WO2019235213A1 - タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム - Google Patents

タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム Download PDF

Info

Publication number
WO2019235213A1
WO2019235213A1 PCT/JP2019/020133 JP2019020133W WO2019235213A1 WO 2019235213 A1 WO2019235213 A1 WO 2019235213A1 JP 2019020133 W JP2019020133 W JP 2019020133W WO 2019235213 A1 WO2019235213 A1 WO 2019235213A1
Authority
WO
WIPO (PCT)
Prior art keywords
position detection
transmitter
tire
receiver
sensor
Prior art date
Application number
PCT/JP2019/020133
Other languages
English (en)
French (fr)
Inventor
恭平 本田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US16/972,204 priority Critical patent/US11780277B2/en
Priority to EP19814949.4A priority patent/EP3815931B1/en
Publication of WO2019235213A1 publication Critical patent/WO2019235213A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/005Devices specially adapted for special wheel arrangements
    • B60C23/007Devices specially adapted for special wheel arrangements having multiple wheels arranged side by side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/005Devices specially adapted for special wheel arrangements
    • B60C23/008Devices specially adapted for special wheel arrangements having wheels on more than two axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0437Means for detecting electromagnetic field changes not being part of the signal transmission per se, e.g. strength, direction, propagation or masking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0444Antenna structures, control or arrangements thereof, e.g. for directional antennas, diversity antenna, antenna multiplexing or antennas integrated in fenders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0269Inferred or constrained positioning, e.g. employing knowledge of the physical or electromagnetic environment, state of motion or other contextual information to infer or constrain a position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications

Definitions

  • the present invention relates to a tire mounting position detection system, a tire mounting position detection method, and a tire mounting position detection program for detecting at which wheel position of a vehicle each tire equipped with a transmitter is mounted.
  • a sensor including a radio signal (radio wave) transmitter is provided in the tire. doing.
  • the information detected by the sensor needs to be managed in association with the wheel position (right front wheel, left rear wheel, etc.) of the vehicle on which the tire is mounted.
  • the wheel position where the tire (sensor) is mounted is changed by rotation or the like, it is necessary to update the correspondence between the sensor identifier (ID) and the wheel position each time.
  • a method of automatically detecting a wheel position where a tire (sensor) is mounted is known.
  • a tire pressure monitoring system described in Patent Document 1 two receivers are arranged in the front-rear direction of the vehicle, and a sensor that senses the rotation direction of the tire provided in the tire is used. The wheel position where the (sensor) is mounted is automatically detected.
  • a sensor for newly detecting the rotation direction is required in order to detect the wheel position where the tire (sensor) is mounted.
  • the addition of such a sensor can cause an increase in cost and system failure rate, and therefore it is desirable to avoid adding an extra sensor if possible.
  • the intensity (transmission power) of the radio signal transmitted by the transmitter varies among individuals, when automatically detecting the position of the wheel on which the tire (sensor) is mounted, Variations need to be taken into account.
  • the receiver may have low reception sensitivity, and a problem may occur in that the reception level of a radio signal transmitted from a transmitter remote from the receiver cannot be detected correctly.
  • the present invention has been made in view of such a situation, and in particular, based on only the reception state of a radio signal transmitted from a transmitter, variation in transmission power or reception sensitivity of the receiver is low. Even in such a case, it is an object to provide a tire mounting position detection system, a tire mounting position detection method, and a tire mounting position detection program that can automatically detect the position of a wheel on which a tire (sensor) is mounted.
  • each tire (tire 31 to tire 36) on which a transmitter (for example, sensor 41 to sensor 46) is mounted is located at any wheel position (1 to 6) of the vehicle (vehicle 10).
  • a tire mounting position detection system (for example, a tire mounting position detection system 100) that detects whether or not it is mounted, and is a receiving unit (receiving unit 105) that is disposed in the vehicle and receives a radio signal transmitted from the transmitter
  • the receiver unit includes: a first receiver (receiver 110); and a second receiver (receiver 120) disposed at a position different from the first receiver in the vehicle longitudinal direction and the vehicle width direction.
  • a first measurement unit (first measurement unit 210) that measures, for each transmitter, a first signal strength (R1 (x)) that is the strength of the radio signal received by the first receiver; A second intensity which is the strength of the radio signal received by the second receiver; A signal intensity (R2 (x)) for each transmitter, a strength ratio which is a ratio using the second measurement unit (second measurement unit 220) and the first signal strength and the second signal strength (R1 (x) / R2 (x)) is calculated for each transmitter (signal strength calculator 230), and the first signal strength, the second signal strength, and the strength for each transmitter And a position detection unit (position detection unit 250) that detects a wheel position on which the tire on which the transmitter is mounted is mounted based on the ratio.
  • first measurement unit measures, for each transmitter, a first signal strength (R1 (x)) that is the strength of the radio signal received by the first receiver
  • a second intensity which is the strength of the radio signal received by the second receiver
  • One aspect of the present invention is a tire mounting position detection method for detecting at which wheel position of a vehicle each tire on which a transmitter is mounted, which is disposed in the vehicle, and from the transmitter
  • a receiving unit that receives a radio signal to be transmitted is used, and the receiving unit is a first receiver and a second receiver that is disposed at a position different from the first receiver in the vehicle longitudinal direction and the vehicle width direction.
  • a first signal strength that is the strength of the radio signal received by the first receiver for each of the transmitters, and a first strength that is the strength of the radio signal received by the second receiver.
  • a strength ratio which is a ratio using the first signal strength and the second signal strength, for each transmitter, and the transmitter Before said first signal strength, before Based on the second signal strength and the intensity ratio, and a step of the tire, wherein the transmitter is mounted to detect the wheel positions it is mounted.
  • One aspect of the present invention is a tire mounting position detection program for detecting at which wheel position of a vehicle each tire on which a transmitter is mounted, which is disposed in the vehicle, from the transmitter.
  • a receiving unit that receives a radio signal to be transmitted includes a first receiver and a second receiver disposed at a position different from the first receiver in the vehicle front-rear direction and the vehicle width direction.
  • FIG. 1 is a schematic plan view of a vehicle 10 including a tire mounting position detection system 100.
  • FIG. 2 is a functional block configuration diagram of the position detection device 200.
  • FIG. 3 is a diagram showing an initial setting operation flow of the tire mounting position detection system 100.
  • FIG. 4 is a view showing a tire (sensor) position detection operation flow by the tire mounting position detection system 100.
  • FIG. 5 is a diagram illustrating an example of wireless signal strength and calculation results measured by the tire mounting position detection system 100.
  • FIG. 6 is a schematic plan view of the vehicle 10A including the tire mounting position detection system 100A.
  • FIG. 7 is a diagram showing a tire (sensor) position detection operation flow by the tire mounting position detection system 100A.
  • FIG. 8 is a diagram illustrating an example of wireless signal strength and calculation results measured by the tire mounting position detection system 100A.
  • FIG. 9 is a diagram illustrating an example of wireless signal strength and calculation results measured by the tire mounting position detection system 100A (the processing up to step S280 is completed).
  • FIG. 10 is a diagram illustrating an example of wireless signal intensity and calculation results measured by the tire mounting position detection system 100A (the processing up to step S310 is completed).
  • FIG. 11 is a diagram showing an example of radio signal intensity and calculation results measured by the tire mounting position detection system 100A (the processing up to step S340 is completed).
  • FIG. 12 is a diagram showing an example of radio signal intensity and calculation results measured by the tire mounting position detection system 100A (all processing up to step S350 is completed).
  • FIG. 13 is a schematic plan view and a schematic network configuration diagram of a vehicle 10B according to another embodiment.
  • FIG. 1 is a schematic plan view of a vehicle 10 including a tire mounting position detection system 100.
  • the vehicle 10 is an automobile including a front wheel axle 21 and a rear wheel axle 22.
  • the type of the vehicle 10 is not particularly limited, but the rear wheel axle 22 has a so-called double tire configuration, and mainly assumes large vehicles such as trucks and mining vehicles.
  • the vehicle 10 is equipped with tires 31 to 36.
  • the tire 31 to the tire 36 are tires assembled to rim wheels (may be called tire / wheel assemblies).
  • tire 31 is attached to the front left wheel position (“1” in the figure, the same applies hereinafter).
  • tire 32 to tire 36 are positioned at the right front wheel (2), left outer rear wheel (3), left inner rear wheel (4), right inner rear wheel (5), and right outer rear wheel (6). Each is attached.
  • the tire 31 is equipped with a sensor 41 that measures the internal pressure and temperature of the tire 31.
  • the sensor 41 may include a sensor that measures acceleration.
  • the sensor 41 includes a transmitter that transmits measured internal pressure and temperature data.
  • sensors 42 to 46 are mounted on the tires 32 to 36, respectively.
  • the sensors 41 to 46 can be suitably used for a tire pressure monitoring system (TPMS) or the like.
  • TPMS tire pressure monitoring system
  • sensor IDs “A” is assigned to the sensor 41 as a sensor ID which is an identification for identifying the sensor 41 (transmitter).
  • sensor IDs “b” to “f” are assigned to the sensors 42 to 46, respectively.
  • each of the tire 31 to the tire 36 on which the sensor 41 (transmitter) to the sensor 46 are mounted is located at any wheel position of the vehicle 10 ("1" to "6" in the figure). Detect whether it is installed.
  • the tire mounting position detection system 100 includes a receiving unit 105 and a position detection device 200.
  • the receiving unit 105 is arranged in the vehicle 10 and receives radio signals (radio waves) transmitted from the sensor 41 (transmitter) to the sensor 46.
  • the receiving unit 105 includes a receiver 110 and a receiver 120.
  • the receiver 110 constitutes a first receiver.
  • the receiver 120 constitutes a second receiver.
  • the receiver 110 is appropriately labeled as “R1” for convenience.
  • the receiver 110 receives radio signals transmitted from the sensors (transmitters), that is, the sensors 41 to 46.
  • the intensity (transmission power) of the radio signal, the frequency band used, and the like may vary depending on the area where the tire mounting position detection system 100 is used or the type of the vehicle 10.
  • the receiver 120 is appropriately labeled as “R2” for convenience.
  • the receiver 120 also receives radio signals transmitted from the sensors 41 to 46.
  • the receiver 120 is arranged at a different position from the receiver 110. Specifically, the receiver 120 is disposed at a position different from the receiver 110 in the vehicle longitudinal direction and the vehicle width direction.
  • the receiver 110 is configured on one side based on the center line CL1 (width direction center line) between the left wheel (for example, “1”) and the right wheel (for example, “2”). Is arranged on the right side.
  • CL1 width direction center line
  • the receiver 120 is arranged on the other side with respect to the center line CL1, specifically, on the left side.
  • the receiver 110 uses the center line CL2 (front-rear direction center line) between the front wheels (“1”, “2”) and the rear wheels (“3” to “6”) as a reference. It is arranged on one side, specifically on the front wheel side.
  • CL2 front-rear direction center line
  • the receiver 120 is arranged on the other side with respect to the center line CL2, specifically, on the rear wheel side.
  • the position detection device 200 uses the receiving unit 105 to detect the wheel positions (“1” to “6”) on which the tire 31 to the tire 36, that is, the sensors 41 to 46 are mounted.
  • the position detection device 200 is incorporated as a part of an electronic control unit (ECU) mounted on the vehicle 10.
  • ECU electronice control unit
  • the function realized by the position detection device 200 may be provided outside the vehicle 10 (such as a cloud) that can be connected via a communication network.
  • FIG. 2 is a functional block configuration diagram of the position detection device 200.
  • the position detection device 200 includes a first measurement unit 210, a second measurement unit 220, a signal intensity calculation unit 230, and a position detection unit 250.
  • the position detection device 200 has hardware such as a CPU and a memory, and each functional unit described above is realized by executing a computer program (software) on the hardware.
  • the first measurement unit 210 is connected to the receiver 110.
  • the first measuring unit 210 measures the intensity of the radio signal received by the receiver 110 (first signal intensity) for each of the sensors 41 to 46 (transmitter).
  • the second measuring unit 220 is connected to the receiver 120.
  • the second measuring unit 220 measures the intensity of the radio signal received by the receiver 120 (second signal intensity) for each of the sensors 41 to 46 (transmitter).
  • the intensity of the radio signal to be measured by the first measurement unit 210 and the second measurement unit 220 may be a voltage level or a power level. Furthermore, it may be managed in units of decibel (dB). In this embodiment, a voltage level (unit: V) is used.
  • the wireless signal transmitted from the sensor 41 to the sensor 46 includes a sensor ID (identifier) for identifying each sensor (transmitter).
  • the signal strength calculation unit 230 performs a calculation using the strength of the radio signal measured by the first measurement unit 210 and the second measurement unit 220.
  • the signal intensity calculation unit 230 uses an average of values measured a plurality of times.
  • the signal strength calculation unit 230 is an intensity ratio that is a ratio using the strength of the wireless signal received by the receiver 110 (first signal strength) and the strength of the wireless signal received by the receiver 120 (second signal strength). Is calculated for each sensor.
  • the signal strength calculation unit 230 constitutes a calculation unit.
  • the signal intensity calculation unit 230 calculates the quotient of the first signal intensity and the second signal intensity as the intensity ratio for each sensor. Specifically, the signal strength calculating unit 230 calculates the quotient (R1 / R2) by dividing the first signal strength by the second signal strength. More specifically, the signal strength calculation unit 230 calculates the following signal strength quotient (R1 / R2).
  • the intensity ratio is not limited to R1 / R2 as long as it is a ratio using the first signal intensity and the second signal intensity. As long as it is a quotient, it may be R2 / R1, or any one that can make the values of R1 and R2 dimensionless, such as (R1-R2) / (R1 + R2).
  • the position detector 250 detects the position of the wheel on which the tire on which the sensor (transmitter) is mounted. Specifically, the position detection unit 250 detects the wheel positions (positions) on which the tires 31 to 36 on which the sensors 41 to 46 are mounted are respectively mounted.
  • the position detection unit 250 detects the wheel position where the tire on which the sensor is mounted is mounted based on the first signal intensity, the second signal intensity, and the intensity ratio for each sensor.
  • the position detection unit 250 determines a sensor close to the receiver 110 based on the signal strength R1 (x) (“x” is a sensor ID) for each sensor received by the receiver 110. Similarly, the position detection unit 250 determines a sensor close to the receiver 120 based on the signal strength R2 (x) for each sensor received by the receiver 120. Thereby, the position detector 250 detects the wheel position (“1”, “2”) on the front wheel side.
  • the position detection unit 250 detects the wheel position (“3” to “6”) on the rear wheel side, based on the size of the quotient (R1 / R2) for each sensor. That is, the position detector 250 detects the wheel position on the rear wheel axle based on the intensity ratio such as the quotient (R1 / R2). A more specific wheel position detection method will be described later.
  • FIG. 3 shows an initial setting operation flow of the tire mounting position detection system 100.
  • a basic configuration of the vehicle 10 on which the tire mounting position detection system 100 is mounted is set.
  • the axle configuration of the vehicle 10 is set (S10).
  • the axle configuration includes information on the number of axles of the vehicle 10, the presence / absence of a double tire, the number of tires, and the like.
