WO2020000256A1 - 氧化铝陶瓷的制备方法及其应用 - Google Patents

氧化铝陶瓷的制备方法及其应用 Download PDF

Info

Publication number
WO2020000256A1
WO2020000256A1 PCT/CN2018/093116 CN2018093116W WO2020000256A1 WO 2020000256 A1 WO2020000256 A1 WO 2020000256A1 CN 2018093116 W CN2018093116 W CN 2018093116W WO 2020000256 A1 WO2020000256 A1 WO 2020000256A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
alumina
hours
amount
Prior art date
Application number
PCT/CN2018/093116
Other languages
English (en)
French (fr)
Inventor
雷清泉
曾宇平
李国倡
梁汉琴
Original Assignee
青岛科技大学
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学, 中国科学院上海硅酸盐研究所 filed Critical 青岛科技大学
Publication of WO2020000256A1 publication Critical patent/WO2020000256A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present application relates to a method for preparing alumina ceramics and its application, and belongs to the field of high-voltage insulating materials.
  • Alumina (Al 2 O 3 ) ceramics are widely used in vacuum insulation systems for high-voltage electrical appliances, pulse power sources, and spacecraft structural parts due to their excellent mechanical properties, thermal stability, and dielectric properties.
  • the flashover voltage of the alumina ceramic and vacuum interface is far lower than the flashover voltage of solid medium or vacuum in the same gap distance, which seriously threatens the reliability of the system. Therefore, under the premise of not increasing the insulation distance, how to increase the insulation flashover voltage is a problem that needs to be solved in the development of small-sized, multifunctional, high-voltage vacuum equipment.
  • the existing methods for improving the flashover voltage of solid media can be roughly divided into the following aspects: (1) Improving the distortion of the "metal electrode-insulating medium-vacuum" three junctions by transforming the electrode, optimizing the insulating medium, and preparing performance gradient distribution materials. Electric field; (2) Decreasing the secondary electron emission coefficient on the surface of the material by laser treatment, plasma modification, spark point treatment, etc .; (3) Reducing the surface resistivity or trap of the material by surface coating, surface modification, etc. density.
  • the above method mainly improves the flashover voltage along the surface by processing the surface of the material or designing the macro insulation structure, which has the disadvantages of small increase range, poor stability, and sacrificing other properties.
  • the purpose of the present application is to provide a method for preparing alumina ceramics and its application, starting from the microstructure design, to realize the regulation of the flashover voltage along the surface.
  • a method for preparing an alumina ceramic the steps include:
  • the amount of each component is:
  • Alumina powder 80-95 parts by weight
  • Sintering aid 5-20 parts by weight
  • Deionized water 80-100 parts by weight
  • the pore structure modifier includes tetramethylammonium hydroxide (TMAH), polyvinyl alcohol (PVA), polyethylene glycol (PEG), and glycerin; preferably, the amount of TMAH added is 0.3-1.8 parts by weight, and the amount of PVA added It is 3-9 parts by weight, the amount of PEG is 0.5-2.5 parts by weight, and the amount of glycerol is 1.0-2.5 parts by weight.
  • TMAH tetramethylammonium hydroxide
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • glycerin glycerin
  • alumina powder, pore-forming agent and sintering aid powder are added to a deionized water solvent, and then a pore structure modifier is added to perform ball milling to obtain a mixed slurry material.
  • the sintering aid is selected from zirconia and magnesia, and the weight ratio of the two is preferably (10-30): 1.
  • the pore-forming agent is added in an amount of 12-28 parts by weight; preferably, it is starch, polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), or carbon powder.
  • PMMA polymethyl methacrylate
  • PEEK polyetheretherketone
  • the particle diameter of the alumina powder is 0.2-0.5 m
  • the particle diameter of the sintering aid is 30-100 nm
  • the particle diameter of the pore-forming agent is 0.5-5 m.
  • the ball milling in the step S1 may use alumina balls as a grinding medium for planetary ball milling; preferably, the rotation speed of the planetary ball milling is 150-450 rpm and the time is 3-8 hours.
  • the freezing temperature in the step S2 is -50 ° C to -30 ° C, and the freezing time is 4-10 hours.
  • the debinding temperature in step S3 is 500-800 ° C, and the debinding time is 3-7 hours.
  • the sintering temperature in the step S4 is 1400-1650 ° C, and the heating rate can be controlled to be 2-10 ° C / hour; and the heat preservation time after sintering is 1-4 hours.
  • a method for preparing an alumina ceramic the steps include:
  • the amount of each component is:
  • the added amount of the alumina powder is 80-95 parts by weight
  • the sintering aid is added in an amount of 5-20 parts by weight;
  • the deionized water is added in an amount of 60-90 parts by weight;
  • the pore structure modifier is polyvinyl alcohol (PVA), and the added amount thereof is preferably 2-7 parts by weight.
  • the amount of the paraffin or cyclohexane added is 5-20 parts by weight.
  • the foam stabilizer is preferably Tween 80, and the added amount is 0.1-1.5 parts by weight.
  • the sintering aid is selected from zirconia and magnesia, and the weight ratio of the two is preferably (10-30): 1.
  • the particle diameter of the alumina powder is 0.2-0.5 ⁇ m, and the particle diameter of the sintering assistant is 30-100 nm.
  • the ball milling in the step S1 may use alumina balls as a grinding medium to perform planetary ball milling.
  • the rotation speed of the planetary ball mill is 250-400 rpm, and the time is 2-6 hours.
  • the freezing temperature in the step S2 is -50 ° C to -30 ° C, and the freezing time is 4-10 hours.
  • the debinding temperature in step S3 is 500-800 ° C, and the debinding time is 3-7 hours.
  • the sintering temperature in the step S4 is 1400-1650 ° C, and the heating rate can be controlled to be 2-10 ° C / hour; and the heat preservation time after sintering is 1-4 hours.
  • an alumina ceramic can be used to increase the creepage flashover voltage of an insulating material.
  • the alumina ceramic can be prepared by using any of the preparation methods described above.
  • the alumina ceramic provided by the present application, it can be precisely controlled to obtain a porous alumina ceramic having a uniform surface pore topography, which is used to increase the flashover voltage along the surface; the structure of the alumina ceramic is adjusted from the root , Solve the shortcomings in the existing method, such as small increase in creeping voltage and poor stability.
  • FIG. 1 is a micro-morphology of alumina ceramics in Example 1;
  • FIG. 2 is the phase composition of the alumina ceramics in Example 1;
  • FIG. 3 is a finger electrode.
