WO2021063333A1 - 显示面板以及其制作方法、显示装置 - Google Patents

显示面板以及其制作方法、显示装置 Download PDF

Info

Publication number
WO2021063333A1
WO2021063333A1 PCT/CN2020/118615 CN2020118615W WO2021063333A1 WO 2021063333 A1 WO2021063333 A1 WO 2021063333A1 CN 2020118615 W CN2020118615 W CN 2020118615W WO 2021063333 A1 WO2021063333 A1 WO 2021063333A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
substrate
display
liquid crystal
light control
Prior art date
Application number
PCT/CN2020/118615
Other languages
English (en)
French (fr)
Inventor
袁广才
李海旭
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/281,675 priority Critical patent/US11874551B2/en
Publication of WO2021063333A1 publication Critical patent/WO2021063333A1/zh
Priority to US18/527,625 priority patent/US20240103315A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers

Definitions

  • At least one embodiment of the present disclosure relates to a display panel, a manufacturing method thereof, and a display device.
  • the display image quality of the display panel can be improved by combining local dimming technology (LD).
  • LD local dimming technology
  • the light control panel can control the light transmittance in a predetermined area, which is important for screen brightness.
  • the light transmittance of the corresponding area of the light control panel is also high for the higher (gray scale) part, allowing more light from the backlight unit to pass.
  • the light transmittance of the corresponding area of the light control panel It is also low, allowing less light from the backlight unit to pass through, thereby achieving the purpose of improving the contrast of the display picture and enhancing the display quality.
  • the display panel includes a display liquid crystal panel and a light control panel, a first polarizer, a second polarizer, and a third polarizer that are stacked.
  • the display liquid crystal panel includes a first substrate and a second substrate facing each other, and a display liquid crystal layer located between the first substrate and the second substrate; the light control panel includes a third substrate and a second substrate facing each other.
  • the second substrate and the third substrate are located between the first substrate and the fourth substrate;
  • the light control liquid crystal layer is located between the first polarizer and the second polarizer;
  • the first polarizer is located between the second polarizer and the third polarizer, and the display liquid crystal layer Located between the first polarizer and the third polarizer;
  • the first polarizer, the second polarizer, and the third polarizer are configured to make the backlight pass through the second polarizer in sequence , The first polarizer and the third polarizer are emitted afterwards.
  • the second polarizer is a reflective polarizer.
  • the first polarizer is located between the second substrate and the third substrate, and the first polarizer is a transmissive polarizer.
  • the first polarizer is located between the second substrate and the third substrate, and the first polarizer is a reflective polarizer.
  • the first polarizer is a reflective polarizer, and the first polarizer is opposite to the second polarizer.
  • the reflective polarizer is a wire-grid polarizer (WGP).
  • WGP wire-grid polarizer
  • the second substrate and the third substrate are an integral structure, and the integral structure constitutes a common substrate, and the display liquid crystal panel and the light control panel share the common Substrate;
  • the common substrate is a display array substrate, the first side of the common substrate close to the first substrate is provided with a display array element;
  • the first polarizer is provided on the common substrate close to the fourth The second side of the substrate.
  • the first substrate is a color filter substrate
  • the third polarizer is located on a side of the first substrate away from the common substrate
  • the third polarizer is
  • the film is a transmissive polarizer
  • the first substrate is a color filter substrate, and a color filter layer is provided on a first side of the first substrate close to the common substrate;
  • the third polarizer The sheet is a reflective polarizer and is located on the first side of the first substrate and on the side of the color filter layer close to the first substrate.
  • the second substrate and the third substrate are an integrated structure, the integrated structure constitutes a common substrate, and the display liquid crystal panel and the light control panel share the Common substrate;
  • the common substrate is a color filter substrate, a color filter layer is provided on the first side of the common substrate close to the first substrate;
  • the first polarizer is located on the common substrate close to the first The first side of a substrate is located on the side of the color filter layer close to the common substrate, or the first polarizer is disposed on the second side of the common substrate close to the fourth substrate.
  • the first substrate is a display array substrate
  • the third polarizer is located on a side of the first substrate away from the common substrate
  • the third polarizer is Transmissive polarizer
  • the fourth substrate is a light control array substrate, and a light control array element is provided on a first side of the fourth substrate close to the liquid crystal display panel, and The second polarizer is located on the second side of the fourth substrate away from the common substrate.
  • the display panel provided by an embodiment of the present disclosure further includes: a first protective layer covering the second polarizer; a material of the first protective layer is silicon oxide or silicon nitride, and the first protective layer
  • the thickness of a protective layer is greater than or equal to 4500 angstroms.
  • the polarization direction of the first polarizer is perpendicular to the polarization direction of the second polarizer; the polarization direction of the third polarizer is perpendicular to the polarization direction of the second polarizer.
  • the polarization direction is vertical.
  • the reflective polarizer is a wire-grid polarizer (WGP).
  • WGP wire-grid polarizer
  • At least one embodiment of the present disclosure further provides a display device, including: any of the display panels provided by the embodiments of the present disclosure and a backlight source, the backlight source is located on a side of the light control panel away from the display liquid crystal panel, and is configured to The backlight from the backlight source enters the display liquid crystal panel through the light control panel.
  • At least one embodiment of the present disclosure further provides a manufacturing method of a display panel, the manufacturing method includes forming a stacked display liquid crystal panel and a light control panel, wherein the display liquid crystal panel includes a first substrate and a second substrate opposite to each other. A substrate and a display liquid crystal layer located between the first substrate and the second substrate; the light control panel includes a third substrate and a fourth substrate opposite to each other and located on the third substrate and the fourth substrate The second substrate and the third substrate are located between the first substrate and the fourth substrate; a first polarizer is formed; a second polarizer is formed, and the light control The liquid crystal layer is located between the first polarizer and the second polarizer; and a third polarizer is formed, wherein the first polarizer is located between the second polarizer and the third polarizer , The display liquid crystal layer is located between the first polarizer and the third polarizer; the first polarizer, the second polarizer, and the third polarizer are configured so that the backlight passes through the The second polar
  • the second polarizer is a reflective polarizer.
  • the second substrate and the third substrate are integrated into an integrated structure, and the integrated structure constitutes a common substrate, and the display liquid crystal panel and the light
  • the control panel shares the common substrate, and the common substrate is a display array substrate; the manufacturing method includes: forming a display array element on a first side of the common substrate; and forming a color filter on the first side of the first substrate.
  • the first substrate and the common substrate are paired to form the display liquid crystal panel, wherein the color filter layer and the display array element are located between the common substrate and the first substrate and Opposite each other; after the first substrate and the common substrate are boxed together, a first polarizer is formed on the second side of the common substrate opposite to the first side.
  • the first polarizer is a reflective polarizer, and the first polarizer is opposite to the second polarizer.
  • the reflective polarizer is a wire-grid polarizer (WGP), and the process of forming the reflective polarizer includes an etching process And nanoimprinting process.
  • WGP wire-grid polarizer
  • the method for manufacturing a display panel further includes: after the first substrate and the common substrate are boxed together, forming a structure on the second side of the first substrate away from the common substrate.
  • the third polarizer wherein the third polarizer is a transmissive polarizer.
  • the forming a color filter layer on the first side of the first substrate includes: forming the third color filter layer on the first side of the first substrate.
  • the manufacturing method of the display panel provided by an embodiment of the present disclosure further includes: forming a second polarizer on the first side of the fourth substrate; The second side opposite to the first side forms a light control array element; the fourth substrate and the common substrate are boxed to form the light control panel, wherein the light control array element is located on the fourth substrate A side close to the common substrate; and liquid crystal is injected between the first substrate and the common substrate and between the fourth substrate and the common substrate.
  • the manufacturing method of the display panel provided by an embodiment of the present disclosure further includes: before forming the light control array element, forming a sacrificial protective layer covering the second polarizer; and after the light control array element is manufactured After that, the sacrificial protective layer is removed.
  • the manufacturing method of the display panel provided by an embodiment of the present disclosure further includes: before forming the sacrificial layer protection, forming a protection layer, the sacrificial protection layer also covering the protection layer.
  • FIGS 1A and 1B show schematic diagrams of local dimming
  • FIG. 2A is a first schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure
  • 2B is a schematic diagram of a transmissive polarizer in an embodiment of the disclosure.
  • 2C is a schematic diagram of a reflective polarizer in an embodiment of the disclosure.
  • FIG. 3 is a second schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 4 is a third schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 5 is a fourth schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view 5 of a display panel provided by an embodiment of the present disclosure.
  • FIG. 7 is a sixth schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a display device provided by an embodiment of the disclosure.
  • 9A-9M are schematic diagrams of a manufacturing method of a display panel provided by an embodiment of the present disclosure.
  • 10A-10E are schematic diagrams of another method for manufacturing a display panel provided by an embodiment of the present disclosure.
  • the local dimming technology can divide the entire backlight unit into multiple individually driveable backlight blocks, and each backlight block includes one or more LEDs.
  • the driving current of the LEDs of the backlight partitions corresponding to these parts is automatically adjusted to realize the individual adjustment of the brightness of each partition in the backlight unit, thereby improving the contrast of the display screen.
  • the area division diagram of the LED light source in the entire backplane is shown in Figure 1A.
  • the small square in the figure represents one LED unit, and the multiple areas separated by dotted lines represent multiple backlights. area.
  • Each backlight area includes one or more LED units, and can be controlled independently of other backlight areas.
  • the LEDs in each backlight subarea are linked, that is, the currents passing through the LEDs in the same backlight subarea are the same.
  • the local dimming technology can adjust the brightness of the corresponding backlight zone according to the gray level of the screen content displayed on the display liquid crystal panel.
  • FIG. 1B shows a schematic diagram of the display image and the display brightness of the corresponding backlight subarea after the local dimming process.
  • the backlight unit includes a plurality of rectangular backlight areas arranged in an array.
  • the local dimming technology can adjust the brightness of the corresponding backlight partition according to the gray level of the screen content displayed by the display liquid crystal panel. For the part with higher gray scale, the brightness of the corresponding backlight partition is also high. For the part with lower screen brightness, the brightness of the corresponding backlight partition is also low, so as to reduce the backlight power consumption, increase the contrast of the display screen, and enhance the display picture. Qualitative purpose.
  • the above-mentioned local dimming technology is suitable for direct-lit backlight units, and the LEDs as the light source are, for example, evenly distributed on the entire backplane.
  • the edge-lit backlight unit it is necessary to add a light control panel between the display liquid crystal panel and the edge-lit backlight unit.
  • the light control panel can control the light transmittance in a predetermined area, which is important for screen brightness. (Grayscale) In the higher part, the light transmittance of the corresponding area of the light control panel is also high, allowing more light from the backlight unit to pass. For the part with lower screen brightness, the light transmittance of the corresponding area of the light control panel is also high.
  • the direct-type backlight unit is directly formed on the direct-type backlight source, the division of the backlight unit is difficult to achieve high density (the number of backlight units per unit area) and accuracy.
  • the light control panel can be used to achieve this requirement, and the manufacturing process of the light control panel is easy to implement.
