WO2019233238A1 - 一种量子点像素光致发光液晶显示模组及其制造方法 - Google Patents

一种量子点像素光致发光液晶显示模组及其制造方法 Download PDF

Info

Publication number
WO2019233238A1
WO2019233238A1 PCT/CN2019/086090 CN2019086090W WO2019233238A1 WO 2019233238 A1 WO2019233238 A1 WO 2019233238A1 CN 2019086090 W CN2019086090 W CN 2019086090W WO 2019233238 A1 WO2019233238 A1 WO 2019233238A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
glass substrate
liquid crystal
pixel
dot material
Prior art date
Application number
PCT/CN2019/086090
Other languages
English (en)
French (fr)
Inventor
林健源
罗崇辉
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Publication of WO2019233238A1 publication Critical patent/WO2019233238A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the invention relates to liquid crystal display technology, in particular to a quantum dot pixel photoluminescence liquid crystal display module and a manufacturing method thereof.
  • a traditional LCD Liquid Crystal Display, that is, a liquid crystal display
  • the liquid crystal panel is composed of many pixels. Its structure is to place a liquid crystal cell between two parallel glass substrates, a thin film transistor (TFT), which is a liquid crystal pixel electrode layer, and a color filter on the upper substrate glass.
  • TFT thin film transistor
  • the basic structure of an ordinary LCD screen includes two parallel upper glass substrates 101a and 101b, and a sealant is passed between the upper glass substrate 101a and the lower glass substrate 101b.
  • the backlight source usually uses white LED (WLED).
  • the backlight source "illuminates” the pixels.
  • the liquid crystal is like a curtain. It controls the degree of light transmission of the pixels.
  • the color filter filters white light out of red, green and blue. Colors. By controlling a series of these pixels, various colors can be mixed. Therefore, the color performance of the LCD panel is mainly related to two factors: one is the effectiveness of the color filter, and the other is the purity of the white backlight.
  • the filter it is required to accurately obtain the color that filters the color, that is, to filter out red (R), green (G), and blue (B).
  • a red filter not only filters out green and blue in white light, but also allows only red with a specific wavelength to pass through to obtain pure red.
  • the present invention uses a color filter to process a liquid crystal screen with complicated processing, insufficient color gamut, limited color expression, limited color purity, and high contrast.
  • a quantum dot pixel photoluminescence liquid crystal display screen which can greatly simplify the structure and production process of the liquid crystal screen, and compared with the prior art liquid crystal screen with color filters, has a wide color gamut, color performance Good power, purer colors, high contrast and long life.
  • a quantum dot pixel photoluminescence liquid crystal display module includes a liquid crystal screen with a color filter layer removed, a glass substrate printed with quantum dot material on one side, and a backlight module.
  • the liquid crystal screen with the color filter layer removed includes an upper glass.
  • a substrate and a lower glass substrate, one side of the glass substrate printed with quantum dot material on one side of the printed quantum dot material faces the upper glass substrate and is bonded to the upper glass substrate through a sealing frame; a backlight module is placed in the removed color
  • the lower glass substrate side of the liquid crystal screen of the filter layer is used to provide a light source.
  • the quantum dots on the surface of the glass substrate on which the quantum dot material is printed on one side are excited. Material to achieve quantum dot pixel photoluminescence.
  • the single-sided printed quantum dot material glass substrate includes a glass substrate and a plurality of pixel grooves provided on one side of the glass substrate, and the plurality of pixel grooves are coated on the glass substrate by a photoresist. One of the surfaces is formed, and quantum dot material and diffusion particles are placed in each of the plurality of pixel slots at intervals.
  • the quantum dot material and the diffusion particles placed at intervals in each of the plurality of pixel slots are respectively spaced with a red quantum dot material, a green quantum dot material, and diffusion particles.
  • the backlight module uses a blue LED. After the blue LED is controlled by the liquid crystal molecules, the blue LED excites the quantum dot material on the surface of the glass substrate on which the quantum dot material is printed on one side to realize quantum dot pixel photoluminescence.
  • the LCD liquid crystal screen with the color filter layer removed further includes: a sealant frame and liquid crystal molecules; the upper glass substrate is bonded to form a hollow structure through the sealant frame, and the hollow structure contains liquid crystal molecules.
  • the upper glass substrate and the lower glass substrate are respectively provided with an upper polarizer and a lower polarizer on their sides facing away from the hollow structure.
  • the LCD liquid crystal screen without the color filter layer further includes: a liquid crystal pixel electrode layer; a liquid crystal pixel electrode layer is provided on a side of the lower glass substrate facing the hollow structure.
  • the glass substrate on which the quantum dot material is printed on one side, the side on which the quantum dot material and the diffusion particles are placed faces the upper glass substrate, and between the glass substrate on which the quantum dot material is printed on one side and the upper glass substrate A sealed space is formed by sealing the glue frame, and the plurality of pixel grooves are sealed in the sealed space.
  • the invention also provides a method for manufacturing a quantum dot pixel photoluminescent liquid crystal display module, which is used for manufacturing the above quantum dot pixel photoluminescent liquid crystal display module, and includes the following method steps:
  • the backlight module is disposed on the lower glass substrate side of the liquid crystal screen with the filter layer removed. After the light source is controlled and emitted by the liquid crystal molecules in the liquid crystal screen with the color filter layer removed, the quantum of the surface of the glass substrate on which the quantum dot material is disposed is excited. Dot material to achieve quantum dot pixel photoluminescence.
  • the single step of coating photoresist on a glass substrate to form a plurality of pixel grooves arranged at intervals is as follows: coating the photoresist on the glass substrate, baking, exposing, developing, The baking step realizes the pixel grooves arranged at intervals.
  • the specific steps of disposing the quantum dot material and the diffusing particles in the plurality of pixel slots are as follows: printing the red quantum dot material and the green quantum dot material by inkjet in the plurality of pixel slots. , Diffuse particles.
  • the quantum dot material on the glass substrate surface of the single-sided printed quantum dot material is a cadmium selenide quantum dot material or a perovskite quantum dot material.
  • the backlight module uses a blue LED. After the blue LED is controlled by the liquid crystal molecules, the blue LED excites the quantum dot material on the surface of the glass substrate on which the quantum dot material is printed on one side to realize quantum dot pixel photoluminescence.
  • the invention also provides a quantum dot pixel photoluminescence liquid crystal display panel, which includes a liquid crystal screen with a color filter layer removed, a glass substrate printed with quantum dot material on one side, and a backlight module; the liquid crystal with the color filter layer removed
  • the screen includes an upper glass substrate and a lower glass substrate.
  • One side of the single-sided printed quantum dot material-printed quantum dot material faces the upper glass substrate and is bonded to the upper glass substrate through a sealing frame.