  • An embodiment of the present application provides a method for preparing an alumina ceramic, and the steps include:
  • the added amount of the alumina powder is 80-95 parts by weight, for example, 80 parts, 85 parts, 90 parts, 95 parts, etc., and the particle size is preferably 0.2-0.5 ⁇ m, for example, 0.2 ⁇ m, 0.3 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, and so on.
  • the sintering aid is added in an amount of 5-20 parts by weight, for example, 5 parts, 10 parts, 15 parts, 20 parts, etc., and preferably has a particle size of 30-100 nm, for example, 30 nm, 35 nm, 40 nm, and 45 nm. , 50nm, 55nm, 60nm, 66nm, 70nm, 80nm, 90nm, etc.
  • the sintering aid is preferably zirconia and magnesia, and the weight ratio of the two is (10-30): 1, for example, it can be 10: 1, 12: 1, 15: 1, 18: 1, 20: 1, 25: 1, 30: 1 and so on.
  • the role of zirconia is to enhance the toughness of the matrix
  • the role of magnesium oxide is to suppress the growth of alumina grains to obtain an alumina ceramic with a fine crystal structure.
  • the added amount of the deionized water is preferably 70 to 100 parts by weight, and may be, for example, 70 parts, 80 parts, 90 parts, 95 parts, and the like.
  • the pore structure modifier includes tetramethylammonium hydroxide (TMAH), polyvinyl alcohol (PVA), polyethylene glycol (PEG), and glycerol.
  • TMAH tetramethylammonium hydroxide
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • glycerol tetramethylammonium hydroxide
  • the addition amount of TMAH is preferably 0.3-1.8 parts by weight, such as 0.5 parts, 1.0 parts, 1.5 parts, etc.
  • PVA polyethylene glycol
  • glycerol glycerol
  • TMAH tetramethylammonium hydroxide
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • glycerol act similarly to polyvinyl alcohol.
  • the ball milling in the step S1 may use alumina balls as a grinding medium to perform planetary ball milling.
  • the rotation speed of the planetary ball mill is 150-450 rpm, and the time is 3-8 hours.
  • the freezing temperature in the step S2 is -50 ° C to -30 ° C, and the freezing time is 4-10 hours.
  • the debinding temperature in the step S3 is 500-800 ° C, and the debinding time is 3-7 hours.
  • the sintering temperature in the step S4 is 1400-1650 ° C, and the heating rate can be controlled to be 2-10 ° C / hour; and the heat preservation time after sintering is 1-4 hours.
  • the second embodiment of the present application provides another method for preparing an alumina ceramic, and the steps include:
  • the added amount of the alumina powder is 80-95 parts by weight, and the particle size is preferably 0.2-0.5 ⁇ m.
  • the pore-forming agent is added in an amount of 12-28 parts by weight, for example, 15 parts, 20 parts, 22 parts, 25 parts, etc .; preferably starch, polymethyl methacrylate (PMMA), polyetheretherketone (PEEK) or carbon powder, the particle diameter is preferably 0.5-5 ⁇ m, for example, 0.8 ⁇ m, 1.0 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, etc .; its role is to form in situ Porosity.
  • PMMA polymethyl methacrylate
  • PEEK polyetheretherketone
  • the sintering aid is added in an amount of 5-20 parts by weight, and preferably has a particle diameter of 30-100 nm. Zirconium oxide and magnesium oxide are preferred, and the weight ratio of the two is (10-30): 1.
  • the added amount of the deionized water is preferably 80-100 parts by weight.
  • the pore structure modifier includes tetramethylammonium hydroxide (TMAH), polyvinyl alcohol (PVA), polyethylene glycol (PEG), and glycerol.
  • TMAH tetramethylammonium hydroxide
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • glycerol a compound that has a high degree of tetramethylammonium hydroxide
  • the addition amount of TMAH is preferably 0.3-1.8 parts by weight
  • the addition amount of PVA is 3-9 parts by weight
  • the addition amount of PEG is 0.5-2.5 parts by weight
  • the addition amount of glycerol is 1.0-2.5 parts by weight.
  • the ball milling in the step S1 may use alumina balls as a grinding medium to perform planetary ball milling.
  • the rotation speed of the planetary ball mill is 150-450 rpm, and the time is 3-8 hours.
  • the freezing temperature in the step S2 is -50 ° C to -30 ° C, and the freezing time is 4-10 hours.
  • the debinding temperature in step S3 is 500-800 ° C, and the debinding time is 3-7 hours.
  • the sintering temperature in the step S4 is 1400-1650 ° C, and the heating rate can be controlled to be 2-10 ° C / hour; and the heat preservation time after sintering is 1-4 hours.
  • the third embodiment of the present application provides another method for preparing alumina ceramics, and the steps include:
  • the added amount of the alumina powder is 80-95 parts by weight, and the particle size is preferably 0.2-0.5 ⁇ m.
  • the sintering aid is added in an amount of 5-20 parts by weight; preferably, the particle diameter is 30-100 nm. Zirconium oxide and magnesium oxide are preferred, and the weight ratio of the two is (10-30): 1.
  • the added amount of the deionized water is preferably 60-90 parts by weight.
  • the pore structure modifier is preferably polyvinyl alcohol (PVA), and the added amount thereof is 2-7 parts by weight, for example, it can be 4 parts, 5 parts, 6 parts, and the like.
  • PVA polyvinyl alcohol
  • the added amount of the paraffin or cyclohexane is 5-20 parts by weight, for example, it can be 8 parts, 10 parts, 12 parts, 15 parts, 18 parts, and the like. Its role is to act as a pore-forming agent, forming pores in situ.
  • the foam stabilizer is preferably Tween 80, and the added amount is 0.1-1.5 parts by weight; for example, it can be 0.2 parts, 0.5 parts, 0.8 parts, 1.0 parts, 1.2 parts, and so on.
  • the ball milling in the step S1 may use alumina balls as a grinding medium to perform planetary ball milling.
  • the rotation speed of the planetary ball mill is 250-400 rpm, and the time is 2-6 hours.
  • the freezing temperature in the step S2 is -50 ° C to -30 ° C, and the freezing time is 4-10 hours.
  • the debinding temperature in step S3 is 500-800 ° C, and the debinding time is 3-7 hours.
  • the sintering temperature in the step S4 is 1400-1650 ° C, and the heating rate can be controlled to be 2-10 ° C / hour; and the heat preservation time after sintering is 1-4 hours.
  • the fourth embodiment of the present application provides an application of alumina ceramics.
  • the alumina ceramics prepared by the method in the above embodiments can be used for insulating materials to increase the creepage voltage of the insulating materials.