  • the light from the backlight source passes through the light control panel and the display liquid crystal panel in sequence, and the light transmittance is usually low. Therefore, it is of great significance to improve the light transmittance of this type of display panel. .
  • the display panel includes a display liquid crystal panel and a light control panel, a first polarizer, a second polarizer, and a third polarizer that are stacked.
  • the display liquid crystal panel includes a first substrate and a second substrate facing each other, and a display liquid crystal layer located between the first substrate and the second substrate; the light control panel includes a third substrate and a second substrate facing each other.
  • the second substrate and the third substrate are located between the first substrate and the fourth substrate;
  • the light control liquid crystal layer is located between the first polarizer and the second polarizer;
  • the first polarizer is located between the second polarizer and the third polarizer, and the display liquid crystal layer Located between the first polarizer and the third polarizer;
  • the first polarizer, the second polarizer, and the third polarizer are configured so that the backlight sequentially passes through the second polarizer, The first polarizer and the third polarizer exit.
  • FIG. 2A is a first schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • the display panel 10 provided by the embodiment of the present disclosure includes a display liquid crystal panel 1 and a light control panel 2, a first polarizer 31, a second polarizer 32, and a third polarizer 33 that are stacked.
  • the display liquid crystal panel 1 includes a first substrate 11 and a second substrate 12 opposite to each other, and a display liquid crystal layer 13 located between the first substrate 11 and the second substrate 12;
  • the light control panel 2 includes a third substrate 23 and a second substrate opposite to each other.
  • the light control liquid crystal layer 23 is located between the first polarizer 31 and the second polarizer 32; the first polarizer 31 is located between the second polarizer 32 and the third polarizer 33, and the display liquid crystal layer 13 is located on the first polarizer 31 And the third polarizer 33; the first polarizer 31, the second polarizer 32, and the third polarizer 33 are configured so that the backlight is sequentially emitted through the second polarizer 32, the first polarizer 31 and the third polarizer 33 .
  • the backlight refers to light from a backlight source.
  • the polarization direction of the first polarizer 31 is perpendicular to the polarization direction of the second polarizer 32; the polarization direction of the third polarizer 33 is perpendicular to the polarization direction of the second polarizer 32. Therefore, the display liquid crystal panel 1 is used to realize the display function, and the light control panel 2 is used to control the direction or strength of the backlight incident to the display liquid crystal panel 1 according to requirements, for example, to realize the requirement of switching between a narrow viewing angle and a wide viewing angle, Control the different needs of the luminous intensity of each position of the display panel, etc.
  • the backlight may come from a direct type backlight source or an edge type backlight source.
  • the second polarizer 32 is a reflective polarizer, so that the light entering the light control panel 2 can be reflected multiple times by the second polarizer 32, thereby improving the display panel 10. ⁇ Transmittance.
  • the light transmittance of the light control panel 2 can reach more than 30%, and when the second polarizer is a non-reflective polarizer, the light transmittance is less than 30% .
  • the above-mentioned reflective polarizer may be a wire-grid polarizer, for example, a wire-grid polarizer (WGP), that is, the second polarizer is a metal wire-grid polarizer.
  • the metal grid polarizer is made of white metal to improve the reflectivity of the second polarizer.
  • the white metal is, for example, aluminum, which not only has high reflectivity, but also has stable properties, low hardness and good ductility, and is easy to manufacture the metal wire grid polarizer.
  • the first substrate 11 is a color filter substrate.
  • a color filter layer is provided on the side of the first substrate 11 close to the second substrate 12.
  • the color filter layer includes a plurality of pixel units 6 arranged in an array, and each of the plurality of pixel units 6 includes a plurality of colors.
  • Different color sub-pixels include, for example, a first color sub-pixel 61, a second color sub-pixel 62, and a third color sub-pixel 63.
  • the backlight from the backlight source enters the display liquid crystal panel 1 after being controlled by the light control panel 2, and then exits after passing through the color filter layer.
  • the second substrate 12 is a display array substrate, and a display array element 51 is provided on a side of the second substrate 12 close to the first substrate 11.
  • the display array element 51 includes, for example, a pixel drive circuit, such as thin film transistors (TFT) and other elements for driving and controlling the display state of the display liquid crystal panel 1.
  • TFT thin film transistors
  • the fourth substrate 24 is a light control array substrate
  • the first side of the fourth substrate 24 close to the liquid crystal display panel 1 is provided with a light control array element 52
  • the second polarizer 32 is located on the fourth substrate away from the third substrate 23.
  • the light control panel 2 includes a plurality of light control units arranged in an array, and can respectively control the dimming state of the multiple light control units.
  • the light control array element 52 includes thin film transistors (TFT) and other elements used to drive and control the dimming state of multiple light control units.
  • TFT thin film transistors
  • those skilled in the art can use conventional techniques to design .
  • the backlight source includes a light-emitting device and a reflective sheet.
  • the reflective sheet is located on the side of the light-emitting device away from the light control panel 2.
  • the light emitted by the light-emitting device enters the light control panel 2 and passes through the first The second polarizer 32 and the first polarizer 31 emit light.
  • the simulation test conditions are as follows: the transmittance of the transmissive polarizer is set to 42%-43%, the transmittance of the WGP is set to 35%, the line width of each of the multiple grids in the WGP is 70nm, adjacent The spacing between the bar grids is 70 nm, and the height of each of the plurality of bar grids is 200 nm.
  • the first polarizer type Transmissive polarizer Transmissive polarizer WGP The second polarizer type Transmissive polarizer WGP WGP Light transmittance (%) 28.5 32.8 30.78
  • the first polarizer 31 is located between the second substrate 12 and the third substrate 23, and the first polarizer 31 is a transmissive polarizer.
  • the third polarizer 33 is located on the side of the first substrate 11 away from the second substrate 12, and the third polarizer 33 is a transmissive polarizer.
  • the first polarizer 31 and the third polarizer 33 are both an integrated sheet structure instead of a wire grid structure, and both include organic materials.
  • the first polarizer 31 is an iodine-based polarizer
  • the third polarizer 33 is an iodine-based polarizer.
  • the third polarizer 33 may also be a dye-based polarizer.
  • the light transmittance of the light control panel 2 in this embodiment can reach 32.8%.
  • the light control panel 2 of this embodiment has the highest light transmittance. This is because the transmissive first polarizer 31 has a higher light transmittance, and it is particularly easy to use an iodine-based polarizer.
  • a higher light transmittance is obtained, and the reflectivity of the second polarizer 32 is higher, so that the second polarizer 32 can increase the amount of light that passes through the first polarizer 31 after being reflected, thereby significantly improving the display
  • the light transmittance is 28.5%, which is lower than that of the first polarizer 31, which is a transmissive polarizer and the first polarizer 31 is a transmissive polarizer.
  • the light transmittance of the second polarizer 32 in the case of WGP that is, the embodiment shown in FIG. 2A of the present disclosure. This is because in the embodiment shown in FIGS.
  • the second polarizer 32 For WGP, a part of the light that does not pass through the second polarizer 32 is reflected multiple times between it and the reflector in the backlight, which can increase the amount of light passing through the second polarizer 32.
  • the first polarizer 31 and the second polarizer 32 are both transmissive polarizers, the reuse of the reflective sheet in the backlight cannot be realized.
  • the transmissive first polarizer 31 and the second polarizer 32 in sequence, part of the light passes through the first polarizer 31 and the second polarizer 32, and another part of the light is passed through the first polarizer 31 and the second polarizer 32.
  • the sheet 31 and the second polarizer 32 absorb, and after two absorptions, a large light loss will be caused, and the reflective sheet of the backlight cannot play the role of re-reflecting.
  • the third polarizer 33 when the third polarizer 33 is the above-mentioned transmissive polarizer, since it includes an organic material, the third polarizer cannot be used. 33 is arranged on the side of the first substrate 11 close to the second substrate 12, that is, it cannot be arranged in the liquid crystal cell, so as to prevent the organic material from being unable to withstand high temperature during the cell alignment process and damaging the third polarizer.
  • the position of the first polarizer 31 includes, but is not limited to, between the second substrate 12 and the third substrate 23,
  • the first polarizer 31 may also be disposed on the side of the third substrate 23 away from the second substrate 12, or the first polarizer 31 may be disposed on the side of the second substrate 12 away from the third substrate 23.
  • the first polarizer 31 when the first polarizer 31 is the transmissive polarizer, as shown in FIG. 2B, the first polarizer 31 includes a polyvinyl alcohol (PVA) film capable of generating polarized light, such as a polyvinyl alcohol (PVA) film It includes dichroic dye iodine, and also includes two layers of triacetate cellulose (TAV) protective films on both sides of the polyvinyl alcohol (PVA) film.
  • the first polarizer 31 also includes a pressure-sensitive adhesive located on the side of any TAV protective film away from the PVA film, a release film covering the pressure-sensitive adhesive and contacting the pressure-sensitive adhesive, and a layer located on the outermost layer of the transmissive polarizer. The protective layer.
  • the reflective polarizer in the embodiments of the present disclosure may also be a non-wire grid polarizer, such as a sheet-shaped reflective polarizer.
  • the reflective polarizer includes the above-mentioned PVA film, a TAV protective film, a pressure sensitive adhesive, a release film, and a reflective layer located on the release film away from the PVA.
  • This kind of reflective polarizer can also increase the light transmittance of the display panel to a certain extent, but compared to this kind of reflective polarizer, when the reflective polarizer is WGP, the display panel 10 can obtain higher light. Transmittance.
  • the display panel 10 further includes a protective layer 42, and the first protective layer 42 covers the second polarizer 32.
  • the second polarizer 32 is a WGP
  • the first protective layer 42 can prevent the WGP from being damaged, thereby prolonging the service life of the display panel 10.
  • the material of the first protective layer 42 is silicon oxide or silicon nitride
  • the thickness of the first protective layer 42 is greater than or equal to 4500 angstroms to form a dense protective layer to better prevent the WGP from being scratched and to avoid external moisture.
  • the external water vapor will cause thermal expansion of the WGP, causing damage to the WGP.
  • the thickness of the first protective layer 42 is too small, the water and oxygen barrier effect will be reduced.
  • the thickness of the first protective layer 42 is greater than or equal to 4500 angstroms to achieve a better water and oxygen barrier effect.
  • the display panel 10 further includes an adhesive 7 for bonding the first substrate 11 and the second substrate 12 and the third substrate 23 and the fourth substrate 24 in the process of aligning to form the display liquid crystal panel 1 and Light control panel 2.
  • the first substrate 11, the second substrate 12, the third substrate 23, and the fourth substrate 24 may all be glass substrates, quartz substrates, etc., or may be flexible substrates such as polyimide substrates for making flexible displays. panel.
  • FIG. 3 is a second schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • the difference between the display panel and the display panel shown in FIG. 2A is that the first polarizer 31 is located between the second substrate 12 and the third substrate 23, and the first polarizer 31 is a reflective polarizer.
  • the first polarizer 31 is a reflective polarizer.
  • WGP wire-grid polarizer
  • the light reflected by the first polarizer 31 is depolarized by the second polarizer 32 and then reflected again.
  • the light is reflected multiple times between the first polarizer 31 and the second polarizer 32, which significantly increases The transmittance of light. It can be seen from Table 1 that through the simulation test of the light control panel 2, the light transmittance of the light control panel 2 in this embodiment can reach 30.78%.
  • the display panel 10 further includes a second protective layer 41 covering the first polarizer 31 to prevent the WGP from being damaged and thereby prolong the service life of the display panel 10.
  • the material and thickness of the second protective layer 41 are the same as the material and thickness of the first protective layer 42, and the foregoing description can be referred to.
  • the first polarizer 31 is a reflective polarizer. At this time, the first polarizer 31 is located on the side of the second substrate 12 away from the first substrate 11 to The interference electric field between the first polarizer 31 made of metal material and the display array element 51 is prevented, so as to prevent the interference electric field from affecting the display effect.
  • Other unmentioned features of the display panel shown in FIG. 3 are the same as those of the display panel shown in FIG. 2A, please refer to the previous description.
