WO2019235549A1 - 振動低減方法、モータ、ニュートラライザおよび電動パワーステアリング装置 - Google Patents

振動低減方法、モータ、ニュートラライザおよび電動パワーステアリング装置 Download PDF

Info

Publication number
WO2019235549A1
WO2019235549A1 PCT/JP2019/022426 JP2019022426W WO2019235549A1 WO 2019235549 A1 WO2019235549 A1 WO 2019235549A1 JP 2019022426 W JP2019022426 W JP 2019022426W WO 2019235549 A1 WO2019235549 A1 WO 2019235549A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
neutralizer
vibration
frequency
electric power
Prior art date
Application number
PCT/JP2019/022426
Other languages
English (en)
French (fr)
Inventor
厚夫 森
日冴 和泉谷
雄一 松村
Original Assignee
日本電産株式会社
国立大学法人岐阜大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社, 国立大学法人岐阜大学 filed Critical 日本電産株式会社
Priority to JP2020523162A priority Critical patent/JPWO2019235549A1/ja
Publication of WO2019235549A1 publication Critical patent/WO2019235549A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations

Definitions

  • the present disclosure relates to a technique for reducing vibration generated in a device to which an electric motor is attached.
  • EPS electric power steering system
  • the wave excited by the excitation force of an electric motor (hereinafter sometimes referred to as a motor) that is the power source of the EPS propagates through the vehicle body and becomes solid sound as noise in the driver's ear in the car. You may hear it.
  • a motor an electric motor
  • the frequency of such noise tends to increase.
  • Non-Patent Document 1 proposes a method of analyzing the coupled relationship of vibrations of two divided systems.
  • the body of an automobile is a high-mode density structure, and its vibration characteristics vary greatly due to its low robustness, but it can be applied to any body simply by changing the structure to its own motor. There is a difficulty that effective measures are required.
  • the motor is rigidly coupled to the steering unit, the motor and the vehicle body are in a strongly coupled state, and it is generally difficult to efficiently examine structural changes appropriate for vibration reduction.
  • Measures for motors are required to reduce the vibration and noise of the entire system for any vehicle having various vibration characteristics.
  • a motor attached to an exemplary electric power steering apparatus has a stator, a rotor rotatable relative to the stator, and a cylindrical shape extending in a rotation axis direction of the rotor.
  • a housing that houses the rotor therein; and a neutralizer that is provided in the housing and extends in a radial direction of the housing from a side surface of the housing.
  • the motor has a predetermined frequency according to the rotation of the rotor. Vibration is generated, the neutralizer has a predetermined natural frequency, and a system from a vibration source of the motor to a coupling portion between the motor and the electric power steering apparatus is coupled with the predetermined natural frequency.
  • a transfer function having a characteristic of suppressing vibration of the part.
  • FIG. 1 is a free body diagram of an active part and a passive part according to an exemplary embodiment.
  • FIG. 2 is a diagram illustrating frequency response functions of an active part and a passive part according to an exemplary embodiment.
  • FIG. 3 is a diagram illustrating the concept of a neutralizer according to an exemplary embodiment.
  • FIG. 4 is a diagram illustrating a system used in a simulation according to an exemplary embodiment.
  • FIG. 5 is a diagram illustrating a system used in a simulation according to an exemplary embodiment.
  • FIG. 6 is a diagram illustrating a cross-sectional shape of a beam according to an exemplary embodiment.
  • FIG. 7 is a diagram illustrating a cross-sectional shape of a leaf spring according to an exemplary embodiment.
  • FIG. 1 is a free body diagram of an active part and a passive part according to an exemplary embodiment.
  • FIG. 2 is a diagram illustrating frequency response functions of an active part and a passive part according to an exemplary embodiment.
  • FIG. 3 is
  • FIG. 8 is a diagram illustrating compliance in the x direction at “node: 4” when the heel “node: 1” according to the exemplary embodiment is vibrated in the x direction.
  • FIG. 9 is a diagram illustrating a result of calculating a reflection coefficient with respect to a longitudinal wave of a neutralizer attached to an active part according to an exemplary embodiment.
  • FIG. 10 is a diagram illustrating a result of calculating a transmission coefficient for a longitudinal wave of a neutralizer attached to an active part according to an exemplary embodiment.
  • FIG. 11 is a perspective view illustrating a motor provided with a neutralizer according to an exemplary embodiment.
  • FIG. 12 is a perspective view illustrating a neutralizer according to an exemplary embodiment.
  • FIG. 13 is a cross-sectional view of a motor according to an exemplary embodiment.
  • FIG. 14 is a diagram illustrating the relationship between the sound pressure and the frequency of noise measured at the position of the driver's ear in the automobile according to the exemplary embodiment.
  • FIG. 15 is a diagram illustrating the relationship between the sound pressure and the frequency of noise measured at the position of the driver's ear in the automobile according to the exemplary embodiment.
  • FIG. 16 is a diagram illustrating the relationship between the magnitude and frequency of vibration in the rotation direction of the motor according to the exemplary embodiment.
  • FIG. 17 is a diagram illustrating the relationship between the magnitude of vibration and the frequency in the rotation direction of the motor according to the exemplary embodiment.
  • FIG. 18 is a diagram schematically illustrating an electric power steering apparatus according to an exemplary embodiment.
  • a neutralizer is used to reduce vibration transmitted from the motor to the vehicle body.
  • the neutralizer generates a reflected wave whose phase is shifted by 180 degrees due to substantial total reflection with respect to vibration (input wave) serving as a noise source, and superimposes the reflected wave on the input wave. Thereby, vibration can be canceled.
  • a path until vibration (input) generated from the motor is generated as noise (output) in the vehicle body is expressed using a transfer function.
  • a motor that can be changed as a motor maker is identified as an active part (Active Part), and a portion other than the motor of the vehicle that cannot be changed as a motor maker is identified as a passive part (Passive Part).
  • Active Part active part
  • Passive Part passive part
  • the vibration of the whole system consisting of the active part and the passive part is reduced by changing the structure of the active part only.
  • Non-Patent Document 1 discloses a method of analyzing a bifurcated vibrational coupling relationship using a kernel dynamic stiffness matrix as an index based on a transfer function synthesis method.
  • FIG. 1 is a free body diagram of an active part and a passive part according to the present embodiment.
  • the degree of freedom of vibration and the degree of freedom of response evaluation in the entire system are indicated by “1” and “4” on the left side of FIG.
  • the right side of FIG. 1 shows a free body diagram in which the entire system is divided into two halves.
  • the degree of freedom in excitation is on the active part side (motor), and the degree of freedom in response evaluation is on the passive part side (vehicle body).
  • the degrees of freedom of coupling on the active part side and the passive part side are indicated by “2” and “3”, respectively.
  • the basic formula (1) of the transfer function synthesis method in this division is as follows.
  • F 1 A is a force applied to the system.
  • X 4 AB is a displacement with a response evaluation degree of freedom 4 in the passive part B when the force F 1 A is applied to the excitation degree of freedom 1 in the active part A, and is expressed in the frequency domain.
  • H is compliance (frequency response function), the number on the left side of the subscript represents the number of degrees of freedom on the response side, and the number on the right side represents the number of degrees of freedom on the excitation side.
  • a and B on the right shoulder indicate that the quantities are related to the divided systems A and B. When AB is present, it indicates that the quantities are related to the entire system including the divided systems A and B.
  • H 22 A is an excitation point transfer function of an attachment part of the motor to the automobile.
  • H 21 A is a transfer function from the vibration source of the motor to the coupling portion between the motor and the automobile.
  • H 22 A + H 33 B ⁇ 1 in the equation (1) is a kernel dynamic stiffness.
  • H 22 A + H 33 B is called kernel compliance.
  • the kernel dynamic stiffness is a dynamic stiffness matrix of the connecting part of the binary system, and includes the characteristics of the entire system.
  • the kernel dynamic stiffness is physically an amount considered as an amplification factor when the displacement of the coupling portion is converted into a transmission force which is an internal force of the coupling portion. It can be seen that the entire system resonates when the amplification factor is infinite. That is, assuming that the degree of freedom of the coupling portion is N, the entire system generally resonates when the condition of the following expression (2) is satisfied.
  • the vibration of the entire system can be reduced by taking the vibration countermeasure only on the active part side in the above-mentioned bisection system by utilizing the property of the kernel compliance.
  • FIG. 2 shows the frequency response functions of the active part and the passive part.
  • FIG. 2 shows the relationship of the transfer function as the relationship between the actual motor (active part) and the automobile (passive part).
  • the motor (active part) is very small compared to an automobile (passive part) and has a rigid structure compared to the vehicle body. Therefore, in a band of several hundred Hz where vibration / noise of the motor becomes a problem, the compliance of the active part is governed by the rigid body mode and there is no vibration mode.
  • the coupling portion is a multi-degree-of-freedom coupling
  • the dominant degree of freedom of the transmission force involved in the resonance of the entire system is a small number of degrees of freedom. For this reason, even if it is designed that about one to two degrees of freedom are dominant, a countermeasure against resonance is possible.
  • Equation (1) can be expressed as a scalar, and the following Equation (3) is obtained.
  • the kernel dynamic stiffness which is the inverse of kernel compliance, becomes infinite, and the entire system resonates in the same state as when a coupled spring having an infinite spring constant is displaced.
  • H 33 B and H 43 B actually correspond to the parts of the automobile other than the motor, and therefore it is difficult to change from the standpoint of the motor manufacturer.
  • H 22 A excitation point transfer function of the motor mounting part
  • H 21 A transfer function from the motor vibration source to the motor / vehicle connection
  • the transfer function H 21 A ( ⁇ t ) in the system from the motor vibration source to the coupling portion between the motor and the vehicle body is provided with a characteristic that suppresses the vibration of the coupling portion at the target frequency.
  • a neutralizer Provides a neutralizer.
  • Virtual ground means zero frequency response.
  • each of the mass points and the springs may be two or more.
  • the elements that serve as vibration sources in the motor are, for example, a rotor, a stator, a bearing and the like.
  • motor vibration sources include electromagnetic excitation force, mechanical vibration of a bearing portion, and the like, and it is difficult to specify the position of the excitation degree of freedom 1 in FIG.
  • a neutralizer is installed between the degrees of freedom and the coupling degrees of freedom. A method of theoretically setting the value of the frequency response function to zero by completely reflecting the wave of the target frequency generated with the degree of freedom of excitation using this neutralizer will be described.
  • FIG. 3 is a diagram showing the concept of the neutralizer 40.
  • the theory and numerical examples will be shown on the assumption that the transmission force in the vertical direction entering the vehicle body from the motor 10 is dominant. Since the longitudinal wave and the torsional wave can be expressed by the same form of wave equation, the method of this embodiment can be similarly applied to the case where the torsional moment about the rotation axis of the motor becomes the dominant transmission force. The method of the present embodiment can also be applied when the transmission force in the direction related to the bending wave is dominant.
  • the force exerted by the spring on the motor 10 as the neutralizer 40 moves can be calculated in the same manner as a two-degree-of-freedom dynamic vibration absorber.
  • the relationship between the amplitude F N of the spring force and the displacement amplitude U of the neutralizer mounting freedom shown in FIG. 3 can be expressed by Equation (6) using the mode equivalent rigidity ⁇ .
  • the displacement and internal force at the position x on the left side of the neutralizer mounting section are defined as UL (x) and FL (x).
  • the displacement and internal force at the position x on the right side of the neutralizer mounting section are defined as U R (x) and F R (x).
  • the medium is unchanged at the left and right of the position x.
  • k is the wave number of this medium
  • E is the Young's modulus of the neutralizer