  • the preparation method described in the present application has characteristics for the selection of experimental variables such as pore-forming agent, pore structure regulator, and other components and mass ratio. Due to the thermal properties of different types and contents of ingredients in the molding process, the characteristics of pore formation during debonding are different. Therefore, the use of the appropriate type and amount of ingredients is very important to obtain defect-free, high-performance porous alumina ceramics.
  • the present application obtains a porous alumina ceramic with significantly improved flashover voltage, based on a reasonable selection of the type and content of the ingredients and corresponding optimization of the preparation process parameters.
  • a method for preparing alumina ceramics includes:
  • TMAH tetramethylammonium hydroxide
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • glycerin alumina ball as grinding medium, planetary ball mill, rotating speed is 150 rpm, and time is 8 hours to obtain mixed slurry
  • Alumina powder 80 parts by weight and particle size of 0.2 ⁇ m;
  • Zirconia 19.35 parts by weight and 50 nm particle size
  • Magnesium oxide 0.65 parts by weight, particle size 30nm;
  • Deionized water 80 parts by weight
  • TMAH Tetramethylammonium hydroxide
  • Glycerin 1.0 part by weight
  • FIG. 1 shows the microscopic morphology of the alumina ceramic obtained by the method of this embodiment
  • FIG. 2 shows the composition of the phases. From the figure, it can be seen that the gray phase is Al 2 O 3 grains and the white phase is ZrO 2 grains. Al 2 O 3 grains are bonded and stacked with each other to form a spatial network structure with certain voids. ZrO 2 grains are distributed at the Al 2 O 3 grain interface, which enhances the strength and toughness of the network.
  • a method for preparing alumina ceramics includes:
  • Alumina powder 95 parts by weight, particle diameter of 0.3 ⁇ m;
  • Zirconia 4.54 parts by weight and particle size of 60nm;
  • Magnesium oxide 0.46 parts by weight, particle size is 50nm;
  • TMAH Tetramethylammonium hydroxide
  • Polyvinyl alcohol (PVA) 9 parts by weight
  • Polyethylene glycol (PEG) 2.5 parts by weight
  • Glycerin 2.5 parts by weight
  • a method for preparing alumina ceramics includes:
  • TMAH tetramethylammonium hydroxide
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • glycerin glycerin
  • Alumina powder 90 parts by weight and a particle size of 0.4 ⁇ m;
  • Starch 12 parts by weight and particle size of 1 ⁇ m;
  • Zirconia 9.38 parts by weight, particle size 80nm;
  • Magnesium oxide 0.62 parts by weight, particle size is 60nm;
  • TMAH Tetramethylammonium hydroxide
  • Glycerin 1.0 part by weight
  • the same weight parts of PMMA, PEEK or carbon powder can also be used instead of starch;
  • a method for preparing alumina ceramics includes:
  • TMAH tetramethylammonium hydroxide
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • glycerin glycerin
  • Alumina powder 85 parts by weight and particle size of 0.5 ⁇ m;
  • PMMA 28 parts by weight and 5 ⁇ m in particle size
  • Zirconia 14.06 parts by weight and particle size of 100 nm;
  • Magnesium oxide 0.94 parts by weight, particle size is 100nm;
  • TMAH Tetramethylammonium hydroxide
  • Polyethylene glycol (PEG) 1.5 parts by weight
  • Glycerin 1.5 parts by weight
  • the same weight parts of starch, PEEK or carbon powder can also be used instead of PMMA;
  • a method for preparing alumina ceramics includes:
  • Alumina powder 80 parts by weight and particle size of 0.4 ⁇ m;
  • Zirconia 19.35 parts by weight and particle size of 100 nm;
  • Magnesium oxide 0.65 parts by weight, particle size is 50nm;
  • Deionized water 60 parts by weight
  • Polyvinyl alcohol (PVA) 2.0 parts by weight
  • Paraffin 5.0 parts by weight
  • Tween 80 0.1 parts by weight
  • a method for preparing alumina ceramics includes:
  • Alumina powder 95 parts by weight and particle size of 0.5 ⁇ m;
  • Zirconia 4.54 parts by weight, particle size is 50nm;
  • Magnesium oxide 0.46 parts by weight, particle size is 100nm;
  • Deionized water 70 parts by weight
  • Polyvinyl alcohol (PVA) 7 parts by weight
  • Tween 80 1.5 parts by weight
  • TMAH tetramethylammonium hydroxide
  • PVA polyvinyl alcohol
  • Alumina powder 80 parts by weight and particle size of 0.4 ⁇ m;
  • Zirconia 19.35 parts by weight and 50 nm particle size
  • Magnesium oxide 0.65 parts by weight, particle size is 50nm;
  • Deionized water 80 parts by weight
  • TMAH Tetramethylammonium hydroxide
  • the formed green body was degummed at 600 ° C. for 7 hours, then heated to 1600 ° C. at a rate of 10 ° C./min, and held for 4 hours to obtain the dense alumina comparative sample with the conventional porosity of 0.1%.
  • the test method is as follows: The stepwise boost method is used to test the vacuum creepage flashover voltage of the obtained alumina ceramic insulation material, and the first flashover voltage (U fb ), the ageing voltage (U co ), and the withstand voltage ( U ho ) to evaluate the creepage resistance characteristics of the sample under the action of pulse voltage. During the test, the degree of vacuum was better than 5 ⁇ 10 -3 Pa.
  • Example 1 The representative data of Example 1, Example 3 and Example 7 are selected in Table 1 as the representative examples of the present application.
  • Example 7 is the experimental data of the dense alumina ceramic obtained by the traditional method, and is used as the control group. .
