WO2019235561A1 - 電磁波シールド材及びこれを備える信号処理ユニット - Google Patents

電磁波シールド材及びこれを備える信号処理ユニット Download PDF

Info

Publication number
WO2019235561A1
WO2019235561A1 PCT/JP2019/022505 JP2019022505W WO2019235561A1 WO 2019235561 A1 WO2019235561 A1 WO 2019235561A1 JP 2019022505 W JP2019022505 W JP 2019022505W WO 2019235561 A1 WO2019235561 A1 WO 2019235561A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding material
resin
electromagnetic wave
electromagnetic
wave shielding
Prior art date
Application number
PCT/JP2019/022505
Other languages
English (en)
French (fr)
Inventor
荻野 哲
佳介 増田
正樹 西内
Original Assignee
株式会社新日本電波吸収体
トーヨーカラー株式会社
東洋インキScホールディングス株式会社
伊藤忠ケミカルフロンティア株式会社
株式会社タケチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新日本電波吸収体, トーヨーカラー株式会社, 東洋インキScホールディングス株式会社, 伊藤忠ケミカルフロンティア株式会社, 株式会社タケチ filed Critical 株式会社新日本電波吸収体
Priority to JP2019546052A priority Critical patent/JP7478374B2/ja
Publication of WO2019235561A1 publication Critical patent/WO2019235561A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to an electromagnetic wave shielding material and a signal processing unit including the electromagnetic wave shielding material, and more particularly to an electromagnetic wave shielding material that can be suitably used for a radar cover that protects a radar from the surrounding environment and does not hinder radar signal transmission.
  • the present invention relates to a signal processing unit.
  • shield is used to mean at least one of absorption, that is, reflection loss and shielding, that is, transmission loss.
  • Patent Document 1 includes thermoplastic resin 85 wt% to 95 wt%, carbon nanotube 1 wt% to 5 wt%, and carbon black 3 wt% to 10 wt%. From 1 to 7, a thermoplastic resin composition for radar cover that exhibits a good balance between reflection loss and transmission loss of electromagnetic waves required for radar protection as well as excellent mechanical properties is disclosed. . Special table 2016-504471
  • thermoplastic resin composition for radar cover disclosed in Patent Document 1 sufficiently protects the radar from the surrounding environment, and does not hinder radar signal transmission. And it was found that there is room for improvement in transmission loss.
  • the radar cover disclosed in Patent Document 1 describes that reflection loss of electromagnetic waves in the range of 2 dB to 9 dB and transmission loss of electromagnetic waves in the range of 3 dB to 12 dB can be obtained (0036).
  • a typical example shows the electromagnetic wave reflection loss.
  • the grounds that the numerical values of the above conditions are necessary are as follows. That is, focusing on electromagnetic wave transmission loss, if the electromagnetic wave transmission loss is 20 dB, for example, the electromagnetic wave shielding rate is 90%. Therefore, the electromagnetic wave incident from the first surface of the electromagnetic wave shielding material is When the light is emitted from the two surfaces, 90% is attenuated to 10%.
  • the transmission loss is excellent, it can be said that a reflection loss of about 5 dB is sufficient. Furthermore, if you want to provide a highly reliable electromagnetic shielding material, considering individual differences caused by manufacturing errors of the electromagnetic shielding material, the usage environment of the electromagnetic shielding material, etc. From the viewpoint of quality assurance for the user of the electromagnetic wave shielding material, it can be said that some electromagnetic waves should be further shielded.
  • the electromagnetic wave reflection loss if the electromagnetic wave reflection loss is 5 dB, the electromagnetic wave absorption rate is 50%, and if the transmission loss is 20 dB, the absorption rate is 90%. 50% of 100 electromagnetic waves are reflected and 90% of the remaining 50% electromagnetic waves are shielded. As a result, the electromagnetic waves emitted from the emission surface of the electromagnetic shielding material are reduced to 5%. It is thought that it is done.
  • the reflection loss of the electromagnetic wave needs to be about 5 dB or more and the transmission loss of the electromagnetic wave needs to be about 15 dB or more.
  • the description has been made on the assumption that the transmission loss of electromagnetic waves is 20 dB. However, even if this is 15 dB, the shielding rate of electromagnetic waves is about 82%, so if the reflection loss is 5 dB, the remaining about The electromagnetic wave of 18% can be reduced to about 9%, and if necessary, an electromagnetic wave shielding material having a reflection loss of, for example, 6 dB may be used.
  • an object of the present invention is to provide an electromagnetic shielding material capable of obtaining a shielding performance of at least 90%.
  • the electromagnetic wave shielding material of the present invention and a signal processing unit including the same are as follows.
  • the resin can be a thermoplastic resin, and each electromagnetic shielding material can be nanocarbon.
  • the resin may be any one of polyolefin, polyphenylene sulfide, polyamide, polycarbonate, polybutylene, polyetherimide, or some of them.
  • Each of the electromagnetic shielding materials includes an electromagnetic shielding material 1 that contributes to a reduction in reflection loss of electromagnetic waves and a reduction in transmission loss of electromagnetic waves among carbon nanotubes, carbon black, carbon nanocoils, carbon nanofibers, graphene, fullerene, and the like.
  • the contributing electromagnetic wave shielding substance 2 can be arbitrarily combined. Some can be arbitrarily combined.
  • the dispersant may be any of natural, semi-synthetic and synthetic wax.
  • the dispersant may be any one of paraffin wax, montan wax, amide wax, ethylene-bis-stearamide, fatty acid metal salt, silicone, polyolefin wax, or any combination thereof. be able to.
  • the manufacturing process of the electromagnetic wave shielding material of this invention is not limited, For example, press work may be employ
  • the surface resistivity of the electromagnetic shielding material is approximately 250 ⁇ / ⁇ to 750 ⁇ / ⁇ , and 300 ⁇ / ⁇ under the condition that the thickness of the electromagnetic shielding material is 2 mm to 6 mm. It has been found that the one having about 500 ⁇ / ⁇ has a suitable shielding performance.
  • the signal processing unit of the present invention can be a proximity radar for automobiles having an electromagnetic shielding material, a communication device including a mobile phone / smartphone / PDA / tablet terminal / personal computer, and various proximity radars.
  • the electromagnetic shielding material of this embodiment is (1) a resin as a main component; (2) an electromagnetic shielding material contained in the resin; It is essential to include. Further, a dispersant for dispersing the electromagnetic wave shielding material in the resin can be optionally included. In addition, the electromagnetic wave shielding material itself of this embodiment does not contain a metal substance.
  • the electromagnetic wave shielding material of the present embodiment has a reflection loss of about 6 dB or more and a transmission loss of about 15 dB or more. Even if there are manufacturing errors or individual differences of the electromagnetic shielding material, When almost all of them are viewed comprehensively, about 90% of electromagnetic waves can be shielded. It has been found that when an electromagnetic wave shielding body having such performance is manufactured by press working, the surface resistivity is about 300 ⁇ / ⁇ to about 500 ⁇ / ⁇ . However, other processing such as injection processing may be employed instead of pressing. In this case, the surface resistivity will vary greatly, but the volume resistivity and conductivity will not change theoretically.
  • the performance disclosed in Patent Document 1 is added, In Examples 1 to 3, the reflection loss is 6 dB, 5 dB, and 3 dB, respectively, and the transmission loss is 3 dB, 3 dB, 5 dB or more.
  • thermoplastic resin composition for radar cover disclosed in Patent Document 1 is greatly different in shielding properties from the electromagnetic wave shielding material of the present embodiment.
  • the resin can be a thermoplastic resin.
  • a thermoplastic resin for example, polyolefin, polyphenylene sulfide, polyamide, polyimide, polyamideimide, polycarbonate, polyacetal, polyethersulfone, polybutylene, polyetherimide, polyetherketone.
  • the electromagnetic wave shielding material can be one or several types of nanocarbons that contribute to a reduction in reflection loss and transmission loss of electromagnetic waves.
  • nanocarbons that contribute to a reduction in reflection loss and transmission loss of electromagnetic waves.
  • carbon nanotubes carbon black, carbon nanocoils, carbon nanofibers, graphene, fullerene, etc.
  • those that contribute to the reduction of electromagnetic wave reflection loss and those that contribute to the reduction of electromagnetic wave transmission loss can be arbitrarily combined, but a single nanocarbon can also be selected.
  • Carbon nanotubes that can contribute to the reduction of electromagnetic wave reflection loss and carbon black that can contribute to the reduction of transmission loss of electromagnetic wave are easily available in the market.