  • S is the cross-sectional area of the beam of the neutralizer, and corresponds to the cross-sectional area of the path through which vibration energy is transmitted.
  • a the amplitude of the forward wave and the backward wave in the left x L, and b L
  • the amplitude of the forward wave and backward wave at the right of position x was a R, b R, respectively.
  • Expressions (6) to (10) are introduced into these expressions (11) and (12), and the relationship between the wave amplitudes is arranged in the form of a scattering matrix shown in expression (13).
  • ⁇ / ⁇ N.
  • is the angular frequency of the harmonic excitation force
  • ⁇ N is the natural angular frequency when the neutralizer alone is fixed to the ground.
  • is the ratio of ⁇ N and ⁇ .
  • the reflection coefficients r LR and r RL are the amplitude ratios “b L / a L ” and “b R / a R ” between the forward wave (+ x direction) and the bounced wave (backward wave ( ⁇ x direction)).
  • the wave generated by the excitation is free from the coupling part.
  • the frequency response function H 21 A between two points formed by the superposition of waves cannot reach 2 degrees, and theoretically becomes 0 at this frequency.
  • the frequency response function H 21 A can be freely set by the motor manufacturer, and the value of H 21 A can be reduced at a desired frequency.
  • the neutralizer may be installed at a position between the excitation degree of freedom 1 and the coupling part degree of freedom 2. For this reason, the method of this embodiment is very useful for a motor manufacturer who must install a motor in a limited space of various systems.
  • the simulation target is a longitudinal wave (longitudinal vibration) of a beam structure.
  • vibration generated by the motor is transmitted to the vehicle, and the vibration is transmitted to a panel member or the like in the automobile, where acoustic radiation is generated.
  • the acoustic radiation is not considered here.
  • the active part mimics a motor attached to an automobile EPS.
  • the passive part imitates parts other than motors of automobiles.
  • the cross-sectional shape of the beam is a square with a side of 0.01 m as shown in FIG.
  • the length of the active part of the beam is 0.05 m, and the length of the passive part is 1.0 m.
  • a neutralizer was installed in the active part.
  • the vibration of the system shown in FIGS. 4 and 5 was obtained by finite element analysis.
  • the active part was assumed to be an aluminum material, density 2680 kg / m 3 , Young's modulus 7.60 ⁇ 10 10 Pa, Poisson's ratio 0.33.
  • the mass of the active part alone was 0.0134 kg.
  • the passive part was a mild steel material, and had a density of 7930 kg / m 3 , a Young's modulus of 1.97 ⁇ 10 11 Pa, and a Poisson's ratio of 0.30.
  • the mass of the passive part alone was 0.793 kg.
  • the degree of freedom of vibration was given in the positive direction of x at the position marked “Node: 1” in FIG.
  • the degree of freedom in response evaluation was set to the positive direction of x at the position indicated as “node: 4” in FIG.
  • a neutralizer was installed at the position of “node: 2” of the active part.
  • the neutralizer has, for example, a spring-mass structure. As the neutralizer, two leaf springs that are symmetrically deformed in the x direction across the beam are installed, and a concentrated mass is coupled to each of the tips of the leaf springs.
  • Each of the two leaf springs was a phosphor bronze plate having a thickness of 0.002 m and a width of 0.01 m as shown in FIG.
  • the material properties of phosphor bronze were a density of 8800 kg / m 3 , a Young's modulus of 1.10 ⁇ 10 11 Pa, and a Poisson's ratio of 0.33.
  • the concentrated mass at the tips of the two leaf springs was 0.467 g for both.
  • Each neutralizer has a mass of 2.23 g.
  • the natural frequency of the neutralizer is assumed to be the same as the vibration frequency (target frequency) to be reduced in the EPS to which the motor is attached.
  • the natural frequency of the neutralizer is the same as the natural frequency of the steering shaft included in the EPS.
  • the natural frequency of the steering shaft was set to 2450 Hz.
  • FIG. 8 shows compliance in the x direction at “node: 4” when “node: 1” is vibrated in the x direction.
  • the horizontal axis represents frequency, and the vertical axis represents phase and magnitude.
  • the broken line indicates the compliance when the neutralizer is not mounted, and the solid line indicates the compliance when the neutralizer is mounted. It can be seen that the value of compliance is greatly reduced at the target frequency of 2450 Hz when the neutralizer is mounted compared to when the neutralizer is not mounted.
  • FIG. 9 shows the result of calculating the reflection coefficient for the longitudinal wave of the neutralizer attached to the active part according to the equation (14).
  • FIG. 10 shows the result of calculating the transmission coefficient for the longitudinal wave of the neutralizer attached to the active part according to the equation (15). 9 and 10, the horizontal axis represents frequency, and the vertical axis represents phase and magnitude.
  • the reflection coefficient at the target frequency of 2450 Hz is 1 and the transmission coefficient is 0, and the wave at 2450 Hz is blocked while propagating from the excitation degree of freedom to the coupling degree of freedom by the neutralizer attached to the active part.
  • You can see (virtual grounding). That is, theoretically, H 21 A 0 at a target frequency of 2450 Hz.
  • the neutralizer in the motor, it is possible to reduce the vibration of the target frequency at the joint between the motor and the EPS. Thereby, the vibration of the target frequency in the vehicle (response evaluation degree of freedom 4) can be reduced.
  • FIG. 11 is a perspective view showing the motor 10 provided with the neutralizer 40.
  • FIG. 12 is an enlarged perspective view showing the neutralizer 40 provided in the motor 10.
  • FIG. 13 is a cross-sectional view of the motor 10. In order to easily explain the inside of the motor 10, the neutralizer 40 is not shown in FIG.
  • a direction parallel to the central axis J1 of the motor 10 is referred to as an “axial direction”.
  • a direction orthogonal to the central axis J1 of the motor 10 is referred to as a “radial direction”.
  • a direction along an arc centered on the central axis J1 of the motor 10 is referred to as a “circumferential direction”.
  • the shape and positional relationship of each member will be described with the axial direction as the vertical direction. However, this is defined as upper and lower for convenience of explanation, and does not limit the direction when the motor 10 is used.
  • vibration and noise in the vehicle body such as an automobile caused by the EPS motor 10 are correlated with vibration in the rotational direction of the motor 10 and torque ripple. Therefore, in this embodiment, vibration and noise in the vehicle body are suppressed by suppressing vibration in the rotation direction of the motor 10.
  • the motor 10 in this embodiment is a so-called inner rotor type motor.
  • the motor 10 includes a stator 11, a rotor 20, and a housing 30.
  • the housing 30 is a cylindrical member extending in the axial direction.
  • the housing 30 includes, for example, a metal material such as aluminum (including an aluminum alloy) or SUS.
  • the housing 30 accommodates the rotor 20 and the stator 11 therein.
  • the housing 30 includes a cylindrical portion 36, a bottom portion 34, and a lid portion 32.
  • the cylinder part 36 is a cylindrical member extending in the axial direction.
  • the bottom portion 34 is disposed on the lower side in the axial direction of the cylindrical portion 36 and covers the opening on the lower side in the axial direction of the cylindrical portion 36.
  • a lower bearing 37 is attached to the bottom 34.
  • a plurality of bottom flange portions 342 extending radially outward are disposed on the outer surface of the bottom portion 34.
  • the bottom flange portion 342 is formed with at least one bottom through-hole 344 penetrating in the axial direction.
  • the lid portion 32 is arranged on the upper side in the axial direction of the cylindrical portion 36 and covers the opening on the upper side in the axial direction of the cylindrical portion 36.
  • An upper bearing 38 is attached to the lid portion 32.
  • the upper bearing 38 and the lower bearing 37 rotatably support the rotor 20.
  • a plurality of lid flange portions 322 extending outward in the radial direction are provided on the outer surface of the lid portion 32.
  • the lid flange portion 322 is formed with at least one lid portion through hole 324 penetrating in the axial direction. Note that either the bottom 34 or the lid 32 may be formed integrally with the cylindrical portion 36.
  • the stator 11 includes a stator core 12, an insulator 13, and a coil 14.
  • the stator core 12 is, for example, a laminated core in which a plurality of electromagnetic steel plates are laminated in the axial direction.
  • the stator core 12 may include a pressure-dividing magnetic core.
  • Stator core 12 has an annular core back and a plurality of teeth. The plurality of teeth extend radially inward from the core back and are arranged at intervals in the circumferential direction.
  • the insulator 13 is an insulator that covers the surface of the stator core 12.
  • the rotor 20 is disposed on the radially inner side of the stator 11 and faces the teeth in the radial direction.
  • the rotor 20 includes a shaft 21, a yoke 22, a rotor magnet 23, and a cover member 24.
  • the shaft 21 extends in the axial direction about the central axis J1.
  • the shaft 21 may be solid or hollow.
  • the yoke 22 is substantially cylindrical and is fixed to the shaft 21.
  • the yoke 22 is formed, for example, by laminating thin magnetic steel plates.
  • the rotor magnet 23 is disposed inside the stator 11 and is fixed to the outer surface of the yoke 22 with, for example, an adhesive.
  • the cover member 24 covers the outside of the rotor magnet 23.
  • a neutralizer 40 is attached to the outer surface of the cylindrical portion 36 of the housing 30.
  • the neutralizer 40 has a pair of base portions 41 and a first plate portion 42.
  • the base portion 41 is a member extending in the axial direction. In the circumferential direction, the position of the base portion 41 is different from the position of the lid flange portion 322 and the position of the bottom flange portion 342. When viewed from the axial direction, the cross section of the base portion 41 is substantially L-shaped.
  • the pair of base portions 41 are disposed to face each other in the circumferential direction.
  • One end of each base part 41 is fixed to the outer surface of the cylindrical part 36 by, for example, welding, adhesion, caulking, or the like. Note that the base portion 41 may be formed integrally with the cylindrical portion 36 by cutting or casting.
  • the first plate part 42 is a substantially rectangular member.
  • the first plate portion 42 extends outward in the radial direction.
  • One end on the radially inner side of the first plate portion 42 is sandwiched between the other ends of the pair of base portions 41.
  • the first plate portion 42 and the base portion 41 are fixed by screwing using a plurality of screws 46.
  • a pair of second plate portions 44 are disposed at the radially outer end of the first plate portion 42.
  • the second plate portion 44 is substantially rectangular.
  • the second plate portion 44 includes, for example, a metal member (aluminum, aluminum alloy, copper, copper alloy, iron, iron alloy, etc.).
  • the radially outer end of the first plate portion 42 is sandwiched between a pair of second plate portions 44.
  • the first plate portion 42 and the second plate portion 44 are fixed by screwing using a plurality of screws 46.
  • the circumferentially one side surface and the other side surface at the radially outer end of the first plate portion 42 are partially covered by the second plate portion 44, respectively. Thereby, the edge part of the radial direction outer side in the 1st board part 42 can be made heavier than another part.
  • the 2nd board part 44 and the 1st board part 42 may be integrally formed. That is, the thickness of the end portion on the radially outer side of the first plate portion 42 may be thicker than other portions on the radially inner side. In this case, the radially outer end of the first plate portion 42 protrudes to at least one of the circumferential one side and the other side.
  • the second plate portion 44 does not necessarily have to be a pair, and may be disposed only on one of the circumferentially one side and the other side of the radially outer end of the first plate portion 42.
  • the second plate portion 44 may be fixed to the first plate portion 42 by other methods such as welding, adhesion, and caulking in addition to screwing.
  • the material of the second plate portion 44 may be the same as the material of the first plate portion 42 or may be different from each other.
  • the material of the second plate portion 44 may be other than a metal material, for example, an elastic member such as rubber.
  • the axial length on one end side of the base portion 41 is the same as the axial length on the other side.
  • the axial length of the other end side of the base portion 41 is the same as the axial length of the first plate portion 42.
  • the length of the first plate portion 42 in the axial direction is the same as the length of the second plate portion 44 in the axial direction.
  • the radial length on the other end side of the base portion 41 is shorter than the radial length of the first plate portion 42.
  • the length of the second plate portion 44 in the radial direction is shorter than the length of the first plate portion 42 in the radial direction.
