WO2019242512A1 - 金属结构腔体内部长效防腐 - Google Patents

金属结构腔体内部长效防腐 Download PDF

Info

Publication number
WO2019242512A1
WO2019242512A1 PCT/CN2019/090452 CN2019090452W WO2019242512A1 WO 2019242512 A1 WO2019242512 A1 WO 2019242512A1 CN 2019090452 W CN2019090452 W CN 2019090452W WO 2019242512 A1 WO2019242512 A1 WO 2019242512A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
filler
cavity
metal
mass
Prior art date
Application number
PCT/CN2019/090452
Other languages
English (en)
French (fr)
Inventor
阮保国
Original Assignee
阮保国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阮保国 filed Critical 阮保国
Publication of WO2019242512A1 publication Critical patent/WO2019242512A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation

Definitions

  • the invention relates to the technical field of metal structure anticorrosion, in particular to a long-term anticorrosion of a metal inner layer by using a foam material as a filler.
  • the steel pipe cavity of the street lamp pole, the tube scaffold cavity of the bus stop platform, and the inside of the traffic guardrail cavity can only be treated with anti-corrosion treatment before use. It is difficult to re-anti-corrosion during use.
  • the service life is usually only 20-30 years. The corrosion of the inner layer leads to a greatly shortened service life, wastes resources and causes great pollution to the natural environment.
  • Steel structures have the advantages of light weight, high strength, simple maintenance, and short construction period at the factory production site. Good internal corrosion prevention is the key to improving service life. Increasing the service life of steel structures is the driving force to seize the infrastructure market.
  • the purpose of the present invention is to provide a long-lasting anticorrosion in the cavity of a metal structure.
  • the metal structure cavity must be completely isolated from moisture and oxygen.
  • the long-term anticorrosive technology scheme for the inner cavity of the steel structure is proposed.
  • the present invention uses a rigid polyurethane foam, foam concrete, and lightweight materials as a long-term filling solution for the inner metal layer to achieve the inner layer of the metal cavity and moisture.
  • a rigid polyurethane foam, foam concrete, and lightweight materials as a long-term filling solution for the inner metal layer to achieve the inner layer of the metal cavity and moisture.
  • Solution one The rigid polyurethane foam is used as a filler to achieve complete isolation of moisture and oxygen from the inner layer of the metal cavity to achieve long-term anticorrosion.
  • the method is to prepare a rigid polyurethane foam slurry by formula and pour it into the inner cavity of the metal.
  • a rigid polyurethane foam is formed to achieve complete isolation of moisture and oxygen from the metal cavity to achieve long-term anticorrosion;
  • the formula includes a polyol component, a flame retardant, a foaming agent, a foam stabilizer, Catalyst, polyisocyanate components are mixed, poured, reacted, cured and foamed to make rigid polyurethane foam, which is light in weight, high in strength and easy to construct, and also has shock resistance, electrical insulation, heat resistance, cold resistance, solvent resistance and excellent Thermal insulation effect.
  • Solution 2 The foam concrete is used as a filler to achieve complete isolation of moisture and oxygen from the inner layer of the metal cavity to achieve long-term anticorrosion.
  • the method is to prepare a foamed concrete slurry through a formula, pour it into the inner cavity of the metal, and mature by chemical reaction
  • the foam is made into foam concrete, which realizes the complete isolation of moisture and oxygen from the metal cavity to achieve long-term anticorrosion.
  • the formula consists of gelling material, light aggregate, water, foaming agent, thickener and reinforcing fiber.
  • the biggest advantage of the present invention is that the lightweight foam is used as a filler to achieve complete isolation of moisture and oxygen from the inner cavity of the metal cavity, and to achieve permanent and long-lasting anticorrosion of the inner cavity of the metal cavity.
  • the inner layer of the metal is prepared to be used as a filling slurry inside the metal cavity;
  • the first solution is introduced.
  • the patent publication number of the cited document is CN102027033A.
  • the method for manufacturing a rigid polyurethane foam plastic is prepared by using a special equipment for a polyurethane high-pressure casting machine.
  • the obtained rigid polyurethane foam slurry is poured into the Metal cavity, curing reaction foaming in the curing room at 90 ⁇ 120 °C for 20-30 hours, made of rigid polyurethane foam with a bulk density of 28kg / m3, light weight, high strength, heat preservation, sound insulation and waterproof;
  • the first method is to produce a rigid polyurethane foam by reacting a polyol component (Z) and a polyisocyanate component in the presence of a foaming agent, a foam stabilizer, and a catalyst.
  • the method is characterized in that the polyol component (Z) is obtained by mixing a polyol (Z1) and a polymer-dispersed polyol (A) below, and has an average hydroxyl value of 200 to 800 mgKOH / g
  • the polymer-dispersed polyol (A) is a polyol in which polymer particles obtained by polymerizing a monomer having a polymerizable unsaturated group in a polyol (X) are dispersed in the polyol, and the polyol (X ) Contains polyether polyol (Y), the oxyethylene content of polyether polyol (Y) is 15% by mass or more, and the polyether polyol (Y) contains polyol Y1 having a hydroxyl value of 200 to 800 mgKOH / g And a polyol Y2 having a hydroxyl value of 5 to 84 mgKOH / g, and the monomer having a polymerizable unsaturated group includes a fluorine-
  • the fluorine-containing acrylate or fluorine-containing methacrylate is preferably a monomer represented by the following formula (1), and in the formula (1), Rf is a carbon number of 1 to 18 Is a polyfluoroalkyl group, R is a hydrogen atom or a methyl group, Z is a divalent linking group containing no fluorine atom, and Z and Rf are classified according to the condition that the carbon number of Rf becomes small.
  • the monomer having a polymerizable unsaturated group preferably further includes at least one selected from the group consisting of acrylonitrile, vinyl acetate, and styrene.
  • the blending ratio Y1 / Y2 of the polyol Y1 and the polyol Y2 is preferably 5/95 to 70/30 in terms of mass ratio.
  • the polyol Y2 is preferably a polyoxyalkylene polyol obtained by addition polymerization of propylene oxide and ethylene oxide with a polyol.
  • the proportion of the monomer represented by the formula (1) among all the monomers having a polymerizable unsaturated group is 30 to 100% by mass.
  • a proportion of the polymer-dispersed polyol (A) in the polyol component (Z) is 0.01% by mass or more, and the The proportion of the polymer fine particles in the polyol component (Z) is 0.001% by mass or more.
  • a method for producing a rigid polyurethane foam which is a method for producing a rigid polyurethane foam by reacting a polyol component (Z) and a polyisocyanate component in the presence of a foaming agent, a foam stabilizer, and a catalyst.
  • the method is characterized in that the polyol component (Z) comprises a polyol (Z1) and the polymer-dispersed polyol (A), and the polymer-dispersed polyol (B) which does not belong to the (A).
  • Is obtained by mixing, and its average hydroxyl value is 200-800 mgKOH / g.
  • the proportion of the polymer-dispersed polyol (A) in the polyol component (Z) is preferably 0.01% by mass or more, and the proportion of the polymer-dispersed polyol (B) is 0.1.
  • the content of the polymer fine particles in the polyol component (Z) is 0.001% by mass or more.
  • the polyol component (Z) contains a polyoxyalkylene polyol using an active hydrogen compound having an aromatic ring as an initiator.
  • the rigid polyurethane foam of this invention it is preferable to use only water as said foaming agent or to use at least 1 sort (s) selected from a hydrofluorocarbon compound and a hydrocarbon compound, and water.
  • a rigid polyurethane foam with good dimensional stability and sufficient thermal insulation properties can be obtained by a method for manufacturing a rigid polyurethane foam.
  • the production method of the rigid polyurethane foam is based on a foaming agent and a foam. Method for producing rigid polyurethane foam by reacting polyol component (Z) and polyisocyanate component in the presence of stabilizer and catalyst
  • the polyol component (Z) is a component obtained by mixing the polyol (Z1) and the specific polymer-dispersed polyol (A), or the polyol (Z1) and the specific A component obtained by mixing a polymer-dispersed polyol (A) and a polymer-dispersed polyol (B) that does not belong to the polymer (A).
  • the polyol component (Z1) can be, for example, a polyether polyol, polyester polyol, a hydrocarbon polymer having a hydroxyl group at the terminal, and the like used in the production of rigid polyurethane foams (referred to as "rigid polyurethane in this specification”). Polyols (Z1) for foams ").
  • the average number of functional groups of the polyol (Z1) for a rigid polyurethane foam is preferably 2 to 8.
  • the number of functional groups refers to the number of functional groups (hydroxyl groups) of the polyol that reacts with the polyisocyanate component.
  • the number of active hydrogens of the initiator used in the production of the polyether polyol is the same.
  • Specific examples of the polyol (Z1) for rigid polyurethane foam include the same polyols as those exemplified for the polyol (X) described later in the polymer-dispersed polyol (A).
  • the average hydroxyl value of the polyol component (Z) is 200 to 800 mgKOH / g, preferably 200 to 700 mgKOH / g, and more preferably 200 to 600 mgKOH / g.
  • this average hydroxyl value is 200 mgKOH / g or more, since the hardness of the obtained rigid polyurethane foam is easy to express, it is preferable.
  • this average hydroxyl value is 800 mgKOH / g or less, since the brittleness of the obtained rigid polyurethane foam is hard to appear, it is preferable.
  • the average hydroxyl value is an average value of the hydroxyl values of all the polyol compounds constituting the polyol component (Z).
  • the polyol component (Z) preferably contains a polyoxyalkylene polyol using an active hydrogen compound having an aromatic ring as an initiator.
  • an active hydrogen compound having an aromatic ring bisphenols, aromatic amines such as toluene diamine, m-xylylene diamine, and the like are preferably obtained by reacting phenols, aldehydes, and alkanolamines. Greek compound.
  • the polymer-dispersed polyol (A) is a polyol in which polymer particles obtained by polymerizing a monomer having a polymerizable unsaturated group in a polyol (X) are dispersed in a polyol, and the polyol ( X)
  • the polyether polyol (Y) is contained, the oxyethylene content of the polyether polyol (Y) is 15% by mass or more, the polyol Y1 having a hydroxyl value of 200 to 800 mgKOH / g and a hydroxyl value of 5 to 84 mgKOH / g of polyol Y2, and the monomer having a polymerizable unsaturated group contains a fluorine-containing acrylate or a fluorine-containing methacrylate.
  • the polyol component (Z) contains the polymer-dispersed polyol (A)
  • a rigid polyurethane foam having good dimensional stability and sufficient heat insulation performance can be obtained.
  • the polymer-dispersed polyol (A) and the rigid polyurethane foam (Z1) have high compatibility, and have good storage stability when storing the mixture (polyol component). Stable manufacture of rigid polyurethane foam.
  • the “in the polyol (X)” may be the solvent and the polyol exemplified only in the description of the “production method of the polymer-dispersed polyol (A)” described below only in the polyol (X). In a mixture of alcohols (X).
  • polystyrene resin for example, a polyether polyol, a polyester polyol, or a hydrocarbon polymer having a hydroxyl group at a terminal can be used.
  • polyether polyol for example, a polyol obtained by addition polymerization of a cyclic ether such as an alkylene oxide with water, a polyhydric compound such as a polyhydric alcohol or a polyhydric phenol, and an initiator such as an amine can be used.
  • a cyclic ether such as an alkylene oxide
  • a polyhydric compound such as a polyhydric alcohol or a polyhydric phenol
  • an initiator such as an amine
  • the initiator include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,4-butanediol, and 1,6 -Hexanediol, water, glycerol, trimethylolpropane, 1,2,6-hexanetriol, pentaerythritol, diglycerol, tetramethylolcyclohexane, methylglucoside, sorbitol, mannitol , Galacitol, sucrose, triethanolamine and other polyhydric alcohols, bisphenol A, phenol-formaldehyde initial condensate and other polyphenols, piperazine, aniline, monoethanolamine, diethanolamine, isopropanolamine, aminoethylethanolamine, ammonia, Aminomethylpiperazine, aminoethylpiperazine, ethylenediamine,
  • These initiators can be used alone or in combination of two or more.
  • cyclic ether for example, a cyclic ether compound having a 3 to 6 membered ring having one oxygen atom in the ring can be used.
  • cyclic ether examples include ethylene oxide, propylene oxide, 1,1-dimethylethylene oxide, 1-butylene oxide, 2-butylene oxide, and trimethylethylene oxide.
  • a compound (monoepoxide) having a 3-membered cyclic ether group is preferable, an alkylene oxide having 2 to 4 carbon atoms is more preferable, and ethylene oxide, propylene oxide, and 1, 1-dimethylethylene oxide, 1-butylene oxide or 2-butylene oxide, particularly preferably ethylene oxide or propylene oxide.
  • cyclic ethers can be used alone or in combination of two or more.
  • the cyclic ether is preferably an alkylene oxide having 2 to 4 carbon atoms, and more preferably a combination of propylene oxide and ethylene oxide.
  • a mixture of two or more cyclic ethers may be added to the initiator or the two or more cyclic ethers may be sequentially added to the initiator.
  • Composition ratio of polymer-dispersed polyol during production hydroxyl value (mgKOH / g), viscosity (mPa ⁇ s) of polymer-dispersed polyols F1 to F19, and concentration of polymer particles (solid content , Mass%), the ratio of the polyol Y2 and the polyol Y1 (Y2 / Y1, mass%) and the oxyethylene group (%) in the polyol (Y) are shown in Table 1 and Table 2, respectively.
  • Polytetrafluoroethylene (PTFE) powder is added to a polyol mixed with the following polyols A to C and H, I to prepare storage stability.
  • Polyol A Using toluenediamine as an initiator, EO, PO, and EO were sequentially polymerized in this toluenediamine to obtain a hydroxyl value of 350 mgKOH / g, and the ratio of EO to the total EO of EO and PO was 33. Mass% polyether polyol.
  • Polyol B A polymer having a hydroxyl value of 350 mgKOH / g using N- (2-aminoethyl) piperazine as an initiator and polymerizing only EO with this N- (2-aminoethyl) piperazine Ether polyol.