  • Carbon nanotubes may have an average inner diameter of 0.5 nm to 20 nm.
  • Carbon black may have a secondary average particle size of 10 ⁇ m to 200 ⁇ m.
  • the dispersant that can be selectively included in the electromagnetic wave shielding material can be any of natural, semi-synthetic and synthetic waxes, such as paraffin wax, montan wax, amide wax, ethylene-bis-stearamide, fatty acid. Any of metal salts, silicones, polyolefin waxes, etc., or some of them can be combined arbitrarily.
  • the carbon nanotube is used as the electromagnetic shielding material 1
  • the carbon black is used as the electromagnetic shielding material 2
  • a dispersant may be mixed.
  • the amount of the resin may be reduced by about 5% to 20%, and polyethylene wax or the like may be mixed instead.
  • the electromagnetic wave shielding material of this embodiment is different from the thermoplastic resin composition for radar cover disclosed in Patent Document 1 in that the composition ratio of carbon nanotubes is relatively small.
  • the carbon nanotubes are expensive, so that the amount of mixing of the carbon nanotubes can be relatively reduced, which means that the electromagnetic wave shielding material of this embodiment is inexpensive. It can be realized.
  • the electromagnetic shielding material according to the embodiment of the present invention will be described by taking as an example a case in which polypropylene is used as the main component, carbon nanotubes are used as the electromagnetic shielding material 1, and carbon black is used as the electromagnetic shielding material 2.
  • the thickness of the electromagnetic shielding material was about 2 mm, and in Examples 5 to 9, the thickness of the electromagnetic shielding material was about 6 mm.
  • a radar unit in which an ADAS radar and an attachment portion for attaching the radar to an automobile are integrated with a metal in the vicinity of a place where an electromagnetic wave shielding material is installed.
  • a radar unit in which an ADAS radar and an attachment portion for attaching the radar to an automobile are integrated with a metal in the vicinity of a place where an electromagnetic wave shielding material is installed.
  • an electromagnetic shielding material in order to prevent the back lobe radiated from the antenna from reaching the electronic control unit (ECU). Then, although not limited to this, as an example, it is conceivable that an electromagnetic wave shielding material is attached to the electronic control unit itself.
  • the radar unit it can be considered to be affixed to the mounting portion or to be a part or all of this material. Furthermore, when a radar is equipped with a horn type antenna, it can also be considered to be attached to the outside of the antenna.
  • the thickness of the electromagnetic shielding material is not so meaningful from a technical point of view, and is not limited to these thicknesses. Please keep in mind. Therefore, what satisfies the shielding performance required according to the application and installation environment of the electromagnetic wave shielding material may be appropriately selected from the first to ninth embodiments and provided in the signal processing unit.
  • Examples 1 to 9 are exemplary.
  • an electromagnetic wave shielding material manufactured under conditions where the amount of carbon nanotubes mixed is larger than that in Example 1 but less than that in Example 2. Note also that it is not excluded that it can be employed in a signal processing unit.
  • Electromagnetic wave shielding material 1 about 1.200 wt%
  • Electromagnetic shielding material 2 about 10.00 wt%
  • An electromagnetic shielding material having a thickness of about 2 mm was manufactured by a known method such as mixing by mixing, and stirring as appropriate using a twin-screw extruder so that they were uniformly dispersed, and pressing.
  • the electrical conductivity and the surface resistivity were measured for the electromagnetic wave shielding material of Example 1, the electrical conductivity was about 2.00 S / m and the surface resistivity was about 250 ⁇ / ⁇ .
  • FIG. 1 is a view showing the transmission loss of the electromagnetic wave shielding material of Example 1.
  • FIG. The horizontal axis of FIG. 1 indicates frequency [GHz], and the vertical axis of FIG. 1 indicates transmission loss [dB].
  • the electromagnetic wave shielding material of Example 1 has a transmission loss of 20 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • FIG. 2 is a diagram showing the reflection loss of the electromagnetic wave shielding material of Example 1.
  • FIG. The horizontal axis of FIG. 2 indicates frequency [GHz], and the vertical axis of FIG. 2 indicates reflection loss [dB].
  • the electromagnetic wave shielding material of Example 1 has a reflection loss of 6 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • Electromagnetic shielding material 1 about 0.700 wt%
  • Electromagnetic shielding material 2 about 10.00 wt%
  • An electromagnetic shielding material having a thickness of about 2 mm was manufactured by a known method such as mixing by mixing, and stirring as appropriate using a twin-screw extruder so that they were uniformly dispersed, and pressing.
  • the electrical conductivity was about 1.67 S / m and the surface resistivity was about 300 ⁇ / ⁇ .
  • FIG. 3 is a diagram showing the transmission loss of the electromagnetic wave shielding material of Example 2.
  • the horizontal axis of FIG. 3 shows frequency [GHz], and the vertical axis of FIG. 3 shows transmission loss [dB].
  • the electromagnetic wave shielding material of Example 2 has a transmission loss of 20 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • FIG. 4 is a diagram showing the reflection loss of the electromagnetic wave shielding material of Example 2.
  • the horizontal axis of FIG. 4 shows the frequency [GHz], and the vertical axis of FIG. 4 shows the reflection loss [dB].
  • the electromagnetic wave shielding material of Example 2 has a reflection loss of 6 dB or more over the entire frequency band of 60 GHz to 90 GHz.
  • Electromagnetic shielding material 1 approx. 0.600 wt%
  • Electromagnetic shielding material 2 about 10.00 wt%
  • An electromagnetic shielding material having a thickness of about 2 mm was manufactured by a known method such as mixing with a mixture and stirring appropriately by using a twin-screw extruder so that they were uniformly dispersed, followed by pressing.
  • the electrical conductivity was about 1.25 S / m and the surface resistivity was about 400 ⁇ / ⁇ .
  • FIG. 5 is a diagram showing the transmission loss of the electromagnetic wave shielding material of Example 3.
  • the horizontal axis of FIG. 5 indicates the frequency [GHz], and the vertical axis of FIG. 5 indicates the transmission loss [dB].
  • the electromagnetic wave shielding material of Example 3 has a transmission loss of approximately 20 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • FIG. 6 is a diagram showing the reflection loss of the electromagnetic wave shielding material of Example 3.
  • the horizontal axis of FIG. 6 shows the frequency [GHz], and the vertical axis of FIG. 6 shows the reflection loss [dB].
  • the electromagnetic wave shielding material of Example 3 has a reflection loss of 6 dB or more over the entire frequency band of 60 GHz to 90 GHz.
  • Example 4 Resin: About 89.37 wt% Electromagnetic shielding material 1: about 0.630 wt% Electromagnetic shielding material 2: about 10.00 wt% An electromagnetic shielding material having a thickness of about 2 mm was manufactured by a known method such as mixing by mixing, and stirring as appropriate using a twin-screw extruder so that they were uniformly dispersed, and pressing.
  • the electrical conductivity and surface resistivity were measured about the electromagnetic wave shielding material of Example 4, the electrical conductivity was about 1.00 S / m and the surface resistivity was about 500 ⁇ / ⁇ .
  • FIG. 7 is a diagram showing the transmission loss of the electromagnetic wave shielding material of Example 4.
  • the horizontal axis in FIG. 7 indicates frequency [GHz], and the vertical axis in FIG. 7 indicates transmission loss [dB].
  • the electromagnetic wave shielding material of Example 4 has a transmission loss of 15 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • FIG. 8 is a diagram showing the reflection loss of the electromagnetic wave shielding material of Example 4.
  • the horizontal axis of FIG. 8 indicates the frequency [GHz], and the vertical axis of FIG. 8 indicates the reflection loss [dB].
  • the electromagnetic wave shielding material of Example 4 has a reflection loss of 6 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • Electromagnetic shielding material 1 about 0.270 wt%
  • Electromagnetic shielding material 2 about 10.00 wt%
  • An electromagnetic shielding material having a thickness of about 6 mm was manufactured by a known method such as mixing by mixing, and stirring appropriately by using a twin screw extruder so that they were uniformly dispersed, and pressing.
  • the electrical conductivity was about 0.67 S / m and the surface resistivity was about 250 ⁇ / ⁇ .