  • initial setting is executed based on the received signal strength of the radio signal transmitted from each wheel position based on the number and position of the receivers arranged in the vehicle 10 (S20).
  • the standard signal strength from each wheel position is set based on the received signal strength of the radio signal transmitted from each wheel position.
  • the signal strength varies greatly depending on the vehicle body structure of the vehicle 10 and the type, size, and position of the components (for example, fuel tank) to be mounted. Adjust the signal strength.
  • FIG. 4 shows a tire (sensor) position detection operation flow by the tire mounting position detection system 100.
  • the tire mounting position detection system 100 acquires the signal strength of the radio signal from each sensor received by the receiver R1 and the receiver R2 (S110).
  • the tire mounting position detection system 100 calculates, for each sensor, the quotient (R1 / R2) as the intensity ratio between the signal strength of the radio signal received by R1 and the signal strength of the radio signal received by R2 (S120). .
  • the intensity ratio (quotient) is described as R1 (x) / R2 (x) (“x” is a sensor ID as described above).
  • the tire mounting position detection system 100 repeats such calculation of the intensity ratio for the number of wheels (S130).
  • FIG. 5 shows an example of radio signal intensity and calculation results measured by the tire mounting position detection system 100.
  • “Position” shown in FIG. 5 indicates the wheel position of each sensor (tire) detected by the tire mounting position detection system 100 as a result of the operation shown in FIG.
  • the tire mounting position detection system 100 acquires the calculation results of the measured R1 (x), R2 (x), and R1 (x) / R2 (x).
  • the tire mounting position detection system 100 detects the wheel position (position) on which the tire on which the sensor is mounted is mounted based on R1 (x), R2 (x) and R1 (x) / R2 (x). (S140).
  • the tire mounting position detection system 100 first detects the wheel position on the front wheel side based on R1 (x), R2 (x) and R1 (x) / R2 (x).
  • R2 (b) is the smallest.
  • R1 (x) / R2 (x) are close to each other as described above is because the sensors 43 to 46 are located on any of the rear tire side double tires (inner rear wheel and outer rear wheel). It is.
  • R1 (c) / R2 (c), R1 (d) / R2 (d), and R1 (e) / R2 (e), R1 (f) / R2 (f) are compared in size. Then, R1 (c) / R2 (c) and R1 (d) / R2 (d) are smaller than R1 (e) / R2 (e) and R1 (f) / R2 (f).
  • R1 (c) / R2 (c) and R1 (d) / R2 (d) it is located at either position “3” or “4”, that is, inside the double tire. It can be detected whether the rear wheel or the outer rear wheel is located.
  • the following action / effect can be obtained.
  • the first signal strength (R1 (x)) that is the strength of the radio signal from the sensor (transmitter) received by the receiver 110, the vehicle longitudinal direction
  • the second signal strength (R2 (x)) which is the strength of the radio signal from the sensor (transmitter) received by the receiver 120 arranged at a position different from the receiver 110 in the vehicle width direction
  • R1 (x) Based on the intensity ratio with R2 (x), specifically, the quotient (R1 (x) / R2 (x)), the wheel position where the tire on which the sensor is mounted is mounted is detected.
  • the R1 (x) and R2 (x) values are made dimensionless by using the intensity ratio, so even if there is a variation in the performance of the sensor (transmitter) or receiver, the sensor is installed. It is possible to accurately detect the position of the wheel on which the tire is mounted.
  • the transmission power may not match for the sensor, and the reception sensitivity may not match for the receiver. Even in such a case, by using R1 (x) / R2 (x), even when there is a variation in the measured signal intensity, the wheel position can be detected in a state where the variation is offset.
  • the tire mounting position detection system 100 based on only the reception state of the radio signal transmitted from the sensor, the tire (sensor) is detected even when the transmission power varies or the reception sensitivity of the receiver is low.
  • the mounted wheel position can be automatically detected.
  • the receiver 110 is disposed on one side (front wheel side) with respect to the center line CL2, and the receiver 120 is disposed on the other side (rear wheel side) with respect to the center line CL2. .
  • receiver 110 is arranged on one side (right wheel side) with reference to center line CL1, and receiver 120 is arranged on the other side (left wheel side) with reference to center line CL1. Is done.
  • the receiver 110 and the receiver 120 are diagonally arranged in four regions divided by the center line CL1 and the center line CL2. For this reason, the difference in the value (size) of R1 (x) / R2 (x) according to the wheel position becomes significant, and the wheel position where the tire equipped with the sensor is mounted is detected more accurately. obtain.
  • the tire mounting position detection system 100 detects the wheel position on the rear wheel axle having a double tire configuration based on the intensity ratio (quotient).
  • the strength ratio specifically, R1 (x) / R2 (x)
  • R1 (x) / R2 (x) even when the inner rear wheel and the outer rear wheel in the vehicle width direction are close to each other like a double tire
  • the position of the wheel on which the tire on which the sensor is mounted is mounted can be accurately detected.
  • FIG. 6 is a schematic plan view of a vehicle 10A including a tire mounting position detection system 100A.
  • the vehicle 10A is an automobile including a plurality of front wheel axles and a plurality of rear wheel axles.
  • the vehicle 10A includes a front wheel axle 23 and a front wheel axle 24.
  • the vehicle 10A includes a rear wheel axle 25 and a rear wheel axle 26.
  • the type of the vehicle 10A is not particularly limited, but the rear wheel axle 25 and the rear wheel axle 26 have a double tire configuration, and mainly assume large trucks.
  • the vehicle 10A has a 12-wheel configuration. Specifically, tire 51 to tire 54 are mounted on the front wheel axle side of vehicle 10A.
  • the vehicle 10A is provided with tires 61 to 68 on the rear wheel axle side.
  • the tires 51 to 54 are mounted with sensors 71 to 74, respectively, and the tires 61 to 68 are mounted with sensors 81 to 88, respectively.
  • Sensors 71 to 74 are assigned “a” to “d” as sensor IDs, respectively.
  • Sensors 81 to 88 are assigned sensor IDs “e” to “l”, respectively.
  • the tire mounting position detection system 100A includes a receiver 110 and a receiver 120, similarly to the tire mounting position detection system 100. Also in the present embodiment, the receiver 120 is arranged at a position different from the receiver 110 in the vehicle front-rear direction and the vehicle width direction.
  • the receiver 110 is arranged in a left front region defined by the center line CL1 and the center line CL2.
  • the receiver 120 is arranged in the area on the right rear side.
  • the tire mounting position detection system 100A includes a position detection device 200 as with the tire mounting position detection system 100.
  • the functional block configuration of the position detection device 200 is the same as that of the first embodiment (see FIG. 2).
  • the signal strength calculation unit 230 is a total value of the strength of the wireless signal received by the receiver 110 (first signal strength) and the strength of the wireless signal received by the receiver 120 (second signal strength). (Sum) is calculated for each sensor.
  • the signal strength calculation unit 230 constitutes a calculation unit.
  • the signal strength calculation unit 230 calculates the total value (R1 + R2) of the following signal strengths.
  • the position detection unit 250 detects the wheel position where the tire on which the sensor is mounted is mounted based on the first signal intensity, the second signal intensity, the intensity ratio, and the total value (sum).
  • the position detection unit 250 determines the signal intensity (R1 (x), R2 (x)), intensity ratio (R1 (x) / R2 (x)), and total value (R1 (x)) for each sensor. + R2 (x)) is used to detect the wheel position (position) where the tire on which each sensor is mounted is mounted step by step.
  • the position detection unit 250 associates 12 tires with wheel positions based on the sizes of R1 (x) / R2 (x) and R1 (x) + R2 (x). And a plurality of groups (positions “1” to “4”, “5” to “8”, and “9” to “12”). Further, the position detection unit 250 detects the wheel position in each group based on the magnitudes of R1 (x) / R2 (x) and R1 (x) + R2 (x).
  • FIG. 7 shows a tire (sensor) position detection operation flow by the tire mounting position detection system 100A.
  • the tire mounting position detection system 100A acquires the signal strength of the radio signal from each sensor received by the receiver R1 and the receiver R2 (S210).
  • the tire mounting position detection system 100A calculates a total value (sum) and an intensity ratio (quotient) using the acquired signal intensity of each sensor (S220). Specifically, the tire mounting position detection system 100A calculates R1 (x) + R2 (x) and R1 (x) / R2 (x).
  • FIG. 8 shows an example of radio signal intensity and calculation results measured by the tire mounting position detection system 100A.
  • “Position” shown in FIG. 8 indicates the wheel position of each sensor (tire) detected by the tire mounting position detection system 100A as a result of the operation shown in FIG.
  • the tire mounting position detection system 100A calculates the measured R1 (x), R2 (x), R1 (x) + R2 (x), and R1 (x) / R2 (x). Get the result.
  • the tire mounting position detection system 100A repeats such calculation of the total value (sum) and strength ratio (quotient) for the number of wheels (S230).
  • the tire mounting position detection system 100A determines whether or not the size of each sensor R1 (x) / R2 (x) is within the top four (S240).
  • the tire mounting position detection system 100A When the magnitude of the quotient (R1 (x) / R2 (x)) is within the top four, the tire mounting position detection system 100A indicates that the sensor is in positions “1” to “4” (in FIG. 7, P1 to P4 (S250).
  • the tire mounting position detection system 100A determines whether or not the sum (R1 (x) + R2 (x)) is within the upper two of the four sensors (S260).
  • the tire mounting position detection system 100A indicates that the sensor is in position “3” in descending order of the quotient (R1 (x) / R2 (x)). ”And“ 4 ”(S280).
  • FIG. 9 shows an example of the wireless signal intensity and the calculation result similar to FIG. 8, but the process up to step S280 is completed and the sensors located at positions “1” to “4” are detected (FIG. 9). Corresponding to the shaded part in the figure).
  • the sum of sensors c and d is larger than the sum of sensors a and b. This is because the sensors c and d (tires 73 and 74) are positioned on the front wheel axle 24 closer to R2, and R2 (c) and R2 (d) become larger. Thereby, the sensors located on the front wheel axle 23 and the front wheel axle 24 can be determined.
  • a sensor having a large quotient is attached to the left wheel of the vehicle 10A. Can be determined. This is because it is close to R1 and R1 (x) becomes large.
  • the tire mounting position detection system 100A has a sum (R1 (R1 (x) / R2 (x)) out of the remaining eight sensors except for the upper four sensors (sensors a to d). It is determined whether or not x) + R2 (x)) is within the top four (S290).
  • the sensors have positions “9”, “10”, “11”, “12” in descending order of the quotient (R1 (x) / R2 (x)). ”(S310).
  • FIG. 10 corresponds to the state where the processing up to step S310 is completed and the sensors located at positions “9” to “12” are detected (see the detailed shaded portion in the figure).
  • the sensors e to l among the sensors e to l, the sensors having the lowest sum (R1 (x) + R2 (x)) are the sensors i to l. This is because sensors i to l are far from both R1 and R2. Accordingly, it can be determined that the sensors i to l are located at any of the positions “9” to “12”.
  • sensor i is the largest, and decreases in the order of sensors j, k, and l.
  • R1 (x) and R2 (x) basically depend on the distance between R1, R2 and the sensor, and in the order of sensors i, j, k, l, between sensor and R1, and between sensor and R2 This is because the distance difference is large.
  • the tire mounting position detection system 100A indicates that the sensor is in positions “5 to“ It is determined that the vehicle is located at any wheel position of “8” (S320).
  • the reason why it can be determined that the sensor is located at any of the wheel positions “5 to“ 8 ” is the same as the determination of the sensors located at the positions“ 9 ”to“ 12 ”described above, and the positions“ 5 to “ This is because the sensor located at “8” is close to both R1 and R2, and the sum (R1 (x) + R2 (x)) is large.
  • the tire mounting position detection system 100A determines that the sensor (sensor h) having the smallest sum (R1 (x) + R2 (x)) is located at the position “8” among the four sensors (S330). , S340).
  • FIG. 11 corresponds to the state where the processing up to step S340 is completed and the sensor located at the position “8” is detected (see the detailed shaded portion in the figure).
  • the sensor with the smallest sum (R1 (x) + R2 (x)) has the longest total distance from both R1 and R2, specifically the distance between sensor and R1, and between sensor and R2. It can be determined that the position is at position “8”.
  • the tire mounting position detection system 100A uses three quotients (R1 (x)) except for the sensor (sensor h) having the smallest sum (R1 (x) + R2 (x)). It is determined that the sensor is located at positions “5”, “6”, and “7” in descending order of (/ R2 (x)) (S350).
  • FIG. 12 corresponds to a state in which all the processing up to step S350 is completed and the sensors located at positions “5”, “6”, and “7” are detected (see the detailed shaded portion in the figure).
  • R1 (x) / R2 (x) the quotients (R1 (x) / R2 (x)) of the sensors e to g, the sensor e is the largest, and decreases in the order of sensors f and g.
  • R1 (x) and R2 (x) basically depend on the distance between R1, R2 and the sensor, and in the order of sensor e, f, g, the distance between sensor and R1, and between sensor and R2 This is because the difference is large.
  • the propagation environment varies depending on the wheel position depending on the structure of the vehicle 10A, and the sum (R1 (x) / R2 (x) By using x) + R2 (x)) in a supplementary manner, it is possible to accurately detect the position of the wheel on which the tire on which the sensor is mounted is mounted.
  • the position detection device 200 is incorporated as part of an electronic control unit (ECU) mounted on the vehicle 10, but may be modified as follows.
  • ECU electronice control unit
  • FIG. 13 is a schematic plan view and a schematic network configuration diagram of a vehicle 10B according to another embodiment. As shown in FIG. 13, the vehicle 10B includes a communication device 310 instead of the position detection device 200.
  • the communication device 310 can execute wireless communication with the wireless base station 320.
  • the communication device 310 is, for example, a wireless communication terminal that can be connected to a mobile communication network (LTE or the like).
  • the server computer 330 is provided on the communication network, and realizes each function (first measurement unit 210, second measurement unit 220, signal intensity calculation unit 230, and position detection unit 250) realized by the position detection device 200. .
  • a program (which may be called software or a program product) that realizes the function may be stored in a downloadable state on a communication network or provided in a form stored in a storage medium. Also good.
  • the tire may be a tire (sensor) attached to the host vehicle.
  • the sensor ID of each sensor (transmitter) may be monitored over a certain period of time, and a sensor with a large number of receptions may be determined as a tire (sensor) attached to the host vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Tires In General (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

