WO2019242425A1 - 一种量子点液晶面板及其制造方法 - Google Patents

一种量子点液晶面板及其制造方法 Download PDF

Info

Publication number
WO2019242425A1
WO2019242425A1 PCT/CN2019/086486 CN2019086486W WO2019242425A1 WO 2019242425 A1 WO2019242425 A1 WO 2019242425A1 CN 2019086486 W CN2019086486 W CN 2019086486W WO 2019242425 A1 WO2019242425 A1 WO 2019242425A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
liquid crystal
crystal panel
layer
glass substrate
Prior art date
Application number
PCT/CN2019/086486
Other languages
English (en)
French (fr)
Inventor
历志辉
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Publication of WO2019242425A1 publication Critical patent/WO2019242425A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the invention relates to a liquid crystal panel technology, in particular to a quantum dot liquid crystal panel and a manufacturing method thereof.
  • LCD Liquid Crystal Display, liquid crystal display
  • LCD liquid crystal display
  • the liquid crystal panel consists of countless pixels. Its structure is to place liquid crystal molecules in two parallel glass substrates. A TFT (thin film transistor) is set on the lower substrate glass, and a color filter is set on the upper substrate glass. And the voltage changes to control the rotation direction of the liquid crystal molecules, so as to achieve the display purpose by controlling whether the polarized light of each pixel is emitted or not.
  • TFT thin film transistor
  • the backlight source “illuminates” pixels.
  • the liquid crystal is like a curtain. It controls the degree of pixel light transmission.
  • the filter filters white light out of red, green, and blue. colour. By controlling a series of these pixels, various colors can be mixed. Therefore, the color performance of the LCD panel is mainly related to two factors, one is the effectiveness of the filter, and the other is the purity of the white backlight.
  • the filter it is required to accurately obtain the color that filters the color, that is, to filter out red (R), green (G), and blue (B).
  • a red filter not only filters out green and blue in white light, but also allows only red with a specific wavelength to pass through to obtain pure red.
  • advanced filters can accurately filter out colors, but they are very expensive. Because color filters use color photoresist to produce pure colors, they also cause significant attenuation and loss of brightness (color photoresistance transmission The rate is only about 1/3; now there is a technology called WRGB, which increases the brightness of the panel from the senses by adding a white pixel (W) without filtering).
  • the backlight source As for the backlight source, a very "white” light source is required. We know that white light is actually mixed with three colors of red, blue, and green, but the WLED (white LED) light source currently used cannot provide a very pure white light source, which is reflected in the uneven ratio of red, green and blue. The shortcomings of current white LEDs (WLEDs) are simply that they are more blue and generate additional yellow, so the color performance of the LCD panel is ultimately limited.
  • the structure of the liquid crystal panel shows a partially cutaway cell structure, including a liquid crystal cell formed by sealing an upper glass substrate 101 and a lower glass substrate 105 with liquid crystal molecules 107.
  • the upper glass The substrate 101 is provided with a quantum dot color filter layer 106 and an upper polarizing plate 108 facing the inside of the box.
  • the quantum dot color filter layer 106 and the upper polarizing plate 108 are sealed and bonded by a sealant.
  • the surface of the quantum dot color filter layer 106 is sealed.
  • a red quantum dot material 102, a green quantum dot material 103, and a diffusion particle transparent material 104 are separately provided; a surface of the lower glass substrate 105 facing the outside of the box is provided with a lower polarizing plate 109, and a backlight mold disposed outside the lower glass substrate 105 of the liquid crystal panel
  • the group 110 emits blue light, and after the liquid crystal molecules in the liquid crystal panel box are emitted to the quantum dot color filter layer 106, red light, green light, and blue light are emitted. Light to display color images. Because the best quantum dots now have more than 90% light conversion efficiency, and the excited light has a very narrow spectrum, the color is "accurate", so the original technology's impure backlight and filter color are well solved.
  • amorphous silicon exists only as a semiconductor layer in a TFT (thin film transistor) element, and a polarized light is needed.
  • the plate and the color filter side polarizing function layer form an echo.
  • the lower polarizing plate has poor high temperature and high humidity resistance, and it will deform under the long-term illumination of the backlight module, which will cause the LCD panel to warp and dark light leakage. problem.
  • the present invention has warping and light leakage in the liquid crystal panel due to its low temperature and high humidity resistance.
  • a new quantum dot liquid crystal panel and its manufacturing method are proposed.
  • the lower polarizer functional layer is manufactured by using the material of the liquid crystal panel itself, which makes the structure of the quantum dot liquid crystal display panel simpler, lighter and thinner, and reduces the cost and improves the reliability.
  • a quantum dot liquid crystal panel includes a liquid crystal cell formed by sealing liquid crystal molecules on an upper glass substrate and a lower glass substrate.
  • the upper glass substrate is sequentially provided with a quantum dot color filter layer and upper polarized light on a side facing the inside of the box body. Plate, the quantum dot color filter layer and the upper polarizing plate are sealed and bonded by a sealant; the lower glass substrate is provided with a lower polarizing plate on the surface facing the inside of the box body.
  • the lower polarizing plate is a lower gate polarizing functional layer coated on the lower glass substrate with an amorphous silicon material, and the lower gate polarizing functional layer includes a gate polarizing layer absorption axis.
  • the upper polarizing plate is an upper gate polarizing functional layer; the absorption axis of the gate polarizing layer of the lower gate polarizing functional layer is perpendicular to the absorption axis of the upper gate polarizing functional layer on the surface of the upper glass substrate.
  • a signal line, a scan line, a thin film transistor element, a pixel electrode layer, and a gate polarizing layer absorption axis of the lower gate polarizing functional layer are disposed on a surface of the lower glass substrate.
  • the absorption axis of the gate polarization layer of the lower gate polarization function layer is disposed perpendicular to the scanning line, and is perpendicular to the absorption axis of the upper gate polarization function layer.
  • the absorption axis of the gate polarization layer of the lower gate polarization function layer is disposed parallel to the scanning line, and is perpendicular to the absorption axis of the upper gate polarization function layer.