  • FIG. 9 is a diagram showing the transmission loss of the electromagnetic wave shielding material of Example 5.
  • FIG. The horizontal axis of FIG. 9 indicates the frequency [GHz], and the vertical axis of FIG. 9 indicates the transmission loss [dB].
  • the electromagnetic wave shielding material of Example 5 has a transmission loss of 30 dB or more over the entire frequency band of 75 GHz to 110 GHz, and in particular, the shielding performance is 40 dB over the entire frequency band of about 90 GHz to 110 GHz. It turns out that it is above.
  • FIG. 10 is a diagram showing the reflection loss of the electromagnetic wave shielding material of Example 5.
  • the horizontal axis of FIG. 10 indicates the frequency [GHz], and the vertical axis of FIG. 10 indicates the reflection loss [dB].
  • the electromagnetic wave shielding material of Example 5 has a reflection loss of 8 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • Electromagnetic wave shielding material 1 about 0.240 wt%
  • Electromagnetic shielding material 2 about 10.00 wt%
  • An electromagnetic shielding material having a thickness of about 6 mm was produced by a known technique such as mixing with a mixture and stirring appropriately by using a twin-screw extruder so that they were uniformly dispersed, followed by pressing.
  • the electrical conductivity was about 0.56 S / m and the surface resistivity was about 300 ⁇ / ⁇ .
  • FIG. 11 is a diagram showing the transmission loss of the electromagnetic wave shielding material of Example 6.
  • the horizontal axis of FIG. 11 indicates frequency [GHz], and the vertical axis of FIG. 11 indicates transmission loss [dB].
  • the electromagnetic wave shielding material of Example 6 has a transmission loss of 35 dB or more over the entire frequency band of 75 GHz to 110 GHz, and in particular, the shielding performance is 40 dB over the entire frequency band of about 90 GHz to 110 GHz. It turns out that it is above.
  • FIG. 12 is a diagram showing the reflection loss of the electromagnetic wave shielding material of Example 6.
  • the horizontal axis of FIG. 12 indicates frequency [GHz], and the vertical axis of FIG. 12 indicates reflection loss [dB].
  • the electromagnetic wave shielding material of Example 6 has a reflection loss of about 7 dB or more over the entire frequency band of 60 GHz to 90 GHz.
  • Electromagnetic shielding material 1 about 0.225 wt%
  • Electromagnetic shielding material 2 about 10.00 wt%
  • An electromagnetic shielding material having a thickness of about 6 mm was manufactured by a known method such as mixing by mixing, and stirring appropriately by using a twin screw extruder so that they were uniformly dispersed, and pressing.
  • the electrical conductivity was about 0.56 S / m and the surface resistivity was about 400 ⁇ / ⁇ .
  • FIG. 13 is a view showing the transmission loss of the electromagnetic wave shielding material of Example 7.
  • FIG. The horizontal axis of FIG. 13 indicates frequency [GHz], and the vertical axis of FIG. 13 indicates transmission loss [dB].
  • the electromagnetic wave shielding material of Example 7 has a transmission loss of 30 dB or more over the entire frequency band of 75 GHz to 110 GHz, and in particular, the shielding performance is 35 dB over the entire frequency band of about 80 GHz to 100 GHz. As described above, it is understood that the shielding performance is 40 dB or more in the entire frequency band of about 100 GHz to 110 GHz.
  • FIG. 14 is a diagram showing the reflection loss of the electromagnetic wave shielding material of Example 7.
  • the horizontal axis of FIG. 14 indicates frequency [GHz], and the vertical axis of FIG. 14 indicates reflection loss [dB].
  • the electromagnetic wave shielding material of Example 7 has a reflection loss of 8 dB or more over the entire frequency band of 60 GHz to 90 GHz.
  • Electromagnetic wave shielding material 1 about 0.09wt%
  • Electromagnetic shielding material 2 about 10.00 wt%
  • An electromagnetic shielding material having a thickness of about 6 mm was produced by a known technique such as mixing with a mixture and stirring appropriately by using a twin-screw extruder so that they were uniformly dispersed, followed by pressing.
  • the electrical conductivity and the surface resistivity of the electromagnetic wave shielding material of Example 8 were measured, the electrical conductivity was about 0.33 S / m, and the surface resistivity was about 500 ⁇ / ⁇ .
  • FIG. 15 is a diagram showing the transmission loss of the electromagnetic wave shielding material of Example 8.
  • the horizontal axis of FIG. 15 indicates the frequency [GHz], and the vertical axis of FIG. 15 indicates the transmission loss [dB].
  • the electromagnetic wave shielding material of Example 8 has a transmission loss of 30 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • FIG. 16 is a diagram showing the reflection loss of the electromagnetic wave shielding material of Example 8.
  • the horizontal axis in FIG. 16 indicates frequency [GHz], and the vertical axis in FIG. 16 indicates reflection loss [dB].
  • the electromagnetic wave shielding material of Example 8 has a reflection loss of 8 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • Example 9 Resin: About 89.928 wt% Electromagnetic shielding material 1: about 0.072 wt% Electromagnetic shielding material 2: about 10.00 wt% An electromagnetic shielding material having a thickness of about 6 mm was manufactured by a known method such as mixing by mixing, and stirring appropriately by using a twin screw extruder so that they were uniformly dispersed, and pressing.
  • the electrical conductivity was about 0.33 S / m and the surface resistivity was about 750 ⁇ / ⁇ .
  • FIG. 17 is a view showing the transmission loss of the electromagnetic wave shielding material of Example 9.
  • the horizontal axis in FIG. 17 indicates frequency [GHz], and the vertical axis in FIG. 17 indicates transmission loss [dB].
  • the electromagnetic wave shielding material of Example 9 has a transmission loss of 30 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • FIG. 18 is a diagram showing the reflection loss of the electromagnetic wave shielding material of Example 9.
  • the horizontal axis of FIG. 18 indicates frequency [GHz], and the vertical axis of FIG. 18 indicates reflection loss [dB].
  • the electromagnetic wave shielding material of Example 9 has a reflection loss of 7 dB or more over the entire frequency band of 75 GHz to 110 GHz.
  • Electromagnetic shielding material 1 about 0.5 wt%
  • Electromagnetic shielding material 2 about 10.00 wt%
  • the electromagnetic shielding material having a thickness of about 2 mm was manufactured by a known method such as mixing by using a twin-screw extruder so that they are uniformly dispersed, and then press working. Since the transmission loss of less than 15 dB was found, it was found that the required shielding performance could not be obtained.
  • electromagnetic wave reflection loss was measured by the free space method, and transmission loss was measured based on ASTM D4935.
  • the reflection loss is the difference between the signal intensity reflected from the surface of the specimen and the signal intensity at the time of irradiation after irradiating the electromagnetic wave shielding materials of Examples 1 to 9 with electromagnetic waves of 75 GHz to 110 GHz. I asked for it.
  • the transmission loss was determined from the difference between the signal intensity emitted through the specimen after irradiation of the electromagnetic wave shielding material of Examples 1 to 9 with an electromagnetic wave of 75 GHz to 110 GHz and the signal intensity at the time of irradiation.
  • the reflection loss and the transmission loss of electromagnetic waves in the electromagnetic wave shielding materials of Examples 1 to 9 are both 6 dB or more in reflection loss and 15 dB or more in transmission loss.
  • the electromagnetic wave shielding materials of Examples 1 to 9 have an advantage that the electronic circuit design is easy because the reflection loss tends to be flat in the entire measured frequency band.
  • the reflection loss was measured with the lower limit of the frequency band set to 60 GHz. As a result, it was confirmed that any electromagnetic wave shielding material had a reflection loss of 6 dB.
  • the electromagnetic wave shielding material is not limited to the proximity radar for automobiles, but the cellular phone, smartphone, PDA, tablet using the 73 GHz frequency band.
  • the present invention can also be applied to communication devices attached to terminals and personal computers, various proximity radars of 76 GHz to 83 GHz, and the like.
  • an electromagnetic wave shielding material may be attached or disposed on the electronic control unit or a member corresponding thereto or the periphery thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】少なくとも90%以上の遮蔽性能が得られる電磁波シールド材を提供する。 【解決手段】(a)ポリオレフィン、ポリフェニレンスルファイド、ポリアミド、ポリカーボネート、ポリブチレン、ポリエーテルイミドなどの熱可塑性樹脂を主成分とし、(b)電磁波の反射損失を50%以上低下させる分量で前記樹脂に含有されるカーボンナノチューブなどのナノカーボンと、(c)電磁波の透過損失を80%以上低下させる分量で前記樹脂に含有されるカーボンブラックなどのナノカーボンと、(d)パラフィンワックス、モンタンワックス、アマイドワックス、エチレン-ビス-ステアラミド、脂肪酸金属塩、シリコーン、ポリオレフィンワックスなど分散剤と、を電磁波シールド材に含める。