  • the single-sided printed quantum dot material glass substrate includes a glass substrate and a plurality of pixel grooves provided on one side of the glass substrate, and the plurality of pixel grooves are coated on the glass substrate by a photoresist. One of the surfaces is formed, and quantum dot material and diffusion particles are placed in each of the plurality of pixel slots at intervals.
  • the quantum dot material and the diffusion particles placed at intervals in each of the plurality of pixel slots are respectively spaced with a red quantum dot material, a green quantum dot material, and diffusion particles.
  • the glass substrate on which the quantum dot material is printed on one side, the side on which the quantum dot material and the diffusion particles are placed faces the upper glass substrate, and between the glass substrate on which the quantum dot material is printed on one side and the upper glass substrate A sealed space is formed by sealing the glue frame, and the plurality of pixel grooves are sealed in the sealed space.
  • the quantum dot pixel photoluminescence liquid crystal display of the present invention uses a quantum dot material and diffusion particles to replace a color filter in a prior art liquid crystal display, a blue LED light source is used to replace the prior art liquid crystal display.
  • White LED (WLED) white light source Since the quantum dots have a light conversion efficiency of about 90%, the excited light has a very narrow spectrum, the colors are "accurate", and the blue LED spectrum is pure, so it solves the original technology's impure backlight and filters. Problems of inaccurate color filtering and large loss of brightness.
  • the present invention simplifies the processing process, widens the color gamut of the liquid crystal display, has good color expression, purer colors, high contrast, and long service life.
  • FIG. 1 is a structural diagram of a preferred embodiment of a quantum dot pixel photoluminescent liquid crystal display module according to the present invention.
  • FIG. 2 is a structural diagram of an LCD liquid crystal screen with a color filter layer removed in a preferred embodiment of a quantum dot pixel photoluminescent liquid crystal display module according to the present invention.
  • FIG. 3 is a longitudinal sectional structural view of a glass substrate with a single-sided printed quantum dot material of a quantum dot pixel photoluminescent liquid crystal display module according to a preferred embodiment of the present invention.
  • FIG. 4 is a perspective view of a single-sidedly printed quantum dot material glass substrate (showing a pixel-slot structure of a single-sidedly printed quantum dot material) according to a preferred embodiment of a quantum dot pixel photoluminescent liquid crystal display module according to the present invention.
  • FIG. 5 is a partial cross-sectional view of a glass substrate with a single-sided printed quantum dot material of a quantum dot pixel photoluminescent liquid crystal display module according to a preferred embodiment of the present invention.
  • FIG. 6 is a structural diagram of a conventional liquid crystal display screen in the prior art.
  • FIG. 7 is a flowchart of a preferred embodiment of a method for manufacturing a quantum dot pixel photoluminescent liquid crystal display module according to the present invention.
  • Liquid crystal display referred to as LCD (Liquid Crystal Display) is a type of flat display.
  • LCD Liquid Crystal Display
  • Liquid crystal is a special substance between solid and liquid. It is an organic compound. Under normal temperature conditions, it exhibits both the fluidity of liquids and the optical anisotropy of crystals.
  • Another special property of liquid crystals is that if an electric field is applied to the liquid crystal, its molecules are easily rearranged, which causes various optical properties of the liquid crystal to change accordingly. That is, when the liquid crystal is energized, the liquid crystal arrangement becomes orderly, making light Easy to pass. When the power is off, the liquid crystals are arranged in a chaotic manner, preventing light from passing through.
  • this liquid crystal It is the physical basis of this liquid crystal, that is, the "electric-optical effect" of the liquid crystal, which realizes that light is modulated by an electrical signal, thereby making a liquid crystal display device.
  • the liquid crystal molecules Under the action of different current and electric fields, the liquid crystal molecules will be regularly rotated 90 degrees to arrange the difference in light transmittance, so that there is a difference between light and dark when the power is on / off. According to the principle, each pixel is controlled to form the required image. .
  • liquid crystal displays Due to the different twisting principles of liquid crystal molecules, liquid crystal displays are mainly divided into twisted nematic TN (Twisted Nematic, a passive matrix technology) and super twisted nematic STN (Super Twisted Nematic, a passive matrix technology). ) And thin film transistor type TFT (Thin Film Transistor, an active matrix drive technology), they also have high and low level differences in viewing angle, color, contrast and animation display quality due to their original work. At present, as the display and television panel, the thin film transistor type (TFT) is the mainstream.
  • TFT Thin Film Transistor
  • TFT thin film transistor
  • LCD thin film transistor
  • Its structure is shown in the prior art ordinary liquid crystal display structure diagram of FIG. 6 and includes: an upper glass substrate 101a, a lower glass substrate 101b, a liquid crystal pixel electrode layer 103, a sealant frame 102, a red filter unit 107a, and a green filter
  • the color filter layer 106 composed of the light unit 107b, the blue filter unit 107c, and the backlight module 110 are configured.
  • the backlight source used by the backlight module 110 is usually a white light LED (WLED).
  • WLED white light LED
  • the basic working process is: the backlight source of the backlight module 110 “illuminate” the pixels, the thin film transistor (TFT) on the liquid crystal pixel electrode layer 103 controls the degree of light transmission of the pixels, and the color filter (ie, the color filter layer) 106)
  • TFT thin film transistor
  • the color filter ie, the color filter layer 1066
  • the white light transmitted through the pixels is filtered to one of red, green and blue colors.
  • various colors are mixed. It can be seen that the color performance of the LCD screen is mainly related to two factors: one is the effectiveness of the filter, and the other is the purity of the white backlight.
  • the quantum dot material when the quantum dot material is photoelectrically stimulated by the present invention, monochromatic light of different colors is excited according to the size of the grain diameter, and the excited monochromatic light has a very narrow width. It has the characteristics of high-spectrum (that is, very high purity) and has a light conversion efficiency of about 90%.
  • a quantum dot pixel photoluminescence liquid crystal display module is shown. Its structure is shown in FIG.
  • the liquid crystal screen 200 includes a color filter layer removed, a glass substrate 210 printed with quantum dot material on one side, and a backlight module 220;
  • the screen 200 includes an upper glass substrate 201a and a lower glass substrate 201b, and the upper glass substrate 201a and the lower glass substrate 201b are adhered by a sealant frame 204a.
  • the glass substrate 210 of the glass substrate 210 printed with the quantum dot material on one side is printed.
  • a pixel groove 212 on one side of the quantum dot material faces the upper glass substrate 201a and is bonded to the upper glass substrate 201a through a sealant frame 204b.
  • a backlight module 220 is disposed in the removed color filter.
  • the side of the lower glass substrate 201b of the liquid crystal screen 200 of the filter layer is used to provide a light source. After the light source is controlled and emitted by the liquid crystal molecular layer 202 in the liquid crystal screen 200 without the color filter layer, the glass on which the quantum dot material is printed on one side is excited.