  • Polyol C A polyether polyol having a hydroxyl value of 380 mgKOH / g obtained by using only a mixture of sucrose and glycerol (mass ratio of 5: 4) as an initiator to polymerize PO with this mixture.
  • Polyol H a polyester polyol having a hydroxyl value of 200 mgKOH / g obtained by polycondensation of diethylene glycol and terephthalic acid.
  • Polyol I POOH and EO are sequentially added to a Mannich condensate obtained by reacting nonylphenol, formaldehyde, and diethanolamine at a molar ratio of 1: 1.4: 2.1.
  • the hydroxyl value is 300 mgKOH / g, relative to The ratio of the total amount of EO of the added PO and EO is 60% by mass of the polyol.
  • the oxyethylene group (%) in the polyol (Y) represents the content when the total amount of the polyol (Y) is 100% by mass as a ratio (%).
  • the ratio (Y2 / Y1, mass%) of the polyol Y2 and the polyol Y1, and the oxyethylene group (%) in the polyol (Y) are shown in Table 1 and Table 2, respectively.
  • the values of the polyols D, E, F, G, N, and the macromonomers M1 and M2 and the monomers having a polymerizable unsaturated group are "g";
  • the polymerization initiator is a value in units of "mass parts” with respect to 100 parts by mass of the total of the polyols D, E, F, G, N and all the monomers having a polymerizable unsaturated group.
  • the following polyols E, F, and G correspond to the polyol Y1
  • the polyols D and N correspond to the polyol Y2.
  • PO polymerized propylene oxide
  • EO ethylene oxide
  • Polyol E A polyoxyalkylene polyol having a hydroxyl value of 400 mgKOH / g obtained by addition polymerization of propylene oxide (PO) to glycerol using glycerin as an initiator.
  • PO propylene oxide
  • Polyol F Polyoxyalkylene having an oxyethylene group content of 0% by mass and a hydroxyl value of 760 mgKOH / g in the polyol F obtained by addition polymerization of PO with ethylenediamine as an initiator. Polyol.
  • Polyol G A polyoxyalkylene polyol having a oxyethylene content of 0% by mass and a hydroxyl value of 650 mgKOH / g in a polyol G obtained by addition polymerization of PO with glycerol as an initiator.
  • Fluorine-containing monomer (f) A monomer represented by the following chemical formula (1-1) is used.
  • Polyol J reacting aniline (1 mole), phenol (0.99 mole), paraformaldehyde (0.64 mole) and diethanolamine (2.2 mole) to obtain a Mannich compound.
  • a polyether polyol having a hydroxyl value of 540 mgKOH / g obtained by polymerizing PO with only this Mannich compound.
  • Polyol L A polyether polyol having a hydroxyl value of 400 mgKOH / g obtained by addition polymerization of PO with glycerol as an initiator.
  • Polyol M A polyether polyol having a hydroxyl value of 300 mgKOH / g obtained by addition polymerization of PO with ethylenediamine as an initiator.
  • Polyol O A polyether polyol having a hydroxyl value of 500 mgKOH / g obtained by addition polymerization of PO with only sorbitol as an initiator.
  • Polyol P using 2,2-bis (4-hydroxyphenyl) propane as an initiator, and only adding EO to this 2,2-bis (4-hydroxyphenyl) propane, the hydroxyl value was 280 mgKOH / g of polyether polyol.
  • Polyol Q A polyether polyol having a hydroxyl value of 350 mgKOH / g obtained by polyaddition of PO to only monoethanolamine using monoethanolamine as an initiator.
  • Polyol R A polyether polyol having a hydroxyl value of 400 mgKOH / g obtained by addition polymerization of PO to pentaerythritol using pentaerythritol as an initiator.
  • Polyol S When the total amount is 100% by mass, 30% by mass of polyol D, 15% by mass of polyol F, 30% by mass of polyol G, and 20% by mass of vinyl acetate 1.0% by mass of a polymerization initiator (AMBN) was added to a mixture of 5% by mass of acrylonitrile, and then added to a 5L pressurized reaction tank. Then, the temperature was raised while stirring, and the reaction was maintained while the temperature of the reaction solution was maintained at 80 ° C. 10 hours. The reaction rate of the monomer reached 80% or more. After completion of the reaction, the polyether polyol having a hydroxyl value of 330 mgKOH / g was obtained by heating and degassing at 110 ° C. and 20 Pa for 2 hours under reduced pressure to remove unreacted monomers. This polyether polyol is equivalent to the polymer-dispersed polyol (B).
  • AMBN polymerization initiator
  • Foaming agent water.
  • Foaming agent B cyclopentane
  • Foaming agent C 1,1,1,3,3-pentafluoropropane.
  • Foam stabilizer Silicone foam stabilizer.
  • Catalyst A N, N, N ', N'-tetramethylhexamethylenediamine.
  • Catalyst B triethylenediamine.
  • Catalyst C N, N ', N "-tris (dimethylaminopropyl) hexahydro-S-triazine.
  • Catalyst D Diethylene glycol solution of potassium 2-ethylhexanoate (15% potassium concentration, trade name: DABCOK-15, manufactured by Air Products).
  • Catalyst E A mixture of amino alcohols.
  • Catalyst F N, N-dimethylcyclohexylamine.
  • Catalyst G polyethylene ethylene polyamine.
  • Catalyst H a mixture of 70% of 1,2-dimethylimidazole and 30% of ethylene glycol
  • Catalyst I Mixture of quaternary ammonium salt and ethylene glycol.
  • Polyisocyanate Polymethyl polyphenyl polyisocyanate (crude MDI).
  • Production Example 1 Production of polymer-dispersed polyol F1.
  • 75% by mass of polyol D and 4% by mass of polyol G are charged in a 5L pressurized reaction tank.
  • 1% by mass of the macromonomer M1, and the remaining 20% by mass of vinyl acetate, fluoromonomer (f) and polymerization were charged in 2 hours while stirring while maintaining the temperature at 120 ° C.
  • the initiator (AMBN) mixture was completely charged, stirring was continued at the same temperature for about 0.5 hours. Then, the unreacted monomer was removed under reduced pressure at 120 ° C for 3 hours, thereby preparing a polymer-dispersed polyol F1.
  • Production Examples 2 to 8 Production of Polymer-Dispersed Polyols F2 to 8 Polymer-dispersed polyols F2 to 8 were prepared in the same manner as in Example 1 except that the amounts of polyol D and polyol G were changed as follows. The results are shown in Table 1.
  • Production Example 10 Production of polymer-dispersed polyol F10 was carried out in the same manner as in Production Example 9 except that the amount of polyol D was changed to 23.7 mass% and the amount of polyol G was changed to 55.3 mass%. Polymer F10. The results are shown in Table 2.
  • Production Examples 11 to 13 Production of polymer-dispersed polyols F11 to 13 except that the composition ratios of the monomers having a polymerizable unsaturated group in Table 2 were used, the same operations as in Production Example 5 were performed to obtain polymer dispersions. ⁇ ⁇ ⁇ ⁇ ⁇ OLF11 ⁇ 13. The results are shown in Table 2.
  • Production Example 15 Production of polymer-dispersed polyol F15 A polymer-dispersed polyol F15 was obtained in the same manner as in Production Example 14 except that the composition ratio of the monomer having a polymerizable unsaturated group in Table 2 was used. . The results are shown in Table 2.
  • Production Example 17 When the total production amount of polymer-dispersed polyol F17 is 100% by mass, 47.4% by mass of polyol D, 31.6% by mass of polyol E, and 1% by mass of the macromonomer M1 was charged with the remaining 20% by mass of vinyl acetate, fluorine-containing monomer (f) and polymerization initiation over 2 hours while maintaining the temperature at 120 ° C. After the agent (AMBN) mixture was completely charged, stirring was continued at the same temperature for about 0.5 hours. Then, unreacted monomer was removed under reduced pressure at 120 ° C. for 3 hours, thereby preparing polymer-dispersed polyol F17. The results are shown in Table 2.
  • Production Example 18 When the total production amount of polymer-dispersed polyol F18 is 100% by mass, 47.4% by mass of polyol D, 31.6% by mass of polyol N, and 1% by mass of the macromonomer M1 was charged with the remaining 20% by mass of vinyl acetate, fluorine-containing monomer (f) and polymerization initiation over 2 hours while maintaining the temperature at 120 ° C. After the agent (AMBN) mixture was completely charged, stirring was continued at the same temperature for about 0.5 hours. Then, the unreacted monomer was removed under reduced pressure at 120 ° C for 3 hours, thereby preparing a polymer-dispersed polyol F18. The results are shown in Table 2.
  • Production Example 19 When the total production amount of polymer-dispersed polyol F19 is 100% by mass, 79% by mass of Polyol D and 1% by mass of Macromonomer are charged in a 5L pressurized reaction tank. M1, while maintaining the temperature at 120 ° C. with stirring for 2 hours, charge the remaining 20% by mass of a mixture of vinyl acetate, a fluoromonomer (f) and a polymerization initiator (A MBN), all After loading, stirring was continued for about 0.5 hours at the same temperature. Then, the unreacted monomer was removed under reduced pressure at 120 ° C for 3 hours, thereby preparing a polymer-dispersed polyol F19. The results are shown in Table 2.
  • the gelation time (seconds), the density (box free density unit: kg / m3), the compressive strength (unit: MPa), and the dimension stability were measured.
  • Dimensional change rate (unit:%) and thermal conductivity (unit: mW / m ⁇ K).
  • the amount of polyisocyanate is 110 or 130 based on the isocyanate index (INDEX) when the blowing agent is only water.
  • the isocyanate index is 105 in the system where the hydrocarbon compound is used as the blowing agent.
  • the hydrofluorocarbon is used as the blowing agent.
  • the isocyanate index is 110, and the comparison is made;
  • the isocyanate index is a value that is 100 times the ratio of the number of isocyanate groups to the total equivalent of the active hydrogen of the polyol composition and other active hydrogen compounds.
  • the formed foam was taken out 20 minutes after the start of foaming, and after 24 hours of curing, it exhibited compressive strength and high-temperature dimensional stability, wet heat dimensional stability, thermal conductivity, and storage stability. Evaluation.
  • the gelation time was measured by inserting a metal wire into the foam during the foaming process, and measuring the time (seconds) until the metal wire broke when the metal wire was lifted.
  • the polymer-dispersed polyols F1 to F17 prepared in Production Examples 1 to 19 or the following polytetrafluorofluoride were prepared according to the compounding ratio of CN102027033A, Test Examples 1 to 54 shown in Tables 3 to 8.
  • Ethylene (PTFE) powder was added to a polyol mixed with the following polyols A to C, H, and I to prepare a storage stability test. Evaluation was made on "rigid polyurethane foam" prepared in Tables 9 to 14 Sample.
  • High temperature shrinkage was measured in accordance with ASTMD2126-75. Foaming agent was evaluated for high temperature dimensional stability and wet heat dimensional stability when using only water. Foaming agent was used for hydrocarbon compounds or hydrofluorocarbon compounds for low temperature dimensional stability. evaluation of.
  • the rigid polyurethane foam of each example was used as a sample, and after aging for 1 hour, a foam having a length (X) of 100 mm ⁇ a width (Y) of 150 mm ⁇ a thickness (T) of 75 mm was used.
  • High temperature dimensional stability is in an atmosphere of 70 ° C
  • wet heat dimensional stability is in an atmosphere of 70 ° C and 95% relative humidity
  • low temperature dimensional stability is in an atmosphere of -30 ° C and 0 ° C, respectively.
  • the sheet was stored for 24 hours or 50 hours, and the increased length (thickness) was represented by the dimensional change rate (unit:%) with respect to the length (thickness) before storage. That is, the dimensional change rates in all six directions in each of the three directions (X, Y, and T) were measured under two conditions.
  • the polyol component (Z) that reacted with the polyisocyanate component contained the polymer-dispersed polyhydric polyol as the specific polymer-dispersed polyol (A) of the present invention.
  • Production examples of alcohols F2, F5 to F7, and F9 to F17 20 to 38, 43 to 50, 54 to 56, 60 to 63 have good storage stability (6 weeks), and heat insulation performance and size of rigid polyurethane foam Excellent stability.
  • the following compliance is the evaluation criteria for the "rigid polyurethane foam" prepared in Tables 9 to 14; in the evaluations shown in Tables 9 to 14, the compressive strength is measured as follows: cut out from the core of the foam after molding (X) 40mm ⁇ (Y) 40mm ⁇ (T) 40mm, the compressive strengths in the three directions of X, Y, and T were measured in accordance with the method of JIS A 9511.
  • the high-temperature dimensional stability is measured by cutting out (X) 200mm ⁇ (Y) 100mm ⁇ (T) 25mm from the core, and the measurement and evaluation are performed in the same manner as the method for evaluating dimensional stability described above. Cut out (X) 200 mm x (Y) 150 mm x (T) 50 mm with the surface skin remaining, and measure and evaluate the value in the same manner as the method for evaluating dimensional stability.
  • the maximum value of the absolute value among the dimensional change rates in 6 directions is 1% or more but less than 5%.
  • the long-term dimensional stability value of Manufacturing Example 48-50 is more excellent
  • the maximum value of the absolute value is less than 1%
  • the rigid polyurethane foam has higher stability
  • the polyol (X) includes at least the polyether polyol (Y), in addition to the polyether polyol, A polyester polyol, a hydrocarbon polymer having a hydroxyl group at the terminal, and the like can be used in combination.
  • the content of the polyether polyol (Y) in the polyol (X) is preferably 100% by mass.
  • the polymer-dispersed polyol (A) in which polymer fine particles are stably dispersed is easily obtained, and storage stability is improved.
  • the monomer having a polymerizable unsaturated group for producing a polymer-dispersed polyol (A) includes a fluorinated acrylate or a fluorinated methacrylate (hereinafter sometimes referred to as a “fluorinated monomer”). By containing this fluorine-containing monomer, the dispersion stability of the polymer fine particles in the polyol (X) can be improved.
  • the used polymer-dispersed polyol (A) and the rigid polyurethane foam (Z1) have high compatibility, improved storage stability, and easy and stable production of rigid polyurethane foam.
  • the polyhydric alcohol Y1 contained in the polyether polyol (Y) is preferably subjected to addition polymerization of propylene oxide or ethylene oxide, or propylene oxide or ethylene oxide, and one or more other cyclic ethers. It is obtained from the initiators exemplified above.
  • the polyol (Y1) is more preferably a polyol obtained by addition polymerization of propylene oxide or ethylene oxide using a polyol as an initiator, and propylene oxide alone is most preferably used.
  • Polyol Y1 is more preferably a polyol obtained by the addition polymerization of propylene oxide by using one or more of glycerol, trimethylolpropane, and 1,2,6-hexanetriol as an initiator. Polyol is obtained by using glycerol as an initiator to separately polymerize propylene oxide.
