WO2019223203A1 - 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法 - Google Patents

在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法 Download PDF

Info

Publication number
WO2019223203A1
WO2019223203A1 PCT/CN2018/107145 CN2018107145W WO2019223203A1 WO 2019223203 A1 WO2019223203 A1 WO 2019223203A1 CN 2018107145 W CN2018107145 W CN 2018107145W WO 2019223203 A1 WO2019223203 A1 WO 2019223203A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
liquid crystal
layer
color filter
wire grid
Prior art date
Application number
PCT/CN2018/107145
Other languages
English (en)
French (fr)
Inventor
杨超群
黄长治
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/308,482 priority Critical patent/US20210088840A1/en
Publication of WO2019223203A1 publication Critical patent/WO2019223203A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to the field of display technology, and in particular, to a method for building a polarizer in a liquid crystal panel, a liquid crystal display device, and a manufacturing method thereof.
  • Thin film transistor liquid crystal displays have been rapidly developed and widely used in recent years.
  • Most of the liquid crystal display devices on the existing market are backlight-type liquid crystal display devices, which include a liquid crystal display panel and a backlight module.
  • a liquid crystal display panel includes a color filter (CF) substrate, a thin film transistor (TFT) substrate, a liquid crystal (LC) sandwiched between the color film substrate and the thin film transistor substrate, and a sealing frame adhesive ( Sealant) composition; its working principle is to control the rotation of the liquid crystal molecules of the liquid crystal layer by applying a driving voltage on two glass substrates, and refracting the light of the backlight module to generate a picture.
  • CF color filter
  • TFT thin film transistor
  • LC liquid crystal
  • Sealant sealing frame adhesive
  • the color of liquid crystal displays is realized by a color filter (CF) layer.
  • the traditional CF layer is formed by a color photoresist material after a series of yellow light processes, and the color photoresist material dissolves the polymer, monomer, photoinitator, and pigment. Formed after being dispersed in a solvent.
  • the liquid crystal display panel using the traditional CF layer usually has a low color saturation, and the displayed color is not bright enough.
  • Quantum dots (QD) -based backlight technology which is currently in mass production, can enable LCDs to achieve an NTSC color gamut value of 110%, which is much higher than the 90% to 100% NTSC level of traditional LCD displays.
  • Quantum dots are invisible to the naked eye. They are extremely tiny inorganic nanocrystals. Most of them are three-dimensional nanomaterials composed of group II-VI or III-V elements. Due to the quantum confinement effect, the transport of electrons and holes inside it is restricted, so that the continuous band structure becomes a separate energy level structure. Whenever excited by external energy such as light or electricity, the quantum dots emit colored light. The color of the light is determined by the material and size of the quantum dots. When the size of the quantum dots is different, the quantum confinement of electrons and holes The degree is different, and the discrete energy level structure is different. Generally, the smaller the particle, the longer the wave, and the larger the particle, the shorter the wave. Generally, quantum dots can absorb short-wave blue and excite them to exhibit long-wavelength light color. This feature enables quantum dots to change the color of light emitted by a light source.
  • quantum dots by adjusting the size of the quantum dots, the emission wavelength range can cover the infrared and the entire visible light band, and the emission light band is narrow, and the color saturation is high; the quantum dot material has high quantum conversion efficiency; the material performance is stable; preparation The method is simple and diverse, and can be prepared from a solution with abundant resources. Therefore, by directly applying quantum dots in Color Filter to prepare QD Color Filter (QDCF) to replace traditional color filters, the color gamut can be further improved to> 90% BT.2020 ( The BT.2020 color gamut standard is equivalent to the NTSC color gamut value of 134%).
  • the purpose of the present invention is to provide a method for building a polarizer in a liquid crystal panel.
  • a nano-imprint technology is used to fabricate a wire grid-type built-in polarizer.
  • the manufactured built-in polarizer is used in a liquid crystal display device and can solve QDCF products. It is difficult to control the on / off of the light, which improves the utilization rate of the backlight.
  • the object of the present invention is also to provide a liquid crystal display device with a built-in polarizer with a wire grid structure, which can solve the problem that it is difficult for QDCF products to control the on / off of light and improve the utilization rate of the backlight.
  • Another object of the present invention is to provide a method for manufacturing a liquid crystal display device, which uses a nano-imprint technology to fabricate a wire grid-type built-in polarizer, which can solve the problem that it is difficult for QDCF products to perform light on-off control and improve the utilization rate of the backlight. .
  • the present invention first provides a method for building a polarizer in a liquid crystal panel, which includes the following steps:
  • Step S1 Provide a substrate, deposit a first inorganic protective layer on the substrate, and sequentially deposit a metal wire grid layer and a second inorganic protective layer on the first inorganic protective layer from bottom to top;
  • Step S2 forming a photoresist layer by coating on the second inorganic protective layer; providing a first nano-imprint stencil, and using the first nano-imprint stencil to emboss the photoresist layer, A photoresist pattern is obtained by the photoresist layer, and the photoresist pattern has a plurality of photoresist bars spaced side by side;
  • Step S3 Use the photoresist pattern as a shielding layer to etch the second inorganic protective layer and the metal wire grid layer, corresponding to the plurality of photoresist bars on the metal wire grid layer and the second inorganic protective layer. Multiple parallel-spaced first metal lines and multiple parallel-spaced inorganic lines are etched to remove the photoresist pattern, the metal wire grid layer, and the first inorganic protective layer and the second inorganic protective layer on both sides thereof. Together they form a built-in polarizer.
  • the materials of the first inorganic protective layer and the second inorganic protective layer include one or more of silicon oxide, silicon nitride, aluminum oxide, silicon oxynitride, and hafnium oxide;
  • the material of the metal wire grid layer includes at least one of aluminum, copper, silver, chromium, gold, and nickel.
  • the separation distance between two adjacent first metal lines in the metal wire grid layer is 60-80 nm, and the thickness of the metal wire grid layer is 180-250 nm.
  • the invention also provides a liquid crystal display device, including a liquid crystal panel
  • the liquid crystal panel includes a color filter substrate and an array substrate, and a built-in polarizer disposed on a side of the color film substrate facing the array substrate;
  • the built-in polarizer includes a first inorganic protective layer provided on the color filter substrate, a metal wire grid layer provided on the first inorganic protective layer, and a second inorganic protective layer provided on the metal wire grid layer;
  • the metal wire grid layer has a wire grid pattern
  • the metal wire grid layer includes a plurality of first metal wires arranged at a spaced distance from each other
  • the second inorganic protective layer has the same wire grid pattern as the metal wire grid layer.
  • the second inorganic protective layer includes a plurality of inorganic wires corresponding to the first metal wires.
  • the liquid crystal display device further includes a backlight module disposed on a side of the array substrate facing away from the color filter substrate;
  • the color filter substrate includes a first base substrate, a quantum dot color filter provided on a side of the first base substrate near the array substrate, and an organic cover provided on a side of the quantum dot color filter near the array substrate.
  • Floor
  • the liquid crystal panel further includes an external polarizer provided on a side of the array substrate facing away from the color filter substrate, a spacer layer provided on a side of the built-in polarizer near the array substrate, and the color filter substrate and the array substrate. Between the liquid crystal layers.