  • the neutralizer 40 forms a so-called cantilever beam.
  • the neutralizer 40 has a fixed end at a side fixed to the housing 30 (that is, the cylindrical portion 36), and a radially outer end of the first plate portion 42 as a free end.
  • the neutralizer 40 constitutes a leaf spring. Therefore, the radially outer end of the first plate portion 42 can vibrate in the circumferential direction with the radially inner end of the first plate portion 42 as a base point.
  • the 2nd board part 44 is attached to the edge part (namely, free end) of the radial direction outer side of the 1st board part 42, the 2nd board part 44 functions as a weight.
  • the motor 10 When the motor 10 is driven, the motor 10 generates vibrations in the radial direction and vibrations in the circumferential direction.
  • the neutralizer 40 is attached to the outer surface of the housing 30. Therefore, the circumferential vibration generated from the motor 10 is transmitted to the neutralizer 40, and the neutralizer 40 vibrates in the rotation direction (ie, circumferential direction) of the motor 10. Thereby, the vibration of the rotation direction in the motor 10 (namely, housing 30) can be suppressed, and the noise transmitted to the driver
  • the frequency band (target frequency) which suppresses noise can be changed by attaching the 2nd board part 44 to the 1st board part 42. FIG. Further, the target frequency can be changed by adjusting the mode equivalent mass of the first plate portion 42 and the mode equivalent rigidity of the second plate portion 44.
  • the natural frequency of the neutralizer 40 is set to be the same as the vibration frequency (target frequency) to be reduced in the vehicle body to which the motor 10 is attached.
  • the natural frequency of the neutralizer is set to be the same as the natural frequency of the steering shaft included in the EPS.
  • FIG. 14 is a diagram showing the relationship between the sound pressure and the frequency of noise measured at the position of the driver's ear in the automobile.
  • FIG. 14 shows the noise when the neutralizer 40 is provided in the motor 10 and the noise when the neutralizer 40 is not provided.
  • the structures of the motors 10 are the same except for the presence or absence of the neutralizer 40.
  • FIG. 15 is an enlarged view of a circled portion in FIG. 14 and 15, the vertical axis represents sound pressure [db], and the horizontal axis represents frequency [Hz].
  • FIG. 16 is a diagram illustrating the relationship between the magnitude of vibration in the rotational direction of the motor 10 and the frequency.
  • FIG. 16 shows the magnitude of vibration when the neutralizer 40 is provided in the motor 10 and the magnitude of vibration when the neutralizer 40 is not provided.
  • the structures of the motors 10 are the same except for the presence or absence of the neutralizer 40.
  • FIG. 17 is an enlarged view of a circled portion in FIG. 16 and 17, the vertical axis represents vibration acceleration [db], and the horizontal axis represents frequency [Hz].
  • the sound pressure of the sound generated from the motor 10 provided with the neutralizer 40 at the target frequency is greater than the sound pressure of the sound generated from the motor 10 not provided with the neutralizer 40. Is also small.
  • the vibration acceleration of the vibration generated from the motor 10 provided with the neutralizer 40 at the target frequency is the vibration acceleration generated from the motor 10 not provided with the neutralizer 40. Smaller than vibration acceleration. That is, from FIGS. 14, 15, 16, and 17, by attaching the neutralizer 40 to the motor 10, vibration in the rotation direction of the motor 10 can be suppressed and noise transmitted to the driver or the like can be suppressed. You can see that it is made.
  • the shape of the first plate portion 42 of the neutralizer 40 may be other than a rectangle.
  • the shape of the first plate portion 42 may be circular, elliptical, polygonal, asymmetrical, or the like when viewed from the circumferential direction, and is not particularly limited.
  • the cross section in the axial direction of the first plate portion 42 does not need to have a constant shape in the radial direction, and may have a plurality of types of cross sectional shapes.
  • the shape of the second plate portion 44 of the neutralizer 40 may be other than a rectangle.
  • the shape of the second plate portion 44 may be circular, elliptical, polygonal, asymmetrical, or the like when viewed from the circumferential direction, and is not particularly limited.
  • the 2nd board part 44 does not need to be plate shape, and may be three-dimensional shapes, such as columnar shapes, such as a polygonal column, and a spherical body.
  • the pair of second plate portions 44 may have different shapes.
  • the lengths of the first plate portion 42 and the second plate portion 44 may be different from each other or the same.
  • the second plate portion 44 does not have to be fixed in a state of extending straight in the axial direction, and may be fixed in an inclined state with respect to the first plate portion 42 when viewed from the circumferential direction.
  • the shape of the base portion 41 may be a shape that can support the first plate portion 42 and may not be an L shape extending in the axial direction. A plurality of base portions 41 that contact only a part of the radially inner end of the first plate portion 42 may be provided.
  • the position of the base portion 41 may be the same as at least one of the positions of the lid flange portion 322 and the bottom flange portion 342.
  • only one neutralizer 40 is attached to the housing 30 of the motor 10.
  • the number of neutralizers 40 is not limited to one, and a plurality of neutralizers 40 may be attached to the motor 10.
  • a plurality of neutralizers 40 may be arranged side by side in the axial direction or may be arranged at intervals in the circumferential direction.
  • the neutralizer 40 is not only fixed to the cylindrical portion 36 but may be at least partially fixed to the lid portion 32, the bottom portion 34, or the like.
  • the first plate portion 42 extends in the axial direction, and is substantially parallel to the extending direction of the cylindrical portion 36.
  • the 1st board part 42 may be arrange
  • the neutralizer 40 may be disposed such that the first plate portion 42 is inclined with respect to the central axis J1 when viewed from the outside in the radial direction.
  • the neutralizer 40 extends radially outward from the side surface of the housing 30, but may extend radially inward.
  • the neutralizer 40 exemplified above is composed of a plurality of members.
  • the neutralizer 40 may be a single member having a shape such as a plate shape or a rod shape.
  • the neutralizer 40 made of a single member is fixed to the housing 30 directly or indirectly.
  • the cross section in the axial direction of the neutralizer 40 made of a single member need not be constant, and the neutralizer 40 may have a plurality of different cross sections in the radial direction.
  • a cover member that covers the neutralizer 40 may be attached to the outer surface of the housing (that is, the cylindrical portion). By covering the neutralizer 40 with the cover member, the neutralizer 40 can be prevented from being damaged or deformed when the motor 10 after the neutralizer 40 is attached is conveyed.
  • the cover member may cover the entire neutralizer 40 or may cover only a part of the neutralizer 40.
  • the cover member is directly or indirectly fixed to the cylindrical portion by, for example, a method such as welding, adhesion, caulking, or screwing.
  • the motor 10 is mounted on an automobile and used to generate EPS driving force.
  • the motor 10 may be used for other known applications.
  • the motor 10 may be used as a drive source for another part of an automobile, for example, an engine cooling fan.
  • the motor 10 may be mounted on home appliances, OA equipment, medical equipment, etc. and generate various driving forces.
  • the EPS generates an assist torque for assisting the steering torque of the steering system that is generated when the driver operates the steering wheel.
  • the auxiliary torque is generated by the auxiliary torque mechanism, and the burden on the operation of the driver can be reduced.
  • the auxiliary torque mechanism includes a steering torque sensor, an ECU (Electronic Control Unit), a motor, a speed reduction mechanism, and the like.
  • the steering torque sensor detects steering torque in the steering system.
  • the ECU generates a drive signal based on the detection signal of the steering torque sensor.
  • the motor 10 generates an auxiliary torque corresponding to the steering torque based on the drive signal, and transmits the auxiliary torque to the steering system via the speed reduction mechanism.
  • FIG. 18 schematically shows a typical configuration of an electric power steering apparatus (EPS) 500 according to the present embodiment.
  • the EPS 500 includes a steering system 520 and an auxiliary torque mechanism 540.
  • the steering system 520 is, for example, a steering handle 521, a steering shaft 522 (also referred to as “steering column”), universal shaft joints 523A, 523B, and a rotating shaft 524 (also referred to as “pinion shaft” or “input shaft”). ), A rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckle 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A and 529B.
  • the steering handle 521 is connected to the rotating shaft 524 via a steering shaft 522 and universal shaft joints 523A and 523B.
  • a rack shaft 526 is connected to the rotation shaft 524 via a rack and pinion mechanism 525.
  • the rack and pinion mechanism 525 includes a pinion 531 provided on the rotation shaft 524 and a rack 532 provided on the rack shaft 526.
  • the right steering wheel 529A is connected to the right end of the rack shaft 526 through a ball joint 552A, a tie rod 527A, and a knuckle 528A in this order.
  • the left steering wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B, and a knuckle 528B in this order.
  • the right side and the left side correspond to the right side and the left side as viewed from the driver sitting on the seat, respectively.
  • a steering torque is generated when the driver operates the steering handle 521, and is transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525. Accordingly, the driver can operate the left and right steering wheels 529A and 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an ECU 542, a motor 543, a speed reduction mechanism 544, and a power conversion device 545.
  • the auxiliary torque mechanism 540 gives auxiliary torque to the steering system 520 from the steering handle 521 to the left and right steering wheels 529A and 529B.
  • the auxiliary torque may be referred to as “additional torque”.
  • the motor 543 the motor 10 provided with the neutralizer 40 described above can be used.
  • the steering torque sensor 541 detects the steering torque of the steering system 520 applied by the steering handle 521.
  • the ECU 542 generates a drive signal for driving the motor 543 based on a detection signal from the steering torque sensor 541 (hereinafter referred to as “torque signal”).
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the auxiliary torque is transmitted to the rotating shaft 524 of the steering system 520 via the speed reduction mechanism 544.
  • the speed reduction mechanism 544 is, for example, a worm gear mechanism.
  • the auxiliary torque is further transmitted from the rotating shaft 524 to the rack and pinion mechanism 525.
  • the EPS 500 can be classified into a pinion assist type, a rack assist type, a column assist type, and the like depending on a place where the assist torque is applied to the steering system 520.
  • FIG. 18 illustrates a pinion assist type electric power steering apparatus 500.
  • the electric power steering apparatus 500 may be a rack assist type, a column assist type, or the like.
  • the ECU 542 can receive not only a torque signal but also a vehicle speed signal, for example.
  • the external device 560 is a vehicle speed sensor, for example.
  • the external device 560 may be another ECU that can communicate through an in-vehicle network, such as CAN (Controller Area Network).
  • the microcontroller of the ECU 542 can perform vector control or PWM control of the motor 543 based on a torque signal, a vehicle speed signal, or the like.
  • the ECU 542 sets a target current value based on at least the torque signal.
  • the ECU 542 preferably sets the target current value in consideration of the vehicle speed signal detected by the vehicle speed sensor and the rotor rotation signal detected by the angle sensor.
  • the ECU 542 can control the drive signal of the motor 543, that is, the drive current so that the actual current value detected by the current sensor (not shown) matches the target current value.
  • the left and right steering wheels 529A and 529B can be operated by the rack shaft 526 using a combined torque obtained by adding the assist torque of the motor 543 to the steering torque of the driver.
  • the vibration of the target frequency at the coupling portion between the motor and the EPS is reduced. Can do. Thereby, the noise in the vehicle can be reduced.
  • the embodiment of the present disclosure can be widely used in various devices including various motors such as an electric power steering device, a vacuum cleaner, a dryer, a ceiling fan, a washing machine, and a refrigerator.
  • various motors such as an electric power steering device, a vacuum cleaner, a dryer, a ceiling fan, a washing machine, and a refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Power Steering Mechanism (AREA)
  • Vibration Prevention Devices (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

