WO2019234875A1 - 受信機 - Google Patents
受信機 Download PDFInfo
- Publication number
- WO2019234875A1 WO2019234875A1 PCT/JP2018/021798 JP2018021798W WO2019234875A1 WO 2019234875 A1 WO2019234875 A1 WO 2019234875A1 JP 2018021798 W JP2018021798 W JP 2018021798W WO 2019234875 A1 WO2019234875 A1 WO 2019234875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- likelihood
- wave
- value
- nth
- frequency correction
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
Definitions
- the present invention relates to a receiver, and more particularly to a receiver that estimates a frequency deviation using a received signal.
- Non-Patent Document 1 A conventional frequency deviation estimation method is disclosed in Non-Patent Document 1, for example.
- Patent Document 1 As a conventional receiver adopting a frequency deviation estimation method, for example, there is a receiver disclosed in Patent Document 1.
- a conventional receiver samples a received signal, extracts a known series of symbol rates from the received signal, and performs frequency correction on the extracted known series. At this time, a plurality of different frequency correction values are assigned to the extracted known series.
- transmission path estimation and sequence estimation are performed on the plurality of signals after frequency correction with the plurality of frequency correction values, and the likelihood of each of the plurality of signals is calculated as a plurality of likelihoods.
- a frequency correction value corresponding to the likelihood indicating the lowest value is estimated as a frequency deviation.
- a conventional receiver employing a frequency deviation estimation method is configured to extract a known sequence from a received signal at a symbol rate.
- the conventional receiver has a problem in that the transmission path estimation accuracy deteriorates in the delayed wave generation environment, and as a result, the likelihood calculation accuracy and the frequency deviation estimation accuracy are lowered.
- An object of the present invention is to solve the above problems and to obtain a receiver capable of estimating a frequency deviation with high accuracy even in a delayed wave generation environment.
- a receiver receives an analog reception signal and converts it into a digital reception signal, performs timing estimation of a preceding wave and a delay wave based on the digital reception signal, A preceding wave / delayed wave timing estimation unit for outputting the timing information, a signal switching unit for extracting a preceding wave received signal and a delayed wave received signal from the digital received signal based on the timing information, the preceding wave received signal, and
- the delay wave reception signal is subjected to frequency correction processing using first to nth frequency correction values, and first to nth preceding wave frequency correction signals and first to nth delay wave frequency correction signals are obtained.
- First to obtain first to n-th preceding wave likelihood values by obtaining likelihood values for the obtained first to n-th frequency correcting sections and the first to n-th preceding wave frequency correction signals.
- Nth preceding wave A likelihood value generation unit and first to nth delays for obtaining likelihood values for the first to nth delay wave frequency correction signals to obtain first to nth delay wave likelihood values.
- the wave likelihood value generation unit, the first to nth preceding wave likelihood values and the first to nth delayed wave likelihood values are received, and the first to nth likelihood representative values are determined.
- First to n-th likelihood processing units that perform likelihood processing, and the i-th likelihood processing unit is based on the i-th preceding wave likelihood value and the i-th delayed wave likelihood value.
- An i-th likelihood representative value is determined, and the lowest likelihood representative value among the first to n-th likelihood representative values is set as a determination likelihood value, and among the first to n-th frequency correction values, And a frequency deviation estimation determining unit that estimates a frequency correction value corresponding to the determination likelihood value as a frequency deviation.
- the receiver according to the first aspect of the present invention provides a first to n-th frequency correction unit and a first to n-th likelihood value generation unit for a preceding wave and a delayed wave reception signal as evaluation targets.
- the first to nth likelihood representative values are determined through processing by the first to nth delay wave likelihood value generation units and the first to nth likelihood processing units.
- the present invention according to claim 1 is characterized in that the lowest likelihood representative value among the first to n-th likelihood representative values is used as a determination likelihood value, and among the first to n-th frequency correction values, A frequency correction value corresponding to the determination likelihood value is estimated as a frequency deviation.
- the present invention according to claim 1 can accurately estimate the frequency deviation even in a delayed wave generation environment in which a delayed wave is generated and a plurality of paths arrive.