  • the external polarizer is a metal wire grid polarizer.
  • the invention also provides a method for manufacturing a liquid crystal display device, including a step of forming a color filter substrate, a step of forming a built-in polarizer on the color filter substrate, a step of forming an array substrate, and a step of assembling and forming a liquid crystal panel;
  • the color filter substrate and the array substrate are oppositely disposed, and the built-in polarizer is disposed on a side of the color filter substrate facing the array substrate;
  • the step of forming a built-in polarizer uses the method of building a polarizer in a liquid crystal panel as described above to make a built-in polarizer, wherein the substrate provided in step S1 is a color filter substrate.
  • the manufacturing method of the liquid crystal display device further includes a step of forming a spacer layer on the built-in polarizer, a step of forming an external polarizer on the array substrate, and a step of assembling and forming a liquid crystal display device;
  • the assembled liquid crystal display device includes a liquid crystal panel and a backlight module, and the backlight module is disposed on a side of the array substrate facing away from the color filter substrate;
  • the color filter substrate includes a first base substrate, a quantum dot color filter provided on a side of the first base substrate near the array substrate, and a quantum dot color filter.
  • the sheet is close to the organic cover layer on one side of the array substrate, and the built-in polarizer is disposed on the organic cover layer.
  • the external polarizer is a metal wire grid polarizer.
  • the step of forming an external polarizer uses nano-imprint technology to form the external polarizer, and specifically includes:
  • Step S10 deposit a metal film layer on the array substrate
  • step S20 a photoresist film layer is formed by coating on the metal film layer; a second nano-imprint stencil is provided, and the second nano-imprint stencil is used to emboss the photoresist film layer. Obtaining a photoresist film pattern from the photoresist film layer;
  • Step S30 Use the photoresist film pattern as a shielding layer to etch the metal film layer, and etch a plurality of side-by-side spaced second metal lines on the metal film layer corresponding to the photoresist film pattern to obtain an external A polarizer is placed to remove the photoresist film pattern.
  • the method of built-in polarizers in a liquid crystal panel of the present invention can solve the problem that it is difficult for QDCF-type products to control the on-off of light when the built-in polarizers are used in a liquid crystal display device.
  • a large part of the light passing through the traditional polarizer 100 is absorbed by the conventional polarizer 100, which affects the utilization rate of light. It contains more transparent parts and its special structure, which can make light repeatedly used many times, so the transmittance is very high.
  • the invention uses nano-imprint technology to make wire grid type built-in polarizers, which can effectively improve the utilization of backlight.
  • the liquid crystal display device of the present invention has a built-in polarizer with a wire grid structure, which can solve the problem that it is difficult for QDCF products to control the on / off of light and improve the utilization of the backlight.
  • the first inorganic protective layer and the second inorganic protective layer can prevent the metal wire grid layer from being oxidized and corroded, and the built-in polarizer has a high service life.
  • the manufacturing method of the liquid crystal display device of the present invention adopts nano-imprint technology to produce a built-in polarizer with a wire grid structure, which can solve the problem that it is difficult for QDCF products to control the on / off of light, improve the utilization rate of the backlight, and has a built-in polarizer.
  • a first inorganic protective layer and a second inorganic protective layer are respectively provided on both sides of the metal wire grid layer, which can prevent the metal wire grid layer from being oxidized and corroded, and the built-in polarizer has a high service life.
  • Figure 1 is a comparison of the effect of light passing through a traditional polarizer and a wire grid polarizer
  • FIG. 2 is a schematic flowchart of a method for building a polarizer in a liquid crystal panel according to the present invention
  • FIG. 3 is a schematic diagram of step S1 of a method for building a polarizer in a liquid crystal panel according to the present invention
  • 4-6 is a schematic diagram of step S2 of the method for building a polarizer in a liquid crystal panel according to the present invention
  • step S3 of the method for building a polarizer in a liquid crystal panel according to the present invention is a schematic diagram of step S3 of the method for building a polarizer in a liquid crystal panel according to the present invention
  • FIG. 9 is a schematic structural diagram of a liquid crystal display device of the present invention.
  • FIG. 10 is a schematic diagram of step S10 of forming an external polarizer in the method for manufacturing a liquid crystal display device of the present invention.
  • step S20 of forming an external polarizer in the method for manufacturing a liquid crystal display device of the present invention are schematic views of step S20 of forming an external polarizer in the method for manufacturing a liquid crystal display device of the present invention.
  • step S30 of forming an external polarizer in the method for manufacturing a liquid crystal display device of the present invention are schematic diagrams of step S30 of forming an external polarizer in the method for manufacturing a liquid crystal display device of the present invention.
  • the present invention first provides a method for manufacturing a built-in polarizer 30, which includes the following steps:
  • Step S1 as shown in FIG. 3, a substrate 10 'is provided, a first inorganic protective layer 31 is formed on the substrate 10', and a metal wire grid layer 32 and a metal wire grid layer 32 are sequentially deposited on the first inorganic protective layer 31 from bottom to top.
  • Second inorganic protective layer 33 Second inorganic protective layer 33.
  • Step S2 as shown in FIG. 4-6, a photoresist layer 80 is formed on the second inorganic protective layer 33 by coating; a first nano-imprint stencil 90 is provided, and the first nano-imprint stencil 90 is used.
  • the photoresist layer 80 is embossed, and a photoresist pattern 85 is obtained from the photoresist layer 80.
  • the photoresist pattern 85 has a plurality of photoresist bars 851 spaced side by side.
  • Step S3 As shown in FIG. 7-8, using the photoresist pattern 85 as a shielding layer, the second inorganic protective layer 33 and the metal wire grid layer 32 are etched, corresponding to the plurality of photoresist bars 851. A plurality of side-by-side spaced first metal lines 321 and a plurality of side-by-side spaced inorganic lines 331 are etched on the metal wire grid layer 32 and the second inorganic protective layer 33, respectively, to remove the photoresist pattern 85, and the metal wire grid The layer 32 and the first inorganic protective layer 31 and the second inorganic protective layer 33 on both sides thereof together constitute a built-in polarizer 30.
  • the materials of the first inorganic protective layer 31 and the second inorganic protective layer 33 include one or more of silicon oxide, silicon nitride, aluminum oxide, silicon oxynitride, and hafnium oxide. Further, in this embodiment, a material of the first inorganic protective layer 31 is silicon oxide, and a material of the second inorganic protective layer 33 is silicon nitride.
  • the material of the metal wire grid layer 32 includes at least one of aluminum, copper, silver, chromium, gold, and nickel. Further, in this embodiment, a material of the metal wire grid layer 32 is aluminum.
  • the separation distance between two adjacent first metal lines 321 in the metal wire grid layer 32 is 60-80 nm, and the thickness of the metal wire grid layer 32 is 180-250 nm, that is, the phase on the metal wire grid layer 32 is relatively high.
  • the depth of the space between adjacent two first metal lines 32 is 180-250 nm.
  • the method for building a polarizer in a liquid crystal panel of the present invention uses a nano-imprint technology to produce a wire grid-type built-in polarizer 30.