  • FIG. 4 is a third schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • the difference between the display panel and the display panel shown in FIG. 2A is: the first polarizer 31 is a reflective polarizer such as WGP, the first polarizer 31 and the second polarizer 32 are opposite; the second substrate 12 and the third substrate 23 are an integral structure, and the integral structure constitutes a common substrate 110, and the display liquid crystal panel 1 and the light control panel 2 share the common substrate 110.
  • the first substrate 11 is a color filter substrate, and a color filter layer 9 is provided on the first side of the first substrate 11 close to the common substrate 110.
  • the common substrate 110 is a display array substrate.
  • the first side of the common substrate 110 close to the first substrate 11 is provided with a display array element 51; the first polarizer 31 is provided on the second side of the common substrate 110 close to the fourth substrate. Since the display panel 10 of this embodiment has three substrates, the display panel 10 can be thinned, the manufacturing process can be simplified, and the cost can be saved. In addition, since the first polarizer 31 is disposed on the second side of the common substrate 110 close to the fourth substrate, it is possible to prevent the occurrence of an interference electric field between the first polarizer 31 made of a metal material and the display array element 51 of the common substrate 110. This prevents the interference electric field from affecting the display effect.
  • the third polarizer 33 is a transmissive polarizer
  • the third polarizer 33 is an integrated sheet structure instead of a wire grid structure
  • the material of the third polarizer includes organic materials.
  • the third polarizer 33 is an iodine-based polarizer to obtain higher light transmittance.
  • the third polarizer 33 is located on the side of the first substrate away from the common substrate to prevent damage to the third polarizer during the cell alignment process. ⁇ 33.
  • Other unmentioned features and technical effects of the display panel shown in FIG. 4 are the same as those in FIG. 2A, please refer to the previous description.
  • FIG. 5 is a fourth schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • a color filter layer 9 is provided on the first side of the first substrate 11 close to the common substrate 110
  • the third polarizer 33 is a reflective type.
  • a polarizer such as a wire-grid polarizer (WGP)
  • WGP wire-grid polarizer
  • the WGP can be arranged on the second side of the first substrate 11 close to the common substrate 110 to reduce its exposure to external light. Reflection. If the WGP (that is, the third polarizer 33) is arranged on the side of the color filter layer 9 away from the first substrate 11, the color filter layer 9 will be fabricated first, and then on the color filter layer 9
  • the WGP is manufactured, and the process of manufacturing the WGP usually includes a nano-imprinting step. In this process, the nano-imprinting step may damage or deform the color filter layer 9. Therefore, in this embodiment, while the above-mentioned effect of improving the light transmittance of the display panel 10 can be achieved, the third polarizer 33 is located on the first side of the first substrate 11 and is located close to the color filter layer 9. One side of the first substrate 11 can prevent the above-mentioned damage to the color filter layer 9.
  • Other unmentioned features of the display panel shown in FIG. 5 are the same as those in FIG. 4, please refer to the previous description.
  • FIG. 6 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • the difference between the display panel and the display panel shown in FIG. 4 is that the first substrate 11 is a display array substrate, and the second side of the first substrate 11 close to the common substrate 110 is provided with a display array element 51.
  • the third polarizer 33 is located on the side of the first substrate 11 away from the common substrate 110.
  • the third polarizer 33 is a transmissive polarizer.
  • the third polarizer 33 is an integrated sheet structure instead of a wire grid structure.
  • the material of the polarizer 33 includes an organic material.
  • the third polarizer 33 is an iodine-based polarizer to help increase the light transmittance of the display panel 10.
  • the common substrate 110 is a color filter substrate.
  • the first side of the common substrate 110 close to the first substrate 11 is provided with a color filter layer 9;
  • the first polarizer 31 is located on the first side of the common substrate 110 close to the first substrate 11 and is located The side of the color filter layer 9 close to the common substrate 110. Therefore, while achieving the above-mentioned effect of improving the light transmittance of the display panel 10, similar to the embodiment shown in FIG. 5, it is possible to prevent damage to the color filter layer 9 during the manufacturing process of the display panel.
  • the first polarizer 31 is disposed on the second side of the common substrate 110 close to the fourth substrate 24.
  • the display panel 10 shown in FIG. 7 achieves the same or similar technical effects as the display panel 10 shown in FIG. 4.
  • the other unmentioned features and technical effects of the panels shown in FIG. 6 and FIG. 7 are the same as those in FIG. 4, please refer to the previous description.
  • At least one embodiment of the present disclosure provides a display device, which includes any display panel provided in the embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of a display device provided by an embodiment of the disclosure.
  • the display device 100 includes any display panel 10 provided by the embodiments of the present disclosure.
  • the display device 100 is a liquid crystal display device.
  • the display device 100 may be implemented as the following products: mobile phones, tablet computers, displays, notebook computers, ATM machines, and other products or components with display functions.
  • the display device 10 can control the direction or intensity of the backlight incident on the display liquid crystal panel 1 and has a high light transmittance.
  • At least one embodiment of the present disclosure provides a method for manufacturing a display panel.
  • the method includes forming a stacked display liquid crystal panel and a light control panel, wherein the display liquid crystal panel includes a first substrate and a second substrate opposite to each other, and A display liquid crystal layer located between the first substrate and the second substrate; the light control panel includes a third substrate and a fourth substrate opposite to each other and located between the third substrate and the fourth substrate
  • the light control liquid crystal layer; the second substrate and the third substrate are located between the first substrate and the fourth substrate; a first polarizer is formed; a second polarizer is formed, wherein the light control
  • the liquid crystal layer is located between the first polarizer and the second polarizer; and a third polarizer is formed, wherein the first polarizer is located between the second polarizer and the third polarizer ,
  • the display liquid crystal layer is located between the first polarizer and the third polarizer; the first polarizer, the second polarizer, and the third polarizer are configured so
  • FIGS. 9A to 9M are schematic diagrams of a manufacturing method of a display panel provided by an embodiment of the present disclosure.
  • the second substrate and the third substrate are integrated into an integrated structure.
  • the integrated structure constitutes a common substrate.
  • the display liquid crystal panel and the light control panel share the common substrate, and the common substrate is a display array substrate.
  • the manufacturing method includes the following steps.
  • a common substrate 110 is provided, and a display array element 51 is formed on the first side of the common substrate 110.
  • the display array element 51 includes, for example, a pixel driving circuit, such as a thin film transistor (TFT), etc., for driving and controlling the display.
  • TFT thin film transistor
  • the elements of the display state of the liquid crystal panel 1 can be formed by using a semiconductor process to form the display array element 51, and those skilled in the art can refer to conventional techniques.
  • a first substrate 11 is provided, and a third polarizer 33 is formed on the first side of the first substrate 11.
  • the third polarizer 33 is a wire-grid polarizer (WGP).
  • WGP wire-grid polarizer
  • the process of making WGP includes: forming a metal layer; forming an organic layer on the metal layer; using a nanoimprint process to form an etching barrier layer on the organic layer, and using the etching barrier layer as a mask to process the metal layer Etch to form WGP.
  • a color filter layer 9 is formed on the side of the third polarizer 33 away from the first substrate 11.
  • the nano-imprinting step may damage or deform the color filter layer 9. Therefore, in this embodiment, since the metal wire grid polarizer (that is, the third polarizer 33) is formed, the color filter layer 9 is formed on the side of the third polarizer 33 away from the first substrate 11. The color filter layer 9 is prevented from being damaged by the above-mentioned nanoimprinting step.
  • the first substrate 11 and the common substrate 110 are aligned to form a display liquid crystal panel as shown in FIG. 9E.
  • the color filter layer 9 and the display array element 51 are located between the common substrate 110 and the first substrate 11 and are opposite to each other.
  • a first polarizer 31 is formed on the second side of the common substrate 110 opposite to the first side.
  • the first polarizer 31 is a reflective polarizer, such as WGP, and the first polarizer 31 is opposite to the second polarizer 32 to increase the light transmittance of the display panel.
  • WGP reflective polarizer
  • the first polarizer 31 is opposite to the second polarizer 32 to increase the light transmittance of the display panel.
  • a protective film covering the WGP needs to be formed.
  • the protective film has to be removed from the box, which will increase the number of process steps. Therefore, in this embodiment, the display array element 51 is formed on the common substrate 110 first, and then the first substrate 11 is boxed with the common substrate 110, and then WGP is fabricated on the common substrate 110, thereby simplifying the production of the display panel. Process, improve production efficiency and reduce production costs. At least the process of producing a protective film to prevent damage to the WGP and the process of removing the protective film can be omitted.
  • a fourth substrate 24 is provided, and a second polarizer 32 is formed on the first side of the fourth substrate 24.
  • the second polarizer 32 is a reflective polarizer, such as WGP. Please refer to the previous description for the specific production process.
  • a first protective layer 42 covering the second polarizer 32 is formed.
  • the material of the first protection layer 42 is, for example, an inorganic material such as silicon oxide or silicon nitride, for example, it can be formed by a deposition method.
  • the embodiment of the present disclosure does not limit the material of the first protective layer 42.
  • the manufacturing method further includes: forming a sacrificial protective layer 8 covering the second polarizer 32 before forming the light control array element.
  • the sacrificial protective layer 8 is an organic layer, for example, the material of the organic layer is a resin material or a photoresist material to facilitate subsequent removal of the sacrificial protective layer 8.
  • the embodiment of the present disclosure does not limit this.
  • the light control array element 52 is formed on the second side of the fourth substrate 42 opposite to the first side.
  • the light control array element 52 can be formed by a semiconductor process, for details, reference may be made to conventional techniques in the art.
  • the sacrificial protective layer 8 is removed. For example, it can be removed by peeling.
  • the fourth substrate 24 and the common substrate 110 are boxed to form a light control panel, and the light control array element 52 is located on the side of the fourth substrate 24 close to the common substrate 110.
  • Liquid crystal is injected between the first substrate 11 and the common substrate 110 and between the fourth substrate 24 and the common substrate 110, thereby forming the display panel 10 shown in FIG. 9M, that is, the display panel 10 shown in FIG.
  • the first substrate 11 is a color filter substrate
  • the common substrate 110 is a display array substrate.
  • a color filter layer 9 is formed on the first side of the first polarizer 31 away from the common substrate 110 to prevent color filtering. Layer 9 was damaged in the process of making WGP.
  • 10A-10E are schematic diagrams of another method for manufacturing a display panel provided by an embodiment of the present disclosure.
  • a common substrate 110 is provided, and a display array element 51 is formed on the first side of the common substrate 110.
  • the display array element 51 includes, for example, a pixel driving circuit, for example, a thin film transistor (TFT) for driving and controlling the display.
  • TFT thin film transistor
  • the elements of the display state of the liquid crystal panel 1 can be formed by using a semiconductor process to form the display array element 51, and those skilled in the art can refer to conventional techniques.
  • a first substrate 11 is provided, and a color filter layer 9 is formed on the first side of the first substrate 11.
  • the first substrate 11 and the common substrate 110 are paired to form a display liquid crystal panel; the color filter layer 9 and the display array element 51 are located between the common substrate 110 and the first substrate 11 and are opposite to each other .
  • a third polarizer 33 is formed on the second side of the first substrate 11 away from the common substrate 110; the third polarizer 33 is a transmissive type Polarizer.
  • the third polarizer 33 is an integrated sheet structure instead of a wire grid structure, and the material of the third polarizer 33 includes organic materials.
  • the third polarizer 33 is an iodine-based polarizer or a dye-based polarizer.
  • the third polarizer 33 can be directly attached to the second side of the first substrate 11.
  • FIGS. 9F-9M are used for subsequent production to form the display panel 10 shown in FIG. 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种显示面板(10)及其制作方法以及显示装置。该显示面板(10)包括堆叠设置的显示液晶面板(1)和光控面板(2)、第一偏光片(31)、第二偏光片(32)以及第三偏光片(33)。显示液晶面板(1)包括彼此相对的第一基板(11)和第二基板(12)以及位于第一基板(11)和第二基板(12)之间的显示液晶层(13);光控面板(2)包括彼此相对的第三基板(23)和第四基板(24)以及位于第三基板(23)和第四基板(24)之间的光控液晶层(25);第二基板(12)和第三基板(23)位于第一基板(11)和第四基板(24)之间;第二偏光片(32)为反射型偏光片,其中,光控液晶层(25)位于第一偏光片(31)与第二偏光片(32)之间;第一偏光片(31)位于第二偏光片(32)与第三偏光片(33)之间,显示液晶层(13)位于第一偏光片(31)与第三偏光片(33)之间;第一偏光片(31)、第二偏光片(32)和第三偏光片(33)配置为使背光依次经由第二偏光片(32)、第一偏光片(31)和第三偏光片(33)出射。

