯酯、7%的乙氧基五氟环三磷腈、1%的全氟己酮和3%的全氟己基甲基醚,搅拌均匀后得到实施例2的锂离子电池电解液。
实施例3
本实施例用于说明本发明公开的锂离子电池电解液。
在氮气保护的手套箱内(水分<1ppm,氧分<1ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)按照质量比为EC:PC:EMC=25:5:47的比例进行混合,加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,再加入按电解液的总质量计的1%的碳酸亚乙烯酯、7%的乙氧基五氟环三磷腈、1%的全氟己酮和6%的全氟己基甲基醚,搅拌均匀后得到实施例3的锂离子电池电解液。
对比例1
本对比例用于对比说明本发明公开的锂离子电池电解液。
在氮气保护的手套箱内(水分<1ppm,氧分<1ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)按照质量比为EC:PC:EMC=25:5:57的比例进行混合,加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,再加入按电解液的总质量计的1%的碳酸亚乙烯酯,搅拌均匀后得到对比例1的锂离子电池电解液。
对比例2
本实施例用于说明本发明公开的锂离子电池电解液。
在氮气保护的手套箱内(水分<1ppm,氧分<1ppm),将碳酸乙烯酯(EC)、 碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)按照质量比为EC:PC:EMC=25:5:50的比例进行混合,加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,再加入按电解液的总质量计的1%的碳酸亚乙烯酯、7%的乙氧基五氟环三磷腈,搅拌均匀后得到对比例2的锂离子电池电解液。
对比例3
本实施例用于说明本发明公开的锂离子电池电解液。
在氮气保护的手套箱内(水分<1ppm,氧分<1ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)按照质量比为EC:PC:EMC=25:5:49的比例进行混合,加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,再加入按电解液的总质量计的1%的碳酸亚乙烯酯、7%的乙氧基五氟环三磷腈、1%的全氟己酮,搅拌均匀后得到对比例3的锂离子电池电解液。
测试项目1:溶解性测试
将分别取50mL的样品1-5于浊度比色管中,观察各样品的浊度和样品静置后是否出现分层情况,通过浊度的大小以及分层情况,来判断样品中溶剂间的相溶性。
测试结果如表1所示。
表1
Figure PCTCN2018117556-appb-000002
由表1的数据可得,样品1-4的浊度均小于样品5,并且随着加入的乙氧基五氟环三膦腈的含量增多,电解液的浊度在逐步减小,电解液长时间静置后溶剂间的分层现象也逐步不明显,进一步表明磷腈类添加剂能够促进全氟己酮在碳酸酯溶剂中的溶解性,使得全氟己酮在电解液中的溶解更加均匀。
测试项目2:阻燃性能测试
将对比例1~3、实施例1~3制备的锂电池电解液分别取50mL的电解液置于表面皿中,然后用明火去点燃相应的电解液。通过电解液是否能被明火点燃冒烟,来判别电解液的阻燃性。测试结果如表2所示。
电池性能测试
将上述对比例1~3制备的锂电池电解液和实施例1~3制备的锂离子电池电解液分别注入正极为LiNi 0.5Co 0.2Mn 0.3O 2三元材料,负极为人造石墨的软包电池中,电池额定容量为1000mAh,对电池进行测试。
测试项目3:常温循环性能测试
将电池置于恒温25℃的恒温箱中,以1C的电流恒流恒压充电至4.4V,截止电流为0.03C,然后以1C的电流恒流放电至3.0V。如此循环500周,记录第1周的放电容量和第500周的放电容量,按下式计算容量保持率。
容量保持率(%)=(第500次循环放电容量/第1次循环放电容量)×100%
测试结果如表2所示。
测试项目4:高温循环性能测试