  • the built-in built-in polarizer 30 is used in a liquid crystal display device, it is able to solve the problem that QDCF products are difficult to perform light
  • the on-off control problem improves the utilization of the backlight.
  • the built-in polarizer 30 as a sandwich structure, the first inorganic protective layer 31 and the second inorganic protective layer 33 can be provided on both sides of the metal wire grid layer 32, respectively.
  • the metal wire grid layer 33 is prevented from being oxidized and corroded, and the service life of the built-in polarizer 30 is improved.
  • the present invention also provides a liquid crystal display device, which includes a liquid crystal panel 1 and a backlight module 9.
  • the liquid crystal panel 1 includes a color filter substrate 10 and an array substrate 20 opposite to each other, a built-in polarizer 30 provided on a side of the color filter substrate 10 facing the array substrate 20, and a color filter substrate 10 disposed on the array substrate 20 facing away from the color filter.
  • the backlight module 9 is disposed on a side of the array substrate 20 facing away from the color filter substrate 10.
  • the built-in polarizer 30 is formed by using the above-mentioned method of building a polarizer in a liquid crystal panel, and includes a first inorganic protective layer 31 provided on the color filter substrate 10 and a first inorganic protective layer 31 provided on the color filter substrate 10.
  • the metal wire grid layer 32 has a wire grid pattern.
  • the metal wire grid layer 32 includes a plurality of first metal wires 321 arranged in parallel and spaced apart.
  • the second inorganic protective layer 33 has the same wires as the metal wire grid layer 32.
  • the second inorganic protective layer 33 includes a plurality of inorganic lines 331 corresponding to the first metal lines 321 respectively.
  • the color filter substrate 10 includes a first base substrate 11, a quantum dot color filter 12 provided on a side of the first base substrate 11 near the array substrate 20, and a quantum dot color filter 12.
  • the external polarizer 40 is also configured as a wire grid polarizer, specifically a metal wire grid polarizer.
  • the materials of the first inorganic protective layer 31 and the second inorganic protective layer 33 include one or more of silicon oxide, silicon nitride, aluminum oxide, silicon oxynitride, and hafnium oxide. Further, in this embodiment, a material of the first inorganic protective layer 31 is silicon oxide, and a material of the second inorganic protective layer 33 is silicon nitride.
  • the material of the metal wire grid layer 32 includes at least one of aluminum, copper, silver, chromium, gold, and nickel. Further, in this embodiment, a material of the metal wire grid layer 32 is aluminum.
  • a separation distance between two adjacent first metal lines 321 in the metal wire gate layer 32 is 60-80 nm, and a thickness of the metal wire gate layer 32 is 180-250 nm.
  • the liquid crystal display device of the present invention has a built-in polarizer 30 of a wire grid structure, which can solve the problem that it is difficult for QDCF products to control the on / off of light, improve the utilization of the backlight, and both sides of the metal wire grid layer 32 of the built-in polarizer 30
  • the first inorganic protective layer 31 and the second inorganic protective layer 32 are respectively provided to prevent the metal wire grid layer 32 from being oxidized and corroded, and the built-in polarizer 30 has a high service life.
  • the invention also provides a method for manufacturing a liquid crystal display device, which includes a step of forming a color filter substrate 10, a step of forming a built-in polarizer 30 on the color filter substrate 10, a step of forming an array substrate 20, and a step of forming a built-in polarizer 30.
  • the color filter substrate 10 and the array substrate 20 are oppositely disposed, and the built-in polarizer 30 is disposed on the color filter substrate 10 side facing the array substrate 20.
  • the step of forming the built-in polarizer 30 adopts the method of building a polarizer in a liquid crystal panel as described above to form the built-in polarizer 30, wherein the substrate 10 'in the step S1 is the color filter substrate 10.
  • a first inorganic protective layer 31 is deposited on the color filter substrate 10.
  • the specific manufacturing process of the built-in polarizer 30 is the same as the embodiment of the method for building a polarizer in a liquid crystal panel described above, and details are not described herein again.
  • the assembled liquid crystal display device includes a liquid crystal panel 1 and a backlight module 9.
  • the backlight module 9 is disposed on a side of the array substrate 20 facing away from the color filter substrate 10.
  • the color filter substrate 10 includes a first base substrate 11 and a quantum dot color filter provided on the side of the first base substrate 11 near the array substrate 20. 12 and an organic cover layer 13 provided on a side of the quantum dot color filter 12 near the array substrate 20, and the built-in polarizer 30 is disposed on the organic cover layer 13.
  • the external polarizer 40 is a metal wire grid polarizer.
  • the step of forming the external polarizer 40 uses nano-imprint technology to form the external polarizer 40, and specifically includes:
  • Step S10 As shown in FIG. 10, a metal film layer 41 is formed on the array substrate 20 by deposition
  • Step S20 As shown in FIGS. 11-13, a photoresist film layer 70 is formed by coating on the metal film layer 41; a second nano-imprint stencil 95 is provided, and the second nano-imprint stencil 95 is used. The photoresist film layer 70 is imprinted, and a photoresist film pattern 75 is obtained from the photoresist film layer 70;
  • Step S3 As shown in FIG. 14-15, using the photoresist film pattern 75 as a shielding layer, the metal film layer 41 is etched, and the metal film layer 41 is etched corresponding to the photoresist film pattern 75. A plurality of second metal lines 401 spaced side by side to obtain an external polarizer 40 and remove the photoresist film pattern 75.
  • the manufacturing method of the liquid crystal display device of the present invention adopts nano-imprint technology to manufacture the built-in polarizer 30 with a wire grid structure after the organic cover layer 13 is formed and before the spacer layer 50 is manufactured, which can solve the difficulty of QDCF products.
  • the problem of light on / off control improves the utilization of the backlight, and the first and second inorganic protective layers 31 and 33 are respectively provided on both sides of the metal wire grid layer 32 of the built-in polarizer 30, which can avoid the metal wire grid layer. 32 is oxidized and corroded, and the built-in polarizer 30 has a high service life.
  • the method for building a polarizer in a liquid crystal panel of the present invention uses a nano-imprint technology to produce a wire grid type built-in polarizer.
  • the built-in built-in polarizer When the built-in built-in polarizer is used in a liquid crystal display device, it can solve QDCF products. It is difficult to control the on / off of the light, improve the utilization of the backlight, and by setting the built-in polarizer as a sandwich structure, setting the first inorganic protective layer and the second inorganic protective layer on the two sides of the metal wire grid layer, can be avoided
  • the metal wire grid layer is oxidized and corroded, which increases the service life of the built-in polarizer.
  • the liquid crystal display device of the present invention has a built-in polarizer with a wire grid structure, which can solve the problem that it is difficult for QDCF products to control the on / off of light and improve the utilization of the backlight.
  • the first inorganic protective layer and the second inorganic protective layer can prevent the metal wire grid layer from being oxidized and corroded, and the built-in polarizer has a high service life.
  • the manufacturing method of the liquid crystal display device of the present invention adopts nano-imprint technology to produce a built-in polarizer with a wire grid structure, which can solve the problem that it is difficult for QDCF products to control the on / off of light, improve the utilization rate of the backlight, and has a built-in polarizer
  • a first inorganic protective layer and a second inorganic protective layer are respectively provided on both sides of the metal wire grid layer, which can prevent the metal wire grid layer from being oxidized and corroded, and the built-in polarizer has a high service life.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)