例示的な電動パワーステアリング装置に取り付けられるモータは、ステータと、ステータに対して相対的に回転可能なロータと、ロータの回転軸方向に延びる筒形状を有し、ステータおよびロータを内部に収納するハウジングと、ハウジングに設けられ、ハウジングの側面からハウジングの径方向に延びるニュートラライザとを備え、ロータの回転に応じて、モータには所定の周波数の振動が発生し、ニュートラライザは所定の固有振動数を有し、モータの振動源からモータと電動パワーステアリング装置との結合部までの系は、所定の固有振動数における結合部の振動を抑制する特性を備えた伝達関数を有する。

Description

振動低減方法、モータ、ニュートラライザおよび電動パワーステアリング装置 関連出願の相互参照
 本願は、日本国特許庁に2018年6月7日に出願された特願2018-109641号に基づく優先権を主張するものであり、上記特許出願の全体を本願に援用する。
 本開示は、電動モータが取り付けられた装置において発生する振動を低減する技術に関する。
 自動車のパワーステアリングのアシスト機構の1つとして、電動パワーステアリングシステム(Electric power steering、以下EPSと称する場合がある)がある(例えば、特許文献1参照)。EPSを採用することにより、車両の軽量化および燃費向上を図ることができる。
 しかしながら、このEPSの動力源である電動モータ(以下モータと称する場合がある)の起振力によって励起された波動が車体を伝播し、固体音となって自動車内の運転者の耳に騒音として聞こえる場合がある。例えば、低速走行時に大きくハンドル操作を行う場合、および駐車時に停車したままステアリング操作を行う場合に、そのような騒音が聞こえる頻度が増える傾向にある。
 振動の解析方法として、例えば、非特許文献1は、2つの分系の振動の連成関係を解析する手法を提案している。
特開2007-314070号公報
城戸一郎、末岡淳男、"2つの分系が強く連成する振動系の解析法"、日本機械学会論文集(C編), Vol.71、 No.712 (2005)、 pp.3335-3342
 上記のような騒音の対策を技術的に考えた場合、加振点インピーダンスの大小に影響するモータが取り付けられるステアリングユニットに対する対策、および実際に音響的な放射を生じている自動車のパネル部材に対する対策が有効と考えられる。
 しかし、モータ・メーカの立場で騒音の対策を講じる場合、上記のような対策を講じることは困難である。モータ・メーカの研究により、騒音発生のメカニズムを解明でき、モータ以外の自社の担当範囲外の部材への対策が最も効率的と判断したとしても、モータ以外への対策を提案する事は困難である。
 また、自動車の車体は、高モード密度の構造物であり、そのロバスト性の低さなどから、個々の車体で振動特性が大きく異なるが、自社のモータへの構造変更だけで、任意の車体に効果的な対策を求められるという難しさがある。さらに、モータはステアリングユニットに剛結合されるために、モータと自動車の車体は強連成の状態にあり、振動低減に適切な構造変更を効率的に検討することは一般に困難である。
 モータに対策を施すことにより、様々な振動特性を有する任意の自動車に対して、その全系の振動・騒音を低減することが求められている。
 本開示の例示的な電動パワーステアリング装置に取り付けられるモータは、ステータと、前記ステータに対して相対的に回転可能なロータと、前記ロータの回転軸方向に延びる筒形状を有し、前記ステータおよび前記ロータを内部に収納するハウジングと、前記ハウジングに設けられ、前記ハウジングの側面から前記ハウジングの径方向に延びるニュートラライザとを備え、前記ロータの回転に応じて、前記モータには所定の周波数の振動が発生し、前記ニュートラライザは所定の固有振動数を有し、前記モータの振動源から前記モータと前記電動パワーステアリング装置との結合部までの系は、前記所定の固有振動数における前記結合部の振動を抑制する特性を備えた伝達関数を有する。
 本開示の実施形態によれば、モータに対策を施すことにより、モータが取り付けられる装置の振動を低減させることができる。
図1は、例示的な実施形態に係るアクティブ・パートとパッシブ・パートの自由体図である。 図2は、例示的な実施形態に係るアクティブ・パートとパッシブ・パートの周波数応答関数を説明する図である。 図3は、例示的な実施形態に係るニュートラライザの概念を示す図である。 図4は、例示的な実施形態に係るシミュレーションに用いた系を示す図である。 図5は、例示的な実施形態に係るシミュレーションに用いた系を示す図である。 図6は、例示的な実施形態に係るビームの断面形状を示す図である。 図7は、例示的な実施形態に係る板ばねの断面形状を示す図である。 図8は、例示的な実施形態に係る “ノード:1”をx方向に加振した際の、“ノード:4”におけるx方向のコンプライアンスを示す図である。 図9は、例示的な実施形態に係るアクティブ・パートに装着したニュートラライザの縦波に対する反射係数を計算した結果を示す図である。 図10は、例示的な実施形態に係るアクティブ・パートに装着したニュートラライザの縦波に対する透過係数を計算した結果を示す図である。 図11は、例示的な実施形態に係るニュートラライザが設けられたモータを示す斜視図である。 図12は、例示的な実施形態に係るニュートラライザを示す斜視図である。 図13は、例示的な実施形態に係るモータの断面図である。 図14は、例示的な実施形態に係る自動車内の運転手の耳の位置において測定した騒音の音圧と周波数との関係を示す図である。 図15は、例示的な実施形態に係る自動車内の運転手の耳の位置において測定した騒音の音圧と周波数との関係を示す図である。 図16は、例示的な実施形態に係るモータの回転方向の振動の大きさと周波数との関係を示す図である。 図17は、例示的な実施形態に係るモータの回転方向の振動の大きさと周波数との関係を示す図である。 図18は、例示的な実施形態に係る電動パワーステアリング装置を模式的に示す図である。
 以下、添付の図面を参照しながら、本開示の振動低減方法、モータ、ニュートラライザおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 (実施形態1)
 本実施形態では、モータから車両本体へ伝わる振動を低減させるために、ニュートラライザ(Neutralizer)を用いる。ニュートラライザは、騒音源となる振動(入力波)に対して、実質的な全反射によって位相が180度ずれた反射波を生成し、入力波に重畳する。これにより、振動を打ち消すことができる。
 本実施形態では、モータから発生する振動(入力)が、車体における騒音(出力)として発生するまでの経路を、伝達関数を用いて表現する。まず、実施形態に係る伝達関数合成法に基づく振動低減方法を説明する。
 上述したように、モータ・メーカの立場で騒音の対策を講じる場合、モータ以外の自社の担当範囲外の部材への対策を提案する事は困難である。本実施形態では、モータ・メーカとして変更できるモータをアクティブ・パート(Active Part)とし、モータ・メーカとして変更できない車両のモータ以外の部分をパッシブ・パート(Passive Part)として区別する。そして、アクティブ・パートおよびパッシブ・パートの2分系が剛結合されるという条件下で、アクティブ・パートのみに構造変更を加える事により、アクティブ・パートとパッシブ・パートから成る全系の振動を低減させる。本実施形態では、アクティブ・パートのみしか構造変更できないという制約の中で、ターゲット周波数における全系の振動を、任意のパッシブ・パートに対して悪化させることなく低減させる。
 (伝達関数合成法に基づく振動低減方法)
 モータを備える自動車を、モータとそれ以外の部分の2分系に分割し、振動的な連成関係を解析する。非特許文献1は、伝達関数合成法に基づき、カーネル動剛性行列を指標として2分系の振動的な連成関係を解析する手法を開示している。
 図1は、本実施形態に係るアクティブ・パートとパッシブ・パートの自由体図である。全系での加振自由度と応答評価自由度を図1の左側にそれぞれ“1”と“4”で示している。図1の右側は、全系を2分系に分割した自由体図を示している。加振自由度はアクティブ・パート側(モータ)にあり、応答評価自由度はパッシブ・パート側(車体)にある。アクティブ・パート側とパッシブ・パート側の結合自由度をそれぞれ“2”、“3”で示している。この分割における伝達関数合成法の基礎式(1)は以下に示すとおりである。
Figure JPOXMLDOC01-appb-M000001
 ここで、F1 Aは系に与える力である。X4 ABは、アクティブ・パートAにおける加振自由度1に力F1 Aを与えたときの、パッシブ・パートBにある応答評価自由度4の変位であり、周波数領域で表現している。Hはコンプライアンス(周波数応答関数)であり、下添字の左側の数字は応答側の自由度の番号を表し、右側の数字は加振側の自由度の番号を表している。右肩のA、Bは、分系A、Bに関係する量であることを示しており、ABとある場合は分系Aと分系Bからなる全系に関係する量であることを示している。例えば、H22 Aは、モータの自動車への取り付け部の加振点伝達関数である。H21 Aは、モータの振動源からモータと自動車との結合部までの伝達関数である。
 次に、共振形成条件を説明する。式(1)のうちの(H22 A+H33 B-1は、カーネル(kernel)動剛性である。H22 A+H33 Bは、カーネルコンプライアンス(kernel compliance)と呼ばれる。カーネル動剛性は、2分系の結合部の動剛性行列であり、全系の特性を含んでいる。カーネル動剛性は、物理的には、結合部の変位が結合部の内力である伝達力へ変換される際の増幅率と考えられる量である。この増幅率が無限大になるような場合に、全系が共振することがわかる。つまり、結合部の自由度をNとすると、一般的に、次式(2)の条件を満たす場合に全系が共振する。
Figure JPOXMLDOC01-appb-M000002
 以下、このカーネルコンプライアンスの性質を利用して、上記の2分系中のアクティブ・パート側のみに振動対策を施す事により、全系の振動を低減できることを説明する。
 図2は、アクティブ・パートとパッシブ・パートの周波数応答関数を示している。図2は、伝達関数の関係を実際のモータ(アクティブ・パート)と、自動車(パッシブ・パート)との関係として示している。モータ(アクティブ・パート)は、自動車(パッシブ・パート)と比較して非常に小さく、車体に比べて剛な構造である。そこで、モータの振動・騒音が問題となるような数百Hzの帯域においては、アクティブ・パートのコンプライアンスは剛体モードに支配されて振動モードは存在しない。このような場合、結合部が多自由度結合であっても、全系の共振に関与する伝達力の支配的な自由度は少数自由度となる。このため、1~2自由度程度が支配的であるとして設計しても、共振対策は可能である。