Description

显示面板以及其制作方法、显示装置
本申请要求于2019年9月30日递交的中国专利申请第201910943284.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种显示面板以及其制作方法、显示装置。
背景技术
对于显示液晶面板,可以通过结合局域调光技术(Local Dimming,LD)来提升显示面板的显示画质。为了在例如侧入式背光单元使用局域调光技术,需要在显示液晶面板和侧入式背光单元之间增加光控面板,该光控面板可控制预定区域中的透光率,对于画面亮度(灰阶)较高的部分,光控面板的相应区域的透光率也高,允许来自背光单元的更多光通过,对于画面亮度较低的部分,光控面板的相应区域的透光率也低,允许来自背光单元的较少光通过,从而达到提高显示画面的对比度,增强显示画质的目的。
发明内容
本公开至少一实施例提供一种显示面板,该显示面板包括堆叠设置的显示液晶面板和光控面板、第一偏光片、第二偏光片以及第三偏光片。所述显示液晶面板包括彼此相对的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的显示液晶层;所述光控面板包括彼此相对的第三基板和第四基板以及位于所述第三基板和所述第四基板之间的光控液晶层;所述第二基板和所述第三基板位于所述第一基板和所述第四基板之间;所述光控液晶层位于所述第一偏光片与所述第二偏光片之间;所述第一偏光片位于所述第二偏光片与所述第三偏光片之间,所述显示液晶层位于所述第一偏光片与所述第三偏光片之间;所述第一偏光片、所述第二偏光片和所述第三偏光片配 置为使背光依次穿过所述第二偏光片、所述第一偏光片和所述第三偏光片后出射。
例如,本公开一实施例提供的显示面板中,所述第二偏光片为反射型偏光片。
例如,本公开一实施例提供的显示面板中,所述第一偏光片位于所述第二基板和所述第三基板之间,所述第一偏光片为透射型偏光片。
例如,本公开一实施例提供的显示面板中,所述第一偏光片位于所述第二基板和所述第三基板之间,所述第一偏光片为反射型偏光片。
例如,本公开一实施例提供的显示面板中,所述第一偏光片为反射型偏光片,所述第一偏光片与所述第二偏光片相对。
例如,本公开一实施例提供的显示面板中,所述反射型偏光片为金属线栅偏光片(Wire-grid polarizer,WGP)。
例如,本公开一实施例提供的显示面板中,所述第二基板和所述第三基板为一体结构,该一体结构构成公共基板,所述显示液晶面板和所述光控面板共用所述公共基板;所述公共基板为显示阵列基板,所述公共基板的靠近所述第一基板的第一侧设置有显示阵列元件;所述第一偏光片设置在所述公共基板的靠近所述第四基板的第二侧。
例如,本公开一实施例提供的显示面板中,所述第一基板为彩膜基板,所述第三偏光片位于所述第一基板的远离所述公共基板的一侧,所述第三偏光片为透射型偏光片。
例如,本公开一实施例提供的显示面板中,所述第一基板为彩膜基板,所述第一基板的靠近所述公共基板的第一侧设置有彩色滤光层;所述第三偏光片为反射型偏光片,且位于所述第一基板的第一侧且位于所述彩色滤光层的靠近所述第一基板的一侧。
例如,本公开一实施例提供的显示面板中,所述第二基板和所述第三基板为一体结构,所述一体结构构成公共基板,所述显示液晶面板和所述光控面板共用所述公共基板;所述公共基板为彩膜基板,所述公共基板的靠近所述第一基板的第一侧设置有彩色滤光层;所述第一偏光片位于所述公共基板的靠近所述第一基板的第一侧且位于所述彩色滤光层的靠近所述公共基板的 一侧,或者,所述第一偏光片设置在所述公共基板的靠近所述第四基板的第二侧。
例如,本公开一实施例提供的显示面板中,所述第一基板为显示阵列基板,所述第三偏光片位于所述第一基板的远离公共基板的一侧,所述第三偏光片为透射型偏光片。
例如,本公开一实施例提供的显示面板中,所述第四基板为光控阵列基板,所述第四基板的靠近所述液晶显示面板的第一侧上设置有光控阵列元件,所述第二偏光片位于所述第四基板的远离所述公共基板的第二侧。
例如,本公开一实施例提供的显示面板还包括:第一保护层,第一保护层覆盖所述第二偏光片;所述第一保护层的材料为氧化硅或氮化硅,所述第一保护层的厚度大于等于4500埃。
例如,本公开一实施例提供的显示面板中,所述第一偏光片的偏振方向与所述第二偏光片的偏振方向垂直;所述第三偏光片的偏振方向与所述第二偏光片的偏振方向垂直。
例如,本公开一实施例提供的显示面板中,所述反射型偏光片为金属线栅偏光片(Wire-grid polarizer,WGP)。
本公开至少一实施例还提供一种显示装置,包括:本公开实施例提供的任一显示面板以及背光源,背光源位于所述光控面板的远离所述显示液晶面板的一侧,配置为使来自所述背光源的背光经由所述光控面板进入所述显示液晶面板。
本公开至少一实施例还提供一种显示面板的制作方法,该制作方法包括:形成堆叠设置的显示液晶面板和光控面板,其中,所述显示液晶面板包括彼此相对的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的显示液晶层;所述光控面板包括彼此相对的第三基板和第四基板以及位于所述第三基板和所述第四基板之间的光控液晶层;所述第二基板和所述第三基板位于所述第一基板和所述第四基板之间;形成第一偏光片;形成第二偏光片,所述光控液晶层位于所述第一偏光片与所述第二偏光片之间;以及形成第三偏光片,其中,所述第一偏光片位于所述第二偏光片与所述第三偏光片之间,所述显示液晶层位于所述第一偏光片与所述第三偏光片之间;所述第 一偏光片、所述第二偏光片和所述第三偏光片配置为使背光依次经由所述第二偏光片、所述第一偏光片和所述第三偏光片出射。
例如,本公开一实施例提供的显示面板的制作方法中,所述第二偏光片为反射型偏光片。
例如,本公开一实施例提供的显示面板的制作方法中,所述第二基板和所述第三基板一体化为一体结构,所述一体结构构成公共基板,所述显示液晶面板和所述光控面板共用所述公共基板,所述公共基板为显示阵列基板;所述制作方法包括:在所述公共基板的第一侧形成显示阵列元件;在所述第一基板的第一侧形成彩色滤光层;
将所述第一基板与所述公共基板对盒,以形成所述显示液晶面板,其中,所述彩色滤光层和所述显示阵列元件位于所述公共基板和所述第一基板之间且彼此相对;将所述第一基板与所述公共基板对盒之后,在所述公共基板的与其第一侧相对的第二侧形成第一偏光片。
例如,本公开一实施例提供的显示面板的制作方法中,所述第一偏光片为反射型偏光片,所述第一偏光片与所述第二偏光片相对。
例如,本公开一实施例提供的显示面板的制作方法中,所述反射型偏光片为金属线栅偏光片(Wire-grid polarizer,WGP),形成所述反射型偏光片的工艺包括刻蚀工艺和纳米压印工艺。
例如,本公开一实施例提供的显示面板的制作方法还包括:将所述第一基板与所述公共基板对盒之后,在所述第一基板的远离所述公共基板的第二侧形成所述第三偏光片,其中,所述第三偏光片为透射型偏光片。
例如,本公开一实施例提供的显示面板的制作方法中,所述在所述第一基板的第一侧形成彩色滤光层包括:在所述第一基板的第一侧形成所述第三偏光片,其中,所述第三偏光片为金属线栅偏光片;以及形成所述金属线栅偏光片后,在所述第三偏光片的远离所述第一基板的一侧形成彩色滤光层。
例如,本公开一实施例提供的显示面板的制作方法还包括:在所述第四基板的第一侧形成第二偏光片;形成所述第二偏光片之后,在所述第四基板的与第一侧相反的第二侧形成光控阵列元件;将所述第四基板与所述公共基板对盒以形成所述光控面板,其中,所述光控阵列元件位于所述第四基板的 靠近所述公共基板的一侧;以及在所述第一基板和所述公共基板之间以及所述第四基板和所述公共基板之间注入液晶。
例如,本公开一实施例提供的显示面板的制作方法还包括:在形成所述光控阵列元件之前,形成覆盖所述第二偏光片的牺牲保护层;以及在制作完所述光控阵列元件之后,去除所述牺牲保护层。
例如,本公开一实施例提供的显示面板的制作方法还包括:在形成所述牺牲层保护之前,形成保护层,所述牺牲保护层还覆盖所述保护层。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1A和图1B示出了局域调光的示意图;
图2A为本公开一实施例提供的显示面板的截面示意图一;
图2B为本公开实施例中的透射型偏光片的示意图;
图2C为本公开实施例中的一种反射型偏光片的示意图;
图3为本公开一实施例提供的显示面板的截面示意图二;
图4为本公开一实施例提供的显示面板的截面示意图三;
图5为本公开一实施例提供的显示面板的截面示意图四;
图6为本公开一实施例提供的显示面板的截面示意图五;
图7为本公开一实施例提供的显示面板的截面示意图六;
图8为本公开实施例提供的显示装置的示意图;
图9A-图9M为本公开一实施例提供的一种显示面板的制作方法示意图;以及
图10A-图10E为本公开一实施例提供的另一种显示面板的制作方法示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开中的附图并不是严格按实际比例绘制,显示面板中彩色子像素的个数不限定为图中所示的数量,各个结构的具体地尺寸可根据实际需要进行确定。本公开中所描述的附图仅是结构示意图。
局域调光技术可以将整个背光单元分割为多个可单独驱动的背光分区(Block),每个背光分区包括一个或多个LED。根据显示画面不同部分需要显示的灰阶而自动调整与这些部分对应的背光分区的LED的驱动电流,实现背光单元中每个分区的亮度的单独调节,从而可以提升显示画面的对比度。例如,一种示例性直下式背光单元中,整个背板中LED光源的区域划分示意图如图1A所示,图中的小方块表示一个LED单元,虚线分隔开的多个区域表示多个背光区域。每个背光区域包括一个或多个LED单元,且可以独立于其他背光区域控制。例如,每个背光分区内的LED是联动的,即位于同一个背光分区内的LED通过的电流是一致的。
局域调光技术可以根据显示液晶面板显示的画面内容的灰度,来调整相应背光分区的明暗度。图1B示出了经局域调光处理后的显示画面及其相应背光分区的显示亮度的示意图。如图1B所示,背光单元包括多个阵列排布的长方形背光区域,局域调光技术可以根据显示液晶面板显示的画面内容的灰度,来调整相应背光分区的明暗度,对于画面亮度(灰阶)较高的部分, 相应的背光分区的亮度也高,对于画面亮度较低的部分,相应的背光分区的亮度也低,从而达到降低背光功耗,提高显示画面的对比度,增强显示画质的目的。
但是,上述局域调光技术适用于直下式背光单元,且作为光源的LED例如均匀分布于整个背板。为了在例如侧入式背光单元使用局域调光技术,需要在显示液晶面板和侧入式背光单元之间增加光控面板,该光控面板可控制预定区域中的透光率,对于画面亮度(灰阶)较高部分,光控面板的相应区域的透光率也高,允许来自背光单元的更多光通过,对于画面亮度较低的部分,光控面板的相应区域的透光率也低,允许来自背光单元的较少光通过,从而达到提高显示画面的对比度,增强显示画质的目的。另外,直接在直下式背光源上形成直下式背光单元的情况下,背光单元的划分难以达到较高的密度(单位面积下背光单元的个数)和精度。当对光控单元的划分密度和精度要求较高时,利用所述光控面板能够实现这一要求,并且所述光控面板的制作工艺易于实现。