- FIG. 1 is an explanatory diagram schematically showing a communication mode between two radio devices. As shown in the figure, communication is performed between the radio devices 100A and 100B. FIG. 1 shows a state in which the wireless device 100A performs transmission processing and the wireless device 100B performs reception processing.
- FIG. 2 is an explanatory diagram schematically showing the internal configuration of the wireless device according to the present invention.
- Radio device 100 shown in FIG. 2 corresponds to each of radio devices 100A and 100B shown in FIG.
- the wireless device 100 includes a transmitter 101 and a receiver 102 inside.
- One of the transmitter 101 and the receiver 102 and the antenna 105 are connected via a switch 106.
- the transmitter 101 can perform transmission processing using the antenna 105.
- the receiver 102 is connected to the antenna 105, the receiver 102 performs reception processing using the antenna 105. Yes.
- the receiver 102 includes an analog processing circuit 103 that processes an analog signal and a digital processing circuit 104 that processes a digital signal.
- the digital processing circuit 104 is realized by dedicated hardware, for example, a single circuit or a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate) Array), or a circuit combining these.
- dedicated hardware for example, a single circuit or a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate) Array), or a circuit combining these.
- the processor is realized by, for example, a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, DSP (Digital Signal Processor) and the like.
- all or part of the digital processing circuit 104 may be executed by program processing using a processor based on software.
- 1A can perform transmission processing using the antenna 105 by the internal transmitter 101 by connecting the internal transmitter 101 and the antenna 105 via the switch 106.
- the radio device 100B illustrated in FIG. 1 can perform reception processing using the antenna 105 by the internal receiver 102 by connecting the internal receiver 102 and the antenna 105 via the switch 106. .
- the signal transmitted from the wireless device 100A and received by the wireless device 100B is normally transmitted to the preceding wave W5 directly received by the wireless device 100B and obstacles existing between the wireless device 100A and the wireless device 100B. It includes delayed waves W6A and W6B that are reflected and input. That is, there are two types of signals (preceding wave and delayed wave) in the transmission / reception signals between the radio devices 100A and 100B.
- FIG. 1 illustrates the case where the wireless device 100A transmits and the wireless device 100B receives, but the same applies to the case where the wireless device 100B transmits and the wireless device 100A receives.
- FIG. 3 is a block diagram showing details of the internal configuration of the receiver 102 according to the first embodiment of the present invention.
- the receiver 102 includes a sampling unit 1, a signal switching unit 2, a preceding wave / delayed wave timing estimation unit 3, frequency correction units 41 to 4n (n ⁇ 2), and frequency deviation likelihood value generation.
- the units 51 to 5n and 61 to 6n, the preceding wave / delayed wave likelihood processing units 71 to 7n, and the frequency deviation estimation determining unit 8 are included therein.
- the sampling unit 1 is provided in the analog processing circuit 103, the signal switching unit 2, the preceding wave / delayed wave timing estimation unit in the digital processing circuit 104. 3, frequency correction units 41 to 4n, frequency deviation likelihood value generation units 51 to 5n, frequency deviation likelihood value generation units 61 to 6n, preceding wave / delayed wave likelihood processing units 71 to 7n, and frequency deviation estimation determination unit 8 Is provided.
- the sampling unit 1 performs an A / D conversion process of converting the analog reception signal S0 input to the receiver 102 via the antenna 105 into a digital reception signal S1.
- the digital reception signal S1 is given to the signal switching unit 2 and the preceding wave / delayed wave timing estimation unit 3.
- the preceding wave / delayed wave timing estimation unit 3 performs timing estimation based on the digital reception signal S1, calculates timing information indicating the preceding wave timing and the delayed wave timing, and outputs this timing information to the signal switching unit 2. For example, the preceding wave / delayed wave timing estimation unit 3 calculates timing information by estimating the preceding wave timing and the delayed wave timing based on a synchronization word such as a known sequence or sync word included in the digital reception signal S1. can do.
- the signal switching unit 2 Based on the timing information from the preceding wave / delayed wave timing estimation unit 3, the signal switching unit 2 extracts the preceding wave reception signal S5 by acquiring a known sequence of the preceding wave signal from the digital reception signal S1 at the Nyquist timing, The delay wave reception signal S6 is extracted by acquiring a known series of delay wave signals from the digital reception signal S1 at the Nyquist timing.