  • the alumina ceramics obtained in this application can all be used to improve the creepage voltage of the insulating material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种氧化铝陶瓷的制备方法及其应用,制备方法包括:S1:将氧化铝粉、烧结助剂粉加入到去离子水溶剂中,然后加入孔结构调节剂,进行球磨,得到混合浆料;S2:将混合浆料进行冷冻后置于冷冻干燥机中成型,得到成型好的素坯;S3:将素坯进行排胶处理,使得有机物充分排除,得到样品;S4:将样品进行烧结,得到所述的氧化铝陶瓷。制备得到的氧化铝陶瓷可以用于提高绝缘材料的沿面闪络电压。

Description

氧化铝陶瓷的制备方法及其应用 技术领域:
本申请涉及一种氧化铝陶瓷的制备方法及其应用,属于高电压绝缘材料领域。
背景技术:
氧化铝(Al 2O 3)陶瓷以其优异的机械性能、热稳定性和介电性能被广泛应用于高压电器、脉冲功率源、航天器结构件的真空绝缘系统。氧化铝陶瓷与真空界面的沿面闪络电压远低于同一间隙距离固体介质或真空的闪络电压,严重威胁了系统的可靠性。因此,在不增加绝缘距离的前提下,如何提高绝缘沿面闪络电压是发展小尺寸、多功能、高电压等级真空设备亟需解决的问题。
已有关于改善固体介质沿面闪络电压的方法,大致分为以下方面:(1)通过改造电极、优化绝缘介质、制备性能梯度分布材料等改善“金属电极-绝缘介质-真空”三结合点畸变电场;(2)通过材料表面激光处理、等离子体改性、火花放点处理等降低材料表面二次电子发射系数;(3)通过材料表面涂层、表面改性等降低材料表面电阻率或陷阱密度。上述方法主要通过对材料表面的处理或宏观绝缘结构的设计,提高沿面闪络电压,存在提升幅度小,稳定性差、牺牲其他性能等缺点。
发明内容
本申请的目的在于提供一种氧化铝陶瓷的制备方法及其应用,从微观结构设计出发,实现沿面闪络电压的调控。
本申请的技术方案为:
(1)一种氧化铝陶瓷的制备方法,其步骤包括:
S1:将氧化铝粉、烧结助剂粉加入到去离子水溶剂中,然后加入孔结构调节剂,进行球磨,得到混合浆料;
S2:将所述混合浆料进行冷冻后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,得到所述的氧化铝陶瓷。
其中,各组分的加入量分别为:
氧化铝粉:80-95重量份;
烧结助剂:5-20重量份;
去离子水:80-100重量份;
所述孔结构调节剂包括四甲基氢氧化铵(TMAH)、聚乙烯醇(PVA)、聚乙二醇(PEG)和甘油;优选TMAH的加入量为0.3-1.8重量份,PVA的加入量为3-9重量份,PEG的加入量为0.5-2.5重量份,甘油的加入量为1.0-2.5重量份。
作为一种优选的实施方式,进一步地,所述S1中,将氧化铝粉、造孔剂和烧结助剂粉加入到去离子水溶剂中,然后加入孔结构调节剂,进行球磨,得到混合浆料。
作为一种优选的实施方式,所述烧结助剂选择氧化锆和氧化镁,优选二者的重量比为(10-30):1。
作为一种优选的实施方式,所述造孔剂的加入量为12-28重量份;优选为淀粉、聚甲基丙烯酸甲酯(PMMA)、聚醚醚酮(PEEK)或碳粉。
作为一种优选的实施方式,所述氧化铝粉的粒径为0.2-0.5μm,所述烧结助 剂的粒径为30-100nm,所述造孔剂的粒径为0.5-5μm。
作为一种优选的实施方式,所述步骤S1中的球磨可以以氧化铝球为研磨介质,进行行星球磨;优选所述行星球磨的转速为150-450rpm,时间为3-8小时。
作为一种优选的实施方式,所述步骤S2中的冷冻温度为-50℃至-30℃,冷冻时间为4-10小时。
作为一种优选的实施方式,所述步骤S3中的排胶温度为500-800℃,排胶时间为3-7小时。
作为一种优选的实施方式,所述步骤S4中的烧结温度为1400-1650℃,可控制升温速率为2-10℃/小时;烧结后的保温时间为1-4小时。
(2)一种氧化铝陶瓷的制备方法,其步骤包括:
S1:将氧化铝粉、烧结助剂粉加入到去离子水溶剂中,加入孔结构调节剂,进行球磨,得到第一混合浆料;然后将石蜡或环己烷加入所述第一混合浆料中,并加入稳泡剂,继续球磨,得到第二混合浆料;
S2:将所述第二混合浆料进行冷冻后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,得到所述的氧化铝陶瓷。
其中,各组分的加入量分别为:
所述氧化铝粉的加入量为80-95重量份;
所述烧结助剂的加入量为5-20重量份;
所述去离子水的加入量为60-90重量份;
所述孔结构调节剂为聚乙烯醇(PVA),优选其加入量为2-7重量份。
所述石蜡或环己烷的加入量为5-20重量份。所述稳泡剂优选为吐温80,其加入量为0.1-1.5重量份。
作为一种优选的实施方式,所述烧结助剂选择氧化锆和氧化镁,优选二者的重量比为(10-30):1。
作为一种优选的实施方式,所述氧化铝粉的粒径为0.2-0.5μm,所述烧结助剂的粒径为30-100nm。
作为一种优选的实施方式,所述步骤S1中的球磨可以以氧化铝球为研磨介质,进行行星球磨。优选所述行星球磨的转速为250-400rpm,时间为2-6小时。
作为一种优选的实施方式,所述步骤S2中的冷冻温度为-50℃至-30℃,冷冻时间为4-10小时。
作为一种优选的实施方式,所述步骤S3中的排胶温度为500-800℃,排胶时间为3-7小时。
作为一种优选的实施方式,所述步骤S4中的烧结温度为1400-1650℃,可控制升温速率为2-10℃/小时;烧结后的保温时间为1-4小时。
(3)一种氧化铝陶瓷的应用,可以用于提高绝缘材料的沿面闪络电压。所述氧化铝陶瓷可以采用前文所述的任意制备方法制备而得。
本申请的有益效果:
通过本申请提供的氧化铝陶瓷的制备方法,可以精确控制,以获得具有均匀表面孔形貌的多孔氧化铝陶瓷,用于提高沿面闪络电压;从根源上对氧化铝陶瓷的结构进行了调整,解决了现有方法中沿面闪络电压提升幅度小,稳定性差等不足。
附图说明
图1为实施例1中氧化铝陶瓷的显微形貌;
图2为实施例1中氧化铝陶瓷的物相组成;
图3为指状电极。
具体实施方式
以下结合具体实施方式对本申请的技术方案进行详实的阐述,然而应当理解,在没有进一步叙述的情况下,一个实施方式中结构或特征也可以有益地结合到其他实施方式中。
在本申请的描述中,需要说明的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。所述的实施方式仅仅是对本申请的优选实施方式进行描述,并非对本申请的范围进行限定,在不脱离本申请设计精神的前提下,本领域普通技术人员对本申请的技术方案作出的各种变形和改进,均应落入本申请权利要求书确定的保护范围内。
本申请的一种实施方式提供了一种氧化铝陶瓷的制备方法,其步骤包括:
S1:将氧化铝粉、烧结助剂粉加入到去离子水溶剂中,然后加入孔结构调节剂,进行球磨,得到混合浆料;