 そこで、ある1自由度の伝達力が支配的であるとした場合を考える。振動を低減したいターゲット周波数において、伝達力は1自由度が支配的であるとする場合に、全系応答を低減するためのアクティブ・パートの構造変更について検討する。加振自由度も応答評価自由度も1とするならば、式(1)はスカラーで表現でき、次式(3)となる。
Figure JPOXMLDOC01-appb-M000003
 また、式(2)に対応する全系の共振条件は次式(4)となる。
Figure JPOXMLDOC01-appb-M000004
 この共振条件が成り立つ周波数では、カーネルコンプライアンスの逆数であるカーネル動剛性が無限大となり、ばね定数が無限大の結合ばねに変位を与えたのと同じ状態となって、全系は共振する。
 式(3)において、H33 BおよびH43 Bは、実際にはモータ以外の自動車の部分に該当する事から、モータ・メーカの立場では変更を施す事は困難である。変更を施す事ができるのは、H22 A(モータの自動車への取り付け部の加振点伝達関数)と、H21 A(モータの振動源から、モータと自動車との結合部までの伝達関数)である。
 しかし、H33 Bの情報を得られない以上、モータ・メーカが式(4)の共振条件を完全に回避するのは困難である。如何にH22 Aを設計しようとも、H33 Bとの相性により、ターゲット周波数において式(4)を満たすことになれば、大きな伝達力が発生して共振してしまうことになる。しかし、通常はパッシブ・パート側に減衰がある為、共振することはない。
 一方、H21 Aはモータ・メーカが自在に設計できる。このことから、ターゲット角周波数をωtとしたときに、H21 A(ωt)=0として、H21 A(ωt)F1 A(ωt)=0を実現することを考える。このとき、H43 Bが無限大の大きさにならず、式(4)の条件も満たされない限り、X4 AB(応答評価自由度4の変位)は0になることがわかる。ターゲット角周波数ωtにおける式(3)は式(5)のようになる。
Figure JPOXMLDOC01-appb-M000005
 この際、もしH43 Bが無限大の大きさとなる、もしくは式(4)の条件が成り立つ場合、式(5)は無限大と0の積となって、式(5)がどのような値になるかは簡単に推定できない。ただし、少なくとも、H21 A(ωt)F1 A(ωt)が大きな値を持つ場合よりも、H21 A(ωt)F1 A(ωt)=0の場合の方が、応答評価自由度を小さくできることになる。このように、本願発明者は、H21 A(ωt)の値を0に近づけることが、モータ・メーカが採れる効果的な振動低減方法であることを見出した。
 (ニュートラライザ)
 本実施形態では、モータの振動源からモータと車体との結合部までの系における伝達関数H21 A(ωt)が、ターゲット周波数において結合部の振動を抑制する特性を備えるように、モータにニュートラライザを設ける。
 アクティブ・パート(モータ)へのニュートラライザの設置により、アクティブ・パートを特定周波数で仮想接地する方法を説明する。仮想接地とは、周波数応答を0にすることを意味する。アクティブ・パートを特定周波数で仮想接地することにより、理論上、加振自由度と結合自由度の間の伝達を0にすることが可能となり、周波数応答関数H21 Aの値を特定周波数で0にできる。
 本明細書では、ニュートラライザと動吸振器とを区別して説明する。波動の全反射器として1つの質点と1つのばねからなる1自由度振動系を対象構造に付加する場合に、この1自由度振動系をニュートラライザと呼ぶ。特定モードの振動を低減するために、1つの質点と1つのばねからなる1自由度振動系を用いる場合に、この1自由度振動系を動吸振器と呼ぶ。なお、本明細書におけるニュートラライザでは、質点およびバネのそれぞれは2つ以上であってもよい。
 モータ内の振動源となる要素は、例えばロータ、ステータ、軸受等である。一般に、モータの振動源としては電磁加振力、軸受部の機械的な振動等があり、図2中の加振自由度1の位置を特定することは難しい。しかしながら、図2において、アクティブ・パート側とパッシブ・パート側の結合自由度よりも左側のアクティブ・パート側のどこかに加振自由度1があることだけは確かであり、以下、この加振自由度と結合自由度の間にニュートラライザを設置することとする。そして、このニュートラライザにより、加振自由度で生成されたターゲット周波数の波動を完全反射して、周波数応答関数の値を理論上0にする方法を説明する。
 図3は、ニュートラライザ40の概念を示す図である。本実施形態では、モータ10から車体に垂直に入る縦方向の伝達力が支配的であるとして理論と数値例を示す。縦波とねじり波は同じ形の波動方程式で表現できるため、本実施形態の方法は、モータの回転軸まわりのねじりモーメントが支配的な伝達力となる場合にも同様に適用できる。また、本実施形態の方法は、曲げ波に関係する方向の伝達力が支配的な場合にも適用できる。
 ニュートラライザ40を波動伝播にとっての不連続部と見た際の波動の反射特性および透過特性を説明する。反射特性および透過特性は、ニュートラライザ取付断面(図3中のx=0の位置)における変位の連続と力のつり合いを、変位および力と波動振幅との関係を用いて解くことで求まる。ニュートラライザ40の運動に伴ってばねがモータ10に与える力は、2自由度系の動吸振器と同じように計算できる。図3中に示したばね力の振幅FNとニュートラライザ取付自由度の変位振幅Uとの関係はモード等価剛性κを用いて式(6)で表せる。
Figure JPOXMLDOC01-appb-M000006
 ここで、ニュートラライザ取付断面より左側の位置xにおける変位および内力をUL(x)、FL(x)とする。ニュートラライザ取付断面より右側の位置xにおける変位および内力をUR(x)、FR(x)とする。これらを波動振幅を用いて表すと式(7)から式(10)のように表される。
Figure JPOXMLDOC01-appb-M000007
 ここで、位置xの左右で媒質は不変である。kはこの媒質の波数であり、Eはニュートラライザのヤング率であり、Sはニュートラライザのビーム(梁)の断面積であり、振動エネルギが伝達される通り道の断面積に該当する。位置xの左側での前進波と後退波の振幅をそれぞれaL、bLとし、位置xの右側での前進波と後退波の振幅をそれぞれaR、bRとした。このとき、ニュートラライザ取付断面(位置x=0)における変位の連続と力のつり合いは、式(11)および式(12)のように表せる。
Figure JPOXMLDOC01-appb-M000008
 これらの式(11)および式(12)に、式(6)から式(10)を導入して、波動振幅の関係を式(13)に示す散乱行列の形に整理する。
Figure JPOXMLDOC01-appb-M000009
 これにより、ニュートラライザ取付断面における縦波の反射係数および透過係数は、式(14)および式(15)のように表される。
Figure JPOXMLDOC01-appb-M000010
 ここで、Ω=ω/ωNである。ωは調和加振力の角振動数であり、ωNはニュートラライザ単体を地面に固定した際の固有角振動数である。ΩはωNとωとの比である。
 反射係数rLRおよびrRLは、前進波(+x方向)と跳ね返った波(後退波(-x方向))の振幅比“bL/aL”および“bR/aR”である。透過係数tLRおよびtRLは、x=0を基準としたプラス側とマイナス側において同じ方向を進む波同士の振幅比“aR/aL”および“bR/bL”である。
 全反射となる条件は、透過係数=0、すなわち式(15)の右辺の分子が0になることである。すなわち、全反射となる条件はω=ωNであり、ニュートラライザ単体を地面に固定した際の固有振動数と調和加振力の振動数とが同じになる場合である。このとき、(1-Ω2)=0を式(14)に代入すると、反射係数rLR=rRL=-1となり、仮想的な接地、つまり伝播波動にとっての固定端と同じ状況になる。すなわち、固定端において全反射が行われ、位相が180度ずれた波が反射していくこととなる。
 このように、特定の周波数の波動を完全反射する装置が、アクティブ・パートの加振自由度1と結合部自由度2の間に設置されると、加振によって生成された波動が結合部自由度2までたどり着けず、波動の重畳で形成される2点間の周波数応答関数H21 Aは、この周波数で理論上0になる。周波数応答関数H21 Aはモータ・メーカで自在に設定でき、所望の周波数でH21 Aの値を低減させることができる。
 また、上記の方法において、ニュートラライザの設置位置は、加振自由度1と結合部自由度2の間であればよい。このため、モータを様々なシステムの限られたスペースに設置しなければならないモータ・メーカにとって、本実施形態の方法は非常に有用である。
 (有限要素法によるシミュレーション)
 ニュートラライザをモータに設けることにより、式(5)に示す応答評価自由度4の変位X4 AB(ωt)を低減できることをシミュレーションにより検証した。
 シミュレーションの対象は、ビーム(梁)構造の縦波(縦振動)とする。実際にはモータが生ずる振動が車両に伝達し、その振動が自動車内のパネル部材等に伝達し、そこで音響放射を生ずる事となるが、ここでは音響放射は考慮しない。
 図4および図5は、シミュレーションに用いた系を示している。アクティブ・パートは、自動車のEPSに取り付けられるモータを模している。パッシブ・パートは、自動車のモータ以外の部位を模している。
 ビームの断面形状は、図6に示すように一辺が0.01mの正方形とする。ビームのアクティブ・パートの長さを0.05m、パッシブ・パートの長さを1.0mとする。アクティブ・パートにはニュートラライザを設置した。
 図4および図5に示す系の振動は、有限要素解析で求めた。有限要素モデルの設定にあたり、アクティブ・パートは、アルミニウム材であるとし、密度2680kg/m3、ヤング率7.60×1010Pa、ポアソン比0.33とした。アクティブ・パート単体の質量は0.0134kgとした。パッシブ・パートは、軟鋼材であるとし、密度7930kg/m3、ヤング率1.97×1011Pa、ポアソン比0.30とした。パッシブ・パートの単体の質量は0.793kgとした。