在这种局域调光显示面板中,来自背光源的光要依次经过光控面板和显示液晶面板,通常光透过率较低,因此,提高该类显示面板的光透过率具有重要意义。
本公开至少一实施例提供一种显示面板,该显示面板包括堆叠设置的显示液晶面板和光控面板、第一偏光片、第二偏光片以及第三偏光片。所述显示液晶面板包括彼此相对的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的显示液晶层;所述光控面板包括彼此相对的第三基板和第四基板以及位于所述第三基板和所述第四基板之间的光控液晶层;所述第二基板和所述第三基板位于所述第一基板和所述第四基板之间;所述光控液晶层位于所述第一偏光片与所述第二偏光片之间;所述第一偏光片位于所述第二偏光片与所述第三偏光片之间,所述显示液晶层位于所述第一偏光片与所述第三偏光片之间;所述第一偏光片、所述第二偏光片和所述第三偏光片配置为使背光依次经由所述第二偏光片、所述第一偏光片和所述第三偏光片出射。
示例性地,图2A为本公开一实施例提供的显示面板的截面示意图一。 如图2A所示,本公开实施例提供的显示面板10包括堆叠设置的显示液晶面板1和光控面板2、第一偏光片31、第二偏光片32以及第三偏光片33。显示液晶面板1包括彼此相对的第一基板11和第二基板12以及位于第一基板11和第二基板12之间的显示液晶层13;光控面板2包括彼此相对的第三基板23和第四基板24以及位于第三基板23和第四基板24之间的光控液晶层25;第二基板12和第三基板23位于第一基板11和第四基板24之间。光控液晶层23位于第一偏光片31与第二偏光片32之间;第一偏光片31位于第二偏光片32与第三偏光片33之间,显示液晶层13位于第一偏光片31与第三偏光片33之间;第一偏光片31、第二偏光片32和第三偏光片33配置为使背光依次经由第二偏光片32、第一偏光片31和第三偏光片33出射。该背光是指来自于背光源的光。第一偏光片31的偏振方向与第二偏光片32的偏振方向垂直;第三偏光片33的偏振方向与第二偏光片32的偏振方向垂直。从而,显示液晶面板1用于实现显示功能,光控面板2用于根据需求控制入射至显示液晶面板1的背光的方向或强弱,例如,实现窄视角与宽视角之间的转换的需求、控制显示面板各个位置的发光强度不同的需求等。例如,该背光可以来自于直下式背光源或侧入式背光源。
在本公开至少一实施例中,例如,第二偏光片32为反射型偏光片,由此,能够使得进入光控面板2的光经第二偏光片32发生多次反射,从而提高显示面板10的光透过率。通过试验得到,其他条件相同的情况下,该光控面板2的光透过率可达到30%以上,在第二偏光片为非反射型偏光片的情况下,光透过率低于30%。光控面板2的光透过率越高,则相同条件下,整个显示面板10的光透光率就越高。因此,在本公开实施例中,通过按液晶显示面板1相同的情况下,以测试光控面板2的光透过率的数据来表征整个显示面板10的光透光率的高低。
例如,上述反射型偏光片可以是线栅型偏光片为例如为金属线栅偏光片(Wire-grid polarizer,WGP),即,第二偏光片为金属线栅偏光片。该金属栅偏光片的材料为呈白色的金属,以提高第二偏光片的反射率。该白色金属例如为铝,铝不仅反射率较高,且性质稳定,硬度较小,延展性好,易于制作该金属线栅偏光片。
如图2A所示,例如,第一基板11为彩膜基板。例如,第一基板11的靠近第二基板12的一侧设置有彩色滤光层,彩色滤光层包括呈阵列排布的多个像素单元6,多个像素单元6的每个包括多个色彩不同的彩色子像素,例如包括第一彩色子像素61、第二彩色子像素62和第三彩色子像素63。来自背光源的背光经过光控面板2调控之后进入显示液晶面板1,再经过彩色滤光层之后出射。第二基板12为显示阵列基板,第二基板12的靠近第一基板11的一侧设置有显示阵列元件51。该显示阵列元件51例如包括像素驱动电路,例如包括薄膜晶体管(TFT)等用于驱动和控制显示液晶面板1的显示状态的元件,对于显示阵列元件51的具体结构,本领域技术人员可采用常规技术进行设计。
例如,第四基板24为光控阵列基板,第四基板24的靠近液晶显示面板1的第一侧上设置有光控阵列元件52,第二偏光片32位于第四基板的远离第三基板23的第二侧。光控面板2包括呈阵列排布的多个光控单元,可分别控制多个光控单元的调光状态。例如光控阵列元件52包括薄膜晶体管(TFT)等用于驱动和控制多个光控单元的调光状态的元件,对于光控阵列元件52的具体结构,本领域技术人员可采用常规技术进行设计。
对不同条件的光控面板2的仿真试验,仿真结果如表1所示。仿真试验中,设置有背光源,该背光源包括发光器件和反射片,反射片位于发光器件的远离光控面板2的一侧,发光器件所发出的光进入光控面板2中,依次经第二偏光片32和第一偏光片31出射。进行仿真试验条件为:透射型偏光片的透过率设置为42%-43%,WGP的透过率设置为35%,WGP中的多个条栅的每个的线宽为70nm、相邻条栅之间的间距为70nm、多个条栅的每个的高度为200nm。
表1
第一偏光片类型 透射型偏光片 透射型偏光片 WGP
第二偏光片类型 透射型偏光片 WGP WGP
光透过率(%) 28.5 32.8 30.78
例如,在图2A所示的实施例中,第一偏光片31位于第二基板12和第 三基板23之间,第一偏光片31为透射型偏光片。例如,第三偏光片33位于第一基板11的远离第二基板12的一侧,第三偏光片33为透射型偏光片。此时,第一偏光片31和第三偏光片33均为一体的片状结构而非线栅结构且均包括有机材料。例如,第一偏光片31为碘系偏光片,第三偏光片33为碘系偏光片。当然,在其他实施例中,第三偏光片33也可以为染料系偏光片。本实施例中,从表1可知,通过对光控面板2的仿真试验得到,本实施例中的光控面板2的光透过率可达到32.8%。在上述防真模拟结果中,该实施例的光控面板2的光透过率最高,这是因为透射型的第一偏光片31的光透过率较高,尤其是采用碘系偏光片容易获得较高的光透过率,且第二偏光片32的反射率较高,从而第二偏光片32可增加经其反射后透过第一偏光片31的光的量,因此可显著提高显示面板10的光透过率。
另外,根据表1,在第一偏光片31和第二偏光片32均为透射型偏光片的情况下,光透过率为28.5%,低于第一偏光片31为透射型偏光片且第二偏光片32为WGP的情况下(即本公开图2A所示的实施例)的光透光率,这是因为在本公开图2A和图3所示的实施例中,第二偏光片32为WGP,一部分没有通过第二偏光片32的光在其与背光源中的反射片之间经多次反射,能够增加透过第二偏光片32的光量。并且,第一偏光片31和第二偏光片32均为透射型偏光片的情况无法实现背光中反射片的再次利用。然而,来自背光源的光依次经过透射型的第一偏光片31和第二偏光片32的过程中,一部分光透过第一偏光片31和第二偏光片32,另一部分光被第一偏光片31和第二偏光片32吸收,经过了两次吸收会造成较大光损失,并且,无法发挥背光源的反射片的再次反射作用。
需要说明的是,在本公开的实施例中,例如图2A所示实施例中,当第三偏光片33为上述透射型偏光片时,由于其包括有机材料,因此不能将该第三偏光片33设置于第一基板11的靠近第二基板12的一侧,即不能将其设置于液晶盒内,以防止在对盒过程中有机材料无法承受高温而损坏该第三偏光片。
当然,在图2A所示的实施例中,当第一偏光片31为上述透射型偏光片时,第一偏光片31的位置包括但不限于是第二基板12和第三基板23之间, 例如,第一偏光片31也可设置于第三基板23的远离第二基板12的一侧,或者第一偏光片31设置于第二基板12的远离第三基板23的一侧。
例如,当第一偏光片31为所述透射型偏光片时,如图2B所示,第一偏光片31包括能产生偏振光线的聚乙烯醇(PVA)膜,例如聚乙烯醇(PVA)膜包括二向色性的染色剂碘,还包括分别位于聚乙烯醇(PVA)膜两侧的两层三醋酸纤维素酯(TAV)保护膜。例如,第一偏光片31还包括位于任一TAV保护膜的远离PVA膜的一侧的压敏胶、覆盖压敏胶且与压敏胶接触的离型膜以及位于透射型偏光片最表层的保护层。
例如,在一些实施例中,本公开实施例中的反射型偏光片还可以为非线栅型偏光片,例如为片状的反射型偏光片。例如,如图2C所示,该反射型偏光片包括上述PVA膜、TAV保护膜、压敏胶、离型膜以及位于离型膜的远离PVA的反射层。该种反射型偏光片也能够一定程度提高显示面板的光透过率,但相比于该种反射型偏光片,当所述反射型偏光片为WGP时,显示面板10能获得更高的光透过率。
例如,如图2A所示,显示面板10还包括保护层42,第一保护层42覆盖第二偏光片32。第二偏光片32为WGP时,非常容易受到损伤,第一保护层42可防止WGP受到损伤从而延长显示面板10的使用寿命。例如第一保护层42的材料为氧化硅或氮化硅,第一保护层42的厚度大于等于4500埃,以形成致密的保护层,以在更好地防止划伤WGP的同时,避免外界水汽进入WGP中,外界水汽会使WGP产生热膨胀,导致WGP损坏。第一保护层42的厚度太小会降低其阻隔水氧的效果。第一保护层42的厚度大于等于4500埃能够获得加好的阻隔水氧的效果。
例如,显示面板10还包括粘结剂7,用于在对盒过程中粘结第一基板11与第二基板12以及粘结第三基板23与第四基板24,以形成显示液晶面板1与光控面板2。
例如,第一基板11、第二基板12、第三基板23和第四基板24均可以为玻璃基板、石英基板等,也可以为柔性基板例如聚酰亚胺基板,以用于制作柔性显示显示面板。
例如,图3为本公开一实施例提供的显示面板的截面示意图二。如图3 所示,该显示面板与图2A所示的显示面板的区别在于:第一偏光片31位于第二基板12和第三基板23之间,第一偏光片31为反射型偏光片,例如为金属线栅偏光片(Wire-grid polarizer,WGP)。这种情况下,被第一偏光片31反射回的光经第二偏光片32解偏振后再次反射,光线在第一偏光片31与第二偏光片32之间经多次镜面反射,明显增加了光的透过率。从表1可知,通过对光控面板2的仿真试验得到,本实施例中的光控面板2的透光率可达到30.78%。
例如,如图3所示,显示面板10还包括第二保护层41,第二保护层41覆盖第一偏光片31,以防止WGP受到损伤从而延长显示面板10的使用寿命。第二保护层41的材料与第一保护层42的材料和厚度相同,可参考之前的描述。
需要说明的是,在图3所示的实施例中,第一偏光片31为反射型偏光片,此时,第一偏光片31位于第二基板12的远离第一基板11的一侧,以防止由金属材料构成的第一偏光片31与显示阵列元件51之间产生干扰电场,从而防止该干扰电场影响显示效果。图3所示的显示面板的其他未提及的特征均与图2A所示的显示面板的相同,请参考之前的描述。