Description

電磁波シールド材及びこれを備える信号処理ユニット
 本発明は、電磁波シールド材及びこれを備える信号処理ユニットに関し、特に、周辺環境からレーダーを保護するとともに、レーダーの信号伝達を阻害しないレーダーカバーに好適に用いることができる電磁波シールド材及びこれを備える信号処理ユニットに関する。なお、本明細書において「シールド」とは、吸収すなわち反射損失、遮蔽すなわち透過損失の少なくとも一方の意味で用いる。
 特許文献1には、熱可塑性樹脂85重量%から95重量% 、カーボンナノチューブ1重量%から5重量%及びカーボンブラック3重量%から10重量%を含み、また前記カーボンナノチューブ及びカーボンブラックを3:7から1:7の重量比を含むことにより、優れた機械的物性とともにレーダー保護用として要求される電磁波の反射損失及び透過損失をバランス良く現わすレーダーカバー用熱可塑性樹脂組成物について開示されている。
特表2016-504471号公報
 ここで、特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物は、周辺環境からレーダーを十分に保護するとともに、レーダーの信号伝達を阻害しないようにするためには、電磁波の反射損失及び透過損失について、改善の余地があることがわかった。
 具体的には、特許文献1に開示されているレーダーカバーは、2dBから9dB範囲の電磁波の反射損失、及び、3dBから12dB範囲の電磁波の透過損失が得られる旨が記載されているが(0036段落)、本発明者らの知見によれば、約60GHz~約110GHzの周波数帯域では、電磁波の反射損失と電磁波の透過損失との兼ね合いにもよるが、典型例を示すと、電磁波の反射損失は約5dB以上、電磁波の透過損失は約15dB以上であることが必要である。
 なお、本発明者らの知見に基づき、上記のような条件の数値が必要であるという根拠は、以下のとおりである。すなわち、電磁波の透過損失に着目すると、電磁波の透過損失が例えば20dBであれば、電磁波の遮蔽率は90%であるから、電磁波シールド材の第1面から入射した電磁波は、電磁波シールド材の第2面から出射する際には90%が減衰され10%となる。
 そして、残った電磁波が何らかの部材に衝突し、そこで反射されて、再び、第2面を通じて電磁波シールド材に入射すると、電磁波シールド材の第1面から出射する際には、その90%が減衰され10%となる。したがって、この例では、当初の電磁波に対して99%が減衰することになる。
 このように考えてみると、透過損失が優れていれば、反射損失については5dB程度あれば十分ということができる。さらに、信頼性の高い電磁波シールド材を提供しようとするならば、電磁波シールド材の製造誤差などを原因として発生する個体差であったり、電磁波シールド材の使用環境であったりなどを考慮して、電磁波シールド材のユーザに対する品質保証の観点から、更に幾分かの電磁波の遮蔽をすればよいといえる。
 そうすると、電磁波シールド材を設置する個所の近傍に、金属などのように電磁波の遮蔽機能がある他のものが存在している場合には、反射損失が約6dBもあれば十分であろうと考えられ、また、電磁波の遮蔽機能がある他のものが存在していない場合であっても、反射損失が約7dBもあれば十分であろうと考えられる。
 一方、電磁波の反射損失に着目してみると、電磁波の反射損失が5dBであれば、電磁波の吸収率は50%であり、更に透過損失が20dBであれば、吸収率は90%であるから、100という電磁波のうち50%が反射されるとともに、残りの50%の電磁波のうち90%が遮蔽されるので、結果的には電磁波シールド材の出射面から出射される電磁波は5%まで低減されるとも考えられる。
 したがって、電磁波の反射損失は約5dB以上、電磁波の透過損失は約15dB以上であることが必要であるということがいえるのである。
 なお、ここでは電磁波の透過損失が20dBであることを前提に説明したが、これが仮に15dBとなっても、電磁波の遮蔽率は約82%であるので、反射損失が5dBであれば、残り約18%の電磁波は約9%まで低減できるし、必要であれば、反射損失が例えば6dBという条件の電磁波シールド材を用いればよいということになる。
 以上の考察から、本発明は、少なくとも90%以上の遮蔽性能が得られる電磁波シールド材を提供することを課題とする。
 上記課題を解決するために、本発明の電磁波シールド材及びこれを備える信号処理ユニットは、
 主成分となる樹脂と、
 電磁波の反射損失を50%以上低下させる分量で前記樹脂に含有される電磁波遮蔽物質1と、
 電磁波の透過損失を80%以上低下させる分量で前記樹脂に含有される電磁波遮蔽物質2と、
 を含む。
 前記樹脂は熱可塑性樹脂とすることができ、前記各電磁波遮蔽物質はナノカーボンとすることができる。
 より詳しく一例をあげると、前記樹脂は、ポリオレフィン、ポリフェニレンサルファイド、ポリアミド、ポリカーボネート、ポリブチレン、ポリエーテルイミドなどのいずれか又はこれらのうちいくつかを任意に組合せることができる。前記各電磁波遮蔽物質は、カーボンナノチューブ、カーボンブラック、カーボンナノコイル、カーボンナノファイバー、グラフェン、フラーレンなどのうち、電磁波の反射損失の低下に寄与する電磁波遮蔽物質1と、電磁波の透過損失の低下に寄与する電磁波遮蔽物質2とを、任意に組合せることができる。いくつかを任意に組合せることができる。
 また、前記各電磁波遮蔽物質を前記樹脂に対して分散させる分散剤を含んでもよい。前記分散剤は天然・半合成・合成ワックスのいずれかとすることができる。より詳しく一例をあげると、前記分散剤は、パラフィンワックス、モンタンワックス、アマイドワックス、エチレン-ビス-ステアラミド、脂肪酸金属塩、シリコーン、ポリオレフィンワックスなどのいずれか又はこれらのうちいくつかを任意に組合せることができる。
 なお、本発明の電磁波シールド材の製造工程は限定的でなく、例えば、プレス加工を採用してもよいし、射出加工を採用してもよい。なお、プレス加工を採用した場合には、電磁波シールド材の表面抵抗率は、概ね、250Ω/□~750Ω/□であり、電磁波シールド材の厚さが2mm~6mmという条件においては、300Ω/□~500Ω/□程度のものが好適な遮蔽性能を有することが分かった。
 また、本発明の信号処理ユニットは、電磁波シールド材を有する自動車用近接レーダー、携帯電話機・スマートフォン・PDA・タブレット端末・パーソナルコンピュータを含む通信機器、各種近接レーダーとすることができる。
実施例1の電磁波シールド材の透過損失を示す図である。 実施例1の電磁波シールド材の反射損失を示す図である。 実施例2の電磁波シールド材の透過損失を示す図である。 実施例2の電磁波シールド材の反射損失を示す図である。 実施例3の電磁波シールド材の透過損失を示す図である。 実施例3の電磁波シールド材の反射損失を示す図である。 実施例4の電磁波シールド材の透過損失を示す図である。 実施例4の電磁波シールド材の反射損失を示す図である。 実施例5の電磁波シールド材の透過損失を示す図である。 実施例5の電磁波シールド材の反射損失を示す図である。 実施例6の電磁波シールド材の透過損失を示す図である。 実施例6の電磁波シールド材の反射損失を示す図である。 実施例7の電磁波シールド材の透過損失を示す図である。 実施例7の電磁波シールド材の反射損失を示す図である。 実施例8の電磁波シールド材の透過損失を示す図である。 実施例8の電磁波シールド材の反射損失を示す図である。 実施例9の電磁波シールド材の透過損失を示す図である。 実施例9の電磁波シールド材の反射損失を示す図である。
 以下、本発明の実施形態について図表を用いて説明する。
 本実施形態の電磁波シールド材は、
 (1)主成分となる樹脂と、
 (2)樹脂に含有される電磁波遮蔽物質と、
 を含むことが必須である。
 さらに、選択的に、樹脂に対して電磁波遮蔽物質を分散させる分散剤を含めることもできる。なお、本実施形態の電磁波シールド材自体は、金属物質を含有していない。
 本実施形態の電磁波シールド材は、反射損失は約6dB以上とし、透過損失は約15dB以上の性能とすることで、たとえ、電磁波シールド材の製造誤差、個体差などがあっても、製造品のほぼ全てが総合的に見た場合に、電磁波の90%程度の遮蔽を実現できるようにしている。なお、このような性能となる電磁波遮蔽体をプレス加工によって製造する場合には、表面抵抗率が約300Ω/□~約500Ω/□となることがわかった。もっとも、プレス加工に代えて、射出加工などの他の加工を採用することもできる。この場合には、表面抵抗率には大きな変化があろうが、体積抵抗率・導電率には理論上変化はない。
 なお、本実施形態の電磁波シールド材と特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物との相違点を明らかにするために、特許文献1に開示されている性能について付言すると、実施例1~3のものとしては、それぞれ、反射損失は、6dB、5dB、3dBであり、透過損失は、3dB、3dB、5dB以上である、とされている。
 両者を対比すると、実施例1の反射損失こそ6dBが得られているものの、その透過損失は3dBしかなく、実施例2,3のものは反射損失についても透過損失についても本実施形態のものに比して良い性能が得られていない。いずれにしても、特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物は、本実施形態の電磁波シールド材とは、その遮蔽特性が大きく異なることがわかる。