S2:将所述混合浆料进行冷冻后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,得到所述的氧化铝陶瓷。
其中:
所述氧化铝粉的加入量为80-95重量份,例如可为80份、85份、90份、95份等等,优选粒径为0.2-0.5μm,例如可为0.2μm,0.3μm,0.4μm,0.5μm等等。
所述烧结助剂的加入量为5-20重量份,例如可为5份、10份、15份、20份等等,优选粒径为30-100nm,例如可为30nm、35nm、40nm、45nm、50nm、55nm、60nm、66nm、70nm、80nm、90nm等等。
所述烧结助剂优选为氧化锆和氧化镁,二者的重量比为(10-30):1,例如可以为10:1,12:1,15:1,18:1,20:1,25:1,30:1等等。其中,氧化锆的作用在于增强基体韧性,氧化镁的作用在于抑制氧化铝晶粒生长,得到细晶结构的氧化铝陶瓷。
所述去离子水的加入量优选为70-100重量份,例如可为70份、80份、90份、95份等等。
所述孔结构调节剂包括四甲基氢氧化铵(TMAH)、聚乙烯醇(PVA)、聚乙二醇(PEG)和甘油。其中,优选TMAH的加入量为0.3-1.8重量份,例如可为0.5份、1.0份、1.5份等等,PVA的加入量为3-9重量份,例如可为4份、6份、8份等等,PEG的加入量为0.5-2.5重量份,例如可为1.0份、1.5份、2.0份等等,甘油的加入量为1.0-2.5重量份,例如可为1.5份、2.0份等等。其中,四甲基氢氧化铵(TMAH)作为分散剂,促进各粉体之间的均匀分散,避免团聚;聚乙烯醇(PVA)作为粘结剂,同时降低冰晶的生长速率,调节孔径尺寸和形貌;聚乙二醇(PEG)和甘油的作用与聚乙烯醇类似。
作为一种优选的实施方式,所述步骤S1中的球磨可以以氧化铝球为研磨介质,进行行星球磨。优选所述行星球磨的转速为150-450rpm,时间为3-8小时。
作为一种优选的实施方式,所述步骤S2中的冷冻温度为-50℃至-30℃,冷冻时间为4-10小时。
作为一种优选的实施方式,所述步骤S3中的排胶温度为500-800℃,排胶 时间为3-7小时。
作为一种优选的实施方式,所述步骤S4中的烧结温度为1400-1650℃,可控制升温速率为2-10℃/小时;烧结后的保温时间为1-4小时。
本申请的第二种实施方式提供了另一种氧化铝陶瓷的制备方法,其步骤包括:
S1:将氧化铝粉、造孔剂和烧结助剂粉加入到去离子水溶剂中,然后加入孔结构调节剂,进行球磨,得到混合浆料;
S2:将所述混合浆料进行冷冻后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,得到所述的氧化铝陶瓷。
其中:
所述氧化铝粉的加入量为80-95重量份,优选粒径为0.2-0.5μm。
所述造孔剂的加入量为12-28重量份,例如可为15份、20份、22份、25份等等;优选为淀粉、聚甲基丙烯酸甲酯(PMMA)、聚醚醚酮(PEEK)或碳粉,粒径优选为0.5-5μm,例如可为0.8μm、1.0μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm等等;其作用在于原位形成孔隙。
所述烧结助剂的加入量为5-20重量份,优选粒径为30-100nm。优选为氧化锆和氧化镁,二者的重量比为(10-30):1。
所述去离子水的加入量优选为80-100重量份。
所述孔结构调节剂包括四甲基氢氧化铵(TMAH)、聚乙烯醇(PVA)、聚乙二醇(PEG)和甘油。其中,优选TMAH的加入量为0.3-1.8重量份,PVA的 加入量为3-9重量份,PEG的加入量为0.5-2.5重量份,甘油的加入量为1.0-2.5重量份。
作为一种优选的实施方式,所述步骤S1中的球磨可以以氧化铝球为研磨介质,进行行星球磨。优选所述行星球磨的转速为150-450rpm,时间为3-8小时。
作为一种优选的实施方式,所述步骤S2中的冷冻温度为-50℃至-30℃,冷冻时间为4-10小时。
作为一种优选的实施方式,所述步骤S3中的排胶温度为500-800℃,排胶时间为3-7小时。
作为一种优选的实施方式,所述步骤S4中的烧结温度为1400-1650℃,可控制升温速率为2-10℃/小时;烧结后的保温时间为1-4小时。
本申请的第三种实施方式提供了再一种氧化铝陶瓷的制备方法,其步骤包括:
S1:将氧化铝粉、烧结助剂粉加入到去离子水溶剂中,加入孔结构调节剂,进行球磨,得到第一混合浆料;然后将石蜡或环己烷加入所述第一混合浆料中,并加入稳泡剂,继续球磨,得到第二混合浆料;
S2:将所述第二混合浆料进行冷冻后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,得到所述的氧化铝陶瓷。
其中:
所述氧化铝粉的加入量为80-95重量份,优选粒径为0.2-0.5μm。
所述烧结助剂的加入量为5-20重量份;优选粒径为30-100nm。优选为氧化 锆和氧化镁,二者的重量比为(10-30):1。
所述去离子水的加入量优选为60-90重量份。
所述孔结构调节剂优选为聚乙烯醇(PVA),其加入量为2-7重量份,例如可以为4份、5份、6份等等。聚乙烯醇(PVA)作为粘结剂,同时降低冰晶的生长速率,调节孔径尺寸和形貌。
所述石蜡或环己烷的加入量为5-20重量份,例如可为8份、10份、12份、15份、18份等等。其作用是作为造孔剂,原位形成孔隙。
所述稳泡剂优选为吐温80,其加入量为0.1-1.5重量份;例如可为0.2份、0.5份、0.8份、1.0份、1.2份等等。
作为一种优选的实施方式,所述步骤S1中的球磨可以以氧化铝球为研磨介质,进行行星球磨。优选所述行星球磨的转速为250-400rpm,时间为2-6小时。
作为一种优选的实施方式,所述步骤S2中的冷冻温度为-50℃至-30℃,冷冻时间为4-10小时。
作为一种优选的实施方式,所述步骤S3中的排胶温度为500-800℃,排胶时间为3-7小时。
作为一种优选的实施方式,所述步骤S4中的烧结温度为1400-1650℃,可控制升温速率为2-10℃/小时;烧结后的保温时间为1-4小时。
本申请的第四种实施方式提供了一种氧化铝陶瓷的应用,采用上述实施方式中的方法制备得到的氧化铝陶瓷可以用于绝缘材料,以提高绝缘材料的沿面闪络电压。
本申请所述的制备方法对于造孔剂、孔结构调节剂等成分和质量比例等实验变量的选择具有特色。由于不同种类和含量的成分在成型过程中的热性能, 脱粘过程中成孔的特性都有所不同。因而,采用合适种类和添加量的成分对于获得无缺陷,性能优越的多孔氧化铝陶瓷至关重要。
本申请出于对成分种类和含量的合理选择,同时辅以制备工艺参数进行相应优化获得了闪络电压显著提高的多孔氧化铝陶瓷。
以下结合实施例对本申请进行详细的阐述,可以理解的是这些实施例仅用于示例性地展示本申请,并不能理解为对本申请的保护范围的限制。
实施例1
一种氧化铝陶瓷的制备方法,包括:
S1:将氧化铝粉、氧化锆和氧化镁加入到去离子水中,然后加入四甲基氢氧化铵(TMAH)、聚乙烯醇(PVA)、聚乙二醇(PEG)和甘油作为孔结构调节剂,采用氧化铝球为研磨介质,行星球磨,转速为150rpm,时间为8小时,得到混合浆料;