例如,图4为本公开一实施例提供的显示面板的截面示意图三。如图4所示,该显示面板与图2A所示的显示面板的区别在于:第一偏光片31为反射型偏光片例如WGP,第一偏光片31与第二偏光片32相对;第二基板12和第三基板23为一体结构,该一体结构构成公共基板110,显示液晶面板1和光控面板2共用公共基板110。第一基板11为彩膜基板,第一基板11的靠近公共基板110的第一侧设置有彩色滤光层9。公共基板110为显示阵列基板,公共基板110的靠近第一基板11的第一侧设置有显示阵列元件51;第一偏光片31设置在公共基板110的靠近第四基板的第二侧。由于本实施例的显示面板10具有三片基板,因此,能够减薄显示面板10,并且简化制作工艺,节省成本。并且,由于第一偏光片31设置在公共基板110的靠近第四基板的第二侧,从而能够防止由金属材料构成的第一偏光片31与公共基板110显示阵列元件51之间产生干扰电场,从而防止该干扰电场影响显示效果。在本实施例中,第三偏光片33为透射型偏光片,第三偏光片33为一体的片 状结构而非线栅结构,第三偏光片的材料包括有机材料。例如第三偏光片33为碘系偏光片以获得较高的光透过率。这种情况下,在能够达到上述提高显示面板10的光透过率的效果的同时,由于第三偏光片33位于第一基板的远离公共基板的一侧以防止对盒过程中损坏第三偏光片33。图4所示的显示面板的其他未提及的特征与技术效果均与图2A中的相同,请参考之前的描述。
图5为本公开一实施例提供的显示面板的截面示意图四。如图5所示,该显示面板与图4所示的显示面板的区别在于:第一基板11的靠近公共基板110的第一侧设置有彩色滤光层9,第三偏光片33为反射型偏光片例如金属线栅偏光片(Wire-grid polarizer,WGP),位于第一基板11的第一侧且位于彩色滤光层9的靠近第一基板11的一侧。WGP不能设置于第一基板11的远离公共基板110的第一侧,以防止反光影响显示,可将WGP可设置于第一基板11的靠近公共基板110的第二侧,以减弱其对外界光的反射。如果将WGP(即第三偏光片33)设置于彩色滤光层9的远离第一基板11的一侧,则在制作过程中会先制作彩色滤光层9,再在彩色滤光层9上制作该WGP,制作WGP的工艺通常包括纳米压印步骤,在这一工艺中,纳米压印步骤会使彩色滤光层9损坏或变形。因此,在本实施例中,在能够达到上述提高显示面板10的光透过率的效果的同时,由于第三偏光片33位于第一基板11的第一侧且位于彩色滤光层9的靠近第一基板11的一侧,可以防止上述对彩色滤光层9的损坏。图5所示的显示面板的其他未提及的特征均与图4中的相同,请参考之前的描述。
图6为本公开一实施例提供的显示面板的截面示意图五,图7为本公开一实施例提供的显示面板的截面示意图六。如图6所示,该显示面板与图4所示的显示面板的区别在于:第一基板11为显示阵列基板,第一基板11的靠近公共基板110的第二侧设置有显示阵列元件51。第三偏光片33位于第一基板11的远离公共基板110的一侧,第三偏光片33为透射型偏光片,第三偏光片33为一体的片状结构而非线栅结构,且第三偏光片33的材料包括有机材料。例如,第三偏光片33为碘系偏光片以利于提高显示面板10的光透过率。公共基板110为彩膜基板,公共基板110的靠近第一基板11的第一侧设置有彩色滤光层9;第一偏光片31位于公共基板110的靠近第一基板11 的第一侧且位于彩色滤光层9的靠近公共基板110的一侧。从而,在能够达到上述提高显示面板10的光透过率的效果的同时,与图5所示实施例相似,能够防止在显示面板的制作过程中对彩色滤光层9的损坏。或者,如图7所示,第一偏光片31设置在公共基板110的靠近第四基板24的第二侧。图7所示显示面板10达到与图4示显示面板10相同或相似的技术效果。图6和图7所示面板的其他未提及的特征及技术效果均与图4中的相同,请参考之前的描述。
本公开至少一实施例提供一种显示装置,该显示装置包括本公开实施例提供的任意一种显示面板。
图8为本公开实施例提供的显示装置的示意图。如图8所示,该显示装置100包括本公开实施例提供的任意一种显示面板10。该显示装置100为液晶显示装置。例如,该显示装置100可以实现为如下的产品:手机、平板电脑、显示器、笔记本电脑、ATM机等任何具有显示功能的产品或部件。该显示装置10能够控制入射至显示液晶面板1的背光的方向或强弱,并且具有较高的光透过率。
本公开至少一实施例提供一种显示面板的制作方法,该方法包括:形成堆叠设置的显示液晶面板和光控面板,其中,所述显示液晶面板包括彼此相对的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的显示液晶层;所述光控面板包括彼此相对的第三基板和第四基板以及位于所述第三基板和所述第四基板之间的光控液晶层;所述第二基板和所述第三基板位于所述第一基板和所述第四基板之间;形成第一偏光片;形成第二偏光片,其中,所述光控液晶层位于所述第一偏光片与所述第二偏光片之间;以及形成第三偏光片,其中,所述第一偏光片位于所述第二偏光片与所述第三偏光片之间,所述显示液晶层位于所述第一偏光片与所述第三偏光片之间;所述第一偏光片、所述第二偏光片和所述第三偏光片配置为使背光依次经由所述第二偏光片、所述第一偏光片和所述第三偏光片出射。
示例性地,图9A-图9M为本公开一实施例提供的一种显示面板的制作方法示意图。在该实施例中,第二基板和第三基板一体化为一体结构,述一体结构构成公共基板,显示液晶面板和光控面板共用公共基板,公共基板为 显示阵列基板。该制作方法包括如下步骤。
如图9A所示,提供公共基板110,在公共基板110的第一侧形成显示阵列元件51,该显示阵列元件51例如包括像素驱动电路,例如包括薄膜晶体管(TFT)等用于驱动和控制显示液晶面板1的显示状态的元件,可以采用半导体工艺形成显示阵列元件51,本领域技术人员可参考常规技术。
如图9B所示,提供第一基板11,在第一基板11的第一侧形成第三偏光片33,第三偏光片33为金属线栅偏光片(Wire-grid polarizer,WGP)。例如,制作WGP的工艺包括:形成金属层;在所述金属层上形成有机层;采用纳米压印工艺在有机层上形成刻蚀阻挡层,以该刻蚀阻挡层为掩模对金属层进行刻蚀以形成WGP。
如图9C所示,形成所述金属线栅偏光片(即第三偏光片33)后,在第三偏光片33的远离第一基板11的一侧形成彩色滤光层9。彩色滤光层9的具体结构请参考之前的实施例中的描述,在此不再重复。在上述WGP的制作工艺中,纳米压印步骤会使彩色滤光层9损坏或变形。因此,在本实施例中,由于形成所述金属线栅偏光片(即第三偏光片33)后,在第三偏光片33的远离第一基板11的一侧形成彩色滤光层9,可以防止上述纳米压印步骤损坏彩色滤光层9。
如图9D所示,将第一基板11与公共基板110对盒,以形成如图9E所示的显示液晶面板。彩色滤光层9和显示阵列元件51位于公共基板110和第一基板11之间且彼此相对。
图9F所示,将第一基板11与公共基板110对盒之后,在公共基板110的与其第一侧相对的第二侧形成第一偏光片31。例如第一偏光片31为反射型偏光片,例如WGP,且第一偏光片31与第二偏光片32相对,以提高显示面板的光透过率,其具体的技术效果请参考之前的描述,在此不再重复。如果先在公共基板110的第二侧形成WGP,再形成显示阵列元件51,后续再对盒,则为了防止WGP在制作阵列元件51的过程中受损,需要形成覆盖WGP的保护膜,在完成对盒还要去除该保护膜,会增加工艺步骤。因此,在本实施例中,先在公共基板110上形成显示阵列元件51,然后将第一基板11与公共基板110对盒,之后再在公共基板110上制作WGP,从而简化了显示 面板的制作工艺,提高生产效率,降低生产成本。至少能够省略制作防止WGP受损的保护膜的工序以及去除该保护膜的工序。
如图9G所示,提供第四基板24,在第四基板24的第一侧形成第二偏光片32。例如,第二偏光片32为反射型偏光片,例如WGP。具体制作工艺请见之前的描述。
如图9H所示,形成覆盖第二偏光片32的第一保护层42。第一保护层42的材料例如为氧化硅或氮化硅等无机材料例如可采用沉积的方法形成。本公开实施例对第一保护层42的材料不作限定。
如图9I所示,制作方法还包括:在形成光控阵列元件之前,形成覆盖第二偏光片32的牺牲保护层8。例如该牺牲保护层8为有机层,例如有机层的材料为树脂材料或光刻胶材料,以方便后续去除牺牲保护层8。当然,本公开实施例对此不作限定。
如图9J所示,形成第二偏光片32之后,例如在形成牺牲保护层8之后,在第四基板42的与第一侧相反的第二侧形成光控阵列元件52。可采用半导体工艺形成光控阵列元件52,具体可参考本领域常规技术。
如图9K所示,在制作完光控阵列元件52之后,去除牺牲保护层8。例如可以采用剥离的方法去除。
如图9L所示,将第四基板24与公共基板110对盒以形成光控面板,光控阵列元件52位于第四基板24的靠近公共基板110的一侧。在第一基板11和公共基板110之间以及第四基板24和公共基板110之间注入液晶,从而形成图9M所示的显示面板10,即图5所示的显示面板10。在该显示面板10中,第一基板11为彩膜基板,公共基板110为显示阵列基板。
在制作图6所示的显示面板的过程中,在形成第一偏光片31之后,再在第一偏光片31的远离公共基板110的第一侧形成彩色滤光层9,以防止彩色滤光层9在制作WGP过程中受损。形成图6所示的显示面板的其他相应结构的步骤可参照上述制作方法的实施例中的步骤顺序。
图10A-图10E为本公开一实施例提供的另一种显示面板的制作方法示意图。
如图10A所示,提供公共基板110,在公共基板110的第一侧形成显示 阵列元件51,该显示阵列元件51例如包括像素驱动电路,例如包括薄膜晶体管(TFT)等用于驱动和控制显示液晶面板1的显示状态的元件,可以采用半导体工艺形成显示阵列元件51,本领域技术人员可参考常规技术。
如图10B所示,提供第一基板11,在第一基板11的第一侧形成彩色滤光层9。
如图10C和10D所示,将第一基板11与公共基板110对盒,以形成显示液晶面板;彩色滤光层9和显示阵列元件51位于公共基板110和第一基板11之间且彼此相对。
如图10E所示,将第一基板11与所述公共基板110对盒之后,在第一基板11的远离公共基板110的第二侧形成第三偏光片33;第三偏光片33为透射型偏光片。第三偏光片33为一体的片状结构而非线栅结构,第三偏光片33的材料包括有机材料。例如,第三偏光片33为碘系偏光片或染料系偏光片。例如可以直接将第三偏光片33贴合到第一基板11的第二侧。
然后,采用对图9F-9M的描述中的步骤进行后续制作,以形成图4所示的显示面板10。
在制作方法实施例中未提及的关于结构方面的技术效果,均可参考关于显示面板的实施例中的描述。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (25)