测试条件除恒温箱温度为45℃外,其它与测试项目3相同。测试结果见表2。
表2
Figure PCTCN2018117556-appb-000003
Figure PCTCN2018117556-appb-000004
由表2的数据可以得出,实施例1~3和对比例3的电解液是无法用明火点燃的,而对比例1~2的电解液是可以点燃着火的,说明了在可燃的电解液中单独加入适量的磷腈化合物达不到阻燃的效果,而含磷腈类的添加剂与全氟烷基酮和全氟烷基醚类添加剂混合使用时,可以明显地提高电解液的阻燃性能。
在以镍钴锰Ni xCo yMn (1-x-y)三元材料作为正极,石墨作为负极的锂离子电池中,对比例1和对比例2在常温条件循环时,电池的容量保持率都明显小于对比例3,这充分说明了在常规的电解液中单独加入磷腈类化合物时,虽然可以达到部分阻燃的效果,但是电池的循环性能减弱了;当常规电解液中同时加入磷腈和全氟己酮时,可以改善电解液的阻燃效果,电池的循环性能也得到改善;实施例1~3的锂离子电池电解液制备的锂离子电池在常温条件循环时,其容量衰减速度明显变缓,电池容量保持率显著提升,且明显优于对比例3,这进一步说明了将磷腈化合物、全氟己酮和全氟烷基醚类化合物配合使用时,电池的循环性能得到进一步的提高。
在高温(45℃)循环后,对比例3的容量保持率高于对比例1和对比例2,这说明了全氟己酮有助于改善磷腈造成的高温性能差的问题,实施例1~3的容量保持率高于对比例3,这进一步表明全氟己酮与全氟烷基醚类化合物的协同作用更加有利于提高电池的高温循环性能。
测试项目5:高温存储测试
将实施例1~5和对比例1~3的满电态的锂离子电池置于60℃的烘箱中存储30天,测试电池的容量、内阻及厚度变化。
首先将电池在常温状态下以1C充放电三次,记录常温下放电容量为C1,再以1C恒流恒压将电池充满电,截止电流为0.03C,测试满电状态下电池的厚度D1和内阻R1,将满电状态的电池进行高温(60℃)保存测试。保存30天后,待电池完全冷却后再次测试电池的厚度D2和内阻R2;将取出的电池按下列方式进行充放电:1C恒流放电至终止电压3V,放电容量记为C2。1C恒流恒压充电至4.2V,截止电流0.03C。搁置5min。1C恒流放电至终止电压3V,放电容量记为C3。按照下式计算高温保存后的容量保持率、容量恢复率、厚度膨胀率与内阻增长率。
高温保存后容量保持率=C2/C1×100%,容量恢复率=C3/C1×100%,厚度膨胀率=(D2-D1)/D1×100%,内阻增长率=(R2-R1)/R1×100%。
测试结果如表3所示。
表3
序号 容量保持率/% 容量恢复率/% 厚度膨胀率/% 内阻增长率/%
实施例1 89.26 97.02 0.16 17.70
实施例2 86.48 97.91 0.27 17.54
实施例3 86.39 97.82 0.18 17.82
对比例1 82.05 93.45 0.49 26.47
对比例2 79.68 90.51 0.78 30.12
对比例3 84.43 96.14 0.22 19.45
由表3的数据可得,经过60℃高温存储30天后,对比例3的容量保持率 和容量恢复率均优于对比例1~2,厚度膨胀率和内阻增长率均小于对比例1~2,这说明了全氟己酮有利于改善磷腈造成的存储性能下降的问题,而实施例1~3的锂离子电池在高温存储后,容量保持率与容量恢复率均优于对比例3,厚度膨胀率和内阻增长率小于对比例3,这进一步表明了全氟己酮和全氟烷基醚类化合物的协同作用有利于进一步改善电池容量的存储性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种锂离子电池阻燃电解液,其特征在于,包括非水有机溶剂、锂盐和添加剂,所述添加剂包括磷腈化合物、全氟己酮和全氟烷基醚类化合物。
  2. 根据权利要求1所述的锂离子电池阻燃电解液,其特征在于,所述磷腈化合物包含如式1所示结构的化合物:
    Figure PCTCN2018117556-appb-100001
    其中R 1、R 2、R 3、R 4、R 5、R 6各自独立的选自氟原子、含氟或不含氟的苯氧基、含氟或不含氟的碳原子数为1~3的烷氧基,且R 1、R 2、R 3、R 4、R 5、R 6可以相同或不同。