  • an absorption axis of the thin film transistor element, the pixel electrode layer, and the gate polarizing layer of the lower gate polarizing functional layer is disposed in a region surrounded by horizontally and vertically crossing signal lines and scanning lines.
  • the absorption axis of the gate polarization layer of the lower gate polarization functional layer is disposed parallel to the signal line, and is perpendicular to the absorption axis of the upper gate polarization function layer.
  • the absorption axis of the gate polarization layer of the lower gate polarization function layer is disposed perpendicular to the signal line, and is perpendicular to the absorption axis of the upper gate polarization function layer.
  • the material of the upper gate polarizing functional layer contains aluminum or silver.
  • a red quantum dot material, a green quantum dot material, and a diffusion particle transparent material are separately arranged on the surface of the quantum dot color filter layer.
  • the pixel electrode layer and the gate polarizing layer absorption axis of the lower gate polarizing functional layer are in the same layer.
  • the invention also provides a method for manufacturing a quantum dot liquid crystal panel, which includes the following steps:
  • the photoresist material on the surface of the absorption axis is peeled to form a lower gate polarizing functional layer on the lower glass substrate.
  • the invention also provides a method for manufacturing a quantum dot liquid crystal panel, which includes the following steps:
  • the non-absorption axis region of the amorphous silicon material is etched to form a lower gate polarizing function layer of the lower glass substrate.
  • the quantum dot liquid crystal panel of the present invention has a lower gate polarizing functional layer made in a liquid crystal panel box, and an amorphous silicon gate is made using the same amorphous silicon material coating as the TFT (thin film transistor) element, Compared with the prior art, the polarizing functional layer simplifies the manufacturing process and saves the manufacturing materials, because the amorphous silicon material coating for making TFT (thin-film transistor) elements is fully utilized, and the high temperature resistance of the polarizing plate under the liquid crystal panel is avoided. Warping and dark light leakage caused by poor high humidity performance.
  • FIG. 1 is a schematic structural diagram of a quantum dot liquid crystal panel according to the present invention.
  • FIG. 2 is a schematic structural diagram of the principle of the absorption axis perpendicular to the upper gate polarizing functional layer and the lower gate polarizing functional layer on the surface of the lower glass substrate of the color filter layer on the upper glass substrate surface of a quantum dot liquid crystal panel according to the present invention.
  • FIG. 3 is a schematic structural diagram of the lower gate polarizing function layer on the surface of the lower glass substrate of a quantum dot liquid crystal panel according to the present invention (the absorption axis is parallel to the signal line).
  • FIG. 4 is a schematic structural diagram of the lower gate polarizing functional layer on the lower glass substrate surface of a quantum dot liquid crystal panel according to the present invention (the absorption axis is perpendicular to the signal line).
  • FIG. 5 is a schematic diagram of a manufacturing process (exposure etching) of a lower gate polarizing functional layer on a surface of a glass substrate under a method for manufacturing a quantum dot liquid crystal panel according to the present invention.
  • FIG. 6 is a schematic diagram of a manufacturing process (nano-imprinting) of a lower gate polarizing functional layer on a surface of a glass substrate under a method for manufacturing a quantum dot liquid crystal panel according to the present invention.
  • FIG. 7 is a microscopic schematic diagram of the actual structure of the lower gate polarizing functional layer on the surface of the lower glass substrate of a quantum dot liquid crystal panel according to the present invention.
  • FIG. 8 is a schematic structural diagram of a quantum dot liquid crystal panel of the prior art scheme.
  • LCD liquid crystal display
  • Traditional liquid crystal display (LCD) technology is composed of a set of backlight (Backlight Unit) and liquid crystal panel (Liquid-Crystal Module).
  • the LCD panel consists of countless pixels.
  • the current backlight is usually white LED (WLED).
  • WLED white LED
  • the backlight "illuminates” the pixels.
  • the liquid crystal is like a curtain. It controls the degree of light transmission of the pixels.
  • the filter filters white light out of red, green and blue. . By controlling a series of these pixels, various colors can be mixed. Therefore, the color performance of the LCD panel is mainly related to two factors, one is the effectiveness of the filter, and the other is the purity of the white backlight.
  • the filter it is required to accurately obtain the color that filters the color, that is, to filter out pure red (R) green (G) blue (B).
  • R red
  • G green
  • B blue
  • advanced filters can accurately filter out colors, but they are particularly expensive. At the same time, they can reduce the transmittance, cause significant attenuation and loss of brightness, thereby reducing the performance index of LCDs.
  • the backlight source As for the backlight source, a very "white” light source is required. We know that white light is actually mixed with three colors of red, blue, and green, but the white LED (WLED) light source currently used cannot provide a very pure white light source, which is reflected by the uneven ratio of red, green and blue. The shortcomings of current white LEDs (WLEDs) are simply that they are more blue and produce additional yellow, which ultimately limits the performance of LCD panel colors.
  • a quantum dot is essentially a semiconductor crystal that has nanometer-level length, width, and height. Quantum dot materials have different electronic characteristics under different diameters and shapes. When illuminated by an external light source, quantum dots with a small diameter can excite light with a short wavelength, and quantum dots with a larger diameter can excite light with a longer wavelength. This is a quantum mechanical phenomenon called Quantum Confinement, hence the name of "quantum dots”. The best quantum dots now have more than 90% light conversion efficiency, and the excited light has a very narrow spectrum, which means that the color is "accurate” and avoids the currently difficult white LED (WLED) ) Insufficient purity of the light source. Based on the shortcomings of the traditional liquid crystal display (LCD), the unique characteristics of the quantum dot material are used, so the current popular quantum dot liquid crystal panel is produced.
  • LCD liquid crystal display