  • the quantum dot material 213 and the diffusion particles 214 on the surface of the glass substrate 211 of the substrate 210 realize the quantum dot pixel photoluminescence.
  • FIG. 2 is a LCD with the color filter layer removed according to a preferred embodiment of a quantum dot pixel photoluminescent liquid crystal display module of the present invention.
  • the structure of the liquid crystal screen is a part of the LCD liquid crystal screen 200 in FIG. 1 without the color filter layer, and includes: an upper glass substrate 201a, a lower glass substrate 201b, a liquid crystal pixel electrode layer 202, and an upper polarizer 203a (not shown in FIG. (Labeled), a lower polarizer 203b (not labeled in FIG. 1), a sealant 204a, and a liquid crystal molecule 205.
  • the upper glass substrate 201a is bonded to form a hollow structure through a sealant frame 204a.
  • the hollow structure contains liquid crystal molecules 205.
  • the upper glass substrate 201a facing the hollow structure in the present invention has a color filter removed.
  • the upper glass substrate 201a and the lower glass substrate 201b are provided with an upper polarizer 203a and a lower polarizer 203b on the side facing the hollow structure, and the lower glass substrate 201b is provided with a liquid crystal pixel electrode layer 202 on the side facing the hollow structure.
  • the present invention provides a quantum dot pixel photoluminescence liquid crystal display module with an LCD liquid crystal screen without a color filter layer. Compared with an ordinary liquid crystal display screen, the working principle of the LCD liquid crystal display lacks a color filter function, and other parts are completely same.
  • FIG. 3 shows a printed embodiment of a quantum dot pixel photoluminescent liquid crystal display module according to a preferred embodiment of the present invention.
  • FIG. 4 shows a perspective view of a glass substrate printed with a quantum dot material according to a preferred embodiment of a quantum dot pixel photoluminescent liquid crystal display module of the present invention (showing single-sided printed quantum Pixel slot structure of dot material), FIG.
  • FIG. 5 is a partial cross-sectional view of a glass substrate printed with a quantum dot material according to a preferred embodiment of a quantum dot pixel photoluminescent liquid crystal display module of the present invention.
  • the glass substrate 210 printed with quantum dot material on one side is composed of a glass substrate 211 and a plurality of pixel grooves 212, wherein the plurality of pixel grooves 212 are coated on one side of the glass substrate 211 with a photoresist (generally a black resin), and are baked. The steps of baking, exposing, developing, and baking are completed. As shown in FIG. 3 and FIG.
  • quantum dot materials 213a, 213b, and diffusion particles 214 are placed in a plurality of pixel slots; quantum dot materials use quantum dot materials and diffusion particles in a plurality of pixel slots, and quantum dot materials are placed in intervals And diffusion particles can be placed at two intervals, one is to place the red quantum dot material 213a, the green quantum dot material 213b, and the diffusion particles 214, and the other is to place the green quantum dot material 213b and the red quantum.
  • Quantum dot materials 213a and 213b are very tiny semiconductor nanocrystals. They are particles with a diameter of 2 to 10 nm. When stimulated by light or electricity, they emit colored light.
  • the color of the light is composed of the material and size of the quantum dots. It is determined that the present invention selects quantum dot materials that can excite red light and green light.
  • the quantum dot material on the surface of the glass substrate on which the quantum dot material is printed on one side is cadmium selenide quantum dot material or perovskite quantum Point material.
  • the diffusion particles 214 are used for diffusion of light.
  • the quantum dot materials 213a and 213b and the diffusion particles 214 in the pixel slot 212 are printed into the pixel slot 212 by an inkjet printing method to form a QD quantum dot pixel layer.
  • a glass substrate 210 printed with a quantum dot material on one side is placed with the quantum dot material 213 and the diffusion particles 214 facing
  • the upper glass substrate 201a, the glass substrate 210 on which the quantum dot material is printed on one side, and the upper glass substrate 201a are bonded by a sealant frame 204b, so that the pixel groove 212 on which the quantum dot material and the diffusion particles are placed is sealed in a closed space.
  • a sealant frame 204b Such a structure is advantageous for protecting the quantum dot material.
  • the backlight source used by the backlight module 220 is a blue LED light source.
  • the blue LED light source has high purity. After the blue LED light source emits blue light, the quantum dot material that excites red and green light after controlled emission by the liquid crystal molecules is used to achieve color display, and the diffusion particles are used for the diffusion of light to save costs.
  • the invention also provides a method for manufacturing a quantum dot pixel photoluminescence liquid crystal display module, which is used to manufacture the above quantum dot pixel photoluminescence liquid crystal display.
  • the present invention provides a quantum dot pixel photoluminescence liquid crystal display module.
  • the method includes the following method steps:
  • step S100 a photoresist is coated on one side of the glass substrate to form a plurality of pixel grooves arranged at intervals.
  • a photoresist is coated on a glass substrate, and pixel grooves disposed at intervals are realized through steps of baking, exposure, development, and baking.
  • step S200 quantum dot materials and diffusion particles are disposed in the pixel slots at intervals.
  • a red quantum dot material, a green quantum dot material, and diffusion particles are printed by inkjet printing at intervals.
  • the specific steps of disposing the quantum dot material and the diffusion particles in the plurality of pixel grooves are as follows: printing the green quantum dot material, the red quantum dot material, and the diffusion particles in the plurality of pixel grooves at intervals.
  • step S300 the glass substrate provided with the quantum dot material and the diffusion particles is bonded to the upper glass substrate of the liquid crystal screen with the color filter layer removed by a sealant frame, and a side coated with a plurality of pixel grooves faces the upper glass substrate.
  • step S400 the backlight module is disposed on the lower glass substrate side of the liquid crystal screen with the filter layer removed. After the light source is controlled and emitted by the liquid crystal molecules in the liquid crystal screen with the color filter layer removed, the glass substrate provided with the quantum dot material is excited. The quantum dot material on the surface can realize the photoluminescence of quantum dot pixels.
  • the backlight module uses a blue light LED. After the blue light LED is controlled by the liquid crystal molecules, the blue light LED excites the quantum dot material on the surface of the glass substrate on which the quantum dot material is printed on one side to realize quantum dot pixel photoluminescence.
  • the specific working principle of the quantum dot pixel photoluminescence liquid crystal display module manufactured according to the method of the present invention is the same as that of the above-mentioned preferred embodiment of the quantum dot pixel photoluminescence liquid crystal display module, and details are not described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种量子点像素光致发光液晶显示模组,包括去除彩色滤光层的液晶屏(200)、单面印刷量子点材料的玻璃基板(210)和背光模组(220);去除彩色滤光层的液晶屏(200)包括上玻璃基板(201a)和下玻璃基板(201b),单面印刷量子点材料的玻璃基板(210)印刷量子点材料(213)的一面朝向上玻璃基板(201a)并通过密封框(204b)与上玻璃基板(201a)贴合;背光模组(220)置于去除彩色滤光层的液晶屏(200)的下玻璃基板(201b)一侧,用于提供光源,光源经去除彩色滤光层的液晶屏(200)内的液晶分子(202)控制发出后,激发单面印刷量子点材料的玻璃基板(210)表面的量子点材料(213),实现量子点像素光致发光。与现有技术液晶显示模组相比,简化了液晶屏的结构及生产工艺、色域广、色彩更纯、对比度高、使用寿命长。