Abstract

一种在液晶面板(1)中内置偏光片(30)的方法、液晶显示装置及其制作方法。在液晶面板(1)中内置偏光片(30)的方法采用纳米压印技术制作线栅型的内置偏光片(30),内置偏光片(30)用于液晶显示装置时,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光模组(9)的利用率。通过将内置偏光片(30)设置为三明治结构,在金属线栅层(32)两侧分别设置第一无机保护层(31)和第二无机保护层(33),可以避免金属线栅层(32)被氧化腐蚀,提高了内置偏光片(30)的使用寿命。

Description

在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法。
背景技术
薄膜晶体管液晶显示器(Thin Film Transistor-LCD,TFT-LCD)近年来得到了飞速的发展和广泛的应用。现有市场上的液晶显示装置大部分为背光型液晶显示装置,其包括液晶显示面板及背光模组(backlight module)。通常液晶显示面板由彩膜(Color Filter,CF)基板、薄膜晶体管(Thin Film Transistor,TFT)基板、夹于彩膜基板与薄膜晶体管基板之间的液晶(Liquid Crystal,LC)及密封框胶(Sealant)组成;其工作原理是通过在两片玻璃基板上施加驱动电压来控制液晶层的液晶分子的旋转,将背光模组的光线折射出来产生画面。
目前液晶显示器的色彩是依靠彩色滤光(CF)层来实现。传统CF层是由彩色光阻材料经过一系列黄光制程后形成,而彩色光阻材料是将树脂(polymer)、单体(monomer)、光引发剂(photo initator)和颜料(pigment)溶解和分散在溶剂(solvent)后形成的。而采用传统CF层的液晶显示面板,其色彩饱和度通常都比较低,显示的颜色不够鲜艳。而目前已经量产的基于量子点(Quantum Dots,QD)的背光源技术,可以使LCD实现110%的NTSC色域值,远高于传统LCD显示器90%~100%的NTSC水准。
量子点是肉眼看不到的,极其微小的无机纳米晶体,大部分由Ⅱ-Ⅵ族、或Ⅲ-Ⅴ族元素组成的三个维度尺寸的纳米材料。由于量子限域效应,其内部的电子和空穴的运输受到限制,使得连续的能带结构变成分离的能级结构。每当受到光或电等外来能量激发后,量子点便会发出有色光线,光线的颜色由量子点的组成材料和大小形状决定,当量子点的尺寸不同时,电子与空穴的量子限域程度不一样,分立的能级结构不同,一般颗粒若越小,会吸收长波,颗粒越大,会吸收短波。通常量子点,可吸收短波的蓝色,激发出呈现出长波段光色。这一特性使得量子点能够改变光源发出的光线颜色。
量子点的优势在于:通过调控量子点的尺寸,可以实现发光波长范围覆盖到红外及整个可见光波段,且发射光波段窄,色彩饱和度高;量子点 材料量子转换效率高;材料性能稳定;制备方法简单多样,可以从溶液中制备,资源丰富。因此,直接将量子点应用在Color Filter中,制备成量子点彩色滤光片(QD Color Filter,QDCF)以替代传统彩色滤光片,则可以进一步将色域提升至>90%BT.2020(BT.2020色域标准相当于NTSC色域值为134%)。
将QD纳米材料制作成QDCF,需要一系列溶剂和配体的搭配,业界已经取得了一些进展。然而,现有液晶显示器结构中彩色滤光片均是置于液晶盒(cell)外。由于量子点和目前常用彩色滤光片中颜料产生色彩的原理不同,量子点发光是受光激发后,量子点能带结构的变化,发出特定波长的光。若液晶显示器仍采用玻璃衬底外侧贴附偏光片(Polarizer,POL)的方式,那么背光经过下偏光片后,产生的是特定方向的线偏振光,当线偏振光激发量子点后,原本特定方向的偏振光的偏振状态会发生变化(消偏和偏振方向改变),因此导致光路和亮度的不可控制性,无法实现光的通断。因此QDCF无法直接替换现有的彩色滤光片运用至现有的液晶显示器结构中。
发明内容
本发明的目的在于提供一种在液晶面板中内置偏光片的方法,采用纳米压印技术制作线栅型的内置偏光片,所制作的内置偏光片用于液晶显示装置中,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率。
本发明的目的还在于提供一种液晶显示装置,具有线栅结构的内置偏光片,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率。
本发明的目的又在于提供一种液晶显示装置的制作方法,采用纳米压印技术制作线栅型的内置偏光片,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率。
为实现上述目的,本发明首先提供一种在液晶面板中内置偏光片的方法,包括如下步骤:
步骤S1、提供基板,在所述基板上沉积形成第一无机保护层,在第一无机保护层上由下至上依次沉积形成金属线栅层及第二无机保护层;
步骤S2、在所述第二无机保护层上涂布形成一层光阻层;提供第一纳米压印模版,采用所述第一纳米压印模版对所述光阻层进行压印处理,由所述光阻层得到光阻图案,所述光阻图案具有并列间隔的多条光阻条;
步骤S3、以所述光阻图案为遮蔽层,对所述第二无机保护层和金属线栅层进行蚀刻,对应所述多条光阻条在金属线栅层上和第二无机保护层上分别蚀刻出多条并列间隔的第一金属线和多条并列间隔的无机线,去除所述光阻图案,所述金属线栅层和其两侧的第一无机保护层、第二无机保护层共同构成内置偏光片。
所述第一无机保护层和第二无机保护层的材料包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种;
所述金属线栅层的材料包括铝、铜、银、铬、金及镍中的至少一种。
所述金属线栅层中相邻两条第一金属线的间隔距离为60-80nm,所述金属线栅层的厚度为180-250nm。
本发明还提供一种液晶显示装置,包括液晶面板;
所述液晶面板包括相对设置的彩膜基板和阵列基板及设于彩膜基板面向阵列基板一侧上的内置偏光片;