 また、樹脂は熱可塑性樹脂とすることができ、より詳しく一例をあげると、ポリオレフィン、ポリフェニレンスルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリエーテルスルホン、ポリブチレン、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルイミド、ポリアルキレンテレフタレート、ポリスルホン、ポリスチレン、シンジオタクチックポリスチレン、アクリロニトリルブタジエンスチレン、ポリフェニレンオキシド、アクリル系樹脂、液晶重合体樹脂などのいずれか又はこれらのうちいくつかを任意に組合せることができる。
 さらに、電磁波遮蔽物質は、電磁波の反射損失と透過損失との低下に寄与する、一種類又は数種類のナノカーボンとすることができる。典型的には、カーボンナノチューブ、カーボンブラック、カーボンナノコイル、カーボンナノファイバー、グラフェン、フラーレンなどのうち、電磁波の反射損失の低下に寄与するものと、電磁波の透過損失の低下に寄与するものとを、任意に組合せることができるが、単一のナノカーボンを選択することもできる。
 このうち、電磁波の反射損失の低下に寄与するものとしてはカーボンナノチューブ、電磁波の透過損失の低下に寄与するものとしてはカーボンブラックが、市場での入手容易なものとして挙げられる。カーボンナノチューブについては、0.5nm~20nmの平均内径を有するものとすることができる。カーボンブラックについては、二次平均粒径が10μm~200μmのものとすることができる。
 さらにまた、選択的に電磁波シールド材に含めることが可能な分散剤は、天然・半合成・合成ワックスのいずれかとすることができ、パラフィンワックス、モンタンワックス、アマイドワックス、エチレン-ビス-ステアラミド、脂肪酸金属塩、シリコーン、ポリオレフィンワックスなどのいずれか又はこれらのうちいくつかを任意に組合せることができる。
 樹脂と電磁波遮蔽物質との混合割合は、樹脂としてポリプロピレン、電磁波遮蔽物質1としてカーボンナノチューブ、電磁波遮蔽物質2としてカーボンブラックを用いた場合には、[樹脂:電磁波遮蔽物質1:電磁波遮蔽物質2=約90重量%:約0.1重量%~約1重量%:約10重量]とすることができ、分散剤を用いる場合には、樹脂の分量を5%~40%程度減らして、その代わりに、分散剤を混合すればよい。
 もっとも、本発明者らの考察によれば、分散剤としては、市場流通性・価格などに着目すると、ポリエチレンワックスが選択しやすく、ポリエチレンワックス又はこれに類する分散剤を選択する場合には、樹脂等として選択する材料にもよるが、樹脂の分量を5%~20%程度減らして、その代わりに、ポリエチレンワックス等を混合すればよい。
 なお、特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物について付言すると、特許文献1には分散剤について考察及び言及がなされていないので、この点は明らかではないが、[熱可塑性樹脂:カーボンナノチューブ:カーボンブラック=85重量%~95重量%:1重量%~5重量%:3重量%~10重量%]であり、かつ、[カーボンナノチューブ:カーボンブラック=3:7~1:7]の重量比である。
 したがって、本実施形態の電磁波遮材は、カーボンナノチューブの組成割合が相対的に少ないという点で、特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物とは異なる。そして、一般的に、電磁波遮材を構成するもののうち、カーボンナノチューブは高価であることから、相対的にカーボンナノチューブの混合量を少なくできるということは、本実施形態の電磁波遮材は、安価に実現できるということになる。
 以下、本発明の実施例の電磁波シールド材について、樹脂としてポリプロピレンを主成分としたもの、電磁波遮蔽物質1としてカーボンナノチューブ、電磁波遮蔽物質2としてカーボンブラックを用いて行った場合を例に説明する。また、実施例1~実施例4では、電磁波シールド材の厚さを約2mmとし、実施例5~実施例9では、電磁波シールド材の厚さを約6mmとした。
 このような厚さとした理由は、厚さが2mmのものについては、例えばADASのレーダーのように、電磁波シールド材を設置する個所の近傍に、金属などのように電磁波の遮蔽機能がある他のものが存在していて、かつ、電磁波シールド材の設置スペースが相対的に小さい場合に好適に用いることができる条件を想定しただけである。
 また、厚さが6mmのものについては、例えばADASのレーダーと当該レーダーを自動車に取り付けるために取付部とが一体となったレーダユニットのように、電磁波シールド材を設置する個所の近傍に、金属などのように電磁波の遮蔽機能がある他のものが存在しているが存在していて、かつ、電磁波シールド材の設置スペースが相対的に大きい場合に好適に用いることができる条件を想定しただけである。
 なお、レーダーでは、そのアンテナから放射されるバックローブが、その電子制御ユニット(ECU)に到達することを回避するために、電磁波シールド材を用いることが考えられる。そうすると、これに限定されるものではないが、一例をあげると、電磁波シールド材を電子制御ユニット自体に貼付することが考えられる。
 また、レーダユニットでは、その取付部に貼付する、又は、この一部或いは全部の材料とすることが考えられる。さらに、レーダーがホーン型アンテナを備える場合には、当該アンテナの外側に貼付することも考えられる。
 ここで、上記のように、電磁波シールド材の厚さを2mm、6mmとすることは、技術的観点からすると、それほど意味を持たないので、これらの厚さに限定されるものではない点には留意されたい。したがって、電磁波シールド材の用途及び設置環境に応じて要求される遮蔽性能を満たすものを、実施例1~実施例9の中から適宜選択して、信号処理ユニットに備えればよい。
 もっとも、実施例1~実施例9に示す製造条件は例示的であり、例えば、カーボンナノチューブの混合量が実施例1よりは多いが、実施例2よりも少ない条件で製造された電磁波シールド材が、信号処理ユニットへ採用できることが除外されるわけではない点についても留意されたい。
 (実施例1)
 樹脂:約88.80wt%
 電磁波遮蔽物質1:約1.200wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造した。
 なお、実施例1の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約2.00S/mであり、表面抵抗率は約250Ω/□であった。
 図1は、実施例1の電磁波シールド材の透過損失を示す図である。図1の横軸には周波数[GHz]を示し、図1の縦軸には透過損失[dB]を示している。図1に示すように、実施例1の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が20dB以上であることがわかる。
 図2は、実施例1の電磁波シールド材の反射損失を示す図である。図2の横軸には周波数[GHz]を示し、図2の縦軸には反射損失[dB]を示している。図2に示すように、実施例1の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が6dB以上であることがわかる。
 (実施例2)
 樹脂:約89.30wt%
 電磁波遮蔽物質1:約0.700wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造した。
 なお、実施例2の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約1.67S/mであり、表面抵抗率は約300Ω/□であった。
 図3は、実施例2の電磁波シールド材の透過損失を示す図である。図3の横軸には周波数[GHz]を示し、図3の縦軸には透過損失[dB]を示している。図3に示すように、実施例2の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が20dB以上であることがわかる。
 図4は、実施例2の電磁波シールド材の反射損失を示す図である。図4の横軸には周波数[GHz]を示し、図4の縦軸には反射損失[dB]を示している。図4に示すように、実施例2の電磁波シールド材は、60GHz~90GHzの周波数帯域全体に亘り、反射損失が6dB以上であることがわかる。
 (実施例3)
 樹脂:約89.40wt%
 電磁波遮蔽物質1:約0.600wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造した。
 なお、実施例3の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約1.25S/mであり、表面抵抗率は約400Ω/□であった。
 図5は、実施例3の電磁波シールド材の透過損失を示す図である。図5の横軸には周波数[GHz]を示し、図5の縦軸には透過損失[dB]を示している。図5に示すように、実施例3の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失がほぼ20dB以上であることがわかる。