  1. 一种显示面板,包括:
    堆叠设置的显示液晶面板和光控面板,其中,所述显示液晶面板包括彼此相对的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的显示液晶层;所述光控面板包括彼此相对的第三基板和第四基板以及位于所述第三基板和所述第四基板之间的光控液晶层;所述第二基板和所述第三基板位于所述第一基板和所述第四基板之间;
    第一偏光片;
    第二偏光片,其中,所述光控液晶层位于所述第一偏光片与所述第二偏光片之间;以及
    第三偏光片,其中,所述第一偏光片位于所述第二偏光片与所述第三偏光片之间,所述显示液晶层位于所述第一偏光片与所述第三偏光片之间;所述第一偏光片、所述第二偏光片和所述第三偏光片配置为使背光依次穿过所述第二偏光片、所述第一偏光片和所述第三偏光片后出射。
  2. 根据权利要求1所述的显示面板,其中,所述第二偏光片为反射型偏光片。
  3. 根据权利要求1或2所述的显示面板,其中,所述第一偏光片位于所述第二基板和所述第三基板之间,所述第一偏光片为透射型偏光片。
  4. 根据权利要求1或2所述的显示面板,其中,所述第一偏光片位于所述第二基板和所述第三基板之间,所述第一偏光片为反射型偏光片。
  5. 根据权利要求1或2所述的显示面板,其中,所述第一偏光片为反射型偏光片,所述第一偏光片与所述第二偏光片相对。
  6. 根据权利要求1-2或5中任一所述的显示面板,其中,所述第二基板和所述第三基板为一体结构,该一体结构构成公共基板,所述显示液晶面板和所述光控面板共用所述公共基板;
    所述公共基板为显示阵列基板,所述公共基板的靠近所述第一基板的第一侧设置有显示阵列元件;
    所述第一偏光片设置在所述公共基板的靠近所述第四基板的第二侧。
  7. 根据权利要求6所述的显示面板,其中,所述第一基板为彩膜基板,所述第三偏光片位于所述第一基板的远离所述公共基板的一侧,所述第三偏光片为透射型偏光片。
  8. 根据权利要求6所述的显示面板,其中,所述第一基板为彩膜基板,所述第一基板的靠近所述公共基板的第一侧设置有彩色滤光层;
    所述第三偏光片为反射型偏光片,且位于所述第一基板的第一侧且位于所述彩色滤光层的靠近所述第一基板的一侧。
  9. 根据权利要求1-2或4中任一所述的显示面板,其中,所述第二基板和所述第三基板为一体结构,所述一体结构构成公共基板,所述显示液晶面板和所述光控面板共用所述公共基板;
    所述公共基板为彩膜基板,所述公共基板的靠近所述第一基板的第一侧设置有彩色滤光层;
    所述第一偏光片位于所述公共基板的靠近所述第一基板的第一侧且位于所述彩色滤光层的靠近所述公共基板的一侧,或者,所述第一偏光片设置在所述公共基板的靠近所述第四基板的第二侧。
  10. 根据权利要求9所述的显示面板,其中,所述第一基板为显示阵列基板,所述第三偏光片位于所述第一基板的远离公共基板的一侧,所述第三偏光片为透射型偏光片。
  11. 根据权利要求1-10任一所述的显示面板,其中,所述第四基板为光控阵列基板,所述第四基板的靠近所述液晶显示面板的第一侧上设置有光控阵列元件,所述第二偏光片位于所述第四基板的远离所述公共基板的第二侧。
  12. 根据权利要求1-11任一所述的显示面板,还包括:
    第一保护层,覆盖所述第二偏光片;
    所述第一保护层的材料为氧化硅或氮化硅,所述第一保护层的厚度大于等于4500埃。
  13. 根据权利要求1-12任一所述的显示面板,其中,所述第一偏光片的偏振方向与所述第二偏光片的偏振方向垂直;
    所述第三偏光片的偏振方向与所述第二偏光片的偏振方向垂直。
  14. 根据权利要求2-13任一所述的显示面板,其中,所述反射型偏光片 为金属线栅偏光片(Wire-grid polarizer,WGP)。
  15. 一种显示装置,包括:
    权利要求1-14任一所述的显示面板;以及
    背光源,位于所述光控面板的远离所述显示液晶面板的一侧,配置为使来自所述背光源的背光经由所述光控面板进入所述显示液晶面板。
  16. 一种显示面板的制作方法,包括:
    形成堆叠设置的显示液晶面板和光控面板,其中,所述显示液晶面板包括彼此相对的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的显示液晶层;所述光控面板包括彼此相对的第三基板和第四基板以及位于所述第三基板和所述第四基板之间的光控液晶层;所述第二基板和所述第三基板位于所述第一基板和所述第四基板之间;
    形成第一偏光片;
    形成第二偏光片,其中,所述光控液晶层位于所述第一偏光片与所述第二偏光片之间;以及
    形成第三偏光片,其中,所述第一偏光片位于所述第二偏光片与所述第三偏光片之间,所述显示液晶层位于所述第一偏光片与所述第三偏光片之间;所述第一偏光片、所述第二偏光片和所述第三偏光片配置为使背光依次经由所述第二偏光片、所述第一偏光片和所述第三偏光片出射。
  17. 根据权利要求16所述的制作方法,其中,所述第二偏光片为反射型偏光片。
  18. 根据权利要求16或17所述的制作方法,其中,所述第二基板和所述第三基板一体化为一体结构,所述一体结构构成公共基板,所述显示液晶面板和所述光控面板共用所述公共基板,所述公共基板为显示阵列基板;
    所述制作方法包括:
    在所述公共基板的第一侧形成显示阵列元件;
    在所述第一基板的第一侧形成彩色滤光层;
    将所述第一基板与所述公共基板对盒,以形成所述显示液晶面板,其中,所述彩色滤光层和所述显示阵列元件位于所述公共基板和所述第一基板之间且彼此相对;
    将所述第一基板与所述公共基板对盒之后,在所述公共基板的与其第一侧相对的第二侧形成第一偏光片。
  19. 根据权利要求16或17所述的制作方法,其中,所述第一偏光片为反射型偏光片,所述第一偏光片与所述第二偏光片相对。
  20. 根据权利要求17或19所述的制作方法,其中,所述反射型偏光片为金属线栅偏光片(Wire-grid polarizer,WGP),形成所述反射型偏光片的工艺包括刻蚀工艺和纳米压印工艺。
  21. 根据权利要求18所述的制作方法,还包括:
    将所述第一基板与所述公共基板对盒之后,在所述第一基板的远离所述公共基板的第二侧形成所述第三偏光片,其中,所述第三偏光片为透射型偏光片。
  22. 根据权利要求18-21任一所述的制作方法,其中,所述在所述第一基板的第一侧形成彩色滤光层包括:
    在所述第一基板的第一侧形成所述第三偏光片,其中,所述第三偏光片为金属线栅偏光片;以及
    形成所述金属线栅偏光片后,在所述第三偏光片的远离所述第一基板的一侧形成彩色滤光层。
  23. 根据权利要求18-22任一所述的制作方法,还包括:
    在所述第四基板的第一侧形成第二偏光片;
    形成所述第二偏光片之后,在所述第四基板的与第一侧相反的第二侧形成光控阵列元件;
    将所述第四基板与所述公共基板对盒以形成所述光控面板,其中,所述光控阵列元件位于所述第四基板的靠近所述公共基板的一侧;以及
    在所述第一基板和所述公共基板之间以及所述第四基板和所述公共基板之间注入液晶。
  24. 根据权利要求23所述的制作方法,还包括:
    在形成所述光控阵列元件之前,形成覆盖所述第二偏光片的牺牲保护层;以及
    在制作完所述光控阵列元件之后,去除所述牺牲保护层。
  25. 根据权利要求24所述的制作方法,还包括:
    在形成所述牺牲层保护之前,形成保护层,所述牺牲保护层还覆盖所述保护层。
PCT/CN2020/118615 2019-09-30 2020-09-29 显示面板以及其制作方法、显示装置 WO2021063333A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/281,675 US11874551B2 (en) 2019-09-30 2020-09-29 Display panel and manufacture method thereof, display apparatus
US18/527,625 US20240103315A1 (en) 2019-09-30 2023-12-04 Display panel and manufacture method thereof, display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910943284.0A CN112578583A (zh) 2019-09-30 2019-09-30 显示面板以及其制作方法、显示装置
CN201910943284.0 2019-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/281,675 A-371-Of-International US11874551B2 (en) 2019-09-30 2020-09-29 Display panel and manufacture method thereof, display apparatus
US18/527,625 Continuation US20240103315A1 (en) 2019-09-30 2023-12-04 Display panel and manufacture method thereof, display apparatus