  • the structure of the current quantum dot liquid crystal panel of the prior art is shown in the schematic structural diagram of the quantum dot liquid crystal panel of the prior art scheme, which includes: a liquid crystal formed by sealing the liquid crystal molecules 107 by the upper glass substrate 101 and the lower glass substrate 105.
  • a box in which the upper glass substrate 101 is provided with a quantum dot color filter layer 106 and an upper polarizing plate 108 facing the inside of the box body.
  • the quantum dot color filter layer 106 and the upper polarizing plate 108 are sealed and bonded by a sealant, and the quantum dots are colored.
  • the surface of the filter layer 106 is separated by a red quantum dot material 102, a green quantum dot material 103, and a diffuse particle transparent material 104.
  • a lower polarizing plate 109 is provided on the surface of the lower glass substrate 105 facing the outside of the case.
  • the backlight module 110 on the outside of 105 emits blue light, and after the liquid crystal molecules in the liquid crystal panel box are emitted to the quantum dot color filter layer 106, red light, green light, and blue light are emitted to display a color image.
  • the lower polarizing plate 109 is inferior in high-temperature and high-humidity resistance, and is prone to warping at the edges, thereby causing problems of warping of the liquid crystal display panel and light leakage in the dark state.
  • the TFT (thin film transistor) element located on the inner surface of the lower glass substrate 105 facing the liquid crystal cell needs to use an amorphous silicon material to make the switch.
  • the amorphous silicon material is coated on the entire surface.
  • the amorphous silicon at the TFT (thin-film transistor) element, and the rest of the amorphous silicon material must be etched away at last.
  • the area of the TFT (thin-film transistor) element occupies only a very small part compared to the entire liquid crystal panel, resulting in an amorphous silicon material. Cause great waste.
  • the present invention provides a new type of quantum dot liquid crystal panel by utilizing this characteristic of the amorphous silicon.
  • FIG. 1 shows a schematic structural diagram of a quantum dot liquid crystal panel according to the present invention.
  • the quantum dot liquid crystal panel 200 includes an upper glass substrate 201 and a lower glass substrate 205 and a liquid crystal cell formed by sealing liquid crystal molecules 207.
  • the upper glass substrate 201 faces
  • the quantum dot color filter layer 206 and the upper polarizing plate 208 are sequentially arranged on one side of the box body.
  • the quantum dot color filter layer 206 and the upper polarizing plate 208 are bonded by a sealant, and the surface of the quantum dot color filter layer 206 is separated from each other.
  • the red quantum dot material 202, the green quantum dot material 203, and the diffusion particle transparent material 204; the surface of the lower glass substrate 205 facing the inside of the box body is provided with a lower polarizing plate 209.
  • the backlight module 210 disposed outside the lower glass substrate 205 of the liquid crystal panel 200 emits blue light, and is emitted by the liquid crystal molecules 207 in the box of the liquid crystal panel 200 to the quantum dot color filter layer 206. Red, green, and blue light to display color images.
  • the upper polarizing plate 208 is used as an upper grid polarizing functional layer, that is, a color filter layer grid polarizing functional layer, and is manufactured in a liquid crystal panel box.
  • the material is mainly aluminum, and silver can also be used. Material-based.
  • the lower polarizing plate 209 is coated on the surface of the lower glass substrate 205 with an amorphous silicon material, and the pixel electrode is also formed by coating the layer of amorphous silicon material on the surface of the lower glass substrate 205.
  • Processes such as etching cause the amorphous silicon material layer to form a lower gate polarizing functional layer and a pixel electrode, and the lower gate polarizing functional layer and an absorption axis of the upper gate polarizing functional layer of the color filter layer on the surface of the upper glass substrate 201 To vertical.
  • the lower gate polarizing functional layer may also be referred to as an amorphous silicon gate polarizing functional layer
  • the upper gate polarizing functional layer may also be referred to as a color filter gate polarizing functional layer.
  • FIG. 2 shows the absorption axes of the upper gate polarizing functional layer and the lower gate polarizing functional layer on the surface of the lower glass substrate of the color filter layer on the upper glass substrate surface of the quantum dot liquid crystal panel of the present invention.
  • Figure 2 shows the axial sides of the upper gate polarizing functional layer 208 and the lower gate polarizing functional layer 209. The two surfaces are respectively provided with absorption axes 2081 and 2091, and are perpendicular to the axial direction.
  • the absorption axis of the upper gate polarizing functional layer 208 and the lower gate polarizing functional layer 209 are perpendicular to each other because the liquid crystal molecules must be matched with the upper and lower polarizing functional layers to achieve the light valve function.
  • the lower gate polarizing functional layer is formed by coating an amorphous silicon material on the surface of the lower glass substrate, and then the non-absorptive axis area is removed by etching or molding, and the lower gate polarizing functional layer and the lower glass substrate surface are simultaneously formed.
  • the pixel electrode layer, and an absorption axis of an amorphous silicon material is formed on the surface of the lower gate polarizing functional layer.
  • the morphology of the absorption axis may be perpendicular to the axis of the upper gate polarizing functional layer, and the angle is not limited.
  • the structure of the absorption axis of the gate polarization layer on the lower gate polarization function layer 209 includes two preferred embodiments.
  • the first one adopts a method in which the absorption axis is parallel to the signal line
  • the second one adopts a method in which the absorption axis is perpendicular to the signal line.
  • the first way is as shown in FIG. 3.
  • a TFT element, a pixel electrode layer 2092 is disposed in an area surrounded by the horizontally and vertically crossing signal lines and scanning lines, and the substrate is coated and disposed on the surface of the lower glass substrate.
  • the electrode axis 2092 has the absorption axis 2091 of the gate polarizing layer in the same layer, and the absorption axis 2091 is the absorption axis 2091 of the lower gate polarizing functional layer shown in FIG. 2. It can be seen that the absorption axis 2091 of the lower gate polarizing functional layer shown in FIG. 3 is parallel to the signal line.
  • the second method is shown in FIG.
  • FIG. 4 shows A partial structure view of the lower glass substrate surface in a plan view.