  • the polyol Y2 contained in the polyether polyol (Y) is preferably a polyol obtained by addition polymerization of one or more of propylene oxide, ethylene oxide, or other cyclic ethers using a polyol as an initiator. alcohol.
  • the polyol Y2 is preferably a polyoxyalkylene polyol obtained by addition polymerization of propylene oxide and ethylene oxide to a polyol as an initiator.
  • Solution 2 The foam concrete is used as a filler to achieve long-term anticorrosion of the inner layer of the metal.
  • a slurry for filling the interior of the metal cavity is prepared:
  • the second solution mentioned above implements long-term anticorrosion in the steel structure cavity.
  • the foam concrete is used as a filler to completely isolate the cavity from moisture and oxygen. It also has the ability to enhance the load of the steel structure and protect it from oxygen and moisture.
  • the raw materials of the above-mentioned foamed concrete are composed of cementitious material, light aggregate, water, foaming agent, thickener and reinforcing fiber, wherein the mass percentage of the cementitious material is 41%; the mass percentage of the light aggregate is 41 The mass percentage of water is 16%; the mass percentage of foaming agent is 1.92%; the mass percentage of thickener is 0.04%; the mass percentage of reinforcing fibers is 0.04%.
  • the above cementitious material is a combination of cement and fly ash, wherein the mass percentage of cement in the cementitious material is 90%, the mass percentage of fly ash in the cementitious material is 10%, and the cement is labeled as 42.5MPa.
  • Ordinary Portland Cement Ordinary Portland Cement.
  • the above-mentioned light aggregate is composed of coarse and fine aggregates.
  • the coarse and light aggregate accounts for 70% of the aggregate volume of the aggregate
  • the fine and light aggregate accounts for 30% of the aggregate volume of the aggregate
  • the coarse and light aggregate is Sintered ceramsite with a bulk density of 600kg / m3, the particle size of the ceramsite is 5-15mm, the compressive strength of the ceramsite is ⁇ 6MPa, the fine aggregate is expanded perlite, the bulk density of the expanded perlite is 100kg / m3, and the expanded pearl
  • the particle size distribution of the rock is between 0.1 and 0.5 mm.
  • the blowing agent is a hydrogen peroxide solution, and the mass concentration of the hydrogen peroxide solution is 10%.
  • the thickener is powdered carboxymethyl cellulose.
  • the above-mentioned reinforcing fibers are 5 to 20 mm of alkali-resistant glass fibers.
  • the preparation method of the above foamed concrete is as follows:
  • Step 1 Add the metered foaming agent solution to the 10-50% by weight fine aggregate required by the ingredients, and stir to make the foaming agent solution impregnate into the space of the light and fine aggregate. Obtain a fine and lightweight aggregate containing foaming agent;
  • Step 2 Put the remaining fine aggregate and the cement, fly ash or cement and slag fine powder composed of the fine material and thickener, thickener, and reinforcing fiber together to stir.
  • the mixing time is 1 to 3 minutes, then add the required water according to the amount of water required for the ingredients, and continue to stir for 2 to 5 minutes to obtain a cement mortar;
  • Step 3 Mix the light and lightweight aggregate containing foaming agent obtained in step (1) and the cementitious mortar obtained in step (2) for a mixing time of 1 to 10 minutes to obtain a cementitious mortar containing foaming agent;
  • Step 4 In the cementing mortar containing foaming agent obtained in step (3), add a coarse aggregate that is 5-50 ° C higher than the foaming temperature of the foaming agent, stir well, and then pour into the metal cavity to make The foaming agent is fully foamed, solidified and hardened.
  • the filler foam concrete After the filler foam concrete is solidified and hardened, it becomes a lightweight, high-strength, heat-insulating, sound-proof and waterproof foam concrete material, and the bulk density of the foam concrete is 950kg / m3;
  • the bulk weight of the above-mentioned filled foam concrete is 950 kg / m3, which is a published patent document: CN103304200A was prepared by mixing the raw materials in Example 1;
  • Example 2 of the above-mentioned filled foam concrete was made to have a bulk density of 850 kg / m3;
  • Example 3 of the above-mentioned filler foamed concrete is made to have a bulk density of 650 kg / m3;
  • scheme two the relative economics of foamed concrete and low comprehensive cost are one fifth of the price of polyurethane foam fillers in scheme one.
  • the capacity per cubic meter is 20-30 times that of polyurethane foam fillers, which is suitable for large metal structures. Cavity interior packing.
  • the above-mentioned steel structure cavity has long-term anti-corrosion, especially for steel bridges across the sea.
  • the air in the sea area contains a large amount of chloride ions, which makes it difficult to prevent corrosion.
  • the metal completely isolates air and moisture to achieve long-term corrosion protection.
  • the long-lasting anticorrosion of the inner filling of the cavity is suitable for various rusty metals.
  • the first solution uses rigid polyurethane foam as a filler, which can be recycled and reused. It is an ideal environmentally friendly material, light in weight, high in strength, better in sound insulation, and suitable for the internal cavity corrosion protection of individual metal bodies .
  • the inner cavity of the metal structure is filled with lightweight foam material to completely isolate the moisture and oxygen in the inner cavity of the metal structure to achieve long-term corrosion protection.
  • Figure 1 Schematic diagram of urban construction street light pole.
  • Figure 2 Schematic diagram of pouring filler openings in the vertical and horizontal cross stiffeners in the steel ply cavity of the steel box bridge and the triangular stiffeners in the triangular area.
  • Figure 3 Cross-section of steel box bridge of multifunctional viaduct, schematic view of steel plywood filler pouring port and runner opening (refer to patent document, multifunctional viaduct, publication number: 106906734A).
  • a filling material is first poured into the cavity of the urban construction light pole of FIG. 1;
  • Step 1 Enter the box cover (A) of the urban construction light pole, reserve the power cord and place the pipe opening, and introduce the end of the cable (filling pouring port 1), and tighten the screw to close the box cover; (1), the pouring port has a suitable screw with a middle hole, and the lead-in head is stringed through the middle hole of the screw, and the hole diameter is suitable for stringing through easily; the outlet of the power cord of the lamppost (2), there is one in (1) For the same-fitting screws with middle holes, before pouring the filler, string the end of the power cord through the middle hole of the screw and tighten the screws. The hole diameter should not be too large. The rigid polyurethane foam filled with filler will expand when it is foamed and matured.
  • each steel plywood cavity of the steel box bridge have vertical and horizontal stiffening ribs, and there are N fillers that communicate with each other with a diameter of 50mm.
  • the steel plywood cavities communicate with each other; there are N triangular stiffeners with a diameter of 50mm.
  • each inlet (4) has a sealing screw, which is arranged on the bottom plate of the steel plywood (6) at the bottom of the steel box bridge; N communication channel openings (5) with a diameter of 50mm, the triangular area of the outer edges of the two circular tunnels in the abdominal cavity of the steel box bridge and the steel plywood cavities communicate with each other through the channel openings (5) with a diameter of 50mm; N triangles in the triangular area are stiffened
  • the rib is provided with a 50mm diameter flow passage opening (3); a steel box bridge bottom steel plywood (6), a steel box bridge abdominal middle steel plywood (7), a circular tunnel outside vertical steel plywood (8), and a steel box bridge outer wall
  • the splint has a cross-flow stiffener with a diameter of 50mm (3) in the plywood
  • the difference is that the thickness of the steel plate material for each steel plywood is different, and the thickness of each steel plywood is different.
  • the steel plywood is connected to each other with a 50mm diameter runner opening (5) to communicate with each other; each component of the rigid polyurethane foam is passed through polyurethane
  • the pouring machine is mixed into a fluid slurry. According to the volume of the filler, the output of the pouring machine and the foaming time, the number of polyurethane foam pouring filler inlets (4) is reserved to ensure that the pouring is completed in a single amount in the foaming time, and the filler is mixed.
  • the liquid enters all parts of the steel plywood cavity through each flow channel; during pouring, the steel plywood (13) of the bridge deck of the steel box is facing downwards parallel to each other, and the pouring filler inlet (4) is above, and each section of the steel box bridge, the steel plywood crosses The surface is welded and sealed in the figure; the two circular tunnel walls (12) in the abdominal cavity of the steel box bridge are single-layer thicker steel pipe walls.
  • the above-mentioned steel structure cavity has long-term anti-corrosion effect.
  • Solution 1 The cavity is filled with rigid polyurethane foam. A special equipment for polyurethane high-pressure casting machine is required. First, apply epoxy coating on the inner wall of the metal cavity before pouring the slurry into the metal cavity. With strong adhesion, weather resistance, water resistance, durability and other properties, prevent corrosion factors from entering the metal cavity along the bonding surface. According to the steps of Figures 1 to 3 in the embodiment, the obtained filling slurry is cast.
  • the curing reaction foamed in the curing room at 90 ⁇ 120 °C for 20-30 hours, and made into a rigid polyurethane foam with a bulk density of 28kg / m3, light weight, high strength, heat insulation, sound insulation and waterproof;
  • Solution two A special equipment for foam concrete pouring machine is needed. First, before the metal cavity is poured with slurry, an epoxy coating is applied to the inner wall of the metal cavity, which has strong adhesion, weather resistance, water resistance, durability and other properties. Prevent the corrosive factors from entering the metal cavity along the bonding surface. According to the steps of Figures 1 to 3 in the embodiment, the filling slurry obtained through the method recipe is poured into the metal cavity, and the reaction reaction is matured in an environment curing room at 60-80 ° C.
  • the foaming agent After 6 to 8 hours of foaming, the foaming agent is fully foamed to solidify and harden, and is made into a lightweight, high-strength, heat-insulating, sound-proof and waterproof foam concrete material with a bulk density of 650kg / m3.
  • Step 1 First open the lamp box (A) of the lamp pole, apply water-based epoxy coating to the cavity of the inner wall of the tube to prevent corrosion factors from entering the wall along the joint surface. Reserve the power cord and place the pipe port after the cable is wound. Outside the inlet (filler pouring port 1), the compression screw closes the cable entry box cover (A); the power cord outlet (2) of the street light pole has an adaptable screw with a center hole, thread the end of the power cable through the center hole of the screw, and tighten Screws.
  • Step 2 The steel plate filler pouring opening (1) of the base of the street light pole has an adaptable screw with a middle hole. After the filler is poured in volume proportion, the filler is initially foamed close to the pouring opening (1). Tighten the screws in the middle hole.
  • Step 3 Move the lamp post after foaming by using the first solution to the 90-120 ° C curing chamber for 20-30 hours, and make the bulk density of 28kg / m3 light, high strength, heat preservation and sound insulation
  • the waterproof rigid polyurethane foam plastic is used as a filler to obtain a long-lasting anticorrosive street light pole in the cavity.
  • the street light pole is moved to a curing room at 60-80 ° C for 8 hours to complete the curing reaction.
  • Multi-functional viaduct steel box bridge adopts scheme 1 and scheme 2 as fillers.
  • the internal cavity is long-term anti-corrosion.
  • the multi-functional viaduct belongs to a large entity.
  • the production workshop is an environmental curing room that can be heated to 60 ⁇ 120 °C. , The aging reaction foaming is performed on the temperatures required by the schemes 1 and 2, respectively.
  • Step 1 Before the steel plywood of the multi-functional viaduct box is welded without the cover plate, the inner wall of the cavity and the stiffeners are coated with water-based epoxy coating to prevent corrosion factors from entering the inner wall of the steel plywood cavity along the bonding surface. Next, the steel plywood cover is welded and closed. board.
  • Step 2 With the multifunctional viaduct box deck (13) facing downwards and the pouring filler inlet (4) above, adjust to the horizontal plane.
  • Step 3 Pouring the slurry foam filler in proportion to ensure that a sufficient amount of slurry foam filler is poured in the section steel box bridge, and the feeding barrel of the pouring machine maintains a sufficient amount without interruption.
  • Step 4 Start up and pour the filler mixed by the pouring machine into each pouring filler inlet (4). Fill the slurry with the filler to ensure that the required slurry in volume proportion flows into each steel plywood part before foaming.
  • Step 5 Observe the foamed filler, foam to each pouring filler inlet (4) and tighten the pouring screw.
  • Step 6 After the foaming is completed, the multi-functional viaduct is heated in the production car at a temperature of 60 to 120 ° C, and the curing temperatures are required for the first and second solutions.
  • the first method is to use the filler to complete the foaming.
  • the street light pole needs 90-120 °C curing reaction foaming for 20-30 hours, made of light weight, high strength, heat insulation, sound insulation, waterproof rigid polyurethane foam plastic with a bulk density of 28kg / m3 as a filler to obtain the ministerial anticorrosive street lamp in the cavity.
  • the street light pole needs to be cured at 60-80 ° C for 8 hours to produce a rigid polyurethane with a bulk density of 650kg / m 3, which is light, high-strength, heat-insulating, sound-proof and waterproof
  • the foam plastic is used as a filler to obtain the ministerial anticorrosive street lamp pole in the road cavity;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