 加振自由度は、図4に“ノード:1”と記された位置のxの正方向に与えた。応答評価自由度は、図4に“ノード:4”と記された位置のxの正方向とした。H21 A(ωt)=0とするために、アクティブ・パートの“ノード:2”の位置にニュートラライザを設置した。ニュートラライザは例えばバネ-マス系の構造を有する。ニュートラライザとして、ビームを挟んで対称にx方向に変形する2枚の板ばねを設置し、それら板ばねの先端のそれぞれに集中質量を結合している。2枚の板ばねのそれぞれは、図7に示すような厚さ0.002m、幅0.01mのりん青銅板であるとした。りん青銅の材料特性として、密度8800kg/m3、ヤング率1.10×1011Pa、ポアソン比0.33とした。2枚の板ばねの先端の集中質量は、2個ともに0.467gとした。ニュートラライザの質量はそれぞれ2.23gである。ニュートラライザの固有振動数は、モータが取り付けられるEPSにおいて低減させる振動の周波数(ターゲット周波数)と同じとする。例えば、ニュートラライザの固有振動数は、EPSが備えるステアリングシャフトの固有振動数と同じとする。ステアリングシャフトの固有振動数は、ここでは2450Hzとした。
 図8は、“ノード:1”をx方向に加振した際の、“ノード:4”におけるx方向のコンプライアンスを示している。横軸は周波数を表し、縦軸は位相およびマグニチュードを表している。破線はニュートラライザ未装着時のコンプライアンスを示しており、実線はニュートラライザ装着時のコンプライアンスを示している。ニュートラライザ未装着時と比較して、ニュートラライザ装着時では、ターゲット周波数である2450Hzにおいて、コンプライアンスの値は大きく低減されていることが分かる。
 図9は、アクティブ・パートに装着したニュートラライザの縦波に対する反射係数を、式(14)に従って計算した結果を示している。図10は、アクティブ・パートに装着したニュートラライザの縦波に対する透過係数を、式(15)に従って計算した結果を示している。図9および図10の横軸は周波数を表し、縦軸は位相およびマグニチュードを表している。
 ターゲット周波数2450Hzにおける反射係数は1、透過係数は0となっており、アクティブ・パートに装着したニュートラライザにより2450Hzの波動は、加振自由度から結合自由度に伝播する途中で遮断されていることがわかる(仮想接地)。すなわち、理論上、ターゲット周波数2450HzにおいてH21 A=0となっている。
 このように、ニュートラライザをモータに設けることにより、モータとEPSとの結合部におけるターゲット周波数の振動を低減することができる。これにより、車内(応答評価自由度4)におけるターゲット周波数の振動を低減することができる。
 次に、モータ10に設けられるニュートラライザ40の例を説明する。図11は、ニュートラライザ40が設けられたモータ10を示す斜視図である。図12は、モータ10に設けられたニュートラライザ40を拡大して示す斜視図である。図13は、モータ10の断面図である。モータ10の内部を分かり易く説明するために、図13ではニュートラライザ40の図示は省略している。
 この例では、モータ10の中心軸J1と平行な方向を「軸方向」と呼ぶ。モータ10の中心軸J1に直交する方向を「径方向」と呼ぶ。モータ10の中心軸J1を中心とする円弧に沿う方向を「周方向」と呼ぶ。また、この例では、便宜上、軸方向を上下方向として、各部材の形状および位置関係を説明する。ただし、これは、あくまで説明の便宜のために上下を定義したものであって、モータ10の使用時の向きを限定するものではない。
 本願発明者の知見によれば、EPS用のモータ10に起因する自動車等の車体内の振動および騒音は、モータ10における回転方向の振動とトルクリップルに相関がある。そこで、本実施形態では、モータ10の回転方向の振動を抑制することにより、車体内の振動および騒音を抑制する。
 本実施形態におけるモータ10は、いわゆるインナーロータ型のモータである。モータ10は、ステータ11と、ロータ20と、ハウジング30とを有する。
 ハウジング30は、軸方向に延びる筒状の部材である。ハウジング30は、例えば、アルミニウム(アルミニウム合金を含む)やSUSなどの金属材料を有する。ハウジング30は、その内部にロータ20とステータ11とを収容する。ハウジング30は、筒部36と、底部34と、蓋部32とを有する。筒部36は、軸方向に延びる筒状の部材である。底部34は、筒部36の軸方向下側に配置され、筒部36の軸方向下側の開口を覆う。底部34には、下側ベアリング37が取り付けられる。底部34の外側面には、径方向外側に向かって延びる複数の底部フランジ部342が配置される。底部フランジ部342には、軸方向に貫通する少なくとも1つの底部貫通孔344が形成される。
 蓋部32は、筒部36の軸方向上側に配置され、筒部36の軸方向上側の開口を覆う。蓋部32には、上側ベアリング38が取り付けられる。上側ベアリング38および下側ベアリング37は、ロータ20を回転可能に支持する。蓋部32の外側面には、径方向外側に向かって延びる複数の蓋部フランジ部322が設けられる。蓋部フランジ部322には、軸方向に貫通する少なくとも1つの蓋部貫通孔324が形成される。なお、底部34または蓋部32のいずれか一方は、筒部36と一体に形成されてもよい。
 ステータ11は、ステータコア12、インシュレータ13、コイル14を備える。ステータコア12は、例えば、複数枚の電磁鋼板が軸方向に積層された積層鉄心である。ステータコア12は、圧分磁心などを備えていてもよい。ステータコア12は、環状のコアバックと、複数のティースとを有する。複数のティースは、コアバックから径方向内側に延び、周方向に間隔を空けて配置される。インシュレータ13は、ステータコア12の表面を被覆する絶縁体である。
 ロータ20は、ステータ11の径方向内側に配置され、ティースと径方向に対向する。ロータ20は、シャフト21、ヨーク22、ロータマグネット23、カバー部材24を備える。シャフト21は、中心軸J1を中心として軸方向に延びる。シャフト21は、中実であってもよいし、中空であってもよい。ヨーク22は、略円筒状であり、シャフト21に固定される。ヨーク22は、例えば薄板状の磁性鋼板が積層されて形成される。ロータマグネット23は、ステータ11の内側に配置され、ヨーク22の外側面に例えば接着剤により固定される。カバー部材24は、ロータマグネット23の外側を覆う。
 ハウジング30の筒部36の外側面にはニュートラライザ40が取り付けられる。ニュートラライザ40は、一対の土台部41と、第1板部42とを有する。土台部41は軸方向に延びる部材である。周方向において、土台部41の位置は、蓋部フランジ部322の位置および底部フランジ部342の位置と異なる。軸方向から見たときに、土台部41の断面は、略L字形状である。一対の土台部41は、周方向に互いに対向して配置される。各土台部41の一端は、筒部36の外側面に、例えば、溶接、接着、かしめなどにより固定される。なお、土台部41は、切削加工や鋳造などによって、筒部36と一体に形成されてもよい。
 第1板部42は、略矩形の部材である。第1板部42は径方向外側に向かって延びる。第1板部42の径方向内側の一端は、一対の土台部41の他端によって挟まれる。本実施形態において、第1板部42と土台部41とは、複数のねじ46を用いたねじ止めにより固定される。
 第1板部42の径方向外側の端部には、一対の第2板部44が配置される。本実施形態において、第2板部44は略矩形である。第2板部44は、例えば、金属部材(アルミニウム、アルミニウム合金、銅、銅合金、鉄、鉄合金など)を有する。第1板部42の径方向外側の端部は、一対の第2板部44によって挟まれている。第1板部42と第2板部44とは、複数のねじ46を用いたねじ止めにより固定される。言い換えると、第1板部42の径方向外側の端部における周方向一方側および他方側の面は、それぞれ、第2板部44によって部分的に覆われる。これにより、第1板部42における径方向外側の端部を他の部分よりも重くすることができる。
 なお、第2板部44と第1板部42とは、一体に形成されてもよい。すなわち、第1板部42における径方向外側の端部の厚さが、径方向内側の他の部分よりも厚くてもよい。この場合、第1板部42の径方向外側の端部は、周方向一方側および他方側の少なくともいずれか一方に突出する。
 第2板部44は必ずしも一対である必要はなく、第1板部42の径方向外側の端部の周方向一方側および他方側のいずれか一方のみに配置されてもよい。
 第2板部44は第1板部42に、ねじ止め以外にも、溶接、接着、かしめなど他の方法により固定されてもよい。第2板部44の材料は、第1板部42の材料と同じであってもよいし、互いに異なっていてもよい。第2板部44の材料は、金属材料以外でもよく、例えばゴムなどの弾性部材であってもよい。
 本実施形態において、土台部41の一端側の軸方向の長さは、他方側の軸方向の長さと同じである。土台部41の他端側の軸方向の長さは、第1板部42の軸方向の長さと同じである。第1板部42の軸方向の長さは、第2板部44の軸方向の長さと同じである。
 土台部41の他端側の径方向の長さは、第1板部42の径方向の長さよりも短い。第2板部44の径方向の長さは、第1板部42の径方向の長さよりも短い。
 本実施形態において、ニュートラライザ40は、いわゆる片持ち梁を構成している。ニュートラライザ40は、ハウジング30(すなわち、筒部36)と固定される側を固定端とし、第1板部42の径方向外側の端部を自由端とする。本実施形態では、ニュートラライザ40は、板ばねを構成する。そのため、第1板部42の径方向外側の端部は、第1板部42の径方向内側の端部を基点として、周方向に振動することができる。また、第2板部44が第1板部42の径方向外側の端部(すなわち、自由端)に取り付けられることから、第2板部44はおもりとして機能する。
 モータ10が駆動した際に、モータ10からは、径方向における振動と周方向における振動とが発生する。上述のように、ハウジング30の外側面には、ニュートラライザ40が取り付けられている。そのため、モータ10から発生した周方向の振動はニュートラライザ40へと伝わり、ニュートラライザ40はモータ10の回転方向(すなわち、周方向)に振動する。これにより、モータ10(すなわちハウジング30)における回転方向の振動を抑制することができ、且つ、自動車の運転手等へ伝わる騒音を抑制することができる。また、第2板部44が第1板部42に取り付けられることにより、騒音を抑制する周波数帯(ターゲット周波数)を変化させることができる。また、第1板部42のモード等価質量と、第2板部44のモード等価剛性を調整することで、ターゲット周波数を変化させることができる。
 ニュートラライザ40の固有振動数は、モータ10が取り付けられる車体において低減させる振動の周波数(ターゲット周波数)と同じに設定する。例えば、ニュートラライザの固有振動数は、EPSが備えるステアリングシャフトの固有振動数と同じに設定する。これにより、モータ10とEPSとの結合部におけるターゲット周波数の振動を低減することができ、車内におけるターゲット周波数の振動を低減することができる。