所述内置偏光片包括设于彩膜基板上的第一无机保护层、设于第一无机保护层上的金属线栅层及设于金属线栅层上的第二无机保护层;
所述金属线栅层具有线栅图案,所述金属线栅层包括并列间隔设置的多条第一金属线;所述第二无机保护层具有与金属线栅层相同的线栅图案,所述第二无机保护层包括多条分别对应位于多条第一金属线上的无机线。
所述的液晶显示装置还包括设于所述阵列基板背向彩膜基板一侧的背光模组;
所述彩膜基板包括第一衬底基板、设于第一衬底基板靠近阵列基板一侧上的量子点彩色滤光片、设于量子点彩色滤光片靠近阵列基板一侧上的有机覆盖层;
所述液晶面板还包括设于所述阵列基板背向彩膜基板一侧上的外置偏光片、设于内置偏光片靠近阵列基板一侧上的间隔物层及设于彩膜基板和阵列基板之间的液晶层。
所述外置偏光片为金属线栅偏光片。
本发明还提供一种液晶显示装置的制作方法,包括形成彩膜基板的步骤、在彩膜基板上形成内置偏光片的步骤、形成阵列基板的步骤及组装形成液晶面板的步骤;
在组装形成的所述液晶面板中,彩膜基板和阵列基板相对设置,所述内置偏光片设于彩膜基板面向阵列基板一侧上;
所述形成内置偏光片的步骤采用如上所述的在液晶面板中内置偏光片的方法制作内置偏光片,其中,所述步骤S1中提供的基板为彩膜基板。
所述的液晶显示装置的制作方法还包括在内置偏光片上形成间隔物层的步骤、在阵列基板上形成外置偏光片的步骤及组装形成液晶显示装置的步骤;
所述组装形成的液晶显示装置包括液晶面板及背光模组,所述背光模组设于所述阵列基板背向彩膜基板的一侧;
在组装形成的所述液晶面板中,所述彩膜基板包括第一衬底基板、设于第一衬底基板靠近阵列基板一侧上的量子点彩色滤光片及设于量子点彩色滤光片靠近阵列基板一侧上的有机覆盖层,所述内置偏光片设置在所述有机覆盖层上。
所述外置偏光片为金属线栅偏光片。
所述形成外置偏光片的步骤采用纳米压印技术形成所述外置偏光片,并具体包括:
步骤S10、在所述阵列基板上沉积形成金属膜层;
步骤S20、在所述金属膜层上涂布形成一层光阻膜层;提供第二纳米压印模版,采用所述第二纳米压印模版对所述光阻膜层进行压印处理,由所述光阻膜层得到光阻膜图案;
步骤S30、以所述光阻膜图案为遮蔽层,对所述金属膜层进行蚀刻,对应于所述光阻膜图案在金属膜层上蚀刻出多条并列间隔的第二金属线,得到外置偏光片,去除所述光阻膜图案。
本发明的有益效果:本发明的在液晶面板中内置偏光片的方法,所制作的内置偏光片用于液晶显示装置时,能够解决QDCF型产品难以进行光的通断控制的问题,另外如图1所示,LCD所采用的传统偏光片100由于本身材料特性限制,穿过传统偏光片100的光很大一部分被传统偏光片100吸收,影响光的利用率,而线栅偏光片200由于其本身含有较多的透明部分以及其特殊结构可以使光线多次反复被利用,因而透过率很高,本发明采用纳米压印技术制作线栅型的内置偏光片,可以有效提高背光的利用率,并通过将内置偏光片设置为三明治结构,在金属线栅层两侧分别设置第一无机保护层和第二无机保护层,可以避免金属线栅层被氧化腐蚀,提高了内置偏光片的使用寿命。本发明的液晶显示装置,具有线栅结构的内置偏光片,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率,且内置偏光片的金属线栅层两侧分别设有第一无机保护层和第二无机保护层,可以避免金属线栅层被氧化腐蚀,内置偏光片具有较高的使用寿命。本发明的液晶显示装置的制作方法,采用纳米压印技术制作具有线栅结构的内置偏光片,能够解决QDCF型产品难以进行光的通断控制的 问题,提高背光的利用率,且内置偏光片的金属线栅层两侧分别设有第一无机保护层和第二无机保护层,可以避免金属线栅层被氧化腐蚀,内置偏光片具有较高的使用寿命。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为光穿过传统偏光片和线栅偏光片的效果对比图;
图2为本发明的在液晶面板中内置偏光片的方法的流程示意图;
图3为本发明的在液晶面板中内置偏光片的方法的步骤S1的示意图;
图4-6为本发明的在液晶面板中内置偏光片的方法的步骤S2的示意图;
图7-8为本发明的在液晶面板中内置偏光片的方法的步骤S3的示意图;
图9为本发明的液晶显示装置的结构示意图;
图10为本发明的液晶显示装置的制作方法中形成外置偏光片的步骤S10的示意图;
图11-13为本发明的液晶显示装置的制作方法中形成外置偏光片的步骤S20的示意图;
图14-15为本发明的液晶显示装置的制作方法中形成外置偏光片的步骤S30的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2,本发明首先提供一种内置偏光片30的制作方法,包括如下步骤:
步骤S1、如图3所示,提供基板10’,在所述基板10’上沉积形成第一无机保护层31,在第一无机保护层31上由下至上依次沉积形成金属线栅层32及第二无机保护层33。
步骤S2、如图4-6所示,在所述第二无机保护层33上涂布形成一层光 阻层80;提供第一纳米压印模版90,采用所述第一纳米压印模版90对所述光阻层80进行压印处理,由所述光阻层80得到光阻图案85,所述光阻图案85具有并列间隔的多条光阻条851。
步骤S3、如图7-8所示,以所述光阻图案85为遮蔽层,对所述第二无机保护层33和金属线栅层32进行蚀刻,对应所述多条光阻条851在金属线栅层32上和第二无机保护层33上分别蚀刻出多条并列间隔的第一金属线321和多条并列间隔的无机线331,去除所述光阻图案85,所述金属线栅层32和其两侧的第一无机保护层31、第二无机保护层33共同构成内置偏光片30。
具体地,所述第一无机保护层31和第二无机保护层33的材料包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种。进一步地,在本实施例中,所述第一无机保护层31的材料为氧化硅,所述第二无机保护层33的材料为氮化硅。
具体地,所述金属线栅层32的材料包括铝、铜、银、铬、金及镍中的至少一种。进一步地,在本实施例中,所述金属线栅层32的材料为铝。