一种金属结构腔体内部长效防腐,要解决现有金属结构内层防腐技术中不足问题,首先要金属结构腔体与水分和氧气彻底隔离,为了实现上述目的,在金属结构腔体内部涂抹水性环氧涂料,阻止腐蚀因子沿贴合面参入内壁,采用硬质聚氨酯泡沫塑料和泡沫混凝土做填料,实现腔体与水分和氧气彻底隔离,同时增强钢结构荷载。

Description

金属结构腔体内部长效防腐 技术领域
本发明涉及一种金属结构防腐技术领域,具体涉及一种泡沫材料做填料对金属内层长久防腐。
背景技术
随着经济的快速发展,带动基建事业发展迅速,金属中,钢铁使用量日益巨增,钢铁使用环境,自然空气中含有水分、氧气,金属在氧和有水的环境中反应,形成氧化物,导致金属表面生锈,通常使用各种防锈漆和防锈剂涂料,进行金属表面涂抹形成隔氧防水层达到防腐蚀效果,生活中常见金属用量较大属钢铁,腔体内部较大的属城建路灯杆、公交车站台管棚架、交通护栏、钢结构大厦、道路钢箱桥梁等,都是易生锈金属,一直以来金属,金属内层没有很好的防腐方法。
路灯杆钢管腔体、公交车站台管棚架腔体、交通护栏管腔体内部只能在使用前做防腐处理,使用过程中很难再次防腐处理,通常使用寿命只能在20-30年,内层的腐蚀导致使用寿命大大缩短,浪费资源,对自然环境造成极大污染。
近年来,道路钢箱桥梁用钢量逐年上升,钢箱桥梁多采用单面加劲结构形式,多为扁平钢箱,箱室腔体内留人工孔做后期防腐人工通道,对箱室腔体内部一般需20-25年左右做一次防腐处理,增加人工作业和更多防腐涂料,设计寿命在120年钢箱桥梁在使用期限内需做6次左右内外循环施工防腐,增加大量人力物力投入。
我国已是世界第一大钢铁生产国,钢铁防腐技术还处于不断研发阶段,特别是钢结构内层防腐处理,现有技术的不足,严重影响钢铁使用寿命是造成钢铁产能过剩的主要原因,让更多的基建倾向于钢筋混凝土结构。
钢结构有自重轻,强度高,维护简单,工厂生产工地施工期短等优点,做好内部防腐是提高使用寿命的关键,提高钢结构使用寿命才是抢占基建市场的动力。
发明内容
本发明目的是提供一种金属结构腔体内部长效防腐,要解决现有金属结构内层防腐上述技术中不足问题,首先要金属结构腔体与水分和氧气彻底隔离,为了实现上述目的,本发明提出对以下钢结构内部腔体长效防腐技术方案。
实现上述的钢结构腔体内部长效防腐,在金属内管壁腔体涂抹水性环氧涂料,阻止腐蚀因子沿贴合面参入内壁;
为了实现上述金属结构腔体内层与水分和氧气彻底隔离达到长久防腐,本发明采用硬质聚氨酯泡沫塑料,泡沫混凝土,轻质材料对金属内层做长久填充料方案,实现金属腔体内层与水分和氧气彻底隔离达到长效防腐,同时增强钢结构荷载强度;
方案一、所述硬质聚氨酯泡沫塑料做填料,实现水分和氧气与金属腔体内层彻底隔离达到长效防腐,其方法是,通过配方制得硬质聚氨酯泡沫塑料浆液,浇注在金属内部腔体,通过化学反应熟化室发泡,形成硬质聚氨酯泡沫塑料,实现水分和氧气与金属腔体彻底隔离达到长效防腐;配方有,多元醇成分、阻燃剂、发泡剂、泡沫稳定剂、催化剂、多异氰酸酯成分混合、浇注、反应、熟化发泡制成硬质聚氨酯泡沫塑料,重量轻,强度高,施工方便,同时还具有防震、电绝缘、耐热、耐寒、耐溶剂和极佳的保温隔音效果。
方案二、所述采用泡沫混凝土做填料,实现水分和氧气与金属腔体内层彻底隔离达到长效防腐,其方法是,通过配方制得泡沫混凝土浆液,浇注在金属内部腔体,通过化学反应熟化发泡制成泡沫混凝土,实现水分和氧气与金属腔体彻底隔离达到长效防腐,配方有,胶凝材料、轻集料、水、发泡剂、增稠剂和增强纤维所组成。
本发明最大优点在于,采用轻质泡沫做填料,实现金属腔体内层水分和氧气彻底隔离,达到金属腔体内层永久长效防腐。
具体实施例
实现金属内层长效防腐,首先制得用来做金属腔体内部填充料浆液;
在本发明实施例中,首先介绍方案一、引用文献专利公开号:CN102027033A硬质聚氨酯泡沫塑料制造方法配方,通过聚氨酯高压浇注机专用设备制得浆液,将得到的硬质聚氨酯泡沫塑料浆液浇注入金属腔体,在90~120℃熟化室熟化反应发泡20~30小时,制成容重密度为28kg/m3轻质、高强、保温、隔音、防水的硬质聚氨酯泡沫塑料;
方案二、将引用公开专利文献:CN103304200A泡沫混凝土制造方法配方,通过泡沫混凝土发泡机制得浆液,将得到的泡沫混凝土浆液注入金属结构腔体,在60~80℃环境熟化室熟化反应发泡6~8小时,使其中的发泡剂充分发泡凝固和硬化,制成容重密度为650kg/m3轻质、高强、保温、隔音、防水的泡沫混凝土材料。
上述方案一、采用硬质聚氨酯泡沫塑料做填料配方的制造方法,是在发泡剂、泡沫稳定剂及催化剂的存在下使多元醇成分(Z)和多异氰酸酯成分反应而制造硬质聚氨酯泡沫塑料的方法,其特征在于,所述多元醇成分(Z)由多元醇(Z1)和下述分散有聚合物的多元醇(A)混合而得,且其平均羟值为200~800mgKOH/g,分散有聚合物的多元醇(A)是在多元醇(X)中使具有聚合性不饱和基的单体聚合而获得的聚合物微粒分散于多元醇中的多元醇,所述多元醇(X)包含聚醚多元醇(Y),聚醚多元醇(Y)的氧乙烯基含量为15质量%以上,且该聚醚多元醇(Y)包含羟值为200~800mgKOH/g的多元醇Y1和羟值为5~84mgKOH/g的多元醇Y2,所述具有聚合性不饱和基的单体包含含氟丙烯酸酯或含氟甲基丙烯酸酯。
较好的是硬质聚氨酯泡沫塑料制造方法中,所述含氟丙烯酸酯或含氟甲基丙烯酸酯为下式(1)表示的单体,式(1)中,Rf为碳数1~18的多氟烷基,R为氢原子或甲基,Z为不含氟原子的2价连接基团,Z和Rf按照Rf的碳数变少的条件来划分。较好的是硬质聚氨酯泡沫塑料的制造方法中,所述具有聚合性不饱和基的单体还包含选自丙烯腈、乙酸乙烯基酯及苯乙烯的至少1种。
Figure PCTCN2019090452-appb-000001
较好的是所述多元醇Y1和多元醇Y2的掺合比例Y1/Y2以质量比计为5/95~70/30。
较好的是硬质聚氨酯泡沫塑料的制造方法中,所述多元醇Y2是使环氧丙烷和环氧乙烷与多元醇进行加成聚合而得的聚氧化烯多元醇。
较好的硬质聚氨酯泡沫塑料的制造方法中,所有所述具有聚合性不饱和基的单体中的所述式(1)表示的单体的比例为30~100质量%。
较好的是本发明的硬质聚氨酯泡沫塑料的制造方法中,所述多元醇成分(Z)中的所述分散有聚合物的多元醇(A)的比例为0.01质量%以上,且所述多元醇成分(Z)中的所述聚合物微粒比例为0.001质量%以上。
此外,提供以下硬质聚氨酯泡沫塑料的制造方法,所述方法是在发泡剂、泡沫稳定剂及催化剂的存在下使多元醇成分(Z)和多异氰酸酯成分反应而制造硬质聚氨酯泡沫塑料的方法,其特征在于,所述多元醇成分(Z)由多元醇(Z1)和所述分散有聚合物的多元醇(A)及不属于该(A)的分散有聚合物的多元醇(B)混合而得,且其平均羟值为200~800mgKOH/g。
较好的是所述多元醇成分(Z)中的所述分散有聚合物的多元醇(A)的比例为0.01质量%以上,所述分散有聚合物的多元醇(B)的比例为0.1质量%以上,且所述多元醇成分(Z)中的所述聚合物微粒的比例为0.001质量%以上。
较好的是所述分散有聚合物的多元醇(A)和所述分散有聚合物的多元醇(B)的混合比例以质量比计为A∶B=95∶5~5∶95。
较好的是本发明的硬质聚氨酯泡沫塑料的制造方法中,所述多元醇成分(Z)包含以具有芳香环的活性氢化合物为引发剂的聚氧化烯多元醇。
较好的是本发明的硬质聚氨酯泡沫塑料的制造方法中,作为所述发泡剂仅使用水或使用选自氢氟烃化合物及烃化合物的至少1种和水。
利用硬质聚氨酯泡沫塑料的制造方法可获得尺寸稳定性良好、具备足够的隔热性能的硬质聚氨酯泡沫塑料。
另外,保存所使用的含分散有聚合物的多元醇的多元醇成分时的保存稳定性良好,因此能够稳定地制造硬质聚氨酯泡沫塑料硬质聚氨酯泡沫塑料的制造方法是在发泡剂、泡沫稳定剂及催化剂的存在下使多元醇成分(Z)和多异氰酸酯成分反应而制造硬质聚氨酯泡沫塑料的方法
多元醇成分(Z)多元醇成分(Z)是多元醇(Z1)和所述特定的分散有聚合物的多元醇(A)混合而得的成分,或者是多元醇(Z1)和所述特定的分散有聚合物的多元醇(A)及不属于该(A)的分散有聚合物的多元醇(B)混合而得的成分。
多元醇成分(Z1)例如可使用聚醚多元醇、聚酯多元醇、末端具有羟基的烃系聚合物等通常制造硬质聚氨酯泡沫塑料时使用的多元醇(本说明书中称为“硬质聚氨酯泡沫塑料用多元醇(Z1)”)。
硬质聚氨酯泡沫塑料用多元醇(Z1)的平均官能团数较好为2~8。官能团数是指与多异氰酸酯成分反应的多元醇的官能团(羟基)数目,例如为聚醚多元醇时,与制造该聚醚多元醇时使用的引发剂的活性氢数相同。作为硬质聚氨酯泡沫塑料用多元醇(Z1),具体可例举与在后述的分散有聚合物的多元醇(A)中所述的多元醇(X)的示例相同的多元醇。
多元醇成分(Z)的平均羟值为200~800mgKOH/g,较好为200~700mgKOH/g,更好为200~600mgKOH/g。该平均羟值如果为200mgKOH/g以上,则所得的硬质聚氨酯泡沫塑料的硬度易显现,因此优选。该平均羟值如果为800mgKOH/g以下,则所得硬质聚氨酯泡沫塑料的脆性不易显现,因此优选。
平均羟值是指构成多元醇成分(Z)的全部多元醇化合物的羟值的平均值。
为了获得更好的保存稳定性,优选使多元醇成分(Z)包含以具有芳香环的活性氢化合物为引发剂的聚氧化烯多元醇。作为所述具有芳香环的活性氢化合物,较好为双酚类,甲苯二胺、间二甲苯二胺等芳香族胺类,使酚类、醛类及烷醇胺类反应而得的曼尼希化合物。
分散有聚合物的多元醇(A)是通过在多元醇(X)中使具有聚合性不饱和基的单体聚合而获得的聚合物微粒分散于多元醇中的多元醇,所述多元醇(X)含有聚醚多元醇(Y),聚醚多元醇(Y)的氧乙烯基含量为15质量%以上,含有羟值为200~800mgKOH/g的多元醇Y1和羟值为5~84mgKOH/g的多元醇Y2,所述具有聚合性不饱和基的单体含有含氟丙烯酸酯或含氟甲基丙烯酸酯。通过使多元醇成分(Z)含有该分散有聚合物的多元醇(A),可获得尺寸稳定性良好、具备足够的隔热性能的硬质聚氨酯泡沫塑料。此外,该分散有聚合物的多元醇(A)和所述硬质聚氨酯泡沫塑料用多元(Z1)的相容性高,保存它们的混合物(多元醇成分)时的保存稳定 性良好,因此可稳定地制造硬质聚氨酯泡沫塑料。“在多元醇(X)中”可以是仅在多元醇(X)中,也可以是在后述的“分散有聚合物的多元醇(A)的制造方法”的说明中例示的溶剂和多元醇(X)的混合物中。