其中,各组分的参数如下:
氧化铝粉:重量份为80,粒径为0.2μm;
氧化锆:重量份为19.35,粒径为50nm;
氧化镁:重量份为0.65,粒径为30nm;
去离子水:重量份为80;
四甲基氢氧化铵(TMAH):重量份为0.3;
聚乙烯醇(PVA):重量份为3.0;
聚乙二醇(PEG):重量份为0.5;
甘油:重量份为1.0;
S2:将混合浆料注入铝膜中冷冻10小时,冷冻温度为-30℃,然后置于冷冻 干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,排胶温度为500℃,排胶时间为7小时,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,烧结温度为1400℃,升温速率为10℃/小时,保温4小时后,得到所述孔隙率为63.9%的氧化铝陶瓷。
图1为采用本实施例的方法得到的氧化铝陶瓷的显微形貌,图2为其物相组成;由图中可知灰色相为Al 2O 3晶粒,白色相为ZrO 2晶粒。Al 2O 3晶粒之间相互键合堆积成具有一定空隙的空间网络结构,ZrO 2晶粒分布于Al 2O 3晶粒界面处,起到增强网络强韧性的作用。
实施例2
一种氧化铝陶瓷的制备方法,包括:
S1:将氧化铝粉、氧化锆和氧化镁加入到去离子水中,然后加入四甲基氢氧化铵(TMAH)、聚乙烯醇(PVA)、聚乙二醇(PEG)和甘油作为孔结构调节剂,采用氧化铝球为研磨介质,行星球磨,转速为450rpm,时间为3小时,得到混合浆料;
其中,各组分的参数如下:
氧化铝粉:重量份为95,粒径为0.3μm;
氧化锆:重量份为4.54,粒径为60nm;
氧化镁:重量份为0.46,粒径为50nm;
去离子水:重量份为75;
四甲基氢氧化铵(TMAH):重量份为1.8;
聚乙烯醇(PVA):重量份为9;
聚乙二醇(PEG):重量份为2.5;
甘油:重量份为2.5;
S2:将混合浆料注入铝膜中冷冻4小时,冷冻温度为-50℃,然后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,排胶温度为800℃,排胶时间为3小时,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,烧结温度为1650℃,升温速率为2℃/小时,保温1小时后,得到所述孔隙率为42.5%的化铝陶瓷。
实施例3
一种氧化铝陶瓷的制备方法,包括:
S1:将氧化铝粉、淀粉、氧化锆和氧化镁加入到去离子水中,然后加入四甲基氢氧化铵(TMAH)、聚乙烯醇(PVA)、聚乙二醇(PEG)和甘油作为孔结构调节剂,采用氧化铝球为研磨介质,行星球磨,转速为250rpm,时间为5小时,得到混合浆料;
其中,各组分的参数如下:
氧化铝粉:重量份为90,粒径为0.4μm;
淀粉:重量份为12,粒径为1μm;
氧化锆:重量份为9.38,粒径为80nm;
氧化镁:重量份为0.62,粒径为60nm;
去离子水:重量份为95;
四甲基氢氧化铵(TMAH):重量份为0.5;
聚乙烯醇(PVA):重量份为5.0;
聚乙二醇(PEG):重量份为1.0;
甘油:重量份为1.0;
其中,也可以采用相同重量份的PMMA、PEEK或碳粉替代淀粉;
S2:将混合浆料注入铝膜中冷冻8小时,冷冻温度为-35℃,然后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,排胶温度为700℃,排胶时间为4小时,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,烧结温度为1600℃,升温速率为4℃/小时,保温2小时后,得到所述孔隙率为48.6%的氧化铝陶瓷。
实施例4
一种氧化铝陶瓷的制备方法,包括:
S1:将氧化铝粉、PMMA、氧化锆和氧化镁加入到去离子水中,然后加入四甲基氢氧化铵(TMAH)、聚乙烯醇(PVA)、聚乙二醇(PEG)和甘油作为孔结构调节剂,采用氧化铝球为研磨介质,行星球磨,转速为350rpm,时间为3小时,得到混合浆料;
其中,各组分的参数如下:
氧化铝粉:重量份为85,粒径为0.5μm;
PMMA:重量份为28,粒径为5μm;
氧化锆:重量份为14.06,粒径为100nm;
氧化镁:重量份为0.94,粒径为100nm;
去离子水:重量份为95;
四甲基氢氧化铵(TMAH):重量份为1.5;
聚乙烯醇(PVA):重量份为7.0;
聚乙二醇(PEG):重量份为1.5;
甘油:重量份为1.5;
其中,也可以采用相同重量份的淀粉、PEEK或碳粉替代PMMA;
S2:将混合浆料注入铝膜中冷冻6小时,冷冻温度为-45℃,然后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,排胶温度为600℃,排胶时间为5小时,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,烧结温度为1550℃,升温速率为6℃/小时,保温3小时后,得到所述孔隙率为54.7%的氧化铝陶瓷。
实施例5
一种氧化铝陶瓷的制备方法,包括:
S1:将氧化铝粉、氧化锆和氧化镁加入到去离子水中,然后加入PVA作为孔结构调节剂,采用氧化铝球为研磨介质,行星球磨,转速为250rpm,时间为6小时,得到第一混合浆料;然后将石蜡、吐温80分别加入第一混合浆料中,继续球磨2小时,得到第二混合浆料;
其中,各组分的参数如下:
氧化铝粉:重量份为80,粒径为0.4μm;
氧化锆:重量份为19.35,粒径为100nm;
氧化镁:重量份为0.65,粒径为50nm;
去离子水:重量份为60;
聚乙烯醇(PVA):重量份为2.0;
石蜡:重量份为5.0;
吐温80:重量份为0.1;
S2:将第二混合浆料注入铝膜中冷冻10小时,冷冻温度为-30℃,然后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,排胶温度为500℃,排胶时间为7小时,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,烧结温度为1650℃,升温速率为5℃/小时,保温1.5小时后,得到所述孔隙率为43.2%的氧化铝陶瓷。
实施例6
一种氧化铝陶瓷的制备方法,包括:
S1:将氧化铝粉、氧化锆和氧化镁加入到去离子水中,然后加入PVA作为孔结构调节剂,采用氧化铝球为研磨介质,行星球磨,转速为400rpm,时间为2小时,得到第一混合浆料;然后将环己烷、吐温80分别加入第一混合浆料中,继续球磨3小时,得到第二混合浆料;
其中,各组分的参数如下:
氧化铝粉:重量份为95,粒径为0.5μm;
氧化锆:重量份为4.54,粒径为50nm;
氧化镁:重量份为0.46,粒径为100nm;
去离子水:重量份为70;
聚乙烯醇(PVA):重量份为7;
环己烷:重量份为20;
吐温80:重量份为1.5;