タイヤ装着位置検出システムは、第1受信機(R1)が受信した無線信号の強度である第1信号強度を、送信機毎に測定し、第2受信機(R2)が受信した無線信号の強度である第2信号強度を、送信機毎に測定し、第1信号強度と第2信号強度とを用いた比率である強度比を、送信機毎に演算する。タイヤ装着位置検出システムは、送信機毎の第1信号強度、第2信号強度及び強度比に基づいて、送信機が搭載されたタイヤが装着されている車輪位置を検出する。

Description

タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム
 本発明は、送信機が搭載された各々のタイヤが、車両の何れの車輪位置に装着されたかを検出するタイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラムに関する。
 車両に装着されるタイヤ(ここでは、リムホイールに組み付けられたタイヤを意味する)の内圧及び温度などを計測するため、タイヤ内に無線信号(電波)の送信機を含むセンサを設けることが普及している。
 当該センサが検出した情報は、タイヤが装着されている車両の車輪位置(右前輪、左後輪など)と対応付けて管理する必要がある。しかしながら、タイヤ(センサ)が装着される車輪位置は、ローテーションなどによって入れ替わるため、その都度、センサの識別子(ID)と車輪位置との対応付けをアップデートする必要がある。
 そこで、このようなアップデートの煩雑性を回避するため、タイヤ(センサ)が装着される車輪位置を自動的に検出する方法が知られている。例えば、特許文献1に記載されているタイヤ空気圧監視システムは、車両の前後方向に2つの受信機を配置するとともに、タイヤ内に設けられたタイヤの回転方向を感知するセンサを用いることによって、タイヤ(センサ)が装着される車輪位置を自動的に検出している。
特開2007-045201号公報
 しかしながら、上述したタイヤ空気圧監視システムでは、タイヤ(センサ)が装着される車輪位置を検出するために、新たに回転方向を検出するセンサが必要となる。このようなセンサの追加は、コスト及びシステム故障率の上昇の要因となり得るため、できれば、余分なセンサの追加は回避したい。
 また、送信機が送信する無線信号の強度(送信電力)は、個体によってばらつきがあるため、タイヤ(センサ)が装着される車輪位置を自動的に検出する際には、このような送信電力のばらつきも考慮する必要がある。さらに、受信機の受信感度が低い場合があり、受信機から離れた送信機から送信された無線信号の受信レベルを正しく検出できない問題も発生し得る。
 そこで、本発明は、このような状況に鑑みてなされたものであり、送信機から送信される無線信号の受信状態のみに基づいて、特に、送信電力のばらつき、または受信機の受信感度が低い場合でも、タイヤ(センサ)が装着される車輪位置を自動的に検出し得るタイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラムの提供を目的とする。
 本発明の一態様は、送信機(例えば、センサ41~センサ46)が搭載された各々のタイヤ(タイヤ31~タイヤ36)が、車両(車両10)の何れの車輪位置(1~6)に装着されたかを検出するタイヤ装着位置検出システム(例えば、タイヤ装着位置検出システム100)であって、前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニット(受信ユニット105)を備え、前記受信ユニットは、第1受信機(受信機110)と、車両前後方向及び車幅方向において、前記第1受信機と異なる位置に配置される第2受信機(受信機120)とを含み、前記第1受信機が受信した前記無線信号の強度である第1信号強度(R1(x))を、前記送信機毎に測定する第1測定部(第1測定部210)と、前記第2受信機が受信した前記無線信号の強度である第2信号強度(R2(x))を、前記送信機毎に測定する第2測定部(第2測定部220)と、前記第1信号強度と前記第2信号強度とを用いた比率である強度比(R1(x)/R2(x))を、前記送信機毎に演算する演算部(信号強度演算部230)と、前記送信機毎の前記第1信号強度、前記第2信号強度及び前記強度比に基づいて、前記送信機が搭載されたタイヤが装着されている車輪位置を検出する位置検出部(位置検出部250)とを備える。
 本発明の一態様は、送信機が搭載された各々のタイヤが、車両の何れの車輪位置に装着されたかを検出するタイヤ装着位置検出方法であって、前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットを用い、前記受信ユニットは、第1受信機と、車両前後方向及び車幅方向において、前記第1受信機と異なる位置に配置される第2受信機とを含み、前記第1受信機が受信した前記無線信号の強度である第1信号強度を、前記送信機毎に測定するステップと、前記第2受信機が受信した前記無線信号の強度である第2信号強度を、前記送信機毎に測定するステップと、前記第1信号強度と前記第2信号強度とを用いた比率である強度比を、前記送信機毎に演算するステップと、前記送信機毎の前記第1信号強度、前記第2信号強度及び前記強度比に基づいて、前記送信機が搭載されたタイヤが装着されている車輪位置を検出するステップとを含む。
 本発明の一態様は、送信機が搭載された各々のタイヤが、車両の何れの車輪位置に装着されたかを検出するタイヤ装着位置検出プログラムであって、前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットが、第1受信機と、車両前後方向及び車幅方向において、前記第1受信機と異なる位置に配置される第2受信機とを含み、前記第1受信機が受信した前記無線信号の強度である第1信号強度を、前記送信機毎に測定する処理と、前記第2受信機が受信した前記無線信号の強度である第2信号強度を、前記送信機毎に測定する処理と、前記第1信号強度と前記第2信号強度とを用いた比率である強度比を、前記送信機毎に演算する処理と、前記送信機毎の前記第1信号強度、前記第2信号強度及び前記強度比に基づいて、前記送信機が搭載されたタイヤが装着されている車輪位置を検出する処理とをコンピュータに実行させる。
図1は、タイヤ装着位置検出システム100を含む車両10の概略平面図である。 図2は、位置検出デバイス200の機能ブロック構成図である。 図3は、タイヤ装着位置検出システム100の初期設定動作フローを示す図である。 図4は、タイヤ装着位置検出システム100によるタイヤ(センサ)位置の検出動作フローを示す図である。 図5は、タイヤ装着位置検出システム100によって測定された無線信号の強度及び演算結果の例を示す図である。 図6は、タイヤ装着位置検出システム100Aを含む車両10Aの概略平面図である。 図7は、タイヤ装着位置検出システム100Aによるタイヤ(センサ)位置の検出動作フローを示す図である。 図8は、タイヤ装着位置検出システム100Aによって測定された無線信号の強度及び演算結果の例を示す図である。 図9は、タイヤ装着位置検出システム100Aによって測定された無線信号の強度及び演算結果の例を示す図(ステップS280までの処理が完了)である。 図10は、タイヤ装着位置検出システム100Aによって測定された無線信号の強度及び演算結果の例を示す図(ステップS310までの処理が完了)である。 図11は、タイヤ装着位置検出システム100Aによって測定された無線信号の強度及び演算結果の例を示す図(ステップS340までの処理が完了)である。 図12は、タイヤ装着位置検出システム100Aによって測定された無線信号の強度及び演算結果の例を示す図(ステップS350までの全ての処理が完了)である。 図13は、その他の実施形態に係る車両10Bの概略平面図及び概略ネットワーク構成図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 [第1実施形態]
 (1)タイヤ装着位置検出システムを含む車両の概略構成
 図1は、タイヤ装着位置検出システム100を含む車両10の概略平面図である。図1に示すように、車両10は、前輪車軸21及び後輪車軸22を備える自動車である。車両10の種類は特に限定されないが、後輪車軸22は、いわゆるダブルタイヤ構成であり、主にトラック及び鉱山用車両などの大型車両を想定している。
 車両10には、タイヤ31~タイヤ36が装着される。タイヤ31~タイヤ36は、リムホイールに組み付けられたタイヤ(タイヤ・ホイール組立体と呼ばれてもよい)である。
 ここでは、タイヤ31は、左前の車輪位置(図中の「1」、以下同)に装着される。同様に、タイヤ32~タイヤ36は、右前輪(2)、左外側後輪(3)、左内側後輪(4)、右内側後輪(5)、右外側後輪(6)の位置にそれぞれ装着される。
 タイヤ31には、タイヤ31の内圧及び温度を測定するセンサ41が搭載される。なお、センサ41は、加速度を測定するセンサを含んでもよい。センサ41は、測定した内圧及び温度のデータを送信する送信機を含む。同様に、タイヤ32~タイヤ36には、センサ42~センサ46が搭載される。センサ41~センサ46は、タイヤ空気圧監視システム(TPMS)などに好適に用い得る。
 センサ41には、センサ41(送信機)を識別する識別であるセンサIDとして「a」が割り当てられている。同様に、センサ42~センサ46には、センサIDとして「b」~「f」がそれぞれ割り当てられている。
 タイヤ装着位置検出システム100は、センサ41(送信機)~センサ46が搭載された各々のタイヤ31~タイヤ36が、車両10の何れの車輪位置(図中の「1」~「6」)に装着されたかを検出する。
 タイヤ装着位置検出システム100は、受信ユニット105及び位置検出デバイス200を含む。受信ユニット105は、車両10に配置され、センサ41(送信機)~センサ46から送信される無線信号(電波)を受信する。
 本実施形態では、受信ユニット105は、受信機110と、受信機120とによって構成される。本実施形態において、受信機110は、第1受信機を構成する。また、受信機120は、第2受信機を構成する。
 受信機110は、便宜上、適宜「R1」と標記する。受信機110は、各センサ(送信機)、つまり、センサ41~センサ46から送信される無線信号を受信する。なお、無線信号の強度(送信電力)及び使用周波数帯などは、タイヤ装着位置検出システム100の使用地域、或いは車両10の種類によって異なり得る。
 受信機120は、便宜上、適宜「R2」と標記する。受信機120も、センサ41~センサ46から送信される無線信号を受信する。受信機120は、受信機110と異なる位置に配置される。具体的には、受信機120は、車両前後方向及び車幅方向において、受信機110と異なる位置に配置される。
 本実施形態では、受信機110は、左輪(例えば、「1」)と、右輪(例えば、「2」との間における中心線CL1(幅方向中心線)を基準とした一方側、具体的には、右側に配置される。
 一方、受信機120は、中心線CL1を基準とした他方側、具体的には、左側に配置される。
 また、本実施形態では、受信機110は、前輪(「1」,「2」)と後輪(「3」~「6」)との間における中心線CL2(前後方向中心線)を基準とした一方側、具体的には、前輪側に配置される。
 一方、受信機120は、中心線CL2を基準とした他方側、具体的には、後輪側に配置される。
 位置検出デバイス200は、受信ユニット105を用いて、タイヤ31~タイヤ36、つまり、センサ41~センサ46が装着されている車輪位置(「1」~「6」)を検出する。本実施形態では、位置検出デバイス200は、車両10に搭載される電子制御ユニット(ECU)の一部として組み込まれる。なお、後述するように、位置検出デバイス200によって実現される機能は、通信ネットワーク経由で接続可能な車両10の外部(クラウドなど)に設けられても構わない。
 (2)タイヤ装着位置検出システムの機能ブロック構成
 次に、タイヤ装着位置検出システム100の機能ブロック構成について説明する。具体的には、タイヤ装着位置検出システム100を構成する位置検出デバイス200の機能ブロック構成について説明する。
 図2は、位置検出デバイス200の機能ブロック構成図である。図2に示すように、位置検出デバイス200は、第1測定部210、第2測定部220、信号強度演算部230及び位置検出部250を備える。
 なお、位置検出デバイス200は、CPU及びメモリなどのハードウェアを有しており、上述した各機能部は、当該ハードウェア上においてコンピュータプログラム(ソフトウェア)を実行することによって実現される。
 第1測定部210は、受信機110と接続される。第1測定部210は、受信機110が受信した無線信号の強度(第1信号強度)を、センサ41~センサ46(送信機)毎に測定する。
 第2測定部220は、受信機120と接続される。第2測定部220は、受信機120が受信した無線信号の強度(第2信号強度)を、センサ41~センサ46(送信機)毎に測定する。
 以下、受信機110(第1受信機)が受信したセンサ41(センサID=a)からの信号をR1(a)と標記する。同様に、受信機120(受信機120)が受信したセンサ41(センサID=a)からの信号をR2(a)と標記する(他のセンサについても同様に標記する)。