多元醇(X)
分散有聚合物的多元醇(A)中,作为多元醇(X),可使用例如聚醚多元醇、聚酯多元醇或末端具有羟基的烃系聚合物。
作为聚醚多元醇,可使用例如烯化氧等环状醚加成聚合于水、多元醇或多元酚等多羟基化合物、胺类等引发剂而得的多元醇。
作为引发剂,具体可例举乙二醇、二甘醇、丙二醇、二丙二醇、新戊二醇、3-甲基-1,5-戊二醇、1,4-丁二醇、1,6-己二醇、水、甘油、三羟甲基丙烷、1,2,6-己三醇、季戊四醇、双甘油、四羟甲基环己烷、甲基葡糖苷、山梨糖醇、甘露糖醇、半乳糖醇、蔗糖、三乙醇胺等多元醇,双酚A、苯酚—甲醛初期缩合物等多元酚,哌嗪、苯胺、一乙醇胺、二乙醇胺、异丙醇胺、氨基乙基乙醇胺、氨、氨基甲基哌嗪、氨基乙基哌嗪、乙二胺、丙二胺、1,6-己二胺、甲苯二胺、苯二甲胺、二苯甲烷二胺、二亚乙基三胺、三亚乙基四胺等胺化合物或它们的环状醚加成物。
所述引发剂可单独使用1种或2种以上组合使用。
作为环状醚,可使用例如环内具有1个氧原子的3~6元环的环状醚化合物。
作为环状醚,具体可例举环氧乙烷、环氧丙烷、1,1-二甲基环氧乙烷、1-环氧丁烷、2-环氧丁烷、三甲基环氧乙烷、四甲基环氧乙烷、一氧化丁二烯、氧化苯乙烯、α-甲基氧化苯乙烯、环氧氯丙烷、环氧氟丙烷、环氧溴丙烷、缩水甘油、丁基缩水甘油醚、己基缩水甘油醚、苯基缩水甘油醚、2-氯乙基缩水甘油醚、邻氯苯基缩水甘油醚、乙二醇二缩水甘油醚、双酚A二缩水甘油醚、环己烯化氧、氧化二氢萘、一氧化乙烯基环己烯等具有3元环状醚基的化合物(单环氧化物),氧杂环丁烷、四氢呋喃、四氢吡喃等具有4~6元环状醚基的化合物。其中,较好的是具有3元环状醚基的化合物(单环氧化物),更好是碳数2~4的烯化氧,进一步更好是环氧乙烷、环氧丙烷、1,1-二甲基环氧乙烷、1-环氧丁烷或2-环氧丁烷,特好的是环氧乙烷或环氧丙烷。
所述式(1)表示的单体的具体例例示如下。
Figure PCTCN2019090452-appb-000002
所述环状醚可单独使用1种或2种以上组合使用。
将2种以上的环状醚组合使用时,作为环状醚,优选碳数2~4的烯化氧,最好是环氧丙烷和环氧乙烷的组合。此时,可使2种以上的环状醚的混合物加成聚合于所述引发剂或使2种以上的环状醚依次地加成聚合于所述引发剂。
分散有聚合物的多元醇制造时的配比组成、所得的分散有聚合物的多元醇F1~F19的羟值(mgKOH/g)、粘度(mPa·s)及聚合物微粒的浓度(固体成分,质量%)、多元醇Y2和多元醇Y1的比例(Y2/Y1,质量%)及多元醇(Y)中的氧乙烯基(%)分别示于表1及表2配比。
硬质聚氨酯泡沫塑料用多元醇(Z1)
聚四氟乙烯(PTFE)粉末加入混有下述多元醇A~C及H、I的多元醇中,调制出保存稳定性。
多元醇A:使用甲苯二胺作为引发剂,使EO、PO、EO依次加成聚合于该甲苯二胺而得的羟值为350mgKOH/g、相对于EO和PO的合计的EO的比例为33质量%的聚醚多元醇。
多元醇B:使用N-(2-氨基乙基)哌嗪作为引发剂,仅使EO加成聚合于该N-(2-氨基乙基)哌嗪而得的羟值为350mgKOH/g的聚醚多元醇。
多元醇C:使用蔗糖和甘油的混合物(质量比为5∶4)作为引发剂,仅使PO加成聚合于该混合物而得的羟值为380mgKOH/g的聚醚多元醇。
多元醇H:二甘醇和对苯二甲酸缩聚而得的羟值为200mgKOH/g的聚酯多元醇。
多元醇I:使PO、EO依次加成于壬基苯酚、甲醛和二乙醇胺按照摩尔比1∶1.4∶2.1反应而得的曼尼希缩合物而得的羟值为300mgKOH/g、相对于所加成的PO和EO的合计量的EO的比例为60质量%的多元醇。
多元醇(Y)中的氧乙烯基(%)是以比例(%)表示多元醇(Y)总量为100质量%时的含量。
多元醇Y2和多元醇Y1的比例(Y2/Y1,质量%)及多元醇(Y)中的氧乙烯基(%)分别示于表1及表2。
表1、表2的配比组成中,多元醇D、E、F、G、N和大分子单体M1及M2以及具有聚合性不饱和基的单体是以“g”为单位的值;聚合引发剂是以相对于多元醇D、E、F、G、N和所有的具有聚合性不饱和基的单体的合计100质量份的“质量份”为单位的值。
使用的原料,以下的多元醇E、F、G相当于多元醇Y1,多元醇D、N相当于多元醇Y2。
聚醚多元醇(Y)
多元醇D:使用甘油作为引发剂,将环氧乙烷加成聚合于该甘油后,加成聚合环氧丙烷(PO)和环氧乙烷(EO)的混合物[PO/EO=46.2/53.8(质量比)]而得的多元醇D中的氧乙烯基含量为65质量%、羟值为48mgKOH/g的聚氧化烯多元醇。
多元醇E:使用甘油作为引发剂,将环氧丙烷(PO)加成聚合于该甘油而得的羟值为400mgKOH/g的聚氧化烯多元醇。
多元醇N:使用甘油作为引发剂,将环氧丙烷加成聚合于该甘油后,加成聚合环氧丙烷(PO)和环氧乙烷(EO)的混合物[PO/EO=88.2/11.8(质量比)]而得的多元醇N中的氧乙烯基含量为7质量%、羟值为56mgKOH/g的聚氧化烯多元醇。
多元醇F:使用乙二胺作为引发剂,仅使PO加成聚合于该乙二胺而得的多元醇F中的氧乙烯基含量为0质量%、羟值为760mgKOH/g的聚氧化烯多元醇。
多元醇G:使用甘油作为引发剂,仅使PO加成聚合于该甘油而得的多元醇G中的氧乙烯基含量为0质量%、羟值为650mgKOH/g的聚氧化烯多元醇。
多元醇T:使用甘油作为引发剂,将环氧乙烷加成聚合于该甘油后,加成聚合环氧丙烷(PO)和环氧乙烷(EO)的混合物[PO/EO=48.0/52.0(质量比)]而得的多元醇T中的氧乙烯基含量为60质量%、羟值为28mgKOH/g的聚氧化烯多元醇。
含氟单体
含氟单体(f):使用以下的化学式(1-1)表示的单体。
其它的具有聚合性不饱和基的单体,丙烯腈、苯乙烯、乙酸乙烯基酯;
聚合引发剂,2,2-偶氮二-2-甲基丁腈。
大分子单体,大分子单体M1:按照多元醇D/甲苯二异氰酸酯/甲基丙烯酸2-羟基乙酯=1/1/1的摩尔比例加入多元醇D、甲苯二异氰酸酯和甲基丙烯酸2-羟基乙酯(纯正化学株式会社制),于60℃反应1小时后再于80℃反应6小时而获得的羟值为40mgKOH/g的具有聚合性不饱和基的大分子单体。
大分子单体M2:按照多元醇T/甲苯二异氰酸酯/甲基丙烯酸2-羟基乙酯=1/1/1的摩尔比例加入多元醇T、甲苯二异氰酸酯和甲基丙烯酸2-羟基乙酯(纯正化学株式会社制),于60℃反应1小时后再于80℃反应6小时而获得的羟值为21mgKOH/g的具有聚合性不饱和基的大分子单体。
所述多元醇A~D及多元醇H、I、F和下述多元醇J、L、M、O、P、Q、R、PTFE粉末、分散有聚合物的多元醇F2、F5、F6~F7及F9~F19、多元醇S(分散有聚合物的多元醇)。
多元醇J:使苯胺(1摩尔)、苯酚(0.99摩尔)、低聚甲醛(0.64摩尔)及二乙醇胺(2.2摩尔)反应获得曼尼希化合物。仅使PO加成聚合于该曼尼希化合物而得的羟值为540mgKO H/g的聚醚多元醇。
多元醇L:使用甘油作为引发剂,仅使PO加成聚合于该甘油而得的羟值为400mgKO H/g的聚醚多元醇。
多元醇M:使用乙二胺作为引发剂,仅使PO加成聚合于该乙二胺而得的羟值为300mg KOH/g的聚醚多元醇。
多元醇O:使用山梨糖醇作为引发剂,仅使PO加成聚合于该山梨糖醇而得的羟值为500mgKOH/g的聚醚多元醇。
多元醇P:使用2,2-双(4-羟基苯基)丙烷作为引发剂,仅使EO加成聚合于该2,2-双(4-羟基苯基)丙烷而得的羟值为280mgKOH/g的聚醚多元醇。
多元醇Q:使用一乙醇胺作为引发剂,仅使PO加成聚合于该一乙醇胺而得的羟值为350mgKOH/g的聚醚多元醇。
多元醇R:使用季戊四醇作为引发剂,仅使PO加成聚合于该季戊四醇而得的羟值为400mgKOH/g的聚醚多元醇。
多元醇S:总量设为100质量%时,在30质量%量的多元醇D、15质量%量的多元醇F、30质量%量的多元醇G、20质量%量的乙酸乙烯基酯及5质量%量的丙烯腈的混合物中加入聚合引发剂(AMBN)1.0质量%后添加到5L加压反应槽中,然后在搅拌的同时开始升温,将反应液温度保持为80℃的同时反应10小时。单体的反应率达到80%以上。反应结束后于110℃、20Pa进行2小时加热减压脱气除去未反应单体而获得的羟值为330mgKOH/g的聚醚多元醇。该聚醚多元醇相当于分散有聚合物的多元醇(B)。
阻燃剂:三(2-氯丙基)磷酸酯。
发泡剂:水。
发泡剂B:环戊烷。
发泡剂C:1,1,1,3,3-五氟丙烷。
泡沫稳定剂:有机硅系泡沫稳定剂。
催化剂A:N,N,N’,N’-四甲基六亚甲基二胺。
催化剂B:三亚乙基二胺。
催化剂C:N,N’,N”-三(二甲基氨基丙基)六氢-S-三嗪。
催化剂D:2-乙基己酸钾的二甘醇溶液(钾浓度15%,商品名:DABCOK-15,空气化工产品公司制)。
催化剂E:氨基醇类的混合物。
催化剂F:N,N-二甲基环己胺。
催化剂G:多乙烯多胺(polyethylene polyamine)。
催化剂H:1,2-二甲基咪唑70%和乙二醇30%的混合物
催化剂I:季铵盐和乙二醇的混合物。
多异氰酸酯:多甲基多苯基多异氰酸酯(粗MDI)。
硬质聚氨酯泡沫塑料的制造方法:
制造例1:分散有聚合物的多元醇F1的制造,总量设为100质量%时,在5L加压反应槽内装入75质量%量的多元醇D、4质量%量的多元醇G及1质量%量的大分子单体M1,在将温度保持为120℃的同时边搅拌边用2小时装入剩余的20质量%量的乙酸乙烯基酯、含氟单体(f) 及聚合引发剂(AMBN)的混合物,全部装入完毕后,在相同的温度下继续搅拌约0.5小时。然后,减压下于120℃用3小时除去未反应单体,藉此制得分散有聚合物的多元醇F1。
制造例2~8:分散有聚合物的多元醇F2~8的制造除了多元醇D和多元醇G的用量如下改变以外,与实施例1同样制备分散有聚合物的多元醇F2~8。结果示于表1