  3. 根据权利要求2所述的锂离子电池阻燃电解液,其特征在于,所述磷腈化合物选自全氟环三磷腈、甲氧基五氟环三磷腈、乙氧基五氟环三磷腈、正丙氧基五氟环三磷腈、异丙氧基五氟环三磷腈、苯氧基(五氟)环三磷腈、五氟乙氧基五氟环三磷腈、三氟甲氧基五氟环三磷腈、三氟乙氧基五氟环三磷腈、双(三氟甲氧基)四氟环三磷腈中的一种或多种。
  4. 根据权利要求1所述的锂离子电池阻燃电解液,其特征在于,所述全氟烷基醚类化合物包含如式2所示结构的化合物:
    式2:
    R 1——O——R 2
    其中R 1为碳原子数为1~3的烷基,R 2为碳原子数为3~6的全氟烷基。
  5. 根据权利要求4所述的锂离子电池阻燃电解液,其特征在于,所述全氟烷基醚类化合物选自全氟丙基甲基醚、全氟丙基乙基醚、全氟丙基丙基醚、全氟异丙基甲基醚、全氟异丙基乙基醚、全氟异丙基丙基醚、全氟丁基甲基醚、 全氟丁基乙基醚、全氟丁基丙基醚、全氟异丁基甲基醚、全氟异丁基乙基醚、全氟异丁基丙基醚、全氟戊基甲基醚、全氟戊基乙基醚、全氟戊基丙基醚、全氟异戊基甲基醚、全氟异戊基乙基醚、全氟异戊基丙基醚、全氟己基甲基醚、全氟己基乙基醚、全氟己基丙基醚、全氟异己基甲基醚、全氟异己基乙基醚、全氟异己基丙基醚的一种或多种。
  6. 根据权利要求1-5中任意一项所述的锂离子电池阻燃电解液,其特征在于,所述电解液中,以电解液总重量为基准,所述磷腈化合物的质量百分比含量为1%-20%,所述全氟己酮的质量百分比含量为0.5%-10%,所述全氟烷基醚类化合物的质量百分比含量为1%-15%;
    优选为所述磷腈化合物的质量百分比含量为5%-15%;所述全氟己酮的质量百分比含量为1%-6%;所述全氟烷基醚类化合物的质量百分比含量为2%-10%。
  7. 根据权利要求1中任意一项所述的锂离子电池阻燃电解液,其特征在于,所述添加剂还包括碳酸亚乙烯酯、1,3-丙烷磺酸内酯、硫酸乙烯酯、二氟磷酸锂中的一种或多种。
  8. 根据权利要求7所述的锂离子电池阻燃电解液,其特征在于,所述电解液中,以电解液总重量为基准,所述碳酸亚乙烯酯的质量百分比含量为0%-3%;所述1,3-丙烷磺酸内酯的质量百分比含量为0%-3%;所述硫酸乙烯酯的质量百分比含量为0%-3%;所述二氟磷酸锂的质量百分比含量为0%-3%。
  9. 根据权利要求1所述的锂离子电池阻燃电解液,其特征在于,所述有机溶剂包括链状碳酸酯、环状碳酸酯、羧酸酯中的一种或多种;
    所述链状碳酸酯选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯中的一种或多种;
    所述环状碳酸酯选自碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯中的一种或多种;
    所述羧酸酯选自乙酸乙酯、乙酸正丙酯、乙酸异丙酯、乙酸正丁酯、丙酸甲酸、丙酸乙酯、丙酸正丙酸、丙酸异丙酯、丁酸甲酯、丁酸乙酯中的一种或多种。
  10. 根据权利要求1所述的锂离子电池阻燃电解液,其特征在于,所述锂盐选自六氟磷酸锂、四氟硼酸锂、二氟草酸硼酸锂、双草酸硼酸锂、双氟磺氟酰亚胺锂、双(三氟甲磺酰)亚胺锂中的一种或多种;所述电解液中,以电解液总重量为基准,所述锂盐的浓度为0.5mol/L-2.5mol/L,优选为0.8mol/L-1.5mol/L。
PCT/CN2018/117556 2018-06-29 2018-11-27 一种锂离子电池阻燃电解液 WO2020000888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810699585.9A CN108923066B (zh) 2018-06-29 2018-06-29 一种锂离子电池阻燃电解液
CN201810699585.9 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020000888A1 true WO2020000888A1 (zh) 2020-01-02