 図6は、実施例3の電磁波シールド材の反射損失を示す図である。図6の横軸には周波数[GHz]を示し、図6の縦軸には反射損失[dB]を示している。図6に示すように、実施例3の電磁波シールド材は、60GHz~90GHzの周波数帯域全体に亘り、反射損失が6dB以上であることがわかる。
 (実施例4)
 樹脂:約89.37wt%
 電磁波遮蔽物質1:約0.630wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造した。
 なお、実施例4の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約1.00S/mであり、表面抵抗率は約500Ω/□であった。
 図7は、実施例4の電磁波シールド材の透過損失を示す図である。図7の横軸には周波数[GHz]を示し、図7の縦軸には透過損失[dB]を示している。図7に示すように、実施例4の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が15dB以上であることがわかる。
 図8は、実施例4の電磁波シールド材の反射損失を示す図である。図8の横軸には周波数[GHz]を示し、図8の縦軸には反射損失[dB]を示している。図8に示すように、実施例4の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が6dB以上であることがわかる。
 (実施例5)
 樹脂:約89.73wt%
 電磁波遮蔽物質1:約0.270wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
 なお、実施例5の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.67S/mであり、表面抵抗率は約250Ω/□であった。
 図9は、実施例5の電磁波シールド材の透過損失を示す図である。図9の横軸には周波数[GHz]を示し、図9の縦軸には透過損失[dB]を示している。図9に示すように、実施例5の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が30dB以上であり、とりわけ、約90GHz~110GHzの周波数帯域全体では、遮蔽性能が40dB以上であることがわかる。
 図10は、実施例5の電磁波シールド材の反射損失を示す図である。図10の横軸には周波数[GHz]を示し、図10の縦軸には反射損失[dB]を示している。図10に示すように、実施例5の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が8dB以上であることがわかる。
 (実施例6)
 樹脂:約89.76wt%
 電磁波遮蔽物質1:約0.240wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
 なお、実施例6の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.56S/mであり、表面抵抗率は約300Ω/□であった。
 図11は、実施例6の電磁波シールド材の透過損失を示す図である。図11の横軸には周波数[GHz]を示し、図11の縦軸には透過損失[dB]を示している。図11に示すように、実施例6の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が35dB以上であり、とりわけ、約90GHz~110GHzの周波数帯域全体では、遮蔽性能が40dB以上であることがわかる。
 図12は、実施例6の電磁波シールド材の反射損失を示す図である。図12の横軸には周波数[GHz]を示し、図12の縦軸には反射損失[dB]を示している。図12に示すように、実施例6の電磁波シールド材は、60GHz~90GHzの周波数帯域全体に亘り、反射損失が約7dB以上であることがわかる。
 (実施例7)
 樹脂:約89.775wt%
 電磁波遮蔽物質1:約0.225wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
 なお、実施例7の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.56S/mであり、表面抵抗率は約400Ω/□であった。
 図13は、実施例7の電磁波シールド材の透過損失を示す図である。図13の横軸には周波数[GHz]を示し、図13の縦軸には透過損失[dB]を示している。図13に示すように、実施例7の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が30dB以上であり、とりわけ、約80GHz~100GHzの周波数帯域全体では、遮蔽性能が35dB以上、約100GHz~110GHzの周波数帯域全体では、遮蔽性能が40dB以上、であることがわかる。
 図14は、実施例7の電磁波シールド材の反射損失を示す図である。図14の横軸には周波数[GHz]を示し、図14の縦軸には反射損失[dB]を示している。図14に示すように、実施例7の電磁波シールド材は、60GHz~90GHzの周波数帯域全体に亘り、反射損失が8dB以上であることがわかる。
 (実施例8)
 樹脂:約89.91wt%
 電磁波遮蔽物質1:約0.09wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
 なお、実施例8の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.33S/mであり、表面抵抗率は約500Ω/□であった。
 図15は、実施例8の電磁波シールド材の透過損失を示す図である。図15の横軸には周波数[GHz]を示し、図15の縦軸には透過損失[dB]を示している。図15に示すように、実施例8の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が30dB以上であることがわかる。
 図16は、実施例8の電磁波シールド材の反射損失を示す図である。図16の横軸には周波数[GHz]を示し、図16の縦軸には反射損失[dB]を示している。図16に示すように、実施例8の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が8dB以上であることがわかる。
 (実施例9)
 樹脂:約89.928wt%
 電磁波遮蔽物質1:約0.072wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
 なお、実施例9の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.33S/mであり、表面抵抗率は約750Ω/□であった。
 図17は、実施例9の電磁波シールド材の透過損失を示す図である。図17の横軸には周波数[GHz]を示し、図17の縦軸には透過損失[dB]を示している。図17に示すように、実施例9の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が30dB以上であることがわかる。
 図18は、実施例9の電磁波シールド材の反射損失を示す図である。図18の横軸には周波数[GHz]を示し、図18の縦軸には反射損失[dB]を示している。図18に示すように、実施例9の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が7dB以上であることがわかる。
 (比較例1)
 樹脂:約89.5wt%
 電磁波遮蔽物質1:約0.5wt%
 電磁波遮蔽物質2:約10.00wt%
 を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造したものは、95GHz未満の透過損失が15dBを下回ったので、所要の遮蔽性能が得られないことが分かった。
 実施例1~9の電磁波シールド材の各々について、電磁波の反射損失は自由空間法によって、透過損失はASTM D4935に基づいて測定した。具体的には、反射損失は実施例1~9の電磁波シールド材に対して75GHzから110GHzの電磁波を照射した後、試片の表面から反射されて出る信号強さと照射時の信号強さとの差から求めた。また、透過損失は、実施例1~9の電磁波シールド材に対して75GHzから110GHzの電磁波を照射した後、試片を通過して出る信号強さと照射時の信号強さとの差から求めた。
 実施例1~9の電磁波シールド材における電磁波の反射損失及び透過損失は、いずれも、反射損失が6dB以上であって、かつ、透過損失が15dB以上であることがわかる。加えて、実施例1~9の電磁波シールド材は、測定した周波数帯域全般での反射損失がフラットな傾向にあるため、電子回路設計がしやすいという利点もある。
 参考のため、ランダムに選定した実施例2,3,6,7の電磁波シールド材については、周波数帯域の下限を60GHzとして反射損失を計測してみた。その結果、いずれの電磁波シールド材については、反射損失が6dBであることを確認した。
 本実施例では、電磁波シールド材を自動車用近接レーダーに適用する例について説明したが、電磁波シールド材は、自動車用近接レーダー以外にも、73GHzの周波数帯域を使用する携帯電話機・スマートフォン・PDA・タブレット端末・パーソナルコンピュータなどに付帯する通信機器、76GHz~83GHzの各種近接レーダーなどにも適用することができる。これらの場合にも、電子制御ユニット或いはこれに相当する部材自体又はその周辺に電磁波シールド材を貼付又は配置すればよい。
 