  • a TFT element and a pixel electrode layer 2092 are disposed in an area surrounded by horizontally and vertically crossing signal lines and scanning lines, and the lower glass substrate is coated and disposed on the same layer as the pixel electrode layer 2092.
  • the absorption axis 2091 of the gate polarizing layer is the absorption axis 2091 of the lower gate polarizing functional layer shown in FIG. 2. It can be seen that the absorption axis 2091 of the lower gate polarizing functional layer shown in FIG. 3 is perpendicular to the signal line.
  • the lower gate polarizing functional layer that is, the amorphous silicon gate polarizing functional layer, uses the remaining The production of crystalline silicon material coating makes full use of the remaining amorphous silicon material coating for the production of TFT (thin film transistor) elements, which avoids the coating of amorphous silicon material after the TFT (thin film transistor) element is manufactured in the prior art.
  • the great waste caused by etching away also makes the lower gate polarizing functional layer fabricated in the quantum dot liquid crystal panel box.
  • the lower gate polarizing functional layer and the TFT (thin film transistor) element use the same layer of amorphous silicon material, compared with the quantum dot liquid crystal panel shown in the prior art of FIG. 8, a separate lower gate polarizing functional layer is reduced. This makes the quantum dot liquid crystal panel of the present invention thinner and lighter. Since the lower gate polarizing functional layer is made in the liquid crystal panel box, problems such as warping of the liquid crystal panel and light leakage in the dark state due to poor high temperature and high humidity resistance properties are avoided.
  • the lower gate polarizing functional layer is mainly moved into the liquid crystal panel box.
  • the invention provides a method for manufacturing a quantum dot liquid crystal panel, which is used to manufacture the above quantum dot liquid crystal panel.
  • the manufacturing of a lower gate polarizing functional layer on a lower glass substrate of the quantum dot liquid crystal panel includes the following steps. Please refer to FIG.
  • the invention is a schematic diagram of the manufacturing (exposure and etching) process of the lower gate polarizing functional layer on the surface of the glass substrate under the manufacturing method of the quantum dot liquid crystal panel.
  • An amorphous silicon material is coated on the surface of the lower glass substrate.
  • a photoresist material is coated on the surface of the amorphous silicon material of the lower glass substrate to form the structure in step 1 shown in FIG. 5.
  • the structure in step 1 is a cross-sectional structure of the lower glass substrate, and the lower glass substrate 205 is coated.
  • An amorphous silicon material 209 is provided, and a photoresist material 211 is coated on the amorphous silicon material 209.
  • the photoresist material coated on the surface of the amorphous silicon material is exposed to remove the non-absorptive axis area of the photoresist material to form the structure in step 2 shown in FIG. 5.
  • the non-absorptive axis region of the non-absorptive axis region of the photoresist material is etched to remove the non-absorptive axis region of the amorphous silicon material to form the structure in step 3 shown in FIG. 5.
  • the photoresist material on the surface of the absorption axis is peeled off to form a lower gate polarizing functional layer on the lower glass substrate, forming the structure in step 4 shown in FIG. 5, and an amorphous silicon material is formed on the lower glass substrate 205. 209 ⁇ absorption ⁇ 2091.
  • the structure and working principle of the lower gate polarizing functional layer formed by this exposure etching method can be referred to the foregoing embodiments of the quantum dot liquid crystal panel, and details are not described herein.
  • the invention also provides another method for manufacturing a quantum dot liquid crystal panel, which is used to manufacture the above quantum dot liquid crystal panel.
  • the manufacturing of a lower gate polarizing functional layer on a lower glass substrate of the quantum dot liquid crystal panel includes the following steps, please refer to the drawings. 6 A schematic diagram of a manufacturing process (nano-imprinting) of a lower gate polarizing functional layer on a glass substrate surface under a manufacturing method of a quantum dot liquid crystal panel of the present invention.
  • the amorphous silicon material is coated on the surface of the lower glass substrate; the coating of the amorphous silicon material on the surface of the lower glass substrate is the application of the amorphous silicon material on the side of the lower glass substrate on which the pixel electrode layer has been printed. .
  • a mold is pressed against the surface of the amorphous silicon material of the lower glass substrate to form the shape of the amorphous silicon material absorbing shaft protrusions; refer to step 1 and step 2 shown in FIG. 6, where step 1 is to place the amorphous silicon
  • the material 209 is coated on the surface of the lower glass substrate 205, and the mold 30 capable of forming an uneven structure is prepared to press the amorphous silicon material 209.
  • Step 2 is to press the mold 30 on the surface of the amorphous silicon material 209 to form an amorphous silicon material absorbing shaft protrusion.
  • the non-absorptive axis area on the surface of the amorphous silicon material 209 is recessed, and the amorphous silicon material remains.
  • the non-absorption axis region of the amorphous silicon material is etched to form a lower gate polarizing function layer of the lower glass substrate.
  • the non-absorptive shaft region of the amorphous silicon material structure formed in step 2 is etched to form an amorphous silicon material absorber shaft 2091 on the lower glass substrate 205.
  • the structure of the lower gate polarizing function layer formed by the nano-imprint method and the working principle thereof can be referred to the foregoing embodiments of the quantum dot liquid crystal panel, and details are not described herein.
  • the actual structure of the lower gate polarizing functional layer on the surface of the lower glass substrate of the quantum dot liquid crystal panel of the present invention formed by the above method can be as shown in FIG. 7 of the lower gate polarization of the lower glass substrate surface of the quantum dot liquid crystal panel of the present invention.
  • the actual structure of the functional layer is shown in a schematic micrograph.
  • the absorption axis structure of the lower gate polarizing functional layer under the nano-scale microstructure can be seen from FIG. 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种量子点液晶面板(200)及其制造方法,量子点液晶面板(200)包括由上玻璃基板(201)和下玻璃基板(205)密封液晶分子(207)形成的液晶盒子,其中上玻璃基板(201)朝向盒体内部一面依序设置量子点彩色滤光层(206)和上偏光板(208),量子点彩色滤光层(206)与上偏光板(208)之间通过密封胶密封粘合,量子点彩色滤光层(206)表面分隔设置红色量子点材料(202)、绿色量子点材料(203)和扩散粒子透明材料(204);下玻璃基板(205)朝向盒体内部的表面设置有下偏光板(209)。下玻璃基板(205)上的下栅极偏光功能层采用曝光蚀刻或纳米压印技术制造。与现有技术相比较,量子点液晶面板(200)充分利用了制作TFT(薄膜晶体管)元件的非晶硅材料涂层,简化了制造工艺,节省了材料,降低了成本,使面板更薄更轻,避免了液晶面板(200)翘曲与暗态漏光等问题。