S2:将第二混合浆料注入铝膜中冷冻4小时,冷冻温度为-50℃,然后置于冷冻干燥机中成型,得到成型好的素坯;
S3:将所述素坯进行排胶处理,排胶温度为800℃,排胶时间为3小时,使得有机物充分排除,得到样品;
S4:将所述样品进行烧结,烧结温度为1400℃,升温速率为8℃/小时,保温4小时后,得到所述孔隙率为61.8%的氧化铝陶瓷。
实施例7(对比例)
将氧化铝粉、氧化锆和氧化镁加入到去离子水中,然后加入四甲基氢氧化铵(TMAH)、聚乙烯醇(PVA)作为粘结剂,采用氧化铝球为研磨介质,行星球磨,转速为300rpm,时间为4小时,得到混合浆料;
其中,各组分的参数如下:
氧化铝粉:重量份为80,粒径为0.4μm;
氧化锆:重量份为19.35,粒径为50nm;
氧化镁:重量份为0.65,粒径为50nm;
去离子水:重量份为80;
四甲基氢氧化铵(TMAH):重量份为0.3;
聚乙烯醇(PVA):重量份为3.0;
将混合浆料烘干后研磨过100目筛,然后将所得粉体在80MPa下干压成型,随后200MPa下等静压成型;
将成型后的素坯在600℃下排胶7小时,然后以10℃/min的速率升温至1600℃,保温4小时,得到所述常规孔隙率为0.1%的致密氧化铝对比样。
实验及结果:
在进行沿面闪络电压测试时,采用如图3所示的指状电极,电极间距5.0mm,波形采用雷电冲击电压。
测试方法如下:采用逐级升压法对所得的氧化铝陶瓷绝缘材料的真空沿面闪络电压进行测试,并使用首次闪络电压(U fb)、老炼电压(U co)和耐受电压(U ho)来评价脉冲电压作用下试品的沿面耐电特性。测试时,真空度优于5×10 -3Pa。
表1中选取了具有代表性的实施例1、实施例3和实施例7的数据作为本申请的代表实施例,实施例7为采用传统方法得到的致密氧化铝陶瓷的实验数据,作为对照组。
表1样品在雷电冲击下的闪络电压
Figure PCTCN2018093116-appb-000001
实验结果表明:雷电脉冲冲击下采用本申请所提供的方法得到的多孔结构氧化铝陶瓷,其初闪电压、老炼电压和耐受电压相对于实施例7分别提高了105%、76%、78%(实验组1)或分别提高了43%、57%、70%(实验组3)。
可见,本申请得到的氧化铝陶瓷都可以很好地用在提高绝缘材料的沿面闪络电压上。

Claims (10)

  1. 一种氧化铝陶瓷的制备方法,其步骤包括:
    S1:将氧化铝粉、烧结助剂粉加入到去离子水溶剂中,然后加入孔结构调节剂,进行球磨,得到混合浆料;
    S2:将所述混合浆料进行冷冻后置于冷冻干燥机中成型,得到成型好的素坯;
    S3:将所述素坯进行排胶处理,使得有机物充分排除,得到样品;
    S4:将所述样品进行烧结,得到所述的氧化铝陶瓷;
    其中,各组分的加入量分别为:
    氧化铝粉:80-95重量份;
    烧结助剂:5-20重量份;
    去离子水:80-100重量份;
    所述孔结构调节剂包括TMAH、PVA、PEG和甘油;TMAH的加入量为0.3-1.8重量份,PVA的加入量为3-9重量份,PEG的加入量为0.5-2.5重量份,甘油的加入量为1.0-2.5重量份。
  2. 根据权利要求1所述的氧化铝陶瓷的制备方法,其特征在于,所述S1中,将氧化铝粉、造孔剂和烧结助剂粉加入到去离子水溶剂中,然后加入孔结构调节剂,进行球磨,得到混合浆料。
  3. 根据权利要求1或2所述的氧化铝陶瓷的制备方法,其特征在于,所述烧结助剂选择氧化锆和氧化镁,二者的重量比为(10-30):1。
  4. 根据权利要求2所述的氧化铝陶瓷的制备方法,其特征在于,所述造孔剂的加入量为12-28重量份;选用淀粉、PMMA、PEEK或碳粉。
  5. 根据权利要求2或4所述的氧化铝陶瓷的制备方法,其特征在于,所述氧化铝粉的粒径为0.2-0.5μm,所述烧结助剂的粒径为30-100nm,所述造孔剂的粒径为0.5-5μm。
  6. 根据权利要求1所述的氧化铝陶瓷的制备方法,其特征在于,所述步骤S1中的球磨以氧化铝球为研磨介质,进行行星球磨;所述行星球磨的转速为150-450rpm,时间为3-8小时;所述步骤S2中的冷冻温度为-50℃至-30℃,冷冻时间为4-10小时;所述步骤S3中的排胶温度为500-800℃,排胶时间为3-7小时;所述步骤S4中的烧结温度为1400-1650℃,升温速率为2-10℃/小时;烧结后的保温时间为1-4小时。
  7. 一种氧化铝陶瓷的制备方法,其步骤包括:
    S1:将氧化铝粉、烧结助剂粉加入到去离子水溶剂中,加入孔结构调节剂,进行球磨,得到第一混合浆料;然后将石蜡或环己烷加入所述第一混合浆料中,并加入稳泡剂,继续球磨,得到第二混合浆料;
    S2:将所述第二混合浆料进行冷冻后置于冷冻干燥机中成型,得到成型好的素坯;
    S3:将所述素坯进行排胶处理,使得有机物充分排除,得到样品;
    S4:将所述样品进行烧结,得到所述的氧化铝陶瓷;
    其中,各组分的加入量分别为:
    所述氧化铝粉的加入量为80-95重量份;
    所述烧结助剂的加入量为5-20重量份;
    所述去离子水的加入量为60-90重量份;
    所述烧结助剂选择氧化锆和氧化镁,二者的重量比为(10-30):1;
    所述孔结构调节剂为PVA,加入量为2-7重量份;
    所述石蜡或环己烷的加入量为5-20重量份;
    所述稳泡剂为吐温80,加入量为0.1-1.5重量份。
  8. 根据权利要求7所述的氧化铝陶瓷的制备方法,其特征在于,所述氧化铝粉的粒径为0.2-0.5μm,所述烧结助剂的粒径为30-100nm。
  9. 根据权利要求7或8所述的氧化铝陶瓷的制备方法,其特征在于,所述步骤S1中的球磨以氧化铝球为研磨介质,进行行星球磨;所述行星球磨的转速为250-400rpm,时间为2-6小时;所述步骤S2中的冷冻温度为-50℃至-30℃,冷冻时间为4-10小时;所述步骤S3中的排胶温度为500-800℃,排胶时间为3-7小时;所述步骤S4中的烧结温度为1400-1650℃,升温速率为2-10℃/小时;烧结后的保温时间为1-4小时。
  10. 一种氧化铝陶瓷的应用,用于提高绝缘材料的沿面闪络电压;采用权利要求1-9任一项所述的制备方法制备所述氧化铝陶瓷。
PCT/CN2018/093116 2018-06-26 2018-06-27 氧化铝陶瓷的制备方法及其应用 WO2020000256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810669717.3A CN108516806A (zh) 2018-06-26 2018-06-26 一种氧化铝陶瓷的制备方法及其应用
CN201810669717.3 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020000256A1 true WO2020000256A1 (zh) 2020-01-02

Family