Family

ID=64422444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117556 WO2020000888A1 (zh) 2018-06-29 2018-11-27 一种锂离子电池阻燃电解液

Country Status (2)

Country Link
CN (1) CN108923066B (zh)
WO (1) WO2020000888A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735774B2 (en) 2021-04-28 2023-08-22 Apple Inc. Multifunctional electrolytes for rechargeable lithium-ion batteries

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539269B (zh) * 2018-04-12 2020-02-18 南通新宙邦电子材料有限公司 一种锂离子电池电解液
CN112018441B (zh) * 2019-05-29 2022-04-12 华为技术有限公司 锂二次电池电解液及其制备方法和锂二次电池
CN112820941B (zh) * 2019-11-15 2022-10-28 浙江中蓝新能源材料有限公司 一种用于电解液的组合物
CN110994021A (zh) * 2019-11-19 2020-04-10 惠州市豪鹏科技有限公司 电解液添加剂、电解液和锂离子电池
CN111200164A (zh) * 2020-01-09 2020-05-26 中南大学 一种锂离子电池电解液及锂离子电池
CN111276742B (zh) * 2020-01-11 2021-05-11 山东理工大学 一种含有环三磷腈环的锂离子电池阻燃电解质的制备方法
CN113839087A (zh) * 2020-06-23 2021-12-24 浙江蓝天环保高科技股份有限公司 一种提高锂离子电池高低温性能的方法及其电解液
CN113871716A (zh) * 2020-06-30 2021-12-31 东营市海科新源化工有限责任公司 一种用于高镍锂离子电池的多功能电解液及锂离子电池
CN112670583A (zh) * 2020-12-30 2021-04-16 厦门大学 一种硅碳负极用非水电解液组合物及其应用
CN113851715A (zh) * 2021-09-23 2021-12-28 山东大学深圳研究院 一种高安全性磷腈基锂电池用电解液及其制备方法和应用
CN114171779B (zh) * 2021-11-22 2023-08-08 中国电子科技集团公司第十八研究所 一种高安全性的锂离子电池及其制备方法
CN115579521B (zh) * 2022-11-08 2023-05-26 湖南德赛电池有限公司 电解液添加剂、电解液及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476468B1 (en) * 2005-11-10 2009-01-13 Quallion Llc Flame retardant battery
CN102074737A (zh) * 2009-11-19 2011-05-25 三星Sdi株式会社 用于锂电池的电解质及包括其的锂电池
CN102569890A (zh) * 2012-02-13 2012-07-11 东莞新能源科技有限公司 一种锂离子二次电池及其电解液
US8815453B1 (en) * 2005-04-05 2014-08-26 Quallion Llc Flame retardant battery
CN104218258A (zh) * 2014-09-17 2014-12-17 宜春金晖新能源材料有限公司 防过充阻燃电池电解液
US9406976B2 (en) * 2012-12-24 2016-08-02 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256502A (ja) * 2011-06-08 2012-12-27 Sony Corp 非水電解質および非水電解質電池、ならびに非水電解質電池を用いた電池パック、電子機器、電動車両、蓄電装置および電力システム
KR102272272B1 (ko) * 2014-07-11 2021-07-02 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN107681199B (zh) * 2017-09-21 2020-07-17 合肥国轩高科动力能源有限公司 一种高效阻燃电解液及含有该电解液的锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815453B1 (en) * 2005-04-05 2014-08-26 Quallion Llc Flame retardant battery
US7476468B1 (en) * 2005-11-10 2009-01-13 Quallion Llc Flame retardant battery
CN102074737A (zh) * 2009-11-19 2011-05-25 三星Sdi株式会社 用于锂电池的电解质及包括其的锂电池
CN102569890A (zh) * 2012-02-13 2012-07-11 东莞新能源科技有限公司 一种锂离子二次电池及其电解液
US9406976B2 (en) * 2012-12-24 2016-08-02 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
CN104218258A (zh) * 2014-09-17 2014-12-17 宜春金晖新能源材料有限公司 防过充阻燃电池电解液

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735774B2 (en) 2021-04-28 2023-08-22 Apple Inc. Multifunctional electrolytes for rechargeable lithium-ion batteries

Also Published As

Publication number Publication date
CN108923066A (zh) 2018-11-30
CN108923066B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2020000888A1 (zh) 一种锂离子电池阻燃电解液
WO2019196417A1 (zh) 一种锂离子电池电解液
WO2021110165A1 (zh) 一种低内阻的锂二次电池电解液及锂二次电池
WO2021196426A1 (zh) 高功率锂电池用电解液及其制备方法
CN109873205A (zh) 一种适用于硅碳负极的电解液及包含该电解液的锂离子电池
CN106486696B (zh) 一种锂离子电池非水电解液和锂离子电池
WO2018024095A1 (zh) 锂离子电池添加剂,含有该添加剂的电池及制备方法
CN111276743A (zh) 一种高电压锂离子电池非水电解液及其锂离子电池
CN109003835B (zh) 一种电解液、其制备方法以及锂离子电池和锂离子电容器
CN107863556A (zh) 一种高镍材料为正极、硅碳材料为负极的锂离子电池及其电解液
CN110957529B (zh) 一种锂离子电池电解液及锂离子电池
CN109411812A (zh) 一种阻燃电解液及其锂二次电池
WO2023272864A1 (zh) 电解液及其制备方法、锂离子电池
CN107293785A (zh) 一种不可燃锂离子电池电解液及其制备方法
CN112768765A (zh) 含硫酸酯锂盐添加剂的高电压电解液及含该电解液的锂离子电池
WO2023213329A1 (zh) 富锂锰基电池体系电解液及其制备方法和含有其的富锂锰基锂离子电池
CN111129584B (zh) 一种非水电解液及其锂离子电池
CN103403949A (zh) 非水电解液用添加剂、非水电解液和非水电解液二次电池
CN110556578A (zh) 一种电解液添加剂、含有其的电解液以及该电解液在锂离子电池中的应用
CN113394450A (zh) 一种钴酸锂高电压锂离子电池非水电解液及锂离子电池
CN112820941B (zh) 一种用于电解液的组合物
CN109638354B (zh) 一种锂离子电池电解液及锂离子电池
CN112271335A (zh) 一种适用于高镍正极材料的锂离子电池的电解液和锂离子电池
CN111129664A (zh) 一种锂离子电池电解液及其锂离子电池
CN107946643B (zh) 一种高性能锂电池电解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924441

Country of ref document: EP

Kind code of ref document: A1