 図14は、自動車内の運転手の耳の位置において測定した騒音の音圧と周波数との関係を示す図である。図14は、モータ10にニュートラライザ40を設けたときの騒音と、ニュートラライザ40を設けていないときの騒音を示している。ニュートラライザ40の有無以外の両者のモータ10の構造は同じである。図15は、図14において丸で囲んだ部分を拡大して示す図である。図14および図15の縦軸は音圧[db]であり、横軸は周波数[Hz]である。
 図16は、モータ10の回転方向の振動の大きさと周波数との関係を示す図である。図16は、モータ10にニュートラライザ40を設けたときの振動の大きさと、ニュートラライザ40を設けていないときの振動の大きさを示している。ニュートラライザ40の有無以外の両者のモータ10の構造は同じである。図17は、図16において丸で囲んだ部分を拡大して示す図である。図16および図17の縦軸は振動加速度[db]であり、横軸は周波数[Hz]である。
 図14および図15に示すように、ターゲット周波数において、ニュートラライザ40が設けられたモータ10から発生する音の音圧は、ニュートラライザ40が設けられていないモータ10から発生する音の音圧よりも小さい。同様に、図16および図17に示すように、ターゲット周波数において、ニュートラライザ40が設けられたモータ10から発生する振動の振動加速度は、ニュートラライザ40が設けられていないモータ10から発生する振動の振動加速度よりも小さい。すなわち、図14、図15、図16、図17から、ニュートラライザ40をモータ10に取り付けることにより、モータ10における回転方向の振動を抑制することができ、且つ、運転手等へ伝わる騒音を抑制できていることがわかる。
 以上、例示的な実施形態について説明したが、本開示の技術は上記の実施形態に限定されるものではない。
 例えば、ニュートラライザ40の第1板部42の形状は、矩形以外であってもよい。第1板部42の形状は、周方向から見たときに、円形、楕円形、多角形、非対称形状などであってもよく、特に限定されるものではない。第1板部42の軸方向断面は、径方向において、一定の形状である必要はなく、複数種類の断面形状を有してもよい。
 また、ニュートラライザ40の第2板部44の形状は、矩形以外であってもよい。第2板部44の形状は、周方向から見たときに、円形、楕円形、多角形、非対称形状などであってもよく、特に限定されるものではない。また、第2板部44は、板状である必要はなく、多角形柱などの柱形状や球体などの立体的な形状であってもよい。一対の第2板部44は、互いに異なる形状であってもよい。
 軸方向において、第1板部42と第2板部44の長さは、互いに異なっていてもよいし、同じであってもよい。
 第2板部44は、軸方向にまっすぐ延びた状態にて固定される必要はなく、周方向から見たときに、第1板部42に対して傾斜した状態で固定されてもよい。
 土台部41の形状は、第1板部42を支持することができる形状であればよく、軸方向に延びるL字形状でなくてもよい。第1板部42の径方向内側の端部の一部のみと接触する土台部41が複数設けられてもよい。
 周方向において、土台部41の位置は、蓋部フランジ部322および底部フランジ部342の位置の少なくとも一方と同じであってもよい。
 図11に示す例では、ニュートラライザ40は、モータ10のハウジング30に1つのみ取り付けられている。しかしながら、ニュートラライザ40の数は1つに限られず、複数のニュートラライザ40がモータ10に取り付けられてもよい。複数のニュートラライザ40が取り付けられる場合、軸方向に並んで配置されてもよいし、周方向に間隔を空けて配置されてもよい。
 ニュートラライザ40は、筒部36に固定されるだけでなく、蓋部32や底部34などに少なくとも一部が固定されてもよい。
 ニュートラライザ40は、第1板部42が軸方向に延びており、筒部36の延伸方向と略平行になっている。しかしながら、第1板部42は、周方向を長手方向として配置されてもよい。ニュートラライザ40は、径方向外側からみたときに、第1板部42が中心軸J1に対して傾斜して配置されてもよい。また、上記の説明では、ニュートラライザ40は、ハウジング30の側面から径方向外側に延びていたが、径方向内側に延びてもよい。
 上記で例示したニュートラライザ40は、複数の部材から構成されている。しかしながら、ニュートラライザ40は、板状または棒状などの形状を有する単一の部材であってもよい。この場合、単一の部材からなるニュートラライザ40は、直接または間接的にハウジング30に固定される。単一の部材からなるニュートラライザ40の軸方向の断面は一定である必要はなく、ニュートラライザ40は径方向において異なる断面を複数有してもよい。
 ハウジング(すなわち、筒部)の外側面には、ニュートラライザ40を覆うカバー部材が取り付けられてもよい。カバー部材がニュートラライザ40を覆うことにより、ニュートラライザ40の取り付け後のモータ10を搬送する場合などにおいて、ニュートラライザ40の破損や変形などを防止することができる。カバー部材は、ニュートラライザ40の全体を覆ってもよいし、ニュートラライザ40の一部のみを覆ってもよい。カバー部材は、筒部と、例えば、溶接、接着、かしめ、ねじ止めなどの方法により、直接または間接的に固定される。
 モータ10は、自動車に搭載され、EPSの駆動力を発生させるために使用される。ただし、モータ10は、他の既知の用途に使用されるものであってもよい。例えば、モータ10は、自動車の他の部位、例えばエンジン冷却用ファンの駆動源として使用されるものであってもよい。また、モータ10は、家電製品、OA機器、医療機器等に搭載され、各種の駆動力を発生させるものであってもよい。
 (実施形態2)
 次に、EPSの一例を説明する。EPSは、運転者がステアリングハンドルを操作することによって発生するステアリング系の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構によって生成され、運転者の操作の負担を軽減することができる。例えば、補助トルク機構は、操舵トルクセンサ、ECU(Electronic Control Unit)、モータおよび減速機構などを備える。操舵トルクセンサは、ステアリング系における操舵トルクを検出する。ECUは、操舵トルクセンサの検出信号に基づいて駆動信号を生成する。モータ10は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成し、減速機構を介してステアリング系に補助トルクを伝達する。
 モータ10は、EPSに好適に利用される。図18は、本実施形態による電動パワーステアリング装置(EPS)500の典型的な構成を模式的に示している。EPS500は、ステアリング系520および補助トルク機構540を備える。
 ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、回転軸524(「ピニオン軸」または「入力軸」とも称される。)、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bを備える。ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。
 ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。
 補助トルク機構540は、例えば、操舵トルクセンサ541、ECU542、モータ543、減速機構544および電力変換装置545を備える。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。
 モータ543として、上述したニュートラライザ40が設けられたモータ10を用いることができる。
 操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。ECU542は、操舵トルクセンサ541からの検出信号(以下、「トルク信号」と表記する。)に基づいてモータ543を駆動するための駆動信号を生成する。モータ543は、操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは、減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は、例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。
 EPS500は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類することができる。図18には、ピニオンアシスト型の電動パワーステアリング装置500を例示している。ただし、電動パワーステアリング装置500は、ラックアシスト型、コラムアシスト型等であってもよい。
 ECU542には、トルク信号だけでなく、例えば車速信号も入力され得る。外部機器560は例えば車速センサである。または、外部機器560は、例えばCAN(Controller Area Network)等の車内ネットワークで通信可能な他のECUであってもよい。ECU542のマイクロコントローラは、トルク信号や車速信号などに基づいてモータ543をベクトル制御またはPWM制御することができる。
 ECU542は、少なくともトルク信号に基づいて目標電流値を設定する。ECU542は、車速センサによって検出された車速信号を考慮し、さらに角度センサによって検出されたロータの回転信号を考慮して、目標電流値を設定することが好ましい。ECU542は、電流センサ(不図示)によって検出された実電流値が目標電流値に一致するように、モータ543の駆動信号、つまり、駆動電流を制御することができる。
 EPS500によれば、運転者の操舵トルクにモータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、モータ543として、ニュートラライザ40が設けられたモータ10を用いることにより、モータとEPSとの結合部(例えば、モータ543と減速機構544との結合部)におけるターゲット周波数の振動を低減することができる。これにより、車内における騒音を低減することができる。
 本開示の実施形態は、電動パワーステアリング装置、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫などの、各種モータを備える多様な機器に幅広く利用され得る。
 10:モータ、 11:ステータ、 12:ステータコア、 13:インシュレータ、 14:コイル、 20:ロータ、 21:シャフト、 22:ヨーク、 23:ロータマグネット、 24:カバー部材、 30:ハウジング、 32:蓋部、 34:底部、 36:筒部、 37:下側ベアリング、 38:上側ベアリング、 40:ニュートラライザ、 41:土台部、 42:第1板部、 44:第2板部、 46:ねじ、 500:電動パワーステアリング装置、 520:ステアリング系、 521:ステアリングハンドル、 522:ステアリングシャフト