- the delay wave timing indicated by the timing information is set so that the known series in the digital reception signal S1 is acquired at the Nyquist timing at a timing delayed from the preceding wave timing with reference to the preceding wave timing.
- the extracted delayed wave received signal S6 for example, the delayed wave received signal with the latest arrival timing or the delayed wave received signal with the highest power among the plurality of delayed wave received signals can be considered.
- the preceding wave reception signal S5 and the delayed wave reception signal S6 extracted by the signal switching unit 2 are given to the frequency correction units 41 to 4n, respectively.
- the frequency correction units 41 to 4n perform frequency correction processing using the first to nth frequency correction values on the preceding wave reception signal S5 and the delayed wave reception signal S6, and the first to nth preceding wave frequency correction signals.
- the first to n-th delay wave frequency correction signals are output.
- the contents of the first to nth frequency correction values are different from each other.
- “n” means an integer of 2 or more
- i means an arbitrary integer satisfying 1 or more and n or less.
- the first to n-th preceding wave frequency correction signals output from the frequency correction units 41 to 4n are given to the frequency deviation likelihood value generation units 51 to 5n.
- the frequency deviation likelihood value generators 51 to 5n function as first to nth preceding wave likelihood value generators.
- the first to n-th delay wave frequency correction signals output from the frequency correction units 41 to 4n are given to the frequency deviation likelihood value generation units 61 to 6n.
- the frequency deviation likelihood value generators 61 to 6n function as first to nth delay wave likelihood value generators.
- the transmission path estimation unit 25 performs transmission path estimation of the i th preceding wave frequency correction signal to obtain transmission path estimation information. This transmission path estimation information becomes preceding wave transmission path estimation information.
- the sequence estimation unit 15 performs sequence estimation of the i-th preceding wave frequency correction signal based on the transmission channel estimation information received from the transmission channel estimation unit 25 and the i-th preceding wave frequency correction signal. By executing the sequence estimation by the sequence estimation unit 15, the likelihood of the i th preceding wave frequency correction signal is calculated as the preceding wave likelihood value D5i. This preceding wave likelihood value D5i becomes the i-th preceding wave likelihood value.
- the transmission path estimator 26 performs transmission path estimation of the i th delay wave frequency correction signal to obtain transmission path estimation information. This transmission path estimation information becomes delay wave transmission path estimation information.
- the sequence estimation unit 16 performs sequence estimation of the i-th delay wave frequency correction signal based on the transmission channel estimation information received from the transmission channel estimation unit 26 and the i-th delay wave frequency correction signal. By executing the sequence estimation by the sequence estimation unit 16, the likelihood of the i-th delayed wave frequency correction signal is calculated as the i-th delayed wave likelihood value D6i. This delayed wave likelihood value D6i becomes the i-th delayed wave likelihood value.
- preceding wave likelihood values D51 to D5n which are first to nth preceding wave likelihood values output from frequency deviation likelihood value generating units 51 to 5n, and frequency deviation likelihood value generating units 61 to 6n.
- Delayed wave likelihood values D61 to D6n which are first to nth delayed wave likelihood values to be output, are given to the preceding wave / delayed wave likelihood processing units 71 to 7n.
- FIG. 4 is an explanatory diagram schematically showing the configuration of the preceding wave / delayed wave likelihood processing unit 7i of the first embodiment.
- the preceding wave / delayed wave likelihood processing unit 7i has a likelihood selecting unit 13 therein as shown in FIG.
- the likelihood selection unit 13 receives the preceding wave likelihood value D5i and the delayed wave likelihood value D6i, and selects the lower likelihood value of the preceding wave likelihood value D5i and the delayed wave likelihood value D6i as the likelihood selection value D13. Choose as. This likelihood selection value D13 becomes the likelihood representative value D7i.
- the likelihood representative value D7i selected by the likelihood selecting unit 13 is output to the frequency deviation estimation determining unit 8 at the next stage.