制造例9:分散有聚合物的多元醇F9的制造总量设为100质量%时,在5L加压反应槽内装入39.5质量%量的多元醇D、39.5质量%量的多元醇G及1质量%量的大分子单体M2,在将温度保持为120℃的同时边搅拌边用2小时装入剩余的20质量%量的乙酸乙烯基酯、含氟单体(f)及聚合引发剂AMBN)的混合物,全部装入完毕后,在相同的温度下继续搅拌约0.5小时。然后,减压下于120℃用3小时除去未反应单体,藉此制得分散有聚合物的多元醇F9。结果示于表2。
制造例10:分散有聚合物的多元醇F10的制造除了多元醇D的用量改为23.7质量%量、多元醇G的用量改为55.3质量%量以外,与制造例9同样操作,制得分散有聚合物的多元醇F10。结果示于表2。
制造例11~13:分散有聚合物的多元醇F11~13的制造除了使用表2的具有聚合性不饱和基的单体的组成比例以外,与制造例5同样操作,分别制得分散有聚合物的多元醇F11~13。结果示于表2。
制造例14:分散有聚合物的多元醇F14的制造总量设为100质量%时,在5L加压反应槽内装入47.4质量%量的多元醇D、31.6质量%量的多元醇G及1质量%量的大分子单体M1,在将温度保持为120℃的同时边搅拌边用2小时装入剩余的20质量%量的丙烯腈、含氟单体(f)及聚合引发剂(AMBN)的混合物,全部装入完毕后,在相同的温度下继续搅拌约0.5小时。然后,减压下于120℃用3小时除去未反应单体,藉此制得分散有聚合物的多元醇F14。结果示于表2。
制造例15:分散有聚合物的多元醇F15的制造除了使用表2的具有聚合性不饱和基的单体的组成比例以外,与制造例14同样操作,制得分散有聚合物的多元醇F15。结果示于表2。
制造例16:分散有聚合物的多元醇F16的制造总量设为100质量%时,在5L加压反应槽内装入84.6质量%量的多元醇D、4.4质量%量的多元醇F及1质量%量的大分子单体M1,在将温度保持为120℃的同时边搅拌边用2小时装入剩余的10质量%量的乙酸乙烯基酯、含氟单体(f)及聚合引发剂(AMBN)的混合物,全部装入完毕后,在相同的温度下继续搅拌约0.5小时。然后,减压下于120℃用3小时除去未反应单体,藉此制得分散有聚合物的多元醇F16。结果示于表2。
制造例17:分散有聚合物的多元醇F17的制造总量设为100质量%时,在5L加压反应槽内装入47.4质量%量的多元醇D、31.6质量%量的多元醇E及1质量%量的大分子单体M1,在将温度保持为120℃的同时边搅拌边用2小时装入剩余的20质量%量的乙酸乙烯基酯、含氟单体(f)及聚合引发剂(AMBN)的混合物,全部装入完毕后,在相同的温度下继续搅拌约0.5小时。然后,减压下于120℃用3小时除去未反应单体,藉此制得分散有聚合物的多元醇F17。结果示于表2。
制造例18:分散有聚合物的多元醇F18的制造总量设为100质量%时,在5L加压反应槽内装入47.4质量%量的多元醇D、31.6质量%量的多元醇N及1质量%量的大分子单体M1,在将温度保持为120℃的同时边搅拌边用2小时装入剩余的20质量%量的乙酸乙烯基酯、含氟单体(f)及聚合引发剂(AMBN)的混合物,全部装入完毕后,在相同的温度下继续搅拌约0.5小时。然后,减压下于120℃用3小时除去未反应单体,藉此制得分散有聚合物的多元醇F18。结果示于表2。
制造例19:分散有聚合物的多元醇F19的制造总量设为100质量%时,在5L加压反应槽内装入79质量%量的多元醇D及1质量%量的大分子单体M1,在将温度保持为120℃的同时边搅拌边用2小时装入剩余的20质量%量的乙酸乙烯基酯、含氟单体(f)及聚合引发剂(A MBN)的混合物,全部装入完毕后,在相同的温度下继续搅拌约0.5小时。然后,减压下于120℃用3小时除去未反应单体,藉此制得分散有聚合物的多元醇F19。结果示于表2。
[根据细则26改正22.08.2019] 
Figure WO-DOC-FIGURE-b1
表1
[根据细则26改正22.08.2019] 
Figure WO-DOC-FIGURE-b2
表2
按照表9~表14所示的配比,在1L的塑料烧杯(polybeaker)中分别投入多元醇成分100质量份、发泡剂、泡沫稳定剂、阻燃剂和催化剂,用搅拌机对它们进行充分搅拌,获得多元醇体系液。
对于所得的各制造例的硬质聚氨酯泡沫塑料,分别测定胶凝时间(秒)、作为密度的去盒密度(box free density单位:kg/m3)、压缩强度(单位:MPa)、作为尺寸稳定性的尺寸变化率(单位:%)、热导率(单位:mW/m·K)。
多异氰酸酯的用量在发泡剂仅为水时以异氰酸酯指数(INDEX)计为110或130,在发泡剂使用了烃化合物的体系中以异氰酸酯指数计为105,发泡剂使用了氢氟烃化合物的体系中以异氰酸酯指数计为110,分别进行了比较;
异氰酸酯指数是指相对于多元醇组合物及其它的活性氢化合物的活性氢的合计当量的异氰酸酯基数的比例的100倍的数值。将多元醇体系液和多异氰酸酯成分这2种原料的液温保持在20℃后,以3000rpm的转速搅拌混合5秒。接着马上投入纵200×横200×高200mm的木制盒内进行自由发泡,制得硬质聚氨酯泡沫塑料。
此外,关于表14的评价方法,假定为用于冷藏车和冷库的两面贴合有金属表面材料的隔热板,用(X)400mm×(Y)400m×(T)50mm的铝制模具进行评价,将多元醇体系液和多异氰酸酯成分这2种原料的液温保持在20℃后以3000rpm的转速搅拌混合5秒而得的溶液注入垂直设置的该模具中,注入规定量直至总密度由28kg/m3变为29kg/m3,关闭注入部位密封填充,成形为聚氨酯泡沫塑料。
此外,作为保存稳定性进行了以下评价。结果示于表9~表14。
表14示出的所谓的板评价中,在发泡开始20分钟后取出成形得到的泡沫塑料,经24小时熟化后对压缩强度及高温尺寸稳定性、湿热尺寸稳定性、热导率、保存稳定性进行评价。
胶凝时间的测定是在发泡过程中的泡沫塑料中插入金属丝,测定将金属丝提起时发生断裂为止的时间(秒)。
按照专利公开号:CN102027033A,表3~表8所示的试验例1~54的配比,将制造例1~19中制得的分散有聚合物的多元醇F1~F17或下述聚四氟乙烯(PTFE)粉末加入混有下述多元醇A~C及H、I的多元醇中,调制出保存稳定性符合是对表9~表14所示制得《硬质聚氨酯泡沫塑料》评价用试样。
高温收缩按照ASTMD2126-75的方法进行测定,发泡剂仅使用水时进行了高温尺寸稳定性及湿热尺寸稳定性的评价,发泡剂并用烃化合物或氢氟烃化合物时进行了低温尺寸稳定性的评价。
作为试样使用各例的硬质聚氨酯泡沫塑料,熟化1小时后,切出纵(X)100mm×横(Y)150mm×厚(T)75mm的泡沫塑料使用。高温尺寸稳定性是在70℃的气氛下,湿热尺寸稳定性是在温度70℃、相对湿度95%的气氛下,低温尺寸稳定性是分别在-30℃和0℃的气氛下,将试样片保存24小时或50小时,以相对于保存前的长度(厚度)的尺寸变化率(单位:%)表示增加的长度(厚度)。即,在2种条件下分别对各3个方向(X、Y、T)的全部6个方向的尺寸变化率进行测定。
从表9~表14所示的结果可看出,与多异氰酸酯成分反应的多元醇成分(Z)包含作为本发明的特定的分散有聚合物的多元醇(A)的分散有聚合物的多元醇F2、F5~F7、F9~F17的制造例20~38、43~50、54~56、60~63的保存稳定性(6周)良好,同时硬质聚氨酯泡沫塑料的隔热性能和尺寸稳定性俱佳。
下边符合是对表9~表14所示制得《硬质聚氨酯泡沫塑料》评价基准;在表9~14所示的评价中,压缩强度如下测定:从成形后的泡沫塑料的芯部切出(X)40mm×(Y)40mm×(T)40mm,按照JIS A 9511的方法分别测定X、Y、T这3个方向的压缩强度。高温尺寸稳定性的测定是从芯部切出(X)200mm×(Y)100mm×(T)25mm,与所述尺寸稳定性的评价方法同样地进行测定和评价,湿热尺寸稳定性的测定是以表面表皮残留的状态切出(X)200mm×(Y)150mm×(T)50mm,与所述尺寸稳定性的评价方法同样地进行测定和评价值。
◎:(优秀)6个方向的尺寸变化率中的绝对值的最大值小于1%。
○:(良好)6个方向的尺寸变化率中的绝对值的最大值在1%以上但小于5%。
△:(较好)6个方向的尺寸变化率中的绝对值的最大值在5%以上但小于10%。
[根据细则26改正22.08.2019] 
Figure WO-DOC-FIGURE-b9
表9
[根据细则26改正22.08.2019] 
Figure WO-DOC-FIGURE-b10
表10
[根据细则26改正22.08.2019] 
Figure WO-DOC-FIGURE-b11
表11
[根据细则26改正22.08.2019] 
Figure WO-DOC-FIGURE-b12
表12
[根据细则26改正22.08.2019] 
Figure WO-DOC-FIGURE-b13
表13
[根据细则26改正22.08.2019] 
Figure WO-DOC-FIGURE-b14
表14
优选的,制造例48~50长久尺寸稳定值更优;
优选的,制造例21~29、31~36、43~52尺寸稳定性在6个方向的尺寸变化率中,绝对值的最大值小于1%;
优选的,为使金属内部长效防腐填充料,硬质聚氨酯泡沫塑料稳定性更高,多元醇(X),至少包含所述聚醚多元醇(Y),除该聚醚多元醇以外,还可并用聚酯多元醇、末端具有羟基的烃系聚合物等。
多元醇(X)中的所述聚醚多元醇(Y)的含量较好为100质量%,则易获得聚合物微粒稳定分散的分散有聚合物的多元醇(A),保存稳定性提高。
用于分散有聚合物的多元醇(A)的制造,具有聚合性不饱和基的单体,包含含氟丙烯酸酯或含氟甲基丙烯酸酯(以下有时称为“含氟单体”)。通过含有该含氟单体,可使所述多元醇(X)中的聚合物微粒的分散稳定性提高。
此外,所用的分散有聚合物的多元醇(A)和所述硬质聚氨酯泡沫塑料用多元醇(Z1)的相容性高,保存稳定性提高,易稳定地制造硬质聚氨酯泡沫塑料。
另外,形成为硬质聚氨酯泡沫塑料时尺寸稳定性趋好,同时易获得良好的隔热性能。