具体地,所述金属线栅层32中相邻两条第一金属线321的间隔距离为60-80nm,所述金属线栅层32的厚度为180-250nm,即金属线栅层32上相邻两条第一金属线32之间的间隔区域的深度为180-250nm。
本发明的在液晶面板中内置偏光片的方法,采用纳米压印技术制作线栅型的内置偏光片30,所制作的内置偏光片30用于液晶显示装置时,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率,并通过将内置偏光片30设置为三明治结构,在金属线栅层32两侧分别设置第一无机保护层31和第二无机保护层33,可以避免金属线栅层33被氧化腐蚀,提高了内置偏光片30的使用寿命。
请参阅图9,基于上述的在液晶面板中内置偏光片的方法,本发明还提供一种液晶显示装置,包括液晶面板1和背光模组9。
具体地,所述液晶面板1包括相对设置的彩膜基板10和阵列基板20、设于彩膜基板10面向阵列基板20一侧上的内置偏光片30、设于所述阵列基板20背向彩膜基板10一侧上的外置偏光片40、设于内置偏光片30靠近阵列基板20一侧上的间隔物层50及设于彩膜基板10和阵列基板20之间的液晶层60。
具体地,所述背光模组9设于所述阵列基板20背向彩膜基板10的一侧。
具体地,所述内置偏光片30采用上述的在液晶面板中内置偏光片的方 法制作形成,包括设于彩膜基板10上的第一无机保护层31、设于第一无机保护层31上的金属线栅层32及设于金属线栅层32上的第二无机保护层33;
所述金属线栅层32具有线栅图案,所述金属线栅层32包括并列间隔设置的多条第一金属线321;所述第二无机保护层33具有与金属线栅层32相同的线栅图案,所述第二无机保护层33包括多条分别对应位于多条第一金属线321上的无机线331。
具体地,所述彩膜基板10包括第一衬底基板11、设于第一衬底基板11靠近阵列基板20一侧上的量子点彩色滤光片12、设于量子点彩色滤光片12靠近阵列基板20一侧上的有机覆盖层13。
具体地,为了进一步增加液晶显示装置中光透过率及背光利用率,所述外置偏光片40同样设置为线栅偏光片,具体为金属线栅偏光片。
具体地,所述第一无机保护层31和第二无机保护层33的材料包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种。进一步地,在本实施例中,所述第一无机保护层31的材料为氧化硅,所述第二无机保护层33的材料为氮化硅。
具体地,所述金属线栅层32的材料包括铝、铜、银、铬、金及镍中的至少一种。进一步地,在本实施例中,所述金属线栅层32的材料为铝。
具体地,所述金属线栅层32中相邻两条第一金属线321的间隔距离为60-80nm,所述金属线栅层32的厚度为180-250nm。
本发明的液晶显示装置具有线栅结构的内置偏光片30,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率,且内置偏光片30的金属线栅层32两侧分别设有第一无机保护层31和第二无机保护层32,可以避免金属线栅层32被氧化腐蚀,内置偏光片30具有较高的使用寿命。
本发明还提供一种液晶显示装置的制作方法,包括形成彩膜基板10的步骤、在彩膜基板10上形成内置偏光片30的步骤、形成阵列基板20的步骤、在内置偏光片30上形成间隔物层50的步骤、在阵列基板20上形成外置偏光片40的步骤、组装形成液晶面板1的步骤及组装形成液晶显示装置的步骤。
具体地,在组装形成的所述液晶面板1中,彩膜基板10和阵列基板20相对设置,所述内置偏光片30设于彩膜基板10面向阵列基板20一侧上。
具体地,所述形成内置偏光片30的步骤采用如上所述的在液晶面板中内置偏光片的方法形成内置偏光片30,其中,所述步骤S1中所述基板10’ 就是彩膜基板10,在所述彩膜基板10上沉积形成第一无机保护层31。所述内置偏光片30的具体制作过程与上述在液晶面板中内置偏光片的方法的实施例相同,在此不再赘述。
具体地,所述组装形成的液晶显示装置包括液晶面板1及背光模组9,所述背光模组9设于所述阵列基板20背向彩膜基板10的一侧。
具体地,在组装形成的所述液晶面板1中,所述彩膜基板10包括第一衬底基板11、设于第一衬底基板11靠近阵列基板20一侧上的量子点彩色滤光片12及设于量子点彩色滤光片12靠近阵列基板20一侧上的有机覆盖层13,所述内置偏光片30设置在所述有机覆盖层13上。
具体地,所述外置偏光片40为金属线栅偏光片。
进一步地,所述形成外置偏光片40的步骤采用纳米压印技术形成所述外置偏光片40,并具体包括:
步骤S10、如图10所示,在所述阵列基板20上沉积形成金属膜层41;
步骤S20、如图11-13所示,在所述金属膜层41上涂布形成一层光阻膜层70;提供第二纳米压印模版95,采用所述第二纳米压印模版95对所述光阻膜层70进行压印处理,由所述光阻膜层70得到光阻膜图案75;
步骤S3、如图14-15所示,以所述光阻膜图案75为遮蔽层,对所述金属膜层41进行蚀刻,对应于所述光阻膜图案75在金属膜层41上蚀刻出多条并列间隔的第二金属线401,得到外置偏光片40,去除所述光阻膜图案75。
本发明的液晶显示装置的制作方法,在制作形成有机覆盖层13之后及在制作间隔物层50之前,采用纳米压印技术制作具有线栅结构的内置偏光片30,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率,且内置偏光片30的金属线栅层32两侧分别设有第一无机保护层31和第二无机保护层33,可以避免金属线栅层32被氧化腐蚀,内置偏光片30具有较高的使用寿命。