Description

一种量子点像素光致发光液晶显示模组及其制造方法 技术领域
涉及液晶显示技术,尤其涉及一种量子点像素光致发光液晶显示模组及其制造方法。
背景技术
传统的LCD(Liquid Crystal Display,即液晶显示器)包括一组背光源(Backlight Unit)和液晶面板(Liquid-Crystal Module)。液晶面板由许多像素点组成,其构造是在两片平行的玻璃基板当中放置液晶盒,在下基板玻璃上设置薄膜晶体管(TFT),即液晶像素电极层,在上基板玻璃上设置彩色滤光片。如图6现有技术的普通液晶屏结构图所示,普通液晶屏的基本结构包括两片平行的上玻璃基板101a和下玻璃基板101b,上玻璃基板101a与下玻璃基板101b之间通过密封胶框102粘合在一起,上、下玻璃基板的对向表面分别设置彩色滤光层106和液晶像素电极层103,其中,彩色滤光层106由红、绿、蓝(107a、107b、107c)三种颜色排列组成,用于显示颜色,液晶像素电极层103上的信号与电压可改变用来控制液晶分子的转动方向,从而达到控制每个像素点偏振光出射与否,背光模组110射出的偏振光再经由彩色滤光层106出射而达到显示目的。
目前背光源通常是采用白光LED(WLED),背光源“照亮”像素点,液晶就像窗帘一样,控制像素点透光的程度,最后彩色滤光片将白光过滤出红绿蓝中的一种颜色。通过控制一系列这些像素点,可以混合出各种各样的颜色。因此,液晶面板的色彩表现主要和两个因素相关:一个是彩色滤光片的滤光的有效性,另一个是背光源白色的纯净度。滤光片方面,要求精准得到将颜色过滤的颜色,即过滤出红(R)绿(G)蓝(B)。比如红色滤光片不仅要过滤掉白光里面的绿色和蓝色,而且只允许特定波长的红色通过,得到纯净的红色。目前高级的滤光片可以很精准地过滤出颜色,但是加工精度要求高,工艺复杂,非常昂贵,由于彩色滤光片是利用颜色光阻过滤产生纯净颜色,因而还会导致明显的衰减和亮度的损失(颜色光阻透过率只有1/3左右)。背光源方面,则要求提供非常“白”的 光源。我们知道白光实际上是以红、蓝、绿三色混合起来的,但是现在使用的WLED(白光LED)光源无法提供非常纯净的白色光源,表现在红绿蓝的配比不平均。目前白光LED(WLED)的缺陷简单来说就是蓝色多了,而且产生了额外的黄色,因此,最终也限制了液晶显示屏的颜色表现。为了克服白光LED(WLED)的缺点,现在有直接用红绿蓝LED(RGBLED)背光驱动的面板,但是价格非常昂贵,而且难以塞进小型的移动设备。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足之处,本发明为解决现有技术采用彩色滤光片的液晶屏加工工艺复杂、色域不够广、色彩表现力受限、色彩不够纯,对比度不够高等缺陷和不足,提出了一种量子点像素光致发光液晶显示屏,能够实现极大简化液晶屏的结构及生产工艺,且相比现有技术采用彩色滤光片的液晶屏,具有色域广、色彩表现力好、色彩更纯、对比度高和使用寿命长的优点。
本发明解决技术问题所采用的技术方案如下:
一种量子点像素光致发光液晶显示模组,包括去除彩色滤光层的液晶屏、单面印刷量子点材料的玻璃基板和背光模组;所述去除彩色滤光层的液晶屏包括上玻璃基板和下玻璃基板,所述单面印刷量子点材料的玻璃基板印刷量子点材料的一面朝向所述上玻璃基板并通过密封框与上玻璃基板贴合;背光模组,置于所述去除彩色滤光层的液晶屏的下玻璃基板一侧,用于提供光源,光源经去除彩色滤光层的液晶屏内的液晶分子控制发出后,激发单面印刷量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。
作为进一步的改进技术方案,所述单面印刷量子点材料的玻璃基板包括玻璃基板和设置在所述玻璃基板一面的若干像素槽,所述若干像素槽由光刻胶涂布在所述玻璃基板的其中一面形成,其中若干像素槽中各槽体内间隔放置有量子点材料和扩散粒子。
作为进一步的改进技术方案,所述若干像素槽中各槽体间隔放置的量子点材料和扩散粒子分别间隔放置红色量子点材料、绿色量子点材料、扩散粒子。
作为进一步的改进技术方案,所述背光模组使用蓝光LED,蓝光LED经过 液晶分子的控制发出后,激发单面印刷量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。
作为进一步的改进技术方案,所述去除彩色滤光层的LCD液晶屏还包括:密封胶框和液晶分子;所述上玻璃基板通过密封胶框粘合形成中空结构,中空结构内置液晶分子。
作为进一步的改进技术方案,所述上玻璃基板和下玻璃基板背向中空结构的一面分别设置有上偏光片和下偏光片。
作为进一步的改进技术方案,所述去除彩色滤光层的LCD液晶屏还包括:液晶像素电极层;所述下玻璃基板朝向中空结构的一面设置有液晶像素电极层。
作为进一步的改进技术方案,所述单面印刷量子点材料的玻璃基板,放置有量子点材料和扩散粒子的一面朝向上玻璃基板,单面印刷量子点材料的玻璃基板与上玻璃基板之间通过密封胶框粘合,形成密闭空间,所述若干像素槽被密封在所述密闭空间中。
本发明还提供一种量子点像素光致发光液晶显示模组的制造方法,用于制造上述的量子点像素光致发光液晶显示模组,包括如下方法步骤:
在玻璃基板上单面涂布光刻胶形成间隔设置的若干像素槽;
在所述若干像素槽中间隔设置量子点材料和扩散粒子;
将设置量子点材料和扩散粒子的玻璃基板通过密封胶框贴合到去除彩色滤光层的液晶屏的上玻璃基板,其涂布若干像素槽的一面朝向上玻璃基板;
将背光模组设置在去除滤光层的液晶屏的下玻璃基板一侧,其光源经过去除彩色滤光层的液晶屏内的液晶分子控制发出后,激发设置量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。
作为进一步的改进技术方案,所述在玻璃基板上单面涂布光刻胶形成间隔设置的若干像素槽具体步骤为:将光刻胶涂布在玻璃基板上,经过烘烤、曝光、显影、烘烤的步骤实现间隔设置的像素槽。
作为进一步的改进技术方案,在所述若干像素槽中间隔设置量子点材料和扩散粒子具体步骤为:在所述若干像素槽中各槽体间隔通过喷墨打印红色量子点材料、绿色量子点材料、扩散粒子。