 第1測定部210及び第2測定部220が測定対象とする無線信号の強度は、電圧レベルでも電力レベルでもよい。さらに、デシベル(dB)単位で管理してもよい。本実施形態では、電圧レベル(単位:V)が用いられる。
 また、本実施形態では、センサ41~センサ46から送信される無線信号には、各センサ(送信機)を識別するセンサID(識別子)が含まれる。
 信号強度演算部230は、第1測定部210及び第2測定部220が測定した無線信号の強度を用いた演算を実行する。なお、車両前後方向におけるセンサの位置は、タイヤの回転に応じてそれぞれ異なり得るため、信号強度演算部230は、複数回測定した値の平均を用いることが好ましい。
 信号強度演算部230は、受信機110が受信した無線信号の強度(第1信号強度)と、受信機120が受信した無線信号の強度(第2信号強度)とを用いた比率である強度比を、センサ毎に演算する。本実施形態において、信号強度演算部230は、演算部を構成する。
 本実施形態では、信号強度演算部230は、強度比として、第1信号強度と第2信号強度との商を、センサ毎に演算する。具体的には、信号強度演算部230は、第1信号強度を第2信号強度で除し、商(R1/R2)を算出する。より具体的には、信号強度演算部230は、次に示す信号強度の商(R1/R2)を演算する。
Figure JPOXMLDOC01-appb-M000001
 なお、強度比は、第1信号強度と第2信号強度とを用いた比率であればよく、R1/R2に限定されない。商であれば、R2/R1でもよいし、(R1-R2)/(R1+R2)のように、R1及びR2の値を無次元化できるようなものであればよい。
 位置検出部250は、センサ(送信機)が搭載されたタイヤが装着されている車輪位置を検出する。具体的には、位置検出部250は、センサ41~センサ46が搭載されたタイヤ31~タイヤ36が装着されている車輪位置(ポジション)を各々検出する。
 位置検出部250は、センサ毎の第1信号強度、第2信号強度及び強度比に基づいて、センサが搭載されたタイヤが装着されている車輪位置を検出する。
 具体的には、位置検出部250は、受信機110によって受信されたセンサ毎の信号強度R1(x)(「x」はセンサID)に基づいて、受信機110に近いセンサを判定する。同様に、位置検出部250は、受信機120によって受信されたセンサ毎の信号強度R2(x)に基づいて、受信機120に近いセンサを判定する。これにより、位置検出部250は、前輪側の車輪位置(「1」,「2」)を検出する。
 さらに、位置検出部250は、センサ毎の商(R1/R2)の大きさに基づいて、特に、後輪側の車輪位置(「3」~「6」)を検出する。すなわち、位置検出部250は商(R1/R2)などの強度比に基づいて、後輪車軸における車輪位置を検出する。なお、より具体的な車輪位置の検出方法については、さらに後述する。
 (3)タイヤ装着位置検出システムの動作
 次に、上述したタイヤ装着位置検出システム100の動作について説明する。具体的には、タイヤ装着位置検出システム100の初期設定動作、及びタイヤ(センサ)位置検出動作について説明する。
 (3.1)初期設定動作
 図3は、タイヤ装着位置検出システム100の初期設定動作フローを示す。図3に示すように、まず、タイヤ装着位置検出システム100が搭載される車両10の基本的な構成を設定する。具体的には、車両10の車軸構成を設定する(S10)。車軸構成には、車両10の車軸数、ダブルタイヤの有無、及びタイヤ数の情報などが含まれる。
 次いで、車両10に配置される受信機の数及び位置に基づいて、各車輪位置から送信される無線信号の受信信号強度に基づいて初期設定を実行する(S20)。
 具体的には、各車輪位置から送信される無線信号の受信信号強度に基づいて、各車輪位置からの標準的な信号強度を設定する。特に、車両10の車体構造、及び装着される部品(例えば、燃料タンク)の種類、サイズ、位置に応じて信号強度が大きく変化するため、このような伝搬環境を踏まえて各領域における標準的な信号強度を調整する。
 上述したような信号強度の初期設定を車輪数分繰り返し、設定を終了する(S30)。
 (3.2)タイヤ(センサ)位置検出動作
 図4は、タイヤ装着位置検出システム100によるタイヤ(センサ)位置の検出動作フローを示す。図4に示すように、タイヤ装着位置検出システム100は、受信機R1及び受信機R2によって受信された各センサからの無線信号の信号強度を取得する(S110)。
 タイヤ装着位置検出システム100は、センサ毎に、R1が受信した無線信号の信号強度と、R2が受信した無線信号の信号強度との強度比として、商(R1/R2)を演算する(S120)。ここでは、当該強度比(商)をR1(x)/R2(x)と記載(上述したように、「x」はセンサID)する。タイヤ装着位置検出システム100は、このような強度比の演算を車輪数分繰り返す(S130)。
 図5は、タイヤ装着位置検出システム100によって測定された無線信号の強度及び演算結果の例を示す。図5に示す「ポジション」は、図4に示す動作の結果、タイヤ装着位置検出システム100によって検出された各センサ(タイヤ)の車輪位置を示す。
 図5に示すように、タイヤ装着位置検出システム100は、測定されたR1(x), R2(x)、及びR1(x)/R2(x)の演算結果を取得する。
 タイヤ装着位置検出システム100は、R1(x), R2(x)及びR1(x)/R2(x)に基づいて、センサが搭載されたタイヤが装着されている車輪位置(ポジション)を検出する(S140)。
 具体的には、タイヤ装着位置検出システム100は、まず、R1(x), R2(x)及びR1(x)/R2(x)に基づいて、前輪側の車輪位置を検出する。
 ここで、R1(x), R2(x)のうち、センサ42(ID=b)はR1に最も近いため、R1(b)が最も大きくなっている。一方、センサ42(ID=b)は受信機120(R2)からは最も遠いため、R2(b)が最も小さくなっている。
 したがって、タイヤ装着位置検出システム100は、R1(x)/R2(x)が最も大きいセンサ42(ID=b)が、ポジション「2」に位置すると検出する。
 また、図5に示すように、センサ43(ID=c), センサ44(ID=d)と、センサ45(ID=e), センサ46(ID=f)との商、具体的には、R1(c)/R2(c)とR1(d)/R2(d)、及びR1(e)/R2(e)とR1(f)/R2(f)は、近い値を示している。このようにR1(x)/R2(x)が近い値を示す理由は、センサ43~センサ46が後輪側のダブルタイヤ(内側後輪及び外側後輪)の何れかに位置しているためである。
 一方、ダブルタイヤではなく、右前輪に位置しているセンサ42(ID=b)については、このような判定結果からも、ポジション「2」に位置すると検出できる。また、センサ41(ID=a)については、右前輪、及び後輪側のダブルタイヤの何れかに位置していると検出された結果、残りのポジション「1」に位置すると検出できる。
 タイヤ装着位置検出システム100は、センサ43~センサ46(ID=c~f)が後輪側のダブルタイヤ(内側後輪及び外側後輪)の何れかに位置することを判定した後、当該センサのR1(x)/R2(x)の大きさに基づいて、後輪側の車輪位置を検出する(S150)。
 具体的には、R1(c)/R2(c), R1(d)/R2(d)、及びR1(e)/R2(e), R1(f)/R2(f)の大きさを比較すると、R1(c)/R2(c), R1(d)/R2(d)は、R1(e)/R2(e), R1(f)/R2(f)よりも小さい。センサ43(ID=c)及びセンサ44(ID=d)は、センサ45(ID=e)及びセンサ46(ID=f)よりもR2に近く、R2(c)、R2(d)の値が大きいためである。
 つまり、センサ43~センサ46(ID=c~f)のうち、R1(x)/R2(x)が小さいセンサ43(ID=c)及びセンサ44(ID=d)が、ポジション「3」及び「4」の何れかに位置すると検出できる。
 さらに、タイヤ装着位置検出システム100は、センサ43(ID=c)及びセンサ44(ID=d)が、ポジション「3」及び「4」の何れに位置するかを判定する。具体的には、センサ44(ID=d)はセンサ43(ID=c)よりも少しだけR1に近いため、R1(c)<R1(d)となっている。
 したがって、センサ43(ID=c)のR1(c)/R2(c)は、R1により近いセンサ44(ID=d)のR1(d)/R2(d)よりも小さくなる。
 つまり、R1(c)/R2(c)とR1(d)/R2(d)とを比較することによって、ポジション「3」及び「4」の何れかに位置するか、つまり、ダブルタイヤの内側後輪及び外側後輪の何れに位置するかを検出できる。
 センサ45(ID=e)及びセンサ46(ID=f)についても同様であり、センサ45(ID=e)はセンサ46(ID=f)よりも少しだけR2に近いため、R2(e)>R2(f)となっている。したがって、R2により近いセンサ45(ID=e)のR1(e)/R2(e)は、センサ46(ID=f)のR1(f)/R2(f)よりも小さくなる。
 つまり、R1(e)/R2(e)とR1(f)/R2(f)とを比較することによって、ポジション「5」及び「6」の何れかに位置するか、つまり、ダブルタイヤの内側後輪及び外側後輪の何れに位置するかを検出できる。
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、タイヤ装着位置検出システム100によれば、受信機110が受信したセンサ(送信機)からの無線信号の強度である第1信号強度(R1(x))と、車両前後方向及び車幅方向において受信機110と異なる位置に配置された受信機120が受信したセンサ(送信機)からの無線信号の強度である第2信号強度(R2(x))と、R1(x)とR2(x)との強度比、具体的には、商(R1(x)/R2(x))に基づいて、当該センサが搭載されたタイヤが装着されている車輪位置が検出される。
 これにより、センサから送信される無線信号の受信状態のみに基づいて、タイヤ(センサ)が装着される車輪位置を自動的に検出し得る。つまり、各タイヤが装着されている車輪位置を検出するために、タイヤの回転方向を検出するセンサなどは不要である。このため、コスト及びシステムの故障率の上昇を回避し得る。
 特に、強度比を用いることによって、R1(x)及びR2(x)の値が無次元化されるため、センサ(送信機)または受信機の性能にばらつきがある場合でも、当該センサが搭載されたタイヤが装着されている車輪位置を正確に検出し得る。
 センサについては、送信電力が一致しない場合があり、受信機については、受信感度が一致しない場合があり得る。このような場合でも、R1(x)/R2(x)を用いることによって、測定された信号強度にばらつきがある場合でも、当該ばらつきを相殺された状態で車輪位置を検出することができる。
 すなわち、タイヤ装着位置検出システム100によれば、センサから送信される無線信号の受信状態のみに基づいて、特に、送信電力のばらつき、または受信機の受信感度が低い場合でも、タイヤ(センサ)が装着される車輪位置を自動的に検出し得る。
 本実施形態では、受信機110は、中心線CL2を基準とした一方側(前輪側)に配置され、受信機120は、中心線CL2を基準とした他方側(後輪側)に配置される。また、本実施形態では、受信機110は、中心線CL1を基準とした一方側(右輪側)に配置され、受信機120は、中心線CL1を基準とした他方側(左輪側)に配置される。
 つまり、受信機110及び受信機120は、中心線CL1と中心線CL2とによって区分される4つの領域において、対角的に配置される。このため、車輪位置に応じたR1(x)/R2(x)の値(大きさ)の差が顕著になり、当該センサが搭載されたタイヤが装着されている車輪位置をさらに正確に検出し得る。
 本実施形態では、タイヤ装着位置検出システム100は、強度比(商)に基づいて、ダブルタイヤ構成である後輪車軸における車輪位置を検出する。強度比、具体的には、R1(x)/R2(x)を用いることによって、ダブルタイヤのように、車両幅方向における内側後輪と、外側後輪とが接近しているような場合でも、当該センサが搭載されたタイヤが装着されている車輪位置を正確に検出し得る。
 [第2実施形態]
 本実施形態では、第1実施形態と比較すると、車両の構成が異なる。以下、第1実施形態と異なる部分について主に説明し、同様の部分については、その説明を適宜省略する。
 (1)タイヤ装着位置検出システムを含む車両の概略構成
 図6は、タイヤ装着位置検出システム100Aを含む車両10Aの概略平面図である。図6に示すように、車両10Aは、複数の前輪車軸と、複数の後輪車軸とを備える自動車である。具体的には、車両10Aは、前輪車軸23及び前輪車軸24を備える。また、車両10Aは、後輪車軸25及び後輪車軸26を備える。
 車両10Aの種類も特に限定されないが、後輪車軸25及び後輪車軸26は、ダブルタイヤ構成であり、主に大型のトラックなどを想定している。
 車両10Aは、12輪構成である。具体的には、車両10Aには、前輪車軸側にタイヤ51~タイヤ54が装着される。また、車両10Aには、後輪車軸側に、タイヤ61~タイヤ68が装着される。