所述聚醚多元醇(Y)中包含的多元醇Y1优选使环氧丙烷或环氧乙烷、或者环氧丙烷或环氧乙烷和1种以上的其它的所述环状醚加成聚合于以上例举的引发剂而得。多元醇(Y1)更好是使用多元醇作为引发剂使环氧丙烷或环氧乙烷加成聚合而得的多元醇,最好是单独使用环氧丙烷。多元醇Y1进一步更好是使用甘油、三羟甲基丙烷、1,2,6-己三醇中的1种以上作为引发剂、单独使环氧丙烷加成聚合而得的多元醇,特好的是使用甘油作为引发剂、单独使环氧丙烷加成聚合而得的多元醇。
所述聚醚多元醇(Y)中包含的多元醇Y2优选采用多元醇作为引发剂使环氧丙烷、环氧乙烷或其它的所述环状醚的1种以上加成聚合而得的多元醇。多元醇Y2较好是使环氧丙烷和环氧乙烷加成聚合于作为引发剂的多元醇而得的聚氧化烯多元醇。
方案二、所述采用泡沫混凝土做填料,实现金属内层长久防腐,首先制得用来做金属腔体内部填充料浆液:
上述方案二、实现钢结构腔体内部长久防腐,所述采用泡沫混凝土做填料,实现腔体与水分和氧气彻底隔离,同样具备增强钢结构荷载,隔氧防潮;
上述泡沫混凝土所需原料配方来源公开专利文献:CN103304200A;
上述泡沫混凝土它的原材料是由胶凝材料、轻集料、水、发泡剂、增稠剂和增强纤维所组成,其中胶凝材料的质量百分数是41%;轻集料的质量百分数是41%;水的质量百分数是16%;发泡剂的质量百分数是1.92%;增稠剂的质量百分数是0.04%;增强纤维的质量百分数是0.04%。
上述的胶凝材料由水泥和粉煤灰组合而成,其中水泥在胶凝材料中的质量百分数为90%,粉煤灰在胶凝材料中的质量百分数为10%,水泥为标号42.5MPa的普通硅酸盐水泥。
上述的轻集料由粗、细轻集料组成,其中粗轻集料占集料的堆积体积比为70%,细轻集料占集料的堆积体积比为30%,粗轻集料为堆积容重600kg/m3的烧胀陶粒,陶粒的粒度为5~15mm,陶粒的筒压强度≥6MPa,细集料为膨胀珍珠岩,膨胀珍珠岩的堆积容重为100kg/m3,膨胀珍珠岩的粒度分布在0.1~0.5mm之间。
上述的发泡剂为双氧水溶液,其中双氧水溶液的质量浓度为10%。
上述的增稠剂为粉末状的羧甲基纤维素。
上述的增强纤维为5~20mm的耐碱玻璃纤维。
上述泡沫混凝土的制备方法如下:
步骤1.将配料计量过的发泡剂溶液加入到配料所需10~50wt%的细轻集料中,并进行搅拌,使发泡剂溶液浸注到该部分轻细集料的空隙中,得到含发泡剂的细轻集料;
步骤2.将余下的细轻集料以及配料所需的水泥与粉煤灰或水泥与矿渣微粉所组成的胶凝材料、增稠剂、增强纤维四者放在一起进行搅拌,搅拌混合时间为1~3分钟,然后再按照配料需水量加入所需要的水,继续搅拌2~5分钟,得到胶结灰浆;
步骤3.将步骤(1)得到的含发泡剂的细轻集料和步骤(2)得到的胶结灰浆进行混合,混合时间为1~10分钟,得到含发泡剂的胶结灰浆;
步骤4.在步骤(3)得到的含发泡剂的胶结灰浆中加入比发泡剂发泡温度高5~50℃的粗轻集料,并搅拌均匀,然后浇筑到金属腔体中,使其中的发泡剂充分发泡、凝固和硬化。
上述填料泡沫混凝土凝固硬化后成为轻质、高强、保温、隔音、防水的泡沫混凝土材料,上述泡沫混凝土的容重密度为950kg/m3;
上述填料泡沫混凝土的容重为950kg/m3是有公开专利文献:CN103304200A实施例1原料配比制得;
上述填料泡沫混凝土的实施例2原料配比制得容重为850kg/m3;
上述填料泡沫混凝土的实施例3原料配比制得容重为650kg/m3;
上述方案填料中,方案二、泡沫混凝土的相对经济性,综合造价低,是方案一聚氨酯泡沫填料价格五分之一,每立方米容量是聚氨酯泡沫填料20~30倍,适合做大件金属结构腔体内部填料。
上述的钢结构腔体内部长效防腐,特别是跨海钢箱桥梁,海域空气中含有大量氯离子,给防腐增添难度,金属彻底隔离空气及水分实现长效防腐。
上述钢结构腔体内部还有更多适合做填料的高密度轻型泡沫材料。
上述腔体内部填料长效防腐适用于各类易生锈金属。
上述的方案一、方案二填充料中。
优选的,上述方案中,采用方案一、硬质聚氨酯泡沫塑料做填料,可回收再利用,是理想的环保材料,重量轻,强度高,保温隔音更佳,适合大小个体金属本体内部腔体防腐。
下面对金属结构内部腔体采用填充轻质泡沫材料,使金属结构内部腔体水分和氧气彻底隔离,实现长久防腐,本发明结合实施例中附图做进一步详细说明。
图1.城建路灯杆示意图。
图2.钢箱桥梁各个钢夹板腔体内纵横十字加劲肋、三角区三角加劲肋浇注填充料流道口示意图。
图3.多功能高架桥钢箱桥梁横断面,钢夹板填料浇注口及流道口示意图(引用专利文献,多功能高架桥,公开号:106906734A)。
在发明实施例中首先对图1城建路灯杆腔体内部进行浇注填充料;
步骤一、城建路灯杆进线盒盖(A),预留电源线绕好后放置管线口,线头引入(填料浇注口1),压紧螺丝封闭盒盖;城建路灯杆底座钢板处填料浇注口(1),浇注口有个适配的带中孔螺丝,把引入进线头串过螺丝中孔,孔径为线轻松串过为宜;路灯杆电源线出口(2),有个于(1)相同适配的带中孔螺丝,填料浇注前,把电源线头串过螺丝中孔,旋紧螺丝,孔径不宜过大,填料硬质聚氨酯泡沫塑料在反应发泡、熟化时膨胀会产生一定压力。
图2中,钢箱桥梁各个钢夹板腔体内纵横十字加劲肋,有N个填充料互通直径50mm流道口(3)连通钢夹板腔体内互通;有N个三角加劲肋上设置有直径50mm流道口(3)连通三角区互通;
图3中,有N个聚氨酯泡沫塑料浇注填料进口(4),各进口(4)有封口螺丝,设置在钢箱桥梁底部钢夹板(6)底板;设置在钢箱桥梁各钢夹板连接处有N个互通直径50mm流道口(5),所述钢箱桥梁腹腔内俩圆形隧道外缘三角区及各钢夹板腔体,通过直径50mm流道口(5)相互连通;三角区N个三角加劲肋上设置有直径50mm流道口(3);钢箱桥梁底板钢夹板(6)、钢箱桥梁腹腔中层钢夹板(7)、圆形隧道外侧竖直钢夹板(8)、钢箱桥梁腹腔外壁钢 夹板(9、10)、钢箱桥梁腹腔内俩圆形隧道中间竖直钢夹板(11)、钢箱桥梁桥面钢夹板(13),所述的钢夹板(6、7、8、9、10、11、13)夹板内有图2所示十字加劲肋和腔体内互通直径50mm流道口(3),区别是各钢夹板用钢板材料厚度不同,各个钢夹板厚度不同,所述各个纵横钢夹板相互连接位有直径50mm流道口(5)互通;硬质聚氨酯泡沫塑料各配料,通过聚氨酯浇注机混合成流体浆液状,根据填料体积和浇注机吐出量及起泡时间,预留聚氨酯泡沫塑料浇注填料进口(4)数量,确保浇注在起泡时间内一次足量完成,确保填充料混合液经各流道进入钢夹板腔体内各部位;浇注时,钢箱桥梁桥面钢夹板(13)平行朝下,浇注填料进口(4)在上方,钢箱桥梁每个节段,钢夹板横断面在图示中是焊接封口状;钢箱桥梁腹腔内俩圆形隧道管壁(12)是单层较厚钢管壁。
上述的钢结构腔体内部长效防腐,方案一、腔体填充硬质聚氨酯泡沫塑料,需要聚氨酯高压浇注机专用设备一台,首先在金属腔体浇注浆液前,在金属腔体内壁涂抹环氧涂料,具有极强的附着力、耐候性、耐水性、耐久性等性能,阻止腐蚀因子沿贴合面参入金属腔体,按实施例中对图1至图3步骤,将得到的填充料浆液浇注入金属腔体,在90~120℃熟化室熟化反应发泡20~30小时,制成容重密度为28kg/m3轻质、高强、保温、隔音、防水的硬质聚氨酯泡沫塑料;
方案二、需要泡沫混凝土浇注机专用设备一台,首先在金属腔体浇注浆液前,在金属腔体内壁涂抹环氧涂料,具有极强的附着力、耐候性、耐水性、耐久性等性能,阻止腐蚀因子沿贴合面参入金属腔体,按实施例中对图1至图3步骤,将通过方法配方得到的填充料浆液浇注入金属腔体,在60~80℃环境熟化室熟化反应发泡6~8小时,使其中的发泡剂充分发泡凝固和硬化,制成容重密度为650kg/m 3轻质、高强、保温、隔音、防水的泡沫混凝土材料。
在图1路灯杆,硬质聚氨酯泡沫塑料做填料腔体内部长效防腐。
步骤1,首先打开路灯杆进线盒盖(A),在内管壁腔体涂抹水性环氧涂料,阻止腐蚀因子沿贴合面参入管壁,预留电源线绕好后放置管线口,线头引入(填料浇注口1)外,压紧螺丝封闭进线盒盖(A);路灯杆电源线出口(2)有个适配的带中孔螺丝,把电源线头串过螺丝中孔,旋紧螺丝。
步骤2.路灯杆底座钢板填料浇注口(1),有个适配的带中孔螺丝,填料按体积比例浇注完成后,填料初步发泡接近浇注口(1),把引入进线头串过螺丝中孔旋紧螺丝。
步骤3.把采用方案一做填充料完成发泡后的路灯杆移置90-120℃熟化室熟化反应发泡20~30小时,制成容重密度为28kg/m3轻质、高强、保温、隔音、防水的硬质聚氨酯泡沫塑料做填料,得到腔体内部长效防腐路灯杆;采用方案二做填充料完成初步发泡后路灯杆移置60-80℃熟化室熟化反应发泡8小时,制成容重密度为650kg/m3轻质、高强、保温、隔音、防水的硬质聚氨酯泡沫塑料做填料,得到路腔体内部长效防腐路灯杆;
图2、图3.多功能高架桥钢箱桥梁采用方案一、方案二做填料,内部腔体长效防腐,多功能高架桥属操大个体,生产车间是可加温至60~120℃环境熟化室,分别对方案一、方案二需要的温度做熟化反应发泡。
步骤1.在多功能高架桥箱体各个钢夹板焊接没封面板前,腔体内壁及加劲肋涂抹水性环氧涂料,阻止腐蚀因子沿贴合面参入钢夹板腔体内壁,接下来焊接封闭钢夹板封面板。
步骤2.把多功能高架桥箱体桥面(13)朝下,浇注填料进口(4)在上方,调至水平面。
步骤3.按比例浇注浆液泡沫填料,确保有足量浆液泡沫填料在一节段钢箱桥梁灌注,浇注机进料桶保持不间断足够量。
步骤4.开机将浇注机混合好的填料向各浇注填料进口(4)灌注填料浆液,确保在起泡前灌足按体积比例所需浆液流入各钢夹板部位。
步骤5.观察发泡填料,发泡至各个浇注填料进口(4)旋紧浇注口螺丝。
步骤6.把完成发泡后多功能高架桥在可加温生产车60~120℃环境,分别对方案一、方案二需要的温度做熟化反应发泡;采用方案一做填充料完成发泡后的路灯杆需90-120℃熟化反应发泡20~30小时,制成容重密度为28kg/m3轻质、高强、保温、隔音、防水的硬质聚氨酯泡沫塑料做填料,得到腔体内部长效防腐路灯杆;采用方案二做填充料完成初步发泡后路灯杆需60-80℃熟化反应发泡8小时,制成容重密度为650kg/m 3轻质、高强、保温、隔音、防水的硬质聚氨酯泡沫塑料做填料,得到路腔体内部长效防腐路灯杆;
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的案例。