综上所述,本发明的在液晶面板中内置偏光片的方法,采用纳米压印技术制作线栅型的内置偏光片,所制作的内置偏光片用于液晶显示装置时,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率,并通过将内置偏光片设置为三明治结构,在金属线栅层两侧分别设置第一无机保护层和第二无机保护层,可以避免金属线栅层被氧化腐蚀,提高了内置偏光片的使用寿命。本发明的液晶显示装置,具有线栅结构的内置偏光片,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率,且内置偏光片的金属线栅层两侧分别设有第一无机保护层和第二 无机保护层,可以避免金属线栅层被氧化腐蚀,内置偏光片具有较高的使用寿命。本发明的液晶显示装置的制作方法,采用纳米压印技术制作具有线栅结构的内置偏光片,能够解决QDCF型产品难以进行光的通断控制的问题,提高背光的利用率,且内置偏光片的金属线栅层两侧分别设有第一无机保护层和第二无机保护层,可以避免金属线栅层被氧化腐蚀,内置偏光片具有较高的使用寿命。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种在液晶面板中内置偏光片的方法,包括如下步骤:
    步骤S1、提供基板,在所述基板上沉积形成第一无机保护层,在第一无机保护层上由下至上依次沉积形成金属线栅层及第二无机保护层;
    步骤S2、在所述第二无机保护层上涂布形成一层光阻层;提供第一纳米压印模版,采用所述第一纳米压印模版对所述光阻层进行压印处理,由所述光阻层得到光阻图案,所述光阻图案具有并列间隔的多条光阻条;
    步骤S3、以所述光阻图案为遮蔽层,对所述第二无机保护层和金属线栅层进行蚀刻,对应所述多条光阻条在金属线栅层上和第二无机保护层上分别蚀刻出多条并列间隔的第一金属线和多条并列间隔的无机线,去除所述光阻图案,所述金属线栅层和其两侧的第一无机保护层、第二无机保护层共同构成内置偏光片。
  2. 如权利要求1所述的在液晶面板中内置偏光片的方法,其中,所述第一无机保护层和第二无机保护层的材料分别包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种;
    所述金属线栅层的材料包括铝、铜、银、铬、金及镍中的至少一种。
  3. 如权利要求1所述的在液晶面板中内置偏光片的方法,其中,所述金属线栅层中相邻两条第一金属线的间隔距离为60-80nm,所述金属线栅层的厚度为180-250nm。
  4. 一种液晶显示装置,包括液晶面板;
    所述液晶面板包括相对设置的彩膜基板和阵列基板及设于彩膜基板面向阵列基板一侧上的内置偏光片;
    所述内置偏光片包括设于彩膜基板上的第一无机保护层、设于第一无机保护层上的金属线栅层及设于金属线栅层上的第二无机保护层;
    所述金属线栅层包括并列间隔设置的多条第一金属线;所述第二无机保护层包括多条分别对应位于多条第一金属线上的无机线。
  5. 如权利要求4所述的液晶显示装置,还包括设于所述阵列基板背向彩膜基板一侧的背光模组;
    所述彩膜基板包括第一衬底基板、设于第一衬底基板靠近阵列基板一侧上的量子点彩色滤光片、设于量子点彩色滤光片靠近阵列基板一侧上的有机覆盖层;
    所述液晶面板还包括设于所述阵列基板背向彩膜基板一侧上的外置偏 光片、设于内置偏光片靠近阵列基板一侧上的间隔物层及设于彩膜基板和阵列基板之间的液晶层。
  6. 如权利要求5所述的液晶显示装置,其中,所述外置偏光片为金属线栅偏光片。
  7. 一种液晶显示装置的制作方法,包括形成彩膜基板的步骤、在彩膜基板上形成内置偏光片的步骤、形成阵列基板的步骤及组装形成液晶面板的步骤;
    在组装形成的所述液晶面板中,所述彩膜基板和阵列基板相对设置,所述内置偏光片设于彩膜基板面向阵列基板一侧上;
    所述形成内置偏光片的步骤采用如权利要求1所述的在液晶面板中内置偏光片的方法制作内置偏光片,其中,所述步骤S1中所提供的基板为彩膜基板。
  8. 如权利要求7所述的液晶显示装置的制作方法,还包括在内置偏光片上形成间隔物层的步骤、在阵列基板上形成外置偏光片的步骤及组装形成液晶显示装置的步骤;
    所述组装形成的液晶显示装置包括液晶面板及背光模组,所述背光模组设于所述阵列基板背向彩膜基板的一侧;
    在组装形成的所述液晶面板中,所述彩膜基板包括第一衬底基板、设于第一衬底基板靠近阵列基板一侧上的量子点彩色滤光片及设于量子点彩色滤光片靠近阵列基板一侧上的有机覆盖层,所述内置偏光片设置在所述有机覆盖层上。
  9. 如权利要求8所述的液晶显示装置的制作方法,其中,所述外置偏光片为金属线栅偏光片。
  10. 如权利要求9所述的液晶显示装置的制作方法,其中,所述形成外置偏光片的步骤采用纳米压印技术形成所述外置偏光片,并具体包括:
    步骤S10、在所述阵列基板上沉积形成金属膜层;
    步骤S20、在所述金属膜层上涂布形成一层光阻膜层;提供第二纳米压印模版,采用所述第二纳米压印模版对所述光阻膜层进行压印处理,由所述光阻膜层得到光阻膜图案;
    步骤S30、以所述光阻膜图案为遮蔽层,对所述金属膜层进行蚀刻,对应于所述光阻膜图案在金属膜层上蚀刻出多条并列间隔的第二金属线,得到外置偏光片,去除所述光阻膜图案。
PCT/CN2018/107145 2018-05-23 2018-09-22 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法 WO2019223203A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/308,482 US20210088840A1 (en) 2018-05-23 2018-09-22 Method of having a polarizer built in a lcd panel, lcd device, and lcd device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810502029.8 2018-05-23
CN201810502029.8A CN108535904A (zh) 2018-05-23 2018-05-23 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2019223203A1 true WO2019223203A1 (zh) 2019-11-28