 また、タイヤ51~タイヤ54には、センサ71~センサ74がそれぞれ搭載され、タイヤ61~タイヤ68には、センサ81~センサ88がそれぞれ搭載される。センサ71~センサ74には、センサIDとして「a」~「d」がそれぞれ割り当てられている。センサ81~センサ88には、センサIDとして「e」~「l」がそれぞれ割り当てられている。
 タイヤ装着位置検出システム100Aは、タイヤ装着位置検出システム100と同様に、受信機110と受信機120とを含む。本実施形態においても、受信機120は、車両前後方向及び車幅方向において、受信機110と異なる位置に配置される。
 具体的には、本実施形態では、受信機110は、中心線CL1及び中心線CL2によって区画される左前側の領域に配置される。一方、受信機120は、右後側の領域に配置される。
 (2)タイヤ装着位置検出システムの機能ブロック構成
 タイヤ装着位置検出システム100Aは、タイヤ装着位置検出システム100と同様に、位置検出デバイス200を含む。位置検出デバイス200の機能ブロック構成は、第1実施形態と同様(図2参照)である。
 本実施形態では、信号強度演算部230は、受信機110が受信した無線信号の強度(第1信号強度)と、受信機120が受信した無線信号の強度(第2信号強度)との合計値(和)をセンサ毎に演算する。本実施形態において、信号強度演算部230は、演算部を構成する。
 より具体的には、信号強度演算部230は、次に示す信号強度の合計値(R1+R2)を演算する。
Figure JPOXMLDOC01-appb-M000002
 また、位置検出部250は、第1信号強度、第2信号強度、強度比及び合計値(和)に基づいて、センサが搭載されたタイヤが装着されている車輪位置を検出する。
 具体的には、位置検出部250は、センサ毎の信号強度(R1(x), R2(x))、強度比(R1(x)/R2(x))、及び合計値(R1(x)+R2(x))を用いて、各センサが搭載されたタイヤが装着されている車輪位置(ポジション)を段階的に検出する。
 より具体的には、位置検出部250は、R1(x)/R2(x)及びR1(x)+R2(x)の大きさに基づいて、12輪のタイヤを、車輪位置と対応付けられた複数のグループ(ポジション「1」~「4」、「5」~「8」及び「9」~「12」)に分類する。さらに、位置検出部250は、R1(x)/R2(x)及びR1(x)+R2(x)の大きさに基づいて、各グループ内における車輪位置を検出する。
 なお、より具体的な車輪位置の検出方法については、さらに後述する。
 (3)タイヤ装着位置検出システムの動作
 次に、タイヤ装着位置検出システム100Aの動作について説明する。具体的には、タイヤ装着位置検出システム100Aのタイヤ(センサ)位置検出動作について説明する。
 図7は、タイヤ装着位置検出システム100Aによるタイヤ(センサ)位置の検出動作フローを示す。図7に示すように、タイヤ装着位置検出システム100Aは、受信機R1及び受信機R2によって受信された各センサからの無線信号の信号強度を取得する(S210)。
 次いで、タイヤ装着位置検出システム100Aは、取得した各センサの信号強度を用いて、合計値(和)及び強度比(商)を演算する(S220)。具体的には、タイヤ装着位置検出システム100Aは、R1(x)+R2(x)及びR1(x)/R2(x)を演算する。
 図8は、タイヤ装着位置検出システム100Aによって測定された無線信号の強度及び演算結果の例を示す。図8に示す「ポジション」は、図7に示す動作の結果、タイヤ装着位置検出システム100Aによって検出された各センサ(タイヤ)の車輪位置を示す。
 図8に示すように、タイヤ装着位置検出システム100Aは、測定されたR1(x), R2(x)、R1(x)+R2(x)、及びR1(x)/R2(x)の演算結果を取得する。
 タイヤ装着位置検出システム100Aは、このような合計値(和)及び強度比(商)の演算を車輪数分繰り返す(S230)。
 次いで、タイヤ装着位置検出システム100Aは、各センサのR1(x)/R2(x)の大きさが、上位4つ以内か否かを判定する(S240)。
 商(R1(x)/R2(x))の大きさが上位4つ以内の場合、タイヤ装着位置検出システム100Aは、当該センサがポジション「1」~「4」(図7では、P1~P4と標記、以下同)の何れかの車輪位置に位置すると判定する(S250)。
 さらに、タイヤ装着位置検出システム100Aは、当該4つのセンサのうち、和(R1(x)+R2(x))が上位2つ以内か否かを判定する(S260)。
 和(R1(x)+R2(x))が上位2つ以内でない場合、つまり、下位2つである場合、タイヤ装着位置検出システム100Aは、商(R1(x)/R2(x))が大きい順に、当該センサがポジション「1」、「2」に位置すると判定する(S270)。
 和(R1(x)+R2(x))が上位2つ以内の場合、タイヤ装着位置検出システム100Aは、商(R1(x)/R2(x))が大きい順に、当該センサがポジション「3」、「4」に位置すると判定する(S280)。
 図9は、図8と同様の無線信号の強度及び演算結果の例を示すが、ステップS280までの処理が完了し、ポジション「1」~「4」に位置するセンサが検出された状態(図中の網掛け部分参照)と対応する。
 図9に示すように、センサ71(ID=a)~センサ74(ID=d)のみ、商(R1(x)/R2(x))が1.0よりも大きい。これは、センサ71~センサ74(以下、便宜上、センサa~dと標記)(のみ、12個のセンサのうち、R2よりもR1に近く、R1(x)>R2(x)となるためである。このような特性を利用することによって、まず、12個のセンサのうち、ポジション「1」~「4」の何れかにセンサa~dが位置すると判定できる。
 センサa~dの和(R1(x)+R2(x))に着目すると、図9に示すように、センサc, dの和は、センサa, bの和よりも大きい。これは、センサc, d(タイヤ73, 74)がR2により近い前輪車軸24に位置し、R2(c), R2(d)が大きくなるためである。これにより、前輪車軸23及び前輪車軸24に位置するセンサを判定できる。
 次いで、前輪車軸23側に位置すると判定されたセンサa, bと、前輪車軸24側に位置すると判定されたセンサc, dのそれぞれにおいて、商が大きいセンサが車両10Aの左輪に装着されていると判定すればよい。R1に近く、R1(x)が大きくなるためである。
 さらに、タイヤ装着位置検出システム100Aは、上述したR1(x)/R2(x)の大きさが上位4つのセンサ(センサa~d)を除いた残りの8つのセンサのうち、和(R1(x)+R2(x))が上位4つ以内か否かを判定する(S290)。
 残りの8つのセンサ(センサe~l)のうち、和(R1(x)+R2(x))が上位4つ以内でない場合、つまり、下位4つである場合、タイヤ装着位置検出システム100Aは、当該センサがポジション「9」~「12」の何れかの車輪位置に位置すると判定する(S300)。
 さらに、タイヤ装着位置検出システム100Aは、当該4つのセンサにおいて、商(R1(x)/R2(x))が大きい順に、当該センサがポジション「9」、「10」、「11」、「12」に位置すると判定する(S310)。
 図10は、ステップS310までの処理が完了し、ポジション「9」~「12」に位置するセンサが検出された状態(図中の詳細網掛け部分参照)と対応する。図10に示すように、センサe~lのうち、和(R1(x)+R2(x))が下位4つのセンサは、センサi~lである。これは、センサi~lは、R1及びR2の両方から遠いためである。これにより、ポジション「9」~「12」の何れかにセンサi~lが位置すると判定できる。
 また、センサi~lの商(R1(x)/R2(x))に着目すると、図10に示すように、センサiが最も大きく、センサj, k, lの順で小さくなっている。R1(x)及びR2(x)は、R1, R2と当該センサとの距離に基本的には依存し、センサi, j, k, lの順で、センサ~R1間、及びセンサ~R2間の距離差が大きいためである。
 残りの8つのセンサ(センサe~l)のうち、和(R1(x)+R2(x))が上位4つ以内の場合、タイヤ装着位置検出システム100Aは、当該センサがポジション「5~「8」の何れかの車輪位置に位置すると判定する(S320)。当該センサがポジション「5~「8」の何れかの車輪位置に位置すると判定できる根拠は、上述したポジション「9」~「12」に位置するセンサの判定と同様であり、ポジション「5~「8」に位置するセンサは、R1及びR2の両方に近く、和(R1(x)+R2(x))が大きくなるためである。
 さらに、タイヤ装着位置検出システム100Aは、当該4つのセンサのうち、和(R1(x)+R2(x))が最小であるセンサ(センサh)がポジション「8」に位置すると判定する(S330, S340)。
 図11は、ステップS340までの処理が完了し、ポジション「8」に位置するセンサが検出された状態(図中の詳細網掛け部分参照)と対応する。
 なお、上述したポジション「9」~「12」と同様に、ポジション「5~「8」についても、商(R1(x)/R2(x))のみを用いて、各センサが位置するポジションを判定してもよいが、車両10Aの構造などによっては、伝搬環境が車輪位置によって異なり、位置が誤検出する場合が想定される。
 図11に示す例では、商(R1(x)/R2(x))のみを用いて各センサが位置するポジションを判定すると、センサgの位置と、センサhの位置とが逆転してしまう。このように、車両10Aの構造などによって、商のみで車幅方向(左右方向)の位置を決定できない場合には、まず、和(R1(x)+R2(x))に着目すればよい。
 和(R1(x)+R2(x))が最小であるセンサは、R1, R2の両方から最も遠い位置、具体的にはセンサ~R1間、及びセンサ~R2間の合計距離が最も長くなる位置、つまり、ポジション「8」に位置すると判定できる。
 タイヤ装着位置検出システム100Aは、当該4つのセンサのうち、和(R1(x)+R2(x))が最小であるセンサ(センサh)を除いた3つのセンサにおいて、商(R1(x)/R2(x))が大きい順に、当該センサがポジション「5」、「6」、「7」に位置すると判定する(S350)。
 図12は、ステップS350までの全ての処理が完了し、ポジション「5」、「6」、「7」に位置するセンサが検出された状態(図中の詳細網掛け部分参照)と対応する。
 図12に示すように、センサe~gの商(R1(x)/R2(x))に着目すると、センサeが最も大きく、センサf, gの順で小さくなっている。R1(x)及びR2(x)は、R1, R2と当該センサとの距離に基本的には依存し、センサe, f, gの順で、センサ~R1間、及びセンサ~R2間の距離差が大きいためである。
 (4)作用・効果
 本実施形態に係るタイヤ装着位置検出システム100Aによれば、R1(x)、R2(x)及びR1(x)/R2(x)に加え、和(R1(x)+R2(x))に基づいて当該センサが搭載されたタイヤが装着されている車輪位置が検出される。
 このため、上述したように、車両10Aの構造などによって伝搬環境が車輪位置によって異なり、R1(x)/R2(x)のみでは、車輪位置が誤検出されるような場合でも、和(R1(x)+R2(x))を補足的に臨機応変に用いることによって、当該センサが搭載されたタイヤが装着されている車輪位置を正確に検出し得る。
[その他の実施形態]
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、位置検出デバイス200が車両10に搭載される電子制御ユニット(ECU)の一部として組み込まれていたが、次のように変更してもよい。
 図13は、その他の実施形態に係る車両10Bの概略平面図及び概略ネットワーク構成図である。図13に示すように、車両10Bは、位置検出デバイス200に代えて、通信デバイス310を備える。
 通信デバイス310は、無線基地局320と無線通信を実行することができる。通信デバイス310は、例えば、移動通信ネットワーク(LTEなど)に接続可能な無線通信端末である。
 サーバコンピュータ330は、通信ネットワーク上に設けられ、位置検出デバイス200によって実現されていた各機能(第1測定部210、第2測定部220、信号強度演算部230及び位置検出部250)を実現する。
 また、当該機能を実現するプログラム、(ソフトウェア、プログラム製品と呼ばれてもよい)は、通信ネットワーク上にダウロード可能な状態で保存されてもよいし、記憶媒体に保存された形態で提供されてもよい。
 また、図3に示した初期設定動作などの際に、自車両に装着されているタイヤ(センサ)か否かであることを自動的に判定してもよい。例えば、一定時間に亘って各センサ(送信機)のセンサIDをモニタし、受信回数が多いセンサを自車両に装着されているタイヤ(センサ)と判定すればよい。
 10, 10A, 10B 車両
 21, 23, 24 前輪車軸
 22, 25, 26 後輪車軸
 31~36 タイヤ
 41~46 センサ
 51~54 タイヤ
 61~68 タイヤ
 71~74 センサ
 81~88 センサ
 100, 100A タイヤ装着位置検出システム
 105 受信ユニット
 110, 120 受信機
 200 位置検出デバイス
 210 第1測定部
 220 第2測定部
 230 信号強度演算部
 250 位置検出部
 310 通信デバイス
 320 無線基地局
 330 サーバコンピュータ