Claims (12)

  1.  電動パワーステアリング装置に取り付けられるモータであって、
     ステータと、
     前記ステータに対して相対的に回転可能なロータと、
     前記ロータの回転軸方向に延びる筒形状を有し、前記ステータおよび前記ロータを内部に収納するハウジングと、
     前記ハウジングに設けられ、前記ハウジングの側面から前記ハウジングの径方向に延びるニュートラライザと、
     を備え、
     前記ロータの回転に応じて、前記モータには所定の周波数の振動が発生し、
     前記ニュートラライザは所定の固有振動数を有し、
     前記モータの振動源から前記モータと前記電動パワーステアリング装置との結合部までの系は、前記所定の固有振動数における前記結合部の振動を抑制する特性を備えた伝達関数を有する、モータ。
  2.  前記ニュートラライザの前記所定の固有振動数は、前記モータが取り付けられる電動パワーステアリング装置において低減させる振動の周波数と同じである、請求項1に記載のモータ。
  3.  前記ニュートラライザは、前記電動パワーステアリング装置において低減させる振動と同じ周波数の波動の前記振動源から前記結合部への伝搬を抑制する、請求項2に記載のモータ。
  4.  前記ニュートラライザは、前記電動パワーステアリング装置において低減させる振動と同じ周波数の波動を反射させる、請求項2または3に記載のモータ。
  5.  前記ニュートラライザの前記所定の固有振動数は、前記電動パワーステアリング装置が備えるステアリングシャフトの固有振動数と同じである、請求項4に記載のモータ。
  6.  前記モータの振動源から前記結合部までの系は、前記所定の固有振動数において前記結合部の振動を実質的にゼロにする特性を備えた伝達関数を有する、請求項1から5のいずれかに記載のモータ。
  7.  前記ニュートラライザは、前記モータの周方向に振動する、請求項1から6のいずれかに記載のモータ。
  8.  前記ニュートラライザは、片持ち梁である、請求項1から7のいずれかに記載のモータ。
  9.  前記ニュートラライザは、板ばねを有する、請求項1から8のいずれかに記載のモータ。
  10.  前記ニュートラライザの前記径方向の端部には錘が設けられている、請求項1から9のいずれかに記載のモータ。
  11.  前記ニュートラライザは、バネ-マス系の構造を有する、請求項1から10のいずれかに記載のモータ。
  12.  請求項1から11のいずれかに記載のモータを備えた電動パワーステアリング装置。
PCT/JP2019/022426 2018-06-07 2019-06-05 振動低減方法、モータ、ニュートラライザおよび電動パワーステアリング装置 WO2019235549A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020523162A JPWO2019235549A1 (ja) 2018-06-07 2019-06-05 振動低減方法、モータ、ニュートラライザおよび電動パワーステアリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018109641 2018-06-07
JP2018-109641 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235549A1 true WO2019235549A1 (ja) 2019-12-12

Family

ID=68769442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022426 WO2019235549A1 (ja) 2018-06-07 2019-06-05 振動低減方法、モータ、ニュートラライザおよび電動パワーステアリング装置

Country Status (2)

Country Link
JP (1) JPWO2019235549A1 (ja)
WO (1) WO2019235549A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314070A (ja) * 2006-05-26 2007-12-06 Nsk Ltd 電動パワーステアリング装置
JP2010124591A (ja) * 2008-11-19 2010-06-03 Toshiba Corp 回転電機
JP2014057406A (ja) * 2012-09-11 2014-03-27 Toshiba Mitsubishi-Electric Industrial System Corp 回転電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314070A (ja) * 2006-05-26 2007-12-06 Nsk Ltd 電動パワーステアリング装置
JP2010124591A (ja) * 2008-11-19 2010-06-03 Toshiba Corp 回転電機
JP2014057406A (ja) * 2012-09-11 2014-03-27 Toshiba Mitsubishi-Electric Industrial System Corp 回転電機

Also Published As

Publication number Publication date
JPWO2019235549A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
EP2450593B1 (en) Vibration reducing device
CN111497595B (zh) 串联混合动力车辆中的驱动装置的搭载结构
US20140064539A1 (en) Vibration-reducing passive radiators
WO2020045641A1 (ja) モータおよび電動パワーステアリング装置
JP6495080B2 (ja) ブラシレスワイパモータ
JP7151667B2 (ja) 電力制御ユニット及びその組立方法
WO2020059691A1 (ja) モータ、電動パワーステアリング装置および振動源を有する装置
WO2012053043A1 (ja) 音出力装置及び車両想起音発生方法
WO2019235549A1 (ja) 振動低減方法、モータ、ニュートラライザおよび電動パワーステアリング装置
WO2019235548A1 (ja) 振動低減方法、モータ、ニュートラライザおよび電動パワーステアリング装置
JP2004297219A (ja) 超音波センサ及びその被取付部品
WO2019208096A1 (ja) モータユニット
JP2012122612A (ja) 動的振動制御デバイス、そのようなデバイスを含んだ自動車、およびそのようなデバイスのための動的組み付けベース
WO2020235365A1 (ja) モータ、ニュートラライザおよび電動パワーステアリング装置
WO2019244914A1 (ja) モータ、ニュートラライザおよび電動パワーステアリング装置
WO2019244913A1 (ja) モータ、ニュートラライザおよび電動パワーステアリング装置
WO2019245014A1 (ja) モータ、ニュートラライザおよび電動パワーステアリング装置
WO2020054552A1 (ja) モータおよび電動パワーステアリング装置
WO2020235404A1 (ja) モータ、ニュートラライザ、電動パワーステアリング装置およびニュートラライザの製造方法
JPH07264804A (ja) 回転電機
US20070194666A1 (en) Motor for electric power steering apparatus and method of manufacturing dynamic damper
JP4242221B2 (ja) モータ用駆動装置
JP6736983B2 (ja) 駆動装置
JP7257795B2 (ja) 車両
JP2583344B2 (ja) 自動車のエンジンマウント取付部構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815577

Country of ref document: EP

Kind code of ref document: A1