ID=63427780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093116 WO2020000256A1 (zh) 2018-06-26 2018-06-27 氧化铝陶瓷的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN108516806A (zh)
WO (1) WO2020000256A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111207564B (zh) * 2019-09-30 2022-01-04 中国科学院上海硅酸盐研究所 一种冷冻干燥系统及方法
CN111056858A (zh) * 2019-12-20 2020-04-24 上海巴安水务股份有限公司 一种平板陶瓷膜支撑体的制备方法及其陶瓷泥料
CN112624793A (zh) * 2021-01-08 2021-04-09 罗焕焕 一种氧化铝基多孔陶瓷材料的制备方法
CN113563103B (zh) * 2021-07-01 2023-07-25 盐城工学院 一种采用流延成型法制备梯度氧化铝多孔陶瓷的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584329A (zh) * 2012-01-20 2012-07-18 安徽理工大学 一种高孔隙率多孔陶瓷及其制备方法
CN108069720A (zh) * 2017-12-07 2018-05-25 中国科学院上海硅酸盐研究所 一种环路热管用氮化硅梯度多孔毛细芯及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584329A (zh) * 2012-01-20 2012-07-18 安徽理工大学 一种高孔隙率多孔陶瓷及其制备方法
CN108069720A (zh) * 2017-12-07 2018-05-25 中国科学院上海硅酸盐研究所 一种环路热管用氮化硅梯度多孔毛细芯及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG LIWANG ET AL: "Effect of MgO Addition on Properties of Reaction-sintered Zr02-toughened A1203 Multiphase Ceramic", REFRACTORIES, vol. 39, no. 6, 22 December 2005 (2005-12-22) *

Also Published As

Publication number Publication date
CN108516806A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2020000256A1 (zh) 氧化铝陶瓷的制备方法及其应用
Yang et al. Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics
Song et al. The effect of grain boundary on the energy storage properties of (Ba 0.4 Sr 0.6 M) TiO 3 paraelectric ceramics by varying grain sizes
WO2021184414A1 (zh) 一种复相巨介电陶瓷材料及其制备方法
CN110002871B (zh) 一种两相稀土钽酸盐陶瓷及其制备方法
CN112321286A (zh) 一种多层多孔陶瓷材料及其制备方法
CN113045332A (zh) 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法
JPS6036369A (ja) 磁器製造法
Xing et al. Properties of the BaTiO3 coating prepared by supersonic plasma spraying
WO2022089379A1 (zh) 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
KR20130017986A (ko) 내부 전극, 및 상기 내부 전극을 포함하는 적층형 세라믹 캐패시터
CN114262223A (zh) 一种In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用
CA2492341A1 (en) Mixed metal oxide layer and method of manufacture
CN113354406A (zh) 一种基于放电等离子体辅助冷烧结制备ZnO陶瓷的方法
KR101155998B1 (ko) 팔라듐-구리-니켈 합금 수소 분리막의 제조방법
US20100157508A1 (en) Method of manufacturing complex oxide nano particles and complex oxide nano particles manufactured by the same
JP2010524816A (ja) 金属材料により規定される熱膨張係数に調整された組成を有するセラミック材料
Cheng et al. Achieving a high energy storage density in Ag (Nb, Ta) O 3 antiferroelectric films via nanograin engineering.
KR20220036334A (ko) 복합 소결체, 반도체 제조 장치 부재 및 복합 소결체의 제조 방법
Yan et al. Grain growth, densification and electrical properties of lead-free piezoelectric ceramics from nanocrystalline (Ba 0.85 Ca 0.15)(Ti 0.90 Zr 0.10) O 3 powder by sol–gel technique
JPH0859367A (ja) 中空球形のポリマー性前駆体を用いる多孔質セラミックスまたは多孔質セラミックス積層体の製造方法
CN116283251A (zh) 一种氧化铝陶瓷及其制备方法与应用
KR101355542B1 (ko) 세라믹 복합재료 및 그의 제조방법
CN115588548B (zh) 一种合金磁粉芯及其制备方法和应用
CN111056849A (zh) 一种高分散反铁电亚微米陶瓷粉体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923883

Country of ref document: EP

Kind code of ref document: A1