Claims (7)

  1.  送信機が搭載された各々のタイヤが、車両の何れの車輪位置に装着されたかを検出するタイヤ装着位置検出システムであって、
     前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットを備え、
     前記受信ユニットは、
     第1受信機と、
     車両前後方向及び車幅方向において、前記第1受信機と異なる位置に配置される第2受信機と
    を含み、
     前記第1受信機が受信した前記無線信号の強度である第1信号強度を、前記送信機毎に測定する第1測定部と、
     前記第2受信機が受信した前記無線信号の強度である第2信号強度を、前記送信機毎に測定する第2測定部と、
     前記第1信号強度と前記第2信号強度とを用いた比率である強度比を、前記送信機毎に演算する演算部と、
     前記送信機毎の前記第1信号強度、前記第2信号強度及び前記強度比に基づいて、前記送信機が搭載されたタイヤが装着されている車輪位置を検出する位置検出部と
    を備えるタイヤ装着位置検出システム。
  2.  前記演算部は、前記第1信号強度と前記第2信号強度との合計値を、前記送信機毎に演算し、
     前記位置検出部は、前記第1信号強度、前記第2信号強度、前記強度比及び前記合計値に基づいて、前記車輪位置を検出する請求項1に記載のタイヤ装着位置検出システム。
  3.  前記第1受信機は、前輪と後輪との間における前後方向中心線を基準とした一方側に配置され、
     前記第2受信機は、前記前後方向中心線を基準とした他方側に配置される請求項1または2に記載のタイヤ装着位置検出システム。
  4.  前記第1受信機は、左輪と右輪との間における幅方向中心線を基準とした一方側に配置され、
     前記第2受信機は、前記幅方向中心線を基準とした他方側に配置される請求項1乃至3の何れか一項に記載のタイヤ装着位置検出システム。
  5.  前記車両の後輪車軸は、ダブルタイヤ構成であり、
     前記位置検出部は、前記強度比に基づいて、前記後輪車軸における前記車輪位置を検出する請求項1乃至4の何れか一項に記載のタイヤ装着位置検出システム。
  6.  送信機が搭載された各々のタイヤが、車両の何れの車輪位置に装着されたかを検出するタイヤ装着位置検出方法であって、
     前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットを用い、
     前記受信ユニットは、第1受信機と、車両前後方向及び車幅方向において、前記第1受信機と異なる位置に配置される第2受信機とを含み、
     前記第1受信機が受信した前記無線信号の強度である第1信号強度を、前記送信機毎に測定するステップと、
     前記第2受信機が受信した前記無線信号の強度である第2信号強度を、前記送信機毎に測定するステップと、
     前記第1信号強度と前記第2信号強度とを用いた比率である強度比を、前記送信機毎に演算するステップと、
     前記送信機毎の前記第1信号強度、前記第2信号強度及び前記強度比に基づいて、前記送信機が搭載されたタイヤが装着されている車輪位置を検出するステップと
    を含むタイヤ装着位置検出方法。
  7.  送信機が搭載された各々のタイヤが、車両の何れの車輪位置に装着されたかを検出するタイヤ装着位置検出プログラムであって、
     前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットが、第1受信機と、車両前後方向及び車幅方向において、前記第1受信機と異なる位置に配置される第2受信機とを含み、
     前記第1受信機が受信した前記無線信号の強度である第1信号強度を、前記送信機毎に測定する処理と、
     前記第2受信機が受信した前記無線信号の強度である第2信号強度を、前記送信機毎に測定する処理と、
     前記第1信号強度と前記第2信号強度とを用いた比率である強度比を、前記送信機毎に演算する処理と、
     前記送信機毎の前記第1信号強度、前記第2信号強度及び前記強度比に基づいて、前記送信機が搭載されたタイヤが装着されている車輪位置を検出する処理と
    をコンピュータに実行させるタイヤ装着位置検出プログラム。
PCT/JP2019/020133 2018-06-07 2019-05-21 タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム WO2019235213A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/972,204 US11780277B2 (en) 2018-06-07 2019-05-21 Tire mounting position detection system, tire mounting position detection method, and tire mounting position detection program
EP19814949.4A EP3815931B1 (en) 2018-06-07 2019-05-21 Tire mounting position detection system, tire mounting position detection method, and tire mounting position detection program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018109293A JP7057227B2 (ja) 2018-06-07 2018-06-07 タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム
JP2018-109293 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235213A1 true WO2019235213A1 (ja) 2019-12-12