作为进一步的改进技术方案,所述单面印刷量子点材料的玻璃基板表面的量 子点材料为硒化镉量子点材料或钙钛矿量子点材料。
作为进一步的改进技术方案,所述背光模组使用蓝光LED,蓝光LED经过液晶分子的控制发出后,激发单面印刷量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。
本发明还提供一种量子点像素光致发光液晶显示面板,其包括去除彩色滤光层的液晶屏、单面印刷量子点材料的玻璃基板和背光模组;所述去除彩色滤光层的液晶屏包括上玻璃基板和下玻璃基板,所述单面印刷量子点材料的玻璃基板印刷量子点材料的一面朝向所述上玻璃基板并通过密封框与上玻璃基板贴合。
作为进一步的改进技术方案,所述单面印刷量子点材料的玻璃基板包括玻璃基板和设置在所述玻璃基板一面的若干像素槽,所述若干像素槽由光刻胶涂布在所述玻璃基板的其中一面形成,其中若干像素槽中各槽体内间隔放置有量子点材料和扩散粒子。
作为进一步的改进技术方案,所述若干像素槽中各槽体间隔放置的量子点材料和扩散粒子分别间隔放置红色量子点材料、绿色量子点材料、扩散粒子。
作为进一步的改进技术方案,所述单面印刷量子点材料的玻璃基板,放置有量子点材料和扩散粒子的一面朝向上玻璃基板,单面印刷量子点材料的玻璃基板与上玻璃基板之间通过密封胶框粘合,形成密闭空间,所述若干像素槽被密封在所述密闭空间中。
基于上述内容,由于本发明量子点像素光致发光液晶显示屏,通过使用量子点材料和扩散粒子取代现有技术液晶显示屏中的彩色滤光片,使用蓝光LED光源取代现有技术液晶显示器中的白光LED(WLED)白色光源。由于量子点拥有90%左右的光转换效率,激发的光拥有很窄的光谱,颜色很“准确”,且蓝光LED光谱纯净,因此很好地解决了原有技术背光源不纯净、滤光片颜色过滤不精准和亮度损失大的问题。与现有技术比,本发明使加工工艺简化、液晶显示屏色域广、色彩表现力好,色彩更纯,对比度高,使用寿命长。
附图说明
下面结合附图对本发明的具体实施方式作进一步的说明,其中:
图1是本发明一种量子点像素光致发光液晶显示模组优选实施例结构图。
图2是本发明一种量子点像素光致发光液晶显示模组优选实施例中去除彩色滤光层的LCD液晶屏结构图。
图3是本发明一种量子点像素光致发光液晶显示模组优选实施例的单面印刷量子点材料的玻璃基板纵向剖视结构图。
图4是本发明一种量子点像素光致发光液晶显示模组优选实施例之单面印刷量子点材料的玻璃基板的立体图(显示单面印刷量子点材料的像素槽结构)。
图5是本发明一种量子点像素光致发光液晶显示模组优选实施例之单面印刷量子点材料的玻璃基板的局部剖视图。
图6是现有技术普通液晶显示屏结构图。
图7是本发明一种量子点像素光致发光液晶显示模组的制造方法优选实施例的流程图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
液晶显示器,简称为LCD(Liquid Crystal Display),是属于平面显示器的一种。液晶是一种介于固体和液体之间的特殊物质,是一种有机化合物,在常温条件下,呈现出既有液体的流动性,又有晶体的光学各向异性。液晶的另一个特殊性质在于,如果给液晶施加一个电场,其分子容易发生再排列,使液晶的各种光学性质随之发生变化,即当对液晶通电时,液晶排列变的有秩序,使光线容易通过,不通电时液晶排列混乱,阻止光线通过。正是利用这一液晶的物理基础,即液晶的“电-光效应”,实现光被电信号调制,从而制成液晶显示器件。在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源开/关下产生明暗的区别,依此照原理控制每个像素,便构成所需图像。
因利用液晶分子扭转原理的不同,液晶显示器主要又被分为扭转式向列型TN(Twisted Nematic,属被动矩阵型技术)、超扭转式向列型STN(Super Twisted Nematic,属被动矩阵型技术)及薄膜式晶体管型TFT(Thin Film Transistor,属主动式矩阵驱动技术),它们在视角、彩色、对比及动画显示品质上也因其工作 原来不同而有高低程次之差别。目前市场上作为显示器及电视机面板,都以薄膜式晶体管型(TFT)为主流。
目前,主流的液晶显示器采用的都是薄膜式晶体管型(TFT),TFT LCD技术能够显示更加清晰、明亮的图像。其结构如图6现有技术普通液晶显示屏结构图所示,其包括:上玻璃基板101a、下玻璃基板101b、液晶像素电极层103、密封胶框102、由红色滤光单元107a、绿色滤光单元107b、蓝色滤光单元107c组成的彩色滤光层106和背光模组110构成。其中背光模组110所采用的背光源通常是白光LED(WLED)。基本工作流程为:背光模组110的背光源“照亮”像素点,液晶像素电极层103上的薄膜式晶体管(TFT)控制像素点透光的程度,彩色滤光片(即彩色滤光层106)将像素点透来的白光过滤出红绿蓝其中的一种颜色。通过控制一系列这些像素点,混合出各种各样的颜色。由此可以看出液晶显示屏的色彩表现主要和两个因素相关:一个是滤光片的滤光的有效性,另一个是背光源白色的纯净度。
滤光片方面,要求精准得到过滤后的颜色:红色、绿色或蓝色。目前高级的滤光片可以很精准地过滤出颜色,但特别昂贵,且由于同时会使透光率下降,导致明显的衰减和亮度的损失,降低了LCD的效能指标。
背光源方面,要求提供非常纯净的白光源。但是现在使用的白光LED(WLED)光源红绿蓝的配比不平均,简单来说就是蓝色多了,而且产生了额外的黄色,限制了液晶面板颜色的表现。