Description

一种量子点液晶面板及其制造方法 技术领域
涉及一种液晶面板技术,尤其涉及一种量子点液晶面板及其制造方法。
背景技术
传统LCD(Liquid Crystal Display,即液晶显示器)技术由一组背光源(BacklightUnit)和液晶面板(Liquid-Crystal Module)组成。液晶面板由无数的像素点组成,其构造是在两片平行的玻璃基板当中放置液晶分子,下基板玻璃上设置TFT(薄膜晶体管),上基板玻璃上设置彩色滤光片,通过TFT上的信号与电压改变来控制液晶分子的转动方向,从而达到控制每个像素点偏振光出射与否而达到显示目的。
目前的背光源通常是白光LED(WLED),背光源“照亮”像素点,液晶就像窗帘一样,控制像素点透光的程度,最后滤光片将白光过滤出红绿蓝中的一种颜色。通过控制一系列这些像素点,可以混合出各种各样的颜色。因此,液晶面板的色彩表现主要和两个因素相关,一个是滤光片的滤光的有效性,另一个是背光源白色的纯净度。
滤光片方面,要求精准得到将颜色过滤的颜色,即过滤出红(R)绿(G)蓝(B)。比如红色滤光片不仅要过滤掉白光里面的绿色和蓝色,而且只允许特定波长的红色通过,得到纯净的红色。目前高级的滤光片可以很精准地过滤出颜色,但是非常昂贵,由于彩色滤光片是利用颜色光阻过滤产生纯净颜色,因而还会导致明显的衰减和亮度的损失(颜色光阻透过率只有1/3左右;现在有名为WRGB的技术,通过增加一个无滤光的白色像素点(W)从感官上增加面板的亮度)。
背光源方面,则要求提供非常“白”的光源。我们知道白光实际上是以红、蓝、绿三色混合起来的,但是现在使用的WLED(白光LED)光源无法提供非常纯净的白色光源,表现在红绿蓝的配比不平均。目前白光LED(WLED)的缺陷简单来说就是蓝色多了,而且产生了额外的黄色,因此,最终限制了液晶面 板颜色表现。
为了克服白光LED(WLED)的缺点,现在有直接用红绿蓝LED(RGBLED)背光驱动的面板,但是代价是非常昂贵,而且难以塞进小型的移动设备。于是就有了量子点技术大展拳脚的地方。现在已有一种用量子点材料替代颜色光阻的技术,就是背光使用单色蓝光LED做光源,利用量子点激发绿光和红光的特性,用量子点材料替代传统的滤光片,如图8现有技术量子点液晶面板的原理结构图所示,该液晶面板的结构显示局部剖视单元结构,包括由上玻璃基板101和下玻璃基板105密封液晶分子107形成的液晶盒子,其中上玻璃基板101朝向盒体内部分别设置量子点彩色滤光层106和上偏光板108,量子点彩色滤光层106与上偏光板108之间通过密封胶密封粘合,量子点彩色滤光层106表面分隔设置红色量子点材料102、绿色量子点材料103和扩散粒子透明材料104;下玻璃基板105朝向盒体外部的表面设置有下偏光板109,设置在液晶面板的下玻璃基板105外侧的背光模组110发射出蓝光,通过液晶面板盒体内的液晶分子的出射到量子点彩色滤光层106后发出红光、绿光和蓝光,以显示彩色图像。由于现在最好的量子点拥有超过90%的光转换效率,而且激发的光拥有很窄的光谱,颜色很“准确”,因此很好地解决了原有技术背光源不纯净和滤光片颜色过滤不精准的问题,于是液晶显示器颜色可以更丰富,亮度可以表现更好。但是,目前的量子点液晶显示器方案的制造工序还比较繁琐,而且材料也还存在很大的浪费,如非晶硅作为半导体层仅存在于TFT(薄膜晶体管)元件中,还需要一张下偏光板与彩色滤光片侧偏光功能层形成呼应,下偏光板由于耐高温高湿性能较差,在背光模组的长时间照射下会出现形变,进而导致液晶面板出现翘曲与暗态漏光等问题。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足之处,本发明为解决现有技术制造工序比较繁琐、材料存在很大浪费、下偏光板由于耐高温高湿性能较差,会出现液晶面板翘曲与暗态漏光等问题,提出了一种新型量子点液晶面板及其制造方法,利用液晶面板本身的材料制造下偏光片功能层,使得量子点液晶显示面板结构更加简化,轻薄,降低成本提高可靠度。
一种量子点液晶面板,该量子点液晶面板包括由上玻璃基板和下玻璃基板密封液晶分子形成的液晶盒子,其中上玻璃基板朝向盒体内部一面依序设置量子点彩色滤光层和上偏光板,量子点彩色滤光层与上偏光板之间通过密封胶密封粘合;下玻璃基板朝向盒体内部的表面设置有下偏光板。
作为进一步的改进技术方案,所述下偏光板为采用非晶硅材料涂布在所述下玻璃基板上的下栅极偏光功能层,所述下栅极偏光功能层包括栅极偏光层吸收轴;所述上偏光板为上栅极偏光功能层;该下栅极偏光功能层的栅极偏光层吸收轴与所述上玻璃基板表面的上栅极偏光功能层的吸收轴垂直。
作为进一步的改进技术方案,所述下玻璃基板表面上设置有信号线、扫描线、薄膜晶体管元件、像素电极层、所述下栅极偏光功能层的栅极偏光层吸收轴。
作为进一步的改进技术方案,所述下栅极偏光功能层的栅极偏光层吸收轴与所述扫描线垂直设置,并与上栅极偏光功能层的吸收轴垂直。
作为进一步的改进技术方案,所述下栅极偏光功能层的栅极偏光层吸收轴与所述扫描线平行设置,并与上栅极偏光功能层的吸收轴垂直。
作为进一步的改进技术方案,所述薄膜晶体管元件、像素电极层、所述下栅极偏光功能层的栅极偏光层吸收轴设置在横纵交叉的信号线和扫描线围成的区域内。
作为进一步的改进技术方案,所述下栅极偏光功能层的栅极偏光层吸收轴与所述信号线平行设置,并与上栅极偏光功能层的吸收轴垂直。
作为进一步的改进技术方案,所述下栅极偏光功能层的栅极偏光层吸收轴与所述信号线垂直设置,并与上栅极偏光功能层的吸收轴垂直。
作为进一步的改进技术方案,所述上栅极偏光功能层的材料中含有铝或银。
作为进一步的改进技术方案,所述量子点彩色滤光层表面分隔设置红色量子点材料、绿色量子点材料和扩散粒子透明材料。
作为进一步的改进技术方案,所述像素电极层与所述下栅极偏光功能层的栅极偏光层吸收轴处于同一层。
本发明还提供一种量子点液晶面板的制造方法,其包括如下步骤:
将非晶硅材料涂布在下玻璃基板已印刷有像素电极层的表面;
再将光阻材料涂布在所述下玻璃基板的非晶硅材料表面;
对涂布在所述非晶硅材料表面的光阻材料进行曝光去除光阻材料的非吸收轴区域;
对所述光阻材料的非吸收轴区域的非晶硅材料涂层进行蚀刻去除非晶硅材料的非吸收轴区域;
对吸收轴表面的光阻材料进行剥离,形成所述下玻璃基板上的下栅极偏光功能层。
作为进一步的改进技术方案,所述对所述光阻材料的非吸收轴区域的非晶硅材料涂层进行蚀刻去除非晶硅材料的非吸收轴区域步骤中,还需要同时保留像素电极区域不被蚀刻。
本发明还提供一种量子点液晶面板的制造方法,其包括如下步骤:
将非晶硅材料涂布在下玻璃基板已印刷有像素电极层的表面;
再将模具压着在所述下玻璃基板的非晶硅材料表面以形成非晶硅材料吸收轴凸起的形态;
移除模具后对非晶硅材料的非吸收轴区域进行蚀刻,形成所述下玻璃基板的下栅极偏光功能层。
作为进一步的改进技术方案,所述移除模具后对非晶硅材料的非吸收轴区域进行蚀刻的步骤中,还需要同时保留像素电极区域不被蚀刻。基于上述内容,由于本发明的量子点液晶面板将下栅极偏光功能层制作在液晶面板盒内,并使用与制作TFT(薄膜晶体管)元件相同的非晶硅材料涂层制作非晶硅栅极偏光功能层,相较于现有技术,由于充分利用了制作TFT(薄膜晶体管)元件的非晶硅材料涂层,简化了制造工艺,节约了制作材料,同时避免了液晶面板下偏光板耐高温高湿性能较差而引起的翘曲与暗态漏光等问题。
附图说明
下面结合附图对本发明的具体实施方式作进一步的说明,其中:
图1是本发明一种量子点液晶面板的原理结构图。
图2是本发明一种量子点液晶面板的上玻璃基板表面的彩色滤光片层上栅极偏光功能层与下玻璃基板表面的下栅极偏光功能层的吸收轴向垂直原理结构示意图。
图3是本发明一种量子点液晶面板的下玻璃基板表面的下栅极偏光功能层的原理结构示意图(吸收轴与信号线平行)。
图4是本发明一种量子点液晶面板的下玻璃基板表面的下栅极偏光功能层的原理结构示意图(吸收轴与信号线垂直)。
图5是本发明一种量子点液晶面板的制造方法之下玻璃基板表面的下栅极偏光功能层制作(曝光蚀刻)过程示意图。
图6是本发明一种量子点液晶面板的制造方法之下玻璃基板表面的下栅极偏光功能层制作(纳米压印)过程示意图。
图7是本发明一种量子点液晶面板的下玻璃基板表面的下栅极偏光功能层的实际构造显微示意图。
图8是现有技术方案量子点液晶面板的原理结构图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
随着电视技术的发展,液晶显示器(LCD)得到空前的发展,人们对液晶显示器的显示效果:即色彩表现提出了更高的要求。传统液晶显示器(LCD)技术是由一组背光源(Backlight Unit)和液晶面板(Liquid-Crystal Module)组成。液晶面板由无数的像素点组成。目前的背光源通常是白光LED(WLED),背光源“照亮”像素点,液晶就像窗帘一样,控制像素点透光的程度,最后滤光片将白光过滤出红绿蓝其中一种颜色。通过控制一系列这些像素点,可以混合出各种各样的颜色。因此,液晶面板的色彩表现主要和两个因素相关,一个是滤光片的滤光的有效性,另一个是背光源白色的纯净度。
滤光片方面,要求精准得到将颜色过滤的颜色,即过滤出纯净的红(R)绿(G)蓝(B)。目前高级的滤光片可以很精准地过滤出颜色,但特别昂贵,且由于同时会使透光率下降,导致明显的衰减和亮度的损失,从而降低LCD的效能指标。
背光源方面,则要求提供非常“白”的光源。我们知道白光实际上是以红、 蓝、绿三色混合起来的,但是现在使用的白光LED(WLED)光源无法提供非常纯净的白色光源,表现在红绿蓝的配比不平均。目前白光LED(WLED)的缺陷简单来说就是蓝色多了,而且产生了额外的黄色,最终限制了液晶面板颜色的表现。
量子点实质是一种长宽高都达到纳米等级的半导体晶体。量子点材料在不同的直径和形状下会有不同的电子特性,在外部光源的照射下,直径小的量子点可以激发短波长的光,直径较大的量子点可以激发较长波长的光,这是一种叫做“量子约束”(Quantum Confinement)的量子力学现象,“量子点”也因此得名。现在最好的量子点拥有超过90%的光转换效率,而且激发的光拥有很窄的光谱,亦即表明颜色很“准确”,且避开了目前遇到的很难解决的白光LED(WLED)光源纯度不够问题。基于传统液晶显示器(LCD)存在的不足,利用量子点材料的独有特性,于是就产生了现在热门的量子点液晶面板。
目前现有技术的量子点液晶面板,其结构如图8现有技术方案量子点液晶面板的原理结构图所示,其包括:由上玻璃基板101和下玻璃基板105密封液晶分子107形成的液晶盒子,其中上玻璃基板101朝向盒体内部分别设置量子点彩色滤光层106和上偏光板108,量子点彩色滤光层106与上偏光板108之间通过密封胶密封粘合,量子点彩色滤光层106表面分隔设置红色量子点材料102、绿色量子点材料103和扩散粒子透明材料104;下玻璃基板105朝向盒体外部的表面设置有下偏光板109,设置在液晶面板的下玻璃基板105外侧的背光模组110发射出蓝光,通过液晶面板盒体内的液晶分子的出射到量子点彩色滤光层106后发出红光、绿光和蓝光,以显示彩色图像。这样的结构,由于下偏光板109耐高温高湿性能较差,容易出现边缘翘曲,进而导致液晶显示面板的翘曲及暗态漏光的问题。另外,液晶显示面板中位于下玻璃基板105朝向液晶盒体内表面上的TFT(薄膜晶体管)元件需要使用非晶硅材料制作开关,在制作时,非晶硅材料是整面涂布的,除制作TFT(薄膜晶体管)元件处的非晶硅,其余部分的非晶硅材料最后都要被蚀刻掉,TFT(薄膜晶体管)元件的面积相比较整个液晶面板仅占有极小部分,导致非晶硅材料造成极大的浪费。
由于非晶硅材料可以制作替代下偏光板109的栅极偏光功能,利用非晶硅的此特性,本发明提供了一种新型的量子点液晶面板。
如图1示出了本发明一种量子点液晶面板的原理结构图,该量子点液晶面板200包括上玻璃基板201和下玻璃基板205密封液晶分子207形成的液晶盒子,其中上玻璃基板201朝向盒体内部一面依序设置量子点彩色滤光层206和上偏光板208,量子点彩色滤光层206和上偏光板208之间通过密封胶粘合,量子点彩色滤光层206表面分隔设置红色量子点材料202、绿色量子点材料203和扩散粒子透明材料204;下玻璃基板205朝向盒体内部的表面设置有下偏光板209。就该液晶面板200而言,设置在液晶面板200的下玻璃基板205外侧的背光模组210发射出蓝光,通过液晶面板200盒体内的液晶分子207的出射到量子点彩色滤光层206后发出红光、绿光和蓝光,以显示彩色图像。
上偏光板208作为上栅极偏光功能层,即彩色滤光片层栅极偏光功能层,制作在液晶面板盒内,其材料主要是铝,也可以使用银,基于成本因素的考虑,以铝材料制作为主。其中,所述下偏光板209为采用非晶硅材料涂布在所述下玻璃基板205表面,像素电极也是该层非晶硅材料涂布在该下玻璃基板205表面上形成的,通过曝光、蚀刻等工艺使得非晶硅材料层形成下栅极偏光功能层、像素电极,该下栅极偏光功能层与所述上玻璃基板201表面的彩色滤光层的上栅极偏光功能层的吸收轴向垂直。上述下栅极偏光功能层也可称为非晶硅栅极偏光功能层,上栅极偏光功能层也可称为彩色滤光片栅极偏光功能层。本实施例中,图2示出了本发明一种量子点液晶面板的上玻璃基板表面的彩色滤光片层上栅极偏光功能层与下玻璃基板表面的下栅极偏光功能层的吸收轴向垂直原理结构示意图,图2所示为上栅极偏光功能层208、下栅极偏光功能层209的轴侧示意,两者表面分别设置有吸收轴2081、2091,并在轴向上垂直,上栅极偏光功能层208与下栅极偏光功能层209的吸收轴向垂直是因为液晶分子必需是搭配上、下偏光功能层轴向垂直实现其光阀的作用。