Claims (8)

  1.  主成分となる樹脂と、
     電磁波の反射損失を50%以上低下させる分量で前記樹脂に含有される電磁波遮蔽物質1と、
     電磁波の透過損失を80%以上低下させる分量で前記樹脂に含有される電磁波遮蔽物質2と、
     を含む、電磁波シールド材。
  2.  前記樹脂は熱可塑性樹脂であり、
     前記各電磁波遮蔽物質はナノカーボンである、請求項1記載の電磁波シールド材。
  3.  前記樹脂は、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリアルキレンテレフタレート樹脂、アクリル系樹脂、ポリスルホン樹脂、ポリフェニレンスルファイド、ポリオレフィン、ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリフェニレンオキシド樹脂、ポリブチレン、液晶重合体樹脂のいずれか又はこれらのうちいくつかの任意の組合せであり、
     前記各電磁波遮蔽物質は、カーボンナノチューブ、カーボンブラック、カーボンナノコイル、カーボンナノファイバー、グラフェン、フラーレンのうち、電磁波の反射損失の低下に寄与する前記電磁波遮蔽物質1と、電磁波の透過損失の低下に寄与する前記電磁波遮蔽物質2との任意の組合せである、請求項1記載の電磁波シールド材。
  4.  前記各電磁波遮蔽物質を前記樹脂に対して分散させる分散剤とを含む、請求項1記載の電磁波シールド材。
  5.  前記分散剤は天然・半合成・合成ワックスのいずれかである、請求項4記載の電磁波シールド材。
  6.  前記分散剤は、パラフィンワックス、モンタンワックス、アマイドワックス、エチレン-ビス-ステアラミド、脂肪酸金属塩、シリコーン、ポリオレフィンワックスなどのいずれか又はこれらのうちいくつかの任意の組合せである、請求項4記載の電磁波シールド材。
  7.  請求項1~6のいずれか記載の電磁波シールド材を備える信号処理ユニット。
  8.  前記電磁波シールド材を有する自動車用近接レーダー、携帯電話機・スマートフォン・PDA・タブレット端末・パーソナルコンピュータを含む通信機器、各種近接レーダーである、請求項7記載の信号処理ユニット。
     
PCT/JP2019/022505 2018-06-06 2019-06-06 電磁波シールド材及びこれを備える信号処理ユニット WO2019235561A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019546052A JP7478374B2 (ja) 2018-06-06 2019-06-06 電磁波シールド材及びこれを備える信号処理ユニット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018109081 2018-06-06
JP2018-109081 2018-06-06

Publications (1)

Publication Number Publication Date
WO2019235561A1 true WO2019235561A1 (ja) 2019-12-12

Family

ID=68770454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022505 WO2019235561A1 (ja) 2018-06-06 2019-06-06 電磁波シールド材及びこれを備える信号処理ユニット

Country Status (2)

Country Link
JP (1) JP7478374B2 (ja)
WO (1) WO2019235561A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210013A1 (ja) * 2021-04-02 2022-10-06 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形体
WO2022230778A1 (ja) * 2021-04-27 2022-11-03 東洋インキScホールディングス株式会社 電磁波吸収体用熱可塑性樹脂組成物、及び成形体
JP2023034785A (ja) * 2021-08-31 2023-03-13 東洋インキScホールディングス株式会社 電気電子包装材用熱可塑性樹脂組成物及び成形体