基于以上所述的普通液晶显示屏存在的缺点,本发明利用量子点材料受到光电刺激时会根据晶粒直径的大小不同而激发出不同颜色的单色光、所激发的单色光拥有很窄的光谱(即纯净度非常高)、且拥有90%左右的光转换效率的特点,展示了一种量子点像素光致发光液晶显示模组,其结构如图1本发明一种量子点像素光致发光液晶显示模组优选实施例结构图所示,包括去除彩色滤光层的液晶屏200、单面印刷量子点材料的玻璃基板210和背光模组220;所述去除彩色滤光层的液晶屏200包括上玻璃基板201a和下玻璃基板201b,上玻璃基板201a和下玻璃基板201b两者间通过密封胶框204a粘合,所述单面印刷量子点材料的玻璃基板210的玻璃基板211印刷量子点材料的一面像素槽212朝向所述上玻璃基板201a并通过密封胶框204b与上玻璃基板201a贴合;背光模组220,置于 所述去除彩色滤光层的液晶屏200的下玻璃基板201b一侧,用于提供光源,光源经去除彩色滤光层的液晶屏200内的液晶分子层202控制发出后,激发单面印刷量子点材料的玻璃基板210的玻璃基板211表面的量子点材料213和扩散粒子214,实现量子点像素光致发光。
其中,去除彩色滤光层的LCD液晶屏200的结构如图2所示,图2所示是本发明一种量子点像素光致发光液晶显示模组优选实施例的去除彩色滤光层的LCD液晶屏结构图,其为图1中的去除彩色滤光层的LCD液晶屏200部分,包括:上玻璃基板201a、下玻璃基板201b、液晶像素电极层202、上偏光片203a(图1中未标示)、下偏光片203b(图1中未标示)、密封框胶204a和液晶分子205。上玻璃基板201a通过密封胶框204a粘合形成中空结构,中空结构内置液晶分子205,相比图6现有技术普通液晶屏结构,本发明中上玻璃基板201a朝向中空结构的一面去除了彩色滤光层,上玻璃基板201a和下玻璃基板201b背向中空结构的一面分别设置有上偏光片203a和下偏光片203b,下玻璃基板201b朝向中空结构的一面设置有液晶像素电极层202,形成了本发明一种量子点像素光致发光液晶显示模组的去除彩色滤光层的LCD液晶屏,其工作原理与普通液晶显示屏相比,只是缺少了彩色滤光片滤色功能,其他部分完全一样。
单面印刷量子点材料的玻璃基板210的结构如图3、图4和图5所示,图3所示为本发明一种量子点像素光致发光液晶显示模组优选实施例的印刷有量子点材料的玻璃基板纵向剖视结构图,图4所示为本发明一种量子点像素光致发光液晶显示模组优选实施例之印刷有量子点材料的玻璃基板的立体图(显示单面印刷量子点材料的像素槽结构),图5所示为本发明一种量子点像素光致发光液晶显示模组优选实施例之印刷有量子点材料的玻璃基板的局部剖视图。该单面印刷有量子点材料的玻璃基板210是由玻璃基板211和若干像素槽212构成,其中若干像素槽212利用光刻胶(一般为黑色树脂)涂布在玻璃基板211的一面,经过烘烤、曝光、显影、烘烤的步骤制作完成。如图3和图5所示,若干像素槽212中放置有量子点材料213a、213b和扩散粒子214;量子点材料在若干像素槽中采取间隔放置量子点材料和扩散粒子,间隔放置量子点材料和扩散粒子可采用两种方式间隔放置,一种间隔放置方式是放置红色量子点材料213a、绿色量子点材料213b、扩散粒子214,另一种间隔放置方式是放置绿色量子点材料213b、 红色量子点材料213a、扩散粒子214。量子点材料213a、213b是一种非常微小的半导体纳米晶体,为粒子直径2~10nm的颗粒,当受到光或电的刺激,会发出有色光线,光线的颜色由量子点的组成材料和大小形状决定,本发明选取的是能激发出红色光和绿色光的量子点材料,优选而言,单面印刷量子点材料的玻璃基板表面的量子点材料为硒化镉量子点材料或钙钛矿量子点材料。扩散粒子214用于光的扩散。像素槽212中的量子点材料213a、213b和扩散粒子214通过喷墨打印方式打印到像素槽212中,形成QD量子点像素层。
如图1本发明一种量子点像素光致发光液晶显示模组优选实施例结构图所示,单面印刷量子点材料的玻璃基板210,放置有量子点材料213和扩散粒子214的一面朝向上玻璃基板201a,单面印刷量子点材料的玻璃基板210与上玻璃基板201a之间通过密封胶框204b粘合,使得放置有量子点材料和扩散粒子的像素槽212被密封在密闭空间中,这样的结构有利于保护量子点材料。
在本发明量子点像素光致发光液晶显示模组优选实施例中,背光模组220使用的背光源采用蓝光LED光源。蓝光LED光源,纯度高,蓝光LED光源发出蓝光后通过液晶分子控制发出后激发红色和绿色光的量子点材料实现彩色显示,扩散粒子则用于光的扩散,节约成本。
本发明还提供一种量子点像素光致发光液晶显示模组的制造方法,用于制造上述的量子点像素光致发光液晶屏,如图7本发明一种量子点像素光致发光液晶显示模组的制造方法优选实施例的流程图所示,该方法包括如下方法步骤:
步骤S100,在玻璃基板上单面涂布光刻胶形成间隔设置的若干像素槽。
具体而言,将光刻胶涂布在玻璃基板上,经过烘烤、曝光、显影、烘烤的步骤实现间隔设置的像素槽。
步骤S200,在所述若干像素槽中间隔设置量子点材料和扩散粒子。
具体而言,在所述若干像素槽中各槽体间隔通过喷墨打印红色量子点材料、绿色量子点材料、扩散粒子。或者,在所述若干像素槽中间隔设置量子点材料和扩散粒子具体步骤为:在所述若干像素槽中各槽体间隔通过喷墨打印绿色量子点材料、红色量子点材料、扩散粒子。
步骤S300,将设置量子点材料和扩散粒子的玻璃基板通过密封胶框贴合到去除彩色滤光层的液晶屏的上玻璃基板,其涂布若干像素槽的一面朝向上玻璃基 板。
步骤S400,将背光模组设置在去除滤光层的液晶屏的下玻璃基板一侧,其光源经过去除彩色滤光层的液晶屏内的液晶分子控制发出后,激发设置量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。
具体而言,所述背光模组使用蓝光LED,蓝光LED经过液晶分子的控制发出后,激发单面印刷量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。根据本发明方法制造出量子点像素光致发光液晶显示模组具体工作原理与上述量子点像素光致发光液晶显示模组优选实施例相同,此处不赘述。
应当理解的是,以上所述仅为本发明的较佳实施例而已,并不足以限制本发明的技术方案,对本领域普通技术人员来说,在本发明的精神和原则之内,可以根据上述说明加以增减、替换、变换或改进,而所有这些增减、替换、变换或改进后的技术方案,都应属于本发明所附权利要求的保护范围。