如前所述,下栅极偏光功能层是非晶硅材料涂布在下玻璃基板表面形成的,然后通过蚀刻或模压的方法去掉非吸收轴区域,在下玻璃基板表面同时形成下栅极偏光功能层和像素电极层,而下栅极偏光功能层表面形成非晶硅材料的吸收轴,吸收轴的形态结构与上栅极偏光功能层的吸收轴轴向上垂直即可,不限制其角度。下栅极偏光功能层209上的栅极偏光层吸收轴的结构包括两种优选实施方式,第一种采用吸收轴与信号线平行方式,第二种采用吸收轴与信号线垂直方式。 本实施例中,第一种方式如图3本发明一种量子点液晶面板的下玻璃基板表面的下栅极偏光功能层的原理结构示意图(吸收轴与信号线平行),应当说明的是,图3所示为下玻璃基板表面俯视的局部结构图,横纵交叉的信号线和扫描线围成的区域内设置有TFT元件、像素电极层2092,以及涂布设置在下玻璃基板表面,与像素电极层2092同层的栅极偏光层的吸收轴2091,该吸收轴2091即为图2中示出的下栅极偏光功能层的吸收轴2091。可见,图3中示出的下栅极偏光功能层的吸收轴2091与信号线平行。第二种方式如图4本发明一种量子点液晶面板的下玻璃基板表面的下栅极偏光功能层的原理结构示意图(吸收轴与信号线垂直),应当说明的是,图4所示为下玻璃基板表面俯视的局部结构图,横纵交叉的信号线和扫描线围成的区域内设置有TFT元件、像素电极层2092,以及涂布设置在下玻璃基板表面,与像素电极层2092同层的栅极偏光层的吸收轴2091,该吸收轴2091即为图2中示出的下栅极偏光功能层的吸收轴2091。可见,图3中示出的下栅极偏光功能层的吸收轴2091与信号线垂直。
由于TFT(薄膜晶体管)元件的面积相比较整个液晶面板面积仅占极小部分,下栅极偏光功能层,即非晶硅栅极偏光功能层,利用制作TFT(薄膜晶体管)元件剩下的非晶硅材料涂层制作,充分利用了制作TFT(薄膜晶体管)元件剩余的非晶硅材料的涂层,避免了现有技术在制作完TFT(薄膜晶体管)元件后,非晶硅材料涂层被蚀刻掉而造成的极大浪费,也使得下栅极偏光功能层被制作在了量子点液晶面板盒内。同时由于下栅极偏光功能层和TFT(薄膜晶体管)元件利用同一层非晶硅材料,相对于如图8现有技术所示的量子点液晶面板,减少了单独的下栅极偏光功能层,使得本发明量子点液晶面板厚度更薄、重量更轻。由于下栅极偏光功能层被制作在液晶面板盒内,避免了由于耐高温高湿性能较差而出现的液晶面板翘曲与暗态漏光等问题。
上述本发明量子点液晶面板中主要是将下栅极偏光功能层移到液晶面板盒内,该液晶面板的下玻璃基板上的下栅极偏光功能层的制造方式主要有两种:曝光蚀刻和纳米压印技术。本发明提供一种量子点液晶面板的制造方法,用于制造上述量子点液晶面板,该量子点液晶面板的下玻璃基板上的下栅极偏光功能层的制造包括如下步骤,请参考图5本发明一种量子点液晶面板的制造方法之下玻璃基板表面的下栅极偏光功能层制作(曝光蚀刻)过程示意图。
将非晶硅材料涂布在所述下玻璃基板表面。
再将光阻材料涂布在所述下玻璃基板的非晶硅材料表面,形成图5所示步骤1中的结构,步骤1中的结构为下玻璃基板的截面结构,下玻璃基板205上涂布非晶硅材料209,非晶硅材料209上涂布光阻材料211。
对涂布在所述非晶硅材料表面的光阻材料进行曝光去除光阻材料的非吸收轴区域,形成图5所示步骤2中的结构。
对所述光阻材料的非吸收轴区域的非晶硅材料涂层进行蚀刻去除非晶硅材料的非吸收轴区域,形成图5所示步骤3中的结构,下玻璃基板205上留出了光阻材料211、非晶硅材料209的吸收轴区域。所述对所述光阻材料的非吸收轴区域的非晶硅材料涂层进行蚀刻去除非晶硅材料的非吸收轴区域步骤中,还需要同时保留像素电极区域不被蚀刻,像素电极区域图5中未示出,具体结构可参考图3、图4中的结构。
最后,对吸收轴表面的光阻材料进行剥离,形成所述下玻璃基板上的下栅极偏光功能层,形成图5所示步骤4中的结构,下玻璃基板205上形成了非晶硅材料209的吸收轴2091。
这种曝光蚀刻的方法形成的下栅极偏光功能层结构及其工作原理可参考上述量子点液晶面板实施例,此处不赘述。
本发明还提供另外一种量子点液晶面板的制造方法,用于制造上述量子点液晶面板,该量子点液晶面板的下玻璃基板上的下栅极偏光功能层的制造包括如下步骤,请参考图6本发明一种量子点液晶面板的制造方法之下玻璃基板表面的下栅极偏光功能层制作(纳米压印)过程示意图。
将非晶硅材料涂布在所述下玻璃基板表面;所述将非晶硅材料涂布在所述下玻璃基板表面是将非晶硅材料涂布在下玻璃基板已印刷有像素电极层的一面。
再将模具压着在所述下玻璃基板的非晶硅材料表面以形成非晶硅材料吸收轴凸起的形态;参考图6所示步骤1和步骤2,其中,步骤1是将非晶硅材料209涂布在下玻璃基板205表面,能形成凹凸结构的模具30准备压着非晶硅材料209,步骤2是将模具30压着在非晶硅材料209表面形成非晶硅材料吸收轴凸起的形态,在模具30压着非晶硅材料后,非晶硅材料209表面凹陷的非吸收轴区域还会残留非晶硅材料。
移除模具后对非晶硅材料的非吸收轴区域进行蚀刻,形成所述下玻璃基板的下栅极偏光功能层。参考图6所示步骤3,对步骤2形成结构的非晶硅材料非吸收轴区域进行蚀刻形成下玻璃基板205上的非晶硅材料吸收轴2091。所述移除模具后对非晶硅材料的非吸收轴区域进行蚀刻的步骤中,还需要同时保留像素电极区域不被蚀刻,像素电极区域图6中未示出,具体结构可参考图3、图4中的结构。
这种纳米压印的方法形成的下栅极偏光功能层结构及其工作原理可参考上述量子点液晶面板实施例,此处不赘述。
通过上述方法形成的本发明量子点液晶面板的下玻璃基板表面的下栅极偏光功能层的实际构造图可如图7的本发明一种量子点液晶面板的下玻璃基板表面的下栅极偏光功能层的实际构造显微示意图所示。从图7中可见纳米级显微结构下的下栅极偏光功能层的吸收轴结构。
应当理解的是,以上所述仅为本发明的较佳实施例而已,并不足以限制本发明的技术方案,对本领域普通技术人员来说,在本发明的精神和原则之内,可以根据上述说明加以增减、替换、变换或改进,而所有这些增减、替换、变换或改进后的技术方案,都应属于本发明所附权利要求的保护范围。