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217751A (ja) * 1983-05-25 1984-12-07 Polyplastics Co ポリアセタ−ル樹脂組成物
JP2002374091A (ja) * 2001-06-14 2002-12-26 Showa Electric Wire & Cable Co Ltd 電波吸収材料およびそれを用いた電波吸収体
JP2004296758A (ja) * 2003-03-27 2004-10-21 Takechi Kogyo Gomu Co Ltd ミリ波電波吸収体
JP2007074662A (ja) * 2005-09-09 2007-03-22 Hitachi Ltd ミリ波レーダ装置
WO2009031409A1 (ja) * 2007-09-03 2009-03-12 Public University Corporation Osaka Prefecture University 電磁波吸収シート
JP2010209162A (ja) * 2009-03-09 2010-09-24 Toyo Ink Mfg Co Ltd カーボンナノチューブ分散体
US20110155965A1 (en) * 2009-12-30 2011-06-30 Cheil Industries Inc. Polycarbonate Resin Composition Having Excellent Wear Resistance and Electric Conductivity and Method of Preparing the Same
WO2014192470A1 (ja) * 2013-05-30 2014-12-04 ダイセルポリマー株式会社 ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物
WO2015064708A1 (ja) * 2013-11-01 2015-05-07 公立大学法人大阪府立大学 導電性シート、その製造方法、カーボン複合ペースト、カーボン複合フィラー、導電性樹脂材料、および導電性ゴム材料
JP2016504471A (ja) * 2013-12-06 2016-02-12 エルジー・ケム・リミテッド レーダーカバー用熱可塑性樹脂組成物
JP2017179371A (ja) * 2016-03-30 2017-10-05 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. 電気伝導性樹脂組成物及びその成型品
WO2018066574A1 (ja) * 2016-10-04 2018-04-12 日本ゼオン株式会社 電磁波シールド構造体およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272530B2 (ja) * 2007-06-13 2013-08-28 住友化学株式会社 発泡用樹脂組成物及び発泡成形体
JP5205947B2 (ja) 2007-12-12 2013-06-05 スターライト工業株式会社 樹脂炭素複合材料
EP2360206A1 (de) 2010-02-13 2011-08-24 Bayer MaterialScience AG Verwendung von Mischungen zur Herstellung schlagzähmodifizierter thermoplastischer Zusammensetzungen
JP6905834B2 (ja) 2017-02-21 2021-07-21 株式会社アルバック 電磁波吸収体及び電磁波吸収体の製造方法
JP7144185B2 (ja) 2018-05-10 2022-09-29 株式会社アルバック 電磁波吸収体及び電磁波吸収体の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217751A (ja) * 1983-05-25 1984-12-07 Polyplastics Co ポリアセタ−ル樹脂組成物
JP2002374091A (ja) * 2001-06-14 2002-12-26 Showa Electric Wire & Cable Co Ltd 電波吸収材料およびそれを用いた電波吸収体
JP2004296758A (ja) * 2003-03-27 2004-10-21 Takechi Kogyo Gomu Co Ltd ミリ波電波吸収体
JP2007074662A (ja) * 2005-09-09 2007-03-22 Hitachi Ltd ミリ波レーダ装置
WO2009031409A1 (ja) * 2007-09-03 2009-03-12 Public University Corporation Osaka Prefecture University 電磁波吸収シート
JP2010209162A (ja) * 2009-03-09 2010-09-24 Toyo Ink Mfg Co Ltd カーボンナノチューブ分散体
US20110155965A1 (en) * 2009-12-30 2011-06-30 Cheil Industries Inc. Polycarbonate Resin Composition Having Excellent Wear Resistance and Electric Conductivity and Method of Preparing the Same
WO2014192470A1 (ja) * 2013-05-30 2014-12-04 ダイセルポリマー株式会社 ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物
WO2015064708A1 (ja) * 2013-11-01 2015-05-07 公立大学法人大阪府立大学 導電性シート、その製造方法、カーボン複合ペースト、カーボン複合フィラー、導電性樹脂材料、および導電性ゴム材料
JP2016504471A (ja) * 2013-12-06 2016-02-12 エルジー・ケム・リミテッド レーダーカバー用熱可塑性樹脂組成物
JP2017179371A (ja) * 2016-03-30 2017-10-05 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. 電気伝導性樹脂組成物及びその成型品
WO2018066574A1 (ja) * 2016-10-04 2018-04-12 日本ゼオン株式会社 電磁波シールド構造体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG ET AL.: "Complementary Effects of Multi walled Carbon Nanotubes and Conductive Carbon Black on Polyamide 6", JOURNAL OF POLYMER SCIENCE PART B: POLYMER PHYSICS, vol. 48, no. 11, 1 June 2010 (2010-06-01), pages 1203 - 1212, XP055663081 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210013A1 (ja) * 2021-04-02 2022-10-06 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形体
WO2022230778A1 (ja) * 2021-04-27 2022-11-03 東洋インキScホールディングス株式会社 電磁波吸収体用熱可塑性樹脂組成物、及び成形体
JP2023034785A (ja) * 2021-08-31 2023-03-13 東洋インキScホールディングス株式会社 電気電子包装材用熱可塑性樹脂組成物及び成形体
JP7274083B2 (ja) 2021-08-31 2023-05-16 東洋インキScホールディングス株式会社 電気電子包装材用熱可塑性樹脂組成物及び成形体

Also Published As

Publication number Publication date
JPWO2019235561A1 (ja) 2021-04-30
JP7478374B2 (ja) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2019235561A1 (ja) 電磁波シールド材及びこれを備える信号処理ユニット
Geetha et al. EMI shielding: Methods and materials—A review
TWI773656B (zh) 電磁波吸收體
JP4699388B2 (ja) 誘電性素材、アンテナ装置、携帯電話機及び電磁波遮蔽体
JP6512677B2 (ja) 樹脂成形体
JP2008021990A (ja) 電磁干渉抑制体および電磁障害抑制方法
US6335483B1 (en) Noise-suppressing component
JP2019176143A (ja) 樹脂成形体
JP5424606B2 (ja) ノイズ抑制体とその製造方法
JPWO2019235561A5 (ja)
JP5720358B2 (ja) 電波抑制シートとこのシートを具備した電子機器及び電波抑制用部品
JP2951487B2 (ja) 電磁波遮蔽方法
JP2023006918A (ja) 筐体用成形体、それを形成するために用いられる樹脂組成物、およびマスターバッチ
CN107880554A (zh) 电磁屏蔽用片材及其制造方法
CN112237057B (zh) 电磁波吸收体
JPH1027986A (ja) 電波吸収体
KR102578285B1 (ko) 전자파 차폐 복합소재 및 이의 제조방법
Kurt et al. Rheological, mechanical, and X‐band microwave absorption properties of nickel and nickel‐coated carbon‐filled cyclo‐olefin copolymer composites
KR100850007B1 (ko) 전자파를 차폐하는 조성물, 이의 제조방법 및 전자파차폐기능을 갖는 카메라 하우징
JP2008244358A (ja) ノイズ抑制シートおよび塗装物品
Sahu et al. Polymer composites for flexible electromagnetic shields
JP2007201113A (ja) 高強度電波吸収体
JP2004140335A (ja) 電磁波吸収体
JPH107867A (ja) 電磁波吸収性樹脂組成物
JP2008270714A (ja) 電磁波遮蔽シート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019546052

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814977

Country of ref document: EP

Kind code of ref document: A1