Publications (1)

Publication Number Publication Date
WO2021063333A1 true WO2021063333A1 (zh) 2021-04-08

Family

ID=75116451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118615 WO2021063333A1 (zh) 2019-09-30 2020-09-29 显示面板以及其制作方法、显示装置

Country Status (3)

Country Link
US (2) US11874551B2 (zh)
CN (1) CN112578583A (zh)
WO (1) WO2021063333A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655657A (zh) * 2021-07-23 2021-11-16 惠州Tcl云创科技有限公司 一种具有提高对比度结构的lcd显示器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035383A (zh) * 2021-11-19 2022-02-11 重庆惠科金渝光电科技有限公司 双层显示面板及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070296889A1 (en) * 2006-06-23 2007-12-27 Waterstrike Incorporated LCD-based confidential viewing apparatus utilizing auto-inversion masking
CN106353913A (zh) * 2016-10-10 2017-01-25 南京中电熊猫液晶显示科技有限公司 防窥液晶显示面板及其工作方法
CN108761888A (zh) * 2018-05-03 2018-11-06 深圳市华星光电技术有限公司 液晶显示器
CN109031771A (zh) * 2018-09-27 2018-12-18 惠州市华星光电技术有限公司 液晶显示模组、液晶显示器及显示设备
CN110007509A (zh) * 2019-05-22 2019-07-12 合肥京东方显示技术有限公司 显示模组及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071658B2 (ja) * 1994-11-02 2000-07-31 シャープ株式会社 液晶表示素子
GB2299698A (en) * 1995-03-30 1996-10-09 Sharp Kk Colour display
TWI223103B (en) * 2003-10-23 2004-11-01 Ind Tech Res Inst Wire grid polarizer with double metal layers
KR20060012197A (ko) * 2004-08-02 2006-02-07 삼성전자주식회사 유기 발광 표시 장치
TWI332099B (en) * 2006-09-29 2010-10-21 Chimei Innolux Corp Transflective liquid crystal display device
DE102008021006A1 (de) * 2008-04-25 2009-11-05 Byk-Chemie Gmbh Partikuläre Wachskomposite und Verfahren zu deren Herstellung sowie deren Verwendung
JP2011141393A (ja) * 2010-01-06 2011-07-21 Casio Computer Co Ltd 液晶表示装置
JP7030480B2 (ja) * 2017-11-09 2022-03-07 パナソニック液晶ディスプレイ株式会社 液晶表示装置
US11256135B2 (en) * 2019-02-25 2022-02-22 Visteon Global Technologies, Inc. System and method for adjusting light intensity in a display system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070296889A1 (en) * 2006-06-23 2007-12-27 Waterstrike Incorporated LCD-based confidential viewing apparatus utilizing auto-inversion masking
CN106353913A (zh) * 2016-10-10 2017-01-25 南京中电熊猫液晶显示科技有限公司 防窥液晶显示面板及其工作方法
CN108761888A (zh) * 2018-05-03 2018-11-06 深圳市华星光电技术有限公司 液晶显示器
CN109031771A (zh) * 2018-09-27 2018-12-18 惠州市华星光电技术有限公司 液晶显示模组、液晶显示器及显示设备
CN110007509A (zh) * 2019-05-22 2019-07-12 合肥京东方显示技术有限公司 显示模组及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655657A (zh) * 2021-07-23 2021-11-16 惠州Tcl云创科技有限公司 一种具有提高对比度结构的lcd显示器

Also Published As

Publication number Publication date
US11874551B2 (en) 2024-01-16
CN112578583A (zh) 2021-03-30
US20240103315A1 (en) 2024-03-28
US20210389627A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US8902380B2 (en) Grating sheet, LCD device and methods for manufacturing grating sheet and LCD panel
US11106102B2 (en) Display substrate, method for manufacturing same, and display device
US20240103315A1 (en) Display panel and manufacture method thereof, display apparatus
WO2018120504A1 (zh) 液晶显示面板及其应用的液晶显示装置
TWI670549B (zh) 顯示單元結構及使用量子棒之顯示元件
CN208689323U (zh) 一种液晶显示模组及显示装置
WO2016011691A1 (zh) 高色域液晶显示模组结构
US10203545B2 (en) Display panels and polarizers thereof
WO2019223203A1 (zh) 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法
KR20140081221A (ko) 디스플레이 패널 및 이를 가지는 디스플레이장치
JP5572687B2 (ja) ワイヤメッシュタイプの拡散板及びその製造方法、並びにそれを備えた液晶表示装置
JP2006072249A (ja) 液晶表示装置
US20220128860A1 (en) Reflective display substrate and method for fabricating the same, display panel and display device
JP6195398B2 (ja) 画素構造
WO2016049959A1 (zh) 液晶显示装置
CN210720943U (zh) 显示面板以及显示装置
US9841626B2 (en) Liquid crystal devices
US9989800B2 (en) Polarizer and method of manufacturing the same and liquid crystal display device using the same
WO2021102925A1 (zh) 阵列基板及其制作方法、显示装置
WO2017118162A1 (zh) 显示面板及显示装置
JP2017090774A (ja) 表示装置
WO2020047899A1 (zh) 像素结构及其应用的显示面板与制造方法
US7850359B2 (en) Optical film of a display, method for producing the same and said display
CN113196157B (zh) 显示装置及其制作方法
CN108983509B (zh) 液晶显示模组以及液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872495

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20872495

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20872495

Country of ref document: EP

Kind code of ref document: A1