Family

ID=63472650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107145 WO2019223203A1 (zh) 2018-05-23 2018-09-22 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法

Country Status (3)

Country Link
US (1) US20210088840A1 (zh)
CN (1) CN108535904A (zh)
WO (1) WO2019223203A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535904A (zh) * 2018-05-23 2018-09-14 武汉华星光电技术有限公司 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法
CN109375419B (zh) * 2018-10-29 2021-11-05 京东方科技集团股份有限公司 背光模组和显示装置
CN109375411B (zh) * 2018-10-30 2023-10-31 武汉华星光电技术有限公司 液晶面板及其制作方法
CN109471291A (zh) * 2018-11-08 2019-03-15 惠科股份有限公司 一种显示装置及其制造方法
CN109445194B (zh) * 2018-11-21 2021-04-27 武汉华星光电技术有限公司 一种量子点液晶面板及其制备方法
CN110109212A (zh) * 2019-05-17 2019-08-09 深圳市华星光电半导体显示技术有限公司 一种偏光片及液晶显示装置
CN110137184B (zh) * 2019-05-27 2021-09-21 京东方科技集团股份有限公司 一种阵列基板、显示面板和显示装置
CN113196153B (zh) * 2019-11-29 2022-08-19 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN111638611A (zh) * 2020-06-10 2020-09-08 武汉华星光电技术有限公司 液晶面板及其制造方法
CN111708212A (zh) * 2020-06-23 2020-09-25 武汉华星光电技术有限公司 显示面板和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106672A1 (en) * 2006-11-02 2008-05-08 Samsung Electronics Co., Ltd. Polarizing plate, display panel having the same, and display device having the same
KR20160053073A (ko) * 2014-10-30 2016-05-13 삼성디스플레이 주식회사 편광자, 편광자의 제조 방법 및 표시 패널
US20160272791A1 (en) * 2015-03-18 2016-09-22 Samsung Display Co., Ltd. Photo-curable resin composition and method for forming a fine pattern using the same
CN107479121A (zh) * 2017-08-25 2017-12-15 深圳市华星光电技术有限公司 纳米金属光栅的制备方法及纳米金属光栅
CN107783219A (zh) * 2016-08-25 2018-03-09 三星显示有限公司 偏振器、其制造方法和包括其的显示装置
CN107884978A (zh) * 2016-09-30 2018-04-06 三星显示有限公司 显示装置及显示装置的制造方法
CN107918227A (zh) * 2016-10-07 2018-04-17 三星显示有限公司 颜色转换显示面板和包括其的显示装置
CN108535904A (zh) * 2018-05-23 2018-09-14 武汉华星光电技术有限公司 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106672A1 (en) * 2006-11-02 2008-05-08 Samsung Electronics Co., Ltd. Polarizing plate, display panel having the same, and display device having the same
KR20160053073A (ko) * 2014-10-30 2016-05-13 삼성디스플레이 주식회사 편광자, 편광자의 제조 방법 및 표시 패널
US20160272791A1 (en) * 2015-03-18 2016-09-22 Samsung Display Co., Ltd. Photo-curable resin composition and method for forming a fine pattern using the same
CN107783219A (zh) * 2016-08-25 2018-03-09 三星显示有限公司 偏振器、其制造方法和包括其的显示装置
CN107884978A (zh) * 2016-09-30 2018-04-06 三星显示有限公司 显示装置及显示装置的制造方法
CN107918227A (zh) * 2016-10-07 2018-04-17 三星显示有限公司 颜色转换显示面板和包括其的显示装置
CN107479121A (zh) * 2017-08-25 2017-12-15 深圳市华星光电技术有限公司 纳米金属光栅的制备方法及纳米金属光栅
CN108535904A (zh) * 2018-05-23 2018-09-14 武汉华星光电技术有限公司 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法

Also Published As

Publication number Publication date
US20210088840A1 (en) 2021-03-25
CN108535904A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
WO2019223203A1 (zh) 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法
US9823510B2 (en) Quantum dot color film substrate, manufacturing method thereof and LCD apparatus
KR101336097B1 (ko) 와이어 그리드 편광자를 구비하는 액정 디스플레이 장치
WO2017024613A1 (zh) 显示面板及其制作方法
US8186865B2 (en) Color light guide panel and liquid crystal display
KR102302401B1 (ko) 광루미네선스 장치, 이의 제조 방법 및 이를 포함하는 표시 장치
WO2017092090A1 (zh) 量子点彩膜基板的制作方法
WO2017084175A1 (zh) 液晶显示装置及其制作方法
WO2017092130A1 (zh) Coa型液晶显示面板的制作方法及coa型液晶显示面板
US20170261849A1 (en) Method for manufacturing color filter substrate
WO2017107272A1 (zh) 反射式液晶面板以及显示装置
US20210336171A1 (en) Quantum dot color filter substrate, fabricating method thereof, and display panel
WO2018176520A1 (zh) 液晶显示装置
US20190250455A1 (en) Display panel, manufacturing method thereof and display device
KR102344911B1 (ko) 광루미네선스 장치, 이의 제조 방법 및 이를 포함하는 표시 장치
CN108873470A (zh) 一种量子点彩膜背光结构
WO2020124890A1 (zh) 线栅型偏光片制作方法及透明显示装置
WO2019227669A1 (zh) 显示面板及显示装置
WO2017080105A1 (zh) 液晶显示器
TWI412792B (zh) 液晶顯示裝置
WO2021063333A1 (zh) 显示面板以及其制作方法、显示装置
CN109375411B (zh) 液晶面板及其制作方法
WO2020107738A1 (zh) 显示装置
US20180284531A1 (en) Liquid crystal display device
US11803079B2 (en) Quantum dot display panel, quantum dot display device, and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919645

Country of ref document: EP

Kind code of ref document: A1