Claims (15)

  1. 一种量子点液晶面板,其特征在于,该量子点液晶面板包括由上玻璃基板和下玻璃基板密封液晶分子形成的液晶盒子,其中上玻璃基板朝向盒体内部一面依序设置量子点彩色滤光层和上偏光板,量子点彩色滤光层与上偏光板之间通过密封胶密封粘合;下玻璃基板朝向盒体内部的表面设置有下偏光板。
  2. 根据权利要求1所述的一种量子点液晶面板,其特征在于,所述下偏光板为采用非晶硅材料涂布在所述下玻璃基板上的下栅极偏光功能层,所述下栅极偏光功能层包括栅极偏光层吸收轴;所述上偏光板为上栅极偏光功能层;所述下栅极偏光功能层的栅极偏光层吸收轴与所述上栅极偏光功能层的吸收轴垂直。
  3. 根据权利要求2所述的一种量子点液晶面板,其特征在于,所述下玻璃基板表面上设置有信号线、扫描线、薄膜晶体管元件、像素电极层、所述下栅极偏光功能层的栅极偏光层吸收轴。
  4. 根据权利要求3所述的一种量子点液晶面板,其特征在于,所述下栅极偏光功能层的栅极偏光层吸收轴与所述扫描线垂直设置,并与上栅极偏光功能层的吸收轴垂直。
  5. 根据权利要求3所述的一种量子点液晶面板,其特征在于,所述下栅极偏光功能层的栅极偏光层吸收轴与所述扫描线平行设置,并与上栅极偏光功能层的吸收轴垂直。
  6. 根据权利要求3所述的一种量子点液晶面板,其特征在于,所述薄膜晶体管元件、像素电极层、所述下栅极偏光功能层的栅极偏光层吸收轴设置在横纵交叉的信号线和扫描线围成的区域内。
  7. 根据权利要求6所述的一种量子点液晶面板,其特征在于,所述下栅极偏光功能层的栅极偏光层吸收轴与所述信号线平行设置,并与上栅极偏光功能层的吸收轴垂直。
  8. 根据权利要求6所述的一种量子点液晶面板,其特征在于,所述下栅极偏光功能层的栅极偏光层吸收轴与所述信号线垂直设置,并与上栅极偏光功能层的吸收轴垂直。
  9. 根据权利要求2所述的一种量子点液晶面板,其特征在于,所述上栅极偏光功能层的材料中含有铝或银。
  10. 根据权利要求1所述的一种量子点液晶面板,其特征在于,所述量子点 彩色滤光层表面分隔设置红色量子点材料、绿色量子点材料和扩散粒子透明材料。
  11. 根据权利要求3所述的一种量子点液晶面板,其特征在于,所述像素电极层与所述下栅极偏光功能层的栅极偏光层吸收轴处于同一层。
  12. 一种量子点液晶面板的制造方法,其特征在于,该量子点液晶面板的制造方法包括如下步骤:
    将非晶硅材料涂布在下玻璃基板已印刷有像素电极层的表面;
    再将光阻材料涂布在所述下玻璃基板的非晶硅材料表面;
    对涂布在所述非晶硅材料表面的光阻材料进行曝光去除光阻材料的非吸收轴区域;
    对所述光阻材料的非吸收轴区域的非晶硅材料涂层进行蚀刻去除非晶硅材料的非吸收轴区域;
    对吸收轴表面的光阻材料进行剥离,形成所述下玻璃基板上的下栅极偏光功能层。
  13. 根据权利要求12所述的量子点液晶面板的制造方法,其特征在于,所述对所述光阻材料的非吸收轴区域的非晶硅材料涂层进行蚀刻去除非晶硅材料的非吸收轴区域步骤中,还需要同时保留像素电极区域不被蚀刻。
  14. 一种量子点液晶面板的制造方法,其特征在于,该量子点液晶面板的制造方法包括如下步骤:
    将非晶硅材料涂布在下玻璃基板已印刷有像素电极层的表面;
    再将模具压着在所述下玻璃基板的非晶硅材料表面以形成非晶硅材料吸收轴凸起的形态;
    移除模具后对非晶硅材料的非吸收轴区域进行蚀刻,形成所述下玻璃基板的下栅极偏光功能层。
  15. 根据权利要求14所述的量子点液晶面板的制造方法,其特征在于,所述移除模具后对非晶硅材料的非吸收轴区域进行蚀刻的步骤中,还需要同时保留像素电极区域不被蚀刻。
PCT/CN2019/086486 2018-06-22 2019-05-11 一种量子点液晶面板及其制造方法 WO2019242425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810648166.2 2018-06-22
CN201810648166.2A CN110632783B (zh) 2018-06-22 2018-06-22 一种量子点液晶面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2019242425A1 true WO2019242425A1 (zh) 2019-12-26

Family

ID=68966715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086486 WO2019242425A1 (zh) 2018-06-22 2019-05-11 一种量子点液晶面板及其制造方法

Country Status (2)

Country Link
CN (1) CN110632783B (zh)
WO (1) WO2019242425A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793176B1 (ko) * 2007-02-23 2008-01-14 (주)나노비전 액정표시소자 및 그 제조방법
CN104280808A (zh) * 2013-07-09 2015-01-14 优志旺电机株式会社 栅偏振元件、光取向装置、偏振方法及栅偏振元件制造方法
CN107463034A (zh) * 2016-06-03 2017-12-12 三星显示有限公司 显示设备及其制造方法
CN107526205A (zh) * 2016-06-17 2017-12-29 三星显示有限公司 液晶显示装置
CN107817624A (zh) * 2016-09-12 2018-03-20 三星显示有限公司 显示设备
CN107884978A (zh) * 2016-09-30 2018-04-06 三星显示有限公司 显示装置及显示装置的制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617114B (zh) * 2015-02-15 2018-02-13 京东方科技集团股份有限公司 一种阵列基板及其制作方法和显示装置
TWI634536B (zh) * 2017-08-16 2018-09-01 友達光電股份有限公司 顯示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793176B1 (ko) * 2007-02-23 2008-01-14 (주)나노비전 액정표시소자 및 그 제조방법
CN104280808A (zh) * 2013-07-09 2015-01-14 优志旺电机株式会社 栅偏振元件、光取向装置、偏振方法及栅偏振元件制造方法
CN107463034A (zh) * 2016-06-03 2017-12-12 三星显示有限公司 显示设备及其制造方法
CN107526205A (zh) * 2016-06-17 2017-12-29 三星显示有限公司 液晶显示装置
CN107817624A (zh) * 2016-09-12 2018-03-20 三星显示有限公司 显示设备
CN107884978A (zh) * 2016-09-30 2018-04-06 三星显示有限公司 显示装置及显示装置的制造方法

Also Published As

Publication number Publication date
CN110632783A (zh) 2019-12-31
CN110632783B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
US9823510B2 (en) Quantum dot color film substrate, manufacturing method thereof and LCD apparatus
CN104965333B (zh) Coa型液晶显示面板及其制作方法
CN100561306C (zh) 彩膜基板及制造方法和液晶显示装置
CN105404047B (zh) Coa型液晶显示面板的制作方法及coa型液晶显示面板
WO2019223203A1 (zh) 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法
CN100573261C (zh) 彩膜基板及其制造方法
CN105259696A (zh) 彩色滤光基板的制作方法
CN110007508A (zh) 彩膜基板、液晶显示面板及液晶显示装置
WO2019233238A1 (zh) 一种量子点像素光致发光液晶显示模组及其制造方法
CN106773263A (zh) 显示面板及其制造方法、显示装置
WO2021093043A1 (zh) 一种显示面板及显示装置
CN103217826B (zh) 液晶面板
KR20180107385A (ko) 광루미네선스 장치, 이의 제조 방법 및 이를 포함하는 표시 장치
WO2020062489A1 (zh) 液晶显示模组、液晶显示器及显示设备
WO2019242425A1 (zh) 一种量子点液晶面板及其制造方法
WO2021114423A1 (zh) 液晶材料、液晶显示面板的制备方法及显示面板
WO2015078157A1 (zh) 彩膜基板及其制作方法、显示装置
WO2020107738A1 (zh) 显示装置
CN109521516A (zh) 背光模组及其制作方法
CN109633968A (zh) 液晶显示面板
US20180088408A1 (en) Color film substrate, manufacturing metho, and liquid crystal device
CN220603806U (zh) 一种防蓝边的液晶显示屏幕
WO2018171046A1 (zh) 显示面板和显示面板的制程
WO2021232738A1 (zh) 液晶显示装置及其制作方法
JP4883849B2 (ja) カラーフィルタおよびその製造方法ならびに液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822314

Country of ref document: EP

Kind code of ref document: A1