Family

ID=68770449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020133 WO2019235213A1 (ja) 2018-06-07 2019-05-21 タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム

Country Status (4)

Country Link
US (1) US11780277B2 (ja)
EP (1) EP3815931B1 (ja)
JP (1) JP7057227B2 (ja)
WO (1) WO2019235213A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056916A (zh) 2020-09-02 2023-05-02 普利司通美国轮胎运营有限责任公司 使用温度升高数据的车辆轮胎定位系统和方法
JP6985560B1 (ja) * 2021-08-26 2021-12-22 太平洋工業株式会社 送信機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197603A1 (en) * 2002-04-18 2003-10-23 Stewart William David Determination of wheel sensor position using a wireless solution
JP2007045201A (ja) 2005-08-08 2007-02-22 Mitsubishi Motors Corp タイヤ空気圧監視システム
JP2013001219A (ja) * 2011-06-15 2013-01-07 Denso Corp 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
US20130321139A1 (en) * 2010-10-22 2013-12-05 Wei Li Method and device for receiving and processing tire pressure signals
JP2016111544A (ja) * 2014-12-08 2016-06-20 シャープ株式会社 電子機器の遠隔制御システム、送信装置、及び、電子機器
JP2016117991A (ja) * 2014-12-18 2016-06-30 アルプス電気株式会社 キーレスエントリー装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144521B2 (ja) 2003-12-18 2008-09-03 株式会社デンソー タイヤ盗難検知装置
JP4735185B2 (ja) * 2005-10-21 2011-07-27 株式会社デンソー 車輪位置検出装置およびそのタイヤ空気圧検出装置
JP4858034B2 (ja) * 2006-09-19 2012-01-18 株式会社デンソー 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
US20090002146A1 (en) * 2007-06-28 2009-01-01 Trw Automotive U.S. Llc Method and apparatus for determining and associating sensor location in a tire pressure monitoring system using dual antennas
US8744482B2 (en) * 2011-03-25 2014-06-03 Lear Corporation Apparatus and method for wireless device detection
WO2018066498A1 (ja) * 2016-10-05 2018-04-12 株式会社オートネットワーク技術研究所 タイヤ空気圧検出システム及び車体側装置
DE102016225481A1 (de) * 2016-12-19 2018-06-21 Continental Automotive Gmbh Verfahren zur funktechnischen Optimierung einer Radüberwachung in einem Fahrzeug, Radüberwachungssystem eines Fahrzeuges sowie elektronische Radeinheit und Steuereinrichtung für ein derartiges Radüberwachungssystem
US10780749B2 (en) * 2017-11-21 2020-09-22 Ford Global Technologies, Llc Systems and methods for vehicle TPMS localization
US10442253B2 (en) * 2018-01-23 2019-10-15 Infineon Technologies Ag Tire pressure monitoring system (TPMS) module localization using bluetooth low energy beacons
US10596865B2 (en) * 2018-01-31 2020-03-24 Ford Global Technologies, Llc Systems and methods for controlling vehicle TPMS sensor localization
GB201810137D0 (en) * 2018-06-20 2018-08-08 Continental Automotive Gmbh A method for detecting wheel units of a vehicle and wheel mounting positions belonging to the wheel units, and a wheel information system
KR102465055B1 (ko) * 2019-11-18 2022-11-08 콘티넨탈 오토모티브 게엠베하 타이어 압력 모니터링 시스템의 타이어 위치 학습 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197603A1 (en) * 2002-04-18 2003-10-23 Stewart William David Determination of wheel sensor position using a wireless solution
JP2007045201A (ja) 2005-08-08 2007-02-22 Mitsubishi Motors Corp タイヤ空気圧監視システム
US20130321139A1 (en) * 2010-10-22 2013-12-05 Wei Li Method and device for receiving and processing tire pressure signals
JP2013001219A (ja) * 2011-06-15 2013-01-07 Denso Corp 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2016111544A (ja) * 2014-12-08 2016-06-20 シャープ株式会社 電子機器の遠隔制御システム、送信装置、及び、電子機器
JP2016117991A (ja) * 2014-12-18 2016-06-30 アルプス電気株式会社 キーレスエントリー装置

Also Published As

Publication number Publication date
EP3815931B1 (en) 2023-10-18
EP3815931A1 (en) 2021-05-05
JP2019209899A (ja) 2019-12-12
US11780277B2 (en) 2023-10-10
EP3815931A4 (en) 2021-11-24
US20210229507A1 (en) 2021-07-29
JP7057227B2 (ja) 2022-04-19

Similar Documents

Publication Publication Date Title
JP6409648B2 (ja) 通信器装着位置判定システム及び判定装置
US9278589B2 (en) Low line TPMS: sensor association using RSSI and doppler signatures with a single or multiple ECUs
US9469166B2 (en) Apparatus and method for tire localization
US6919798B2 (en) Vehicle wheel information obtaining apparatus and wheel information processing apparatus
WO2019235213A1 (ja) タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム
US20150054640A1 (en) Id code learning device and method of learning id code
US20130009763A1 (en) Controller for tire pressure monitoring system
CN111479711B (zh) 轮胎安装位置检测系统、轮胎安装位置检测方法以及轮胎安装位置检测程序
US20230160920A1 (en) Tire position determination system
US9114669B2 (en) Method for locating the wheels of a vehicle fitted with a system for monitoring tire pressure
JP2008195120A (ja) 車載センサシステム、その制御方法およびプログラム
JP7060593B2 (ja) タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム
JP6036528B2 (ja) 盗難検知システム、当該システムを構成する送信装置及び受信装置
JP4458273B2 (ja) タイヤ空気圧監視システム
JP2005164337A (ja) タイヤ状態推定装置
KR102301098B1 (ko) Tpms센서 위치 판단 시스템 및 방법
JP4337627B2 (ja) タイヤ空気圧検出装置
JP4375129B2 (ja) タイヤ空気圧検出装置
US20050109093A1 (en) System and method for detecting low tire pressure
JP4458274B2 (ja) タイヤ空気圧監視システム
JP4449685B2 (ja) 車両情報処理装置および車両情報処理方法
JP2023075661A (ja) タイヤ位置判定システム
CN114771164A (zh) Tpms传感器标定装置、系统及车辆
KR101357423B1 (ko) 타이어 공기압 모니터링 시스템
Saitou et al. Wheel identifying apparatus having triggering devices associated with each axle and mounted at an orientation angle of 0 to 90

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019814949

Country of ref document: EP

Effective date: 20210111