Claims (17)

  1. 一种量子点像素光致发光液晶显示模组,其特征在于,包括去除彩色滤光层的液晶屏、单面印刷量子点材料的玻璃基板和背光模组;所述去除彩色滤光层的液晶屏包括上玻璃基板和下玻璃基板,所述单面印刷量子点材料的玻璃基板印刷量子点材料的一面朝向所述上玻璃基板并通过密封框与上玻璃基板贴合;背光模组,置于所述去除彩色滤光层的液晶屏的下玻璃基板一侧,用于提供光源,光源经去除彩色滤光层的液晶屏内的液晶分子控制发出后,激发单面印刷量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。
  2. 根据权利要求1所述的量子点像素光致发光液晶显示模组,其特征在于,所述单面印刷量子点材料的玻璃基板包括玻璃基板和设置在所述玻璃基板一面的若干像素槽,所述若干像素槽由光刻胶涂布在所述玻璃基板的其中一面形成,其中若干像素槽中各槽体内间隔放置有量子点材料和扩散粒子。
  3. 根据权利要求2所述的一种量子点像素光致发光液晶显示模组,其特征在于,所述若干像素槽中各槽体间隔放置的量子点材料和扩散粒子分别间隔放置红色量子点材料、绿色量子点材料、扩散粒子。
  4. 根据权利要求1至3任一项所述的量子点像素光致发光液晶显示模组,其特征在于,所述单面印刷量子点材料的玻璃基板表面的量子点材料为硒化镉量子点材料或钙钛矿量子点材料。
  5. 根据权利要求4所述的量子点像素光致发光液晶显示模组,其特征在于,所述背光模组使用蓝光LED,蓝光LED经过液晶分子的控制发出后,激发单面印刷量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。
  6. 根据权利要求1所述的一种量子点像素光致发光液晶显示模组,其特征在于,所述去除彩色滤光层的LCD液晶屏还包括:密封胶框和液晶分子;所述上玻璃基板通过密封胶框粘合形成中空结构,中空结构内置液晶分子。
  7. 根据权利要求6所述一种量子点像素光致发光液晶显示模组,其特征在于,所述上玻璃基板和下玻璃基板背向中空结构的一面分别设置有上偏光片和下偏光片。
  8. 根据权利要求7所述一种量子点像素光致发光液晶显示模组,其特征在于,所述去除彩色滤光层的LCD液晶屏还包括:液晶像素电极层;所述下玻璃基板朝向中空结构的一面设置有液晶像素电极层。
  9. 根据权利要求2所述一种量子点像素光致发光液晶显示模组,其特征在于,所述单面印刷量子点材料的玻璃基板,放置有量子点材料和扩散粒子的一面朝向上玻璃基板,单面印刷量子点材料的玻璃基板与上玻璃基板之间通过密封胶框粘合,形成密闭空间,所述若干像素槽被密封在所述密闭空间中。
  10. 一种量子点像素光致发光液晶显示模组的制造方法,用于制造如权利要求1所述的量子点像素光致发光液晶显示模组,其特征在于,包括如下方法步骤:
    在玻璃基板上单面涂布光刻胶形成间隔设置的若干像素槽;
    在所述若干像素槽中间隔设置量子点材料和扩散粒子;
    将设置量子点材料和扩散粒子的玻璃基板通过密封胶框贴合到去除彩色滤光层的液晶屏的上玻璃基板,其涂布若干像素槽的一面朝向上玻璃基板;
    将背光模组设置在去除滤光层的液晶屏的下玻璃基板一侧,其光源经过去除彩色滤光层的液晶屏内的液晶分子控制发出后,激发设置量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。
  11. 根据权利要求10所述的一种量子点像素光致发光液晶显示模组的制造方法,其特征在于,所述在玻璃基板上单面涂布光刻胶形成间隔设置的若干像素槽具体步骤为:将光刻胶涂布在玻璃基板上,经过烘烤、曝光、显影、烘烤的步骤实现间隔设置的像素槽。
  12. 根据权利要求10所述的一种量子点像素光致发光液晶显示模组的制造方法,其特征在于,在所述若干像素槽中间隔设置量子点材料和扩散粒子具体步骤为:在所述若干像素槽中各槽体间隔通过喷墨打印红色量子点材料、绿色量子点材料、扩散粒子。
  13. 根据权利要求10所述的一种量子点像素光致发光液晶显示模组的制造方法,其特征在于:所述背光模组使用蓝光LED,蓝光LED经过液晶分子的控制发出后,激发单面印刷量子点材料的玻璃基板表面的量子点材料,实现量子点像素光致发光。
  14. 一种量子点像素光致发光液晶显示面板,其特征在于,包括去除彩色滤光层的液晶屏、单面印刷量子点材料的玻璃基板和背光模组;所述去除彩色滤光层的液晶屏包括上玻璃基板和下玻璃基板,所述单面印刷量子点材料的玻璃基板印刷量子点材料的一面朝向所述上玻璃基板并通过密封框与上玻璃基板贴合。
  15. 根据权利要求14所述的量子点像素光致发光液晶显示面板,其特征在于,所述单面印刷量子点材料的玻璃基板包括玻璃基板和设置在所述玻璃基板一面的若干像素槽,所述若干像素槽由光刻胶涂布在所述玻璃基板的其中一面形成,其中若干像素槽中各槽体内间隔放置有量子点材料和扩散粒子。
  16. 根据权利要求15所述的一种量子点像素光致发光液晶显示面板,其特征在于,所述若干像素槽中各槽体间隔放置的量子点材料和扩散粒子分别间隔放置红色量子点材料、绿色量子点材料、扩散粒子。
  17. 根据权利要求15所述一种量子点像素光致发光液晶显示面板,其特征在于,所述单面印刷量子点材料的玻璃基板,放置有量子点材料和扩散粒子的一面朝向上玻璃基板,单面印刷量子点材料的玻璃基板与上玻璃基板之间通过密封胶框粘合,形成密闭空间,所述若干像素槽被密封在所述密闭空间中。
PCT/CN2019/086090 2018-06-06 2019-05-09 一种量子点像素光致发光液晶显示模组及其制造方法 WO2019233238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810571884.4A CN110568658A (zh) 2018-06-06 2018-06-06 一种量子点像素光致发光液晶显示模组及其制造方法
CN201810571884.4 2018-06-06