Claims (5)

  1. 一种金属结构腔体内部长效防腐,包括金属本体,环氧涂料,填充料,其特征在于:所述环氧涂料是水性涂料,金属内层腔体长效防腐是有填充料对水分和氧气与金属彻底隔离来实现,所述填充料是泡沫填充料。
  2. 一种金属结构腔体内部长效防腐,包括金属本体,环氧涂料,填充料,其特征在于:所述金属内层腔体长效防腐,填充料是泡沫混凝土。
  3. 如权利要求1所述一种金属结构腔体内部长效防腐,其特征在于:所述水性涂料是水性环氧涂料,所述金属内层腔体填充料是硬质聚氨酯泡沫塑料。
  4. 如权利要求1或2所述一种金属结构腔体内部长效防腐,其特征在于:所述硬质聚氨酯泡沫塑料填充料是通过配方得到,熟化反应发泡制得硬质聚氨酯泡沫塑料填充料;所述泡沫混凝土填充料,是通过配方得到,熟化反应发泡制得泡沫混凝土。
  5. 如权利要求1或2任一项所述一种金属结构腔体内部长效防腐,其特征在于:所述金属内部腔体采用轻质泡沫做填料长效防腐,适用于各易生锈金属,所述适合做内部腔体填料的还有更多高密度轻型材料。
PCT/CN2019/090452 2018-05-25 2019-06-08 金属结构腔体内部长效防腐 WO2019242512A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201820784392 2018-05-25
CN201810625630.6 2018-06-18
CN201810625630.6A CN108690987B9 (zh) 2018-05-25 2018-06-18 金属结构腔体内部长效防腐

Publications (1)

Publication Number Publication Date
WO2019242512A1 true WO2019242512A1 (zh) 2019-12-26

Family

ID=63848386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090452 WO2019242512A1 (zh) 2018-05-25 2019-06-08 金属结构腔体内部长效防腐

Country Status (2)

Country Link
CN (1) CN108690987B9 (zh)
WO (1) WO2019242512A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690987B9 (zh) * 2018-05-25 2019-12-13 阮保国 金属结构腔体内部长效防腐
CN112356970A (zh) * 2020-01-08 2021-02-12 阮保国 钢夹板叠加结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH550257A (de) * 1971-05-05 1974-06-14 Kovacs Zoltan Dominik Verfahren zum korrosionsschutz der hohlraeume von fahrzeugen.
JPS5783757A (en) * 1980-11-12 1982-05-25 Hitachi Ltd Corrosion resistant sealing material and its manufacturing method
DE10335746A1 (de) * 2003-08-05 2005-03-03 Volkswagen Ag Verfahren zur Korrosionsschutzkonservierung von Hohlräumen
CN100999821A (zh) * 2007-01-25 2007-07-18 张凤焘 一种用于金属管内壁的防腐处理方法
CN101200915A (zh) * 2007-12-20 2008-06-18 上海交通大学 可迁移的即时成型海岛工作站构造
CN101333661A (zh) * 2008-07-25 2008-12-31 辽河石油勘探局 钢质管道环氧粉末防腐层喷涂工艺
CN102713400A (zh) * 2010-01-18 2012-10-03 巴斯夫欧洲公司 管道连接的硬质泡沫包裹
CN108690987A (zh) * 2018-05-25 2018-10-23 阮保国 金属结构腔体内部长效防腐

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2280035A4 (en) * 2008-05-20 2013-01-23 Asahi Glass Co Ltd METHOD FOR MANUFACTURING HARD POLYURETHANE FOAM
CN201447659U (zh) * 2009-06-29 2010-05-05 南京工业大学 一种复合材料桁架桥
CN103304200B (zh) * 2013-06-13 2014-10-15 马鞍山十七冶工程科技有限责任公司 一种泡沫混凝土及其制备方法
CN104761962A (zh) * 2014-01-04 2015-07-08 苏辉 一种应用于水力发电设施的环保涂料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH550257A (de) * 1971-05-05 1974-06-14 Kovacs Zoltan Dominik Verfahren zum korrosionsschutz der hohlraeume von fahrzeugen.
JPS5783757A (en) * 1980-11-12 1982-05-25 Hitachi Ltd Corrosion resistant sealing material and its manufacturing method
DE10335746A1 (de) * 2003-08-05 2005-03-03 Volkswagen Ag Verfahren zur Korrosionsschutzkonservierung von Hohlräumen
CN100999821A (zh) * 2007-01-25 2007-07-18 张凤焘 一种用于金属管内壁的防腐处理方法
CN101200915A (zh) * 2007-12-20 2008-06-18 上海交通大学 可迁移的即时成型海岛工作站构造
CN101333661A (zh) * 2008-07-25 2008-12-31 辽河石油勘探局 钢质管道环氧粉末防腐层喷涂工艺
CN102713400A (zh) * 2010-01-18 2012-10-03 巴斯夫欧洲公司 管道连接的硬质泡沫包裹
CN108690987A (zh) * 2018-05-25 2018-10-23 阮保国 金属结构腔体内部长效防腐

Also Published As

Publication number Publication date
CN108690987B9 (zh) 2019-12-13
CN108690987A (zh) 2018-10-23
CN108690987B (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
CN102659369B (zh) 一种环氧乳液改性混凝土道桥快速修补砂浆及其制备方法
CN102433057B (zh) 一种双组分高渗透型环氧树脂防水补强涂料及制法与应用
CN103554843A (zh) 轨道填充、二次灌浆用环氧灌浆料的制备与施工方法
CN105503068A (zh) 水性环氧树脂改性水泥灌浆材料
WO2019242512A1 (zh) 金属结构腔体内部长效防腐
CN113480268B (zh) 一种环氧聚合物改性的水泥砂浆及其制备方法
CN108219372A (zh) 高强度堵漏用改性环氧树脂灌浆材料及其制备方法
KR101959441B1 (ko) 난연성 frp 패널조성물 및 이를 이용한 콘크리트 구조물의 보수보강공법
CN101735550A (zh) 一种低气味呋喃树脂
JP6466115B2 (ja) セメント系ポリウレタン発泡複合体及びその製造方法
JP2011016681A (ja) 補修用速硬性ポリマーセメントモルタル組成物及びその施工方法
CN112877016A (zh) 一种柔性环氧树脂胶粘剂及其应用
CN113149516B (zh) 一种低粘度高渗透建筑物混凝土加固堵漏环氧防水材料及其制备方法
CN111848068A (zh) 一种用于水平表面缺陷的快速修补砂浆及其制备方法
CN106010375B (zh) 一种防滑路面用水性胶黏剂及其制备方法
CN106587725A (zh) 一种用于大型设备基础的高强减振环氧砂浆及其制备方法
JP2006037611A (ja) ポリマーセメントモルタル製マンホール
CN111849409A (zh) 一种含氧化锌填缝剂的制备方法
KR101014655B1 (ko) 실리케이트-아크릴 중합 폴리머의 제조방법 및 이를 이용한 교면포장용 초속경 폴리머 개질 콘크리트
KR100468074B1 (ko) 균열방지시공방법 및 그에 사용되는 조성물
KR102392363B1 (ko) 에폭시 개질 초속경 시멘트 모르타르 조성물 및 이를 이용한 콘크리트 구조물 및 도로포장의 단면 보수보강 방법
CN117602871B (zh) 一种快速固化的新型渣土基再生复合材料及其制备方法
CN116675501B (zh) 一种早强抗冻融冷补沥青混合料及其施工方法
RU2807757C1 (ru) Эпоксидная композиция
CN115286331B (zh) 输水隧洞衬砌用混凝土及其生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11-05-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19823065

Country of ref document: EP

Kind code of ref document: A1