Publications (1)

Publication Number Publication Date
WO2019233238A1 true WO2019233238A1 (zh) 2019-12-12

Family

ID=68770073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086090 WO2019233238A1 (zh) 2018-06-06 2019-05-09 一种量子点像素光致发光液晶显示模组及其制造方法

Country Status (2)

Country Link
CN (1) CN110568658A (zh)
WO (1) WO2019233238A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045257B (zh) * 2020-01-17 2021-06-22 福州大学 基于量子点液晶分子的显示面板及其制作方法
CN113296310A (zh) * 2020-02-24 2021-08-24 广东普加福光电科技有限公司 一种量子点光转换层及其制备方法
CN113759569A (zh) * 2021-09-06 2021-12-07 深圳市华星光电半导体显示技术有限公司 3d显示装置
CN114106814B (zh) * 2021-11-23 2023-11-28 深圳市华星光电半导体显示技术有限公司 量子点光致发光膜及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044963A (zh) * 2015-08-11 2015-11-11 深圳市华星光电技术有限公司 显示面板及其制作方法
CN105116595A (zh) * 2015-08-13 2015-12-02 深圳市华星光电技术有限公司 显示面板
CN105589245A (zh) * 2014-10-23 2016-05-18 群创光电股份有限公司 显示装置
CN107861181A (zh) * 2017-12-04 2018-03-30 福州大学 一种量子点彩色滤光片及其制作方法
US20180129094A1 (en) * 2016-11-04 2018-05-10 Samsung Display Co., Ltd. Display device and manufacturing method thereof
CN208351206U (zh) * 2018-06-06 2019-01-08 深圳Tcl新技术有限公司 一种量子点像素光致发光液晶显示模组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605234A (zh) * 2013-11-29 2014-02-26 Tcl集团股份有限公司 一种量子点彩色滤光片及液晶显示装置
CN106855648A (zh) * 2017-02-04 2017-06-16 苏州星烁纳米科技有限公司 量子点偏光元件、背光模组及液晶显示装置
CN107153297B (zh) * 2017-07-21 2019-04-23 深圳市华星光电技术有限公司 显示面板及显示设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589245A (zh) * 2014-10-23 2016-05-18 群创光电股份有限公司 显示装置
CN105044963A (zh) * 2015-08-11 2015-11-11 深圳市华星光电技术有限公司 显示面板及其制作方法
CN105116595A (zh) * 2015-08-13 2015-12-02 深圳市华星光电技术有限公司 显示面板
US20180129094A1 (en) * 2016-11-04 2018-05-10 Samsung Display Co., Ltd. Display device and manufacturing method thereof
CN107861181A (zh) * 2017-12-04 2018-03-30 福州大学 一种量子点彩色滤光片及其制作方法
CN208351206U (zh) * 2018-06-06 2019-01-08 深圳Tcl新技术有限公司 一种量子点像素光致发光液晶显示模组

Also Published As

Publication number Publication date
CN110568658A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2019233238A1 (zh) 一种量子点像素光致发光液晶显示模组及其制造方法
US20070058107A1 (en) Photoluminescent liquid crystal display
CN105044963B (zh) 显示面板及其制作方法
JP2013015812A (ja) 光変換層を含む液晶表示パネル及び液晶表示装置
US10197852B2 (en) Dual-mode liquid crystal display device, color filter substrate and array substrate
WO2016026181A1 (zh) 彩色液晶显示模组结构及其背光模组
CN101726907A (zh) 液晶显示装置
CN208351206U (zh) 一种量子点像素光致发光液晶显示模组
US20060125982A1 (en) Liquid crystal display
WO2013135077A1 (zh) 液晶显示面板及其制作方法、液晶显示器
CN110007508A (zh) 彩膜基板、液晶显示面板及液晶显示装置
CN107918224A (zh) 显示面板及显示装置
WO2016049956A1 (zh) 场色序法液晶显示装置及其色彩控制方法
KR101126378B1 (ko) 액정표시장치
JP2003255320A (ja) 液晶表示装置
WO2019233239A1 (zh) 一种量子点像素光致发光液晶显示模组及其制造方法
JPH08166589A (ja) 液晶表示素子
JP4754846B2 (ja) 液晶表示装置
US11402694B2 (en) Light-emitting component and display apparatus
KR101683874B1 (ko) 표시장치
JPH01259396A (ja) カラー表示装置
JP4476620B2 (ja) カラー液晶表示装置
US20190011775A1 (en) Liquid crystal panel, liquid crystal display, and method for manufacturing a yellow-dye polarizer
US10962704B2 (en) Display device
JPH08171013A (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815419

Country of ref document: EP

Kind code of ref document: A1