- the frequency deviation estimation determination unit 8 receives the likelihood representative values D71 to D7n output from the preceding wave / delayed wave likelihood processing units 71 to 7n, and selects the lowest likelihood value among the likelihood representative values D71 to D7n. Select as the likelihood value for determination.
- the frequency deviation estimation determination unit 8 determines a frequency correction value corresponding to the determination likelihood value among the first to n-th frequency correction values as a frequency deviation.
- the kth preceding wave frequency correction signal and the kth delayed wave frequency correction signal is determined as the frequency deviation.
- “k” means one integer among integers of 1 to n.
- the frequency deviation estimation / determination unit 8 needs to recognize the first to nth frequency correction values adopted by the frequency correction units 41 to 4n. Therefore, the frequency deviation estimation determination unit 8 acquires information on the first to n-th frequency correction values from the frequency correction units 41 to 4n, and stores information on the first to n-th frequency correction values in an internal memory (not shown). Need to be stored.
- the frequency deviation estimation determination unit 8 outputs frequency deviation estimation information S8 that indicates the determined frequency deviation.
- the receiver 102 uses the preceding wave reception signal S5 and the delayed wave reception signal S6 as evaluation targets, and frequency correction units 41 to 4n, frequency deviation likelihood value generation units 51 to 5n, Through the processing by the frequency deviation likelihood value generation units 61 to 6n and the preceding wave / delayed wave likelihood processing units 71 to 7n, likelihood representative values D71 to D7n, which are first to nth likelihood representative values, are determined. doing.
- frequency deviation estimation / determination unit 8 of receiver 102 of Embodiment 1 uses the lowest likelihood representative value among likelihood representative values D71 to D7n as a determination likelihood value, and frequency correction units 41 to 4n use it.
- a frequency correction value corresponding to the above-described likelihood value for determination is estimated as a frequency deviation.
- the receiver 102 according to the first embodiment can accurately estimate the frequency deviation even in a delayed wave generation environment in which delayed waves are generated and multiple paths arrive.
- frequency deviation likelihood value generation units 51 to 5n each have a sequence estimation unit 15 and a transmission path estimation unit 25 therein, thereby increasing the accuracy of preceding wave likelihood values D51 to D5n.
- the frequency deviation likelihood value generation units 61 to 6n each have the sequence estimation unit 16 and the transmission path estimation unit 26 therein, so that the accuracy of the delayed wave likelihood values D61 to D6n can be increased. .
- preceding wave / delayed wave likelihood processing unit 7i of the first embodiment determines the smaller one of the preceding wave likelihood value D5i and the delayed wave likelihood value D6i as the likelihood representative value D7i. Therefore, the accuracy of the likelihood representative value D7i can be increased.
- the receiver 102 is based on the preceding wave likelihood values D51 to D5n in the preceding wave reception signal S5 and the delayed wave likelihood values D61 to D6n in the delayed wave reception signal S6.
- the likelihood representative values D71 to D7n are obtained by the wave / delayed wave likelihood processing units 71 to 7n.
- the receiver 102 estimates the frequency deviation of the preceding wave reception signal S5 and the delay wave reception signal S6 extracted using a known sequence so that both the preceding wave and the delay wave have Nyquist timing. It is used as a sample signal.
- the receiver 102 according to Embodiment 1 can prevent a decrease in estimation accuracy of the frequency deviation due to deterioration in timing estimation accuracy even when the arrival timing of the known sequence changes instantaneously. There is an effect of increasing the estimation accuracy of the frequency deviation as compared with the estimation method.
- FIG. 5 is an explanatory diagram schematically showing the configuration of the preceding wave / delayed wave likelihood processing unit 7i in the receiver 102 according to the second embodiment.
- a delayed wave likelihood value D6i which is a wave likelihood value, is assigned. Except for the internal configuration of the preceding wave / delayed wave likelihood processing unit 7i, it is the same as the receiver 102 of the first embodiment shown in FIGS.
- the characteristics of the second embodiment will be mainly described with reference to FIG.
- the preceding wave / delayed wave likelihood processing unit 7i of the second embodiment has a likelihood adding unit 14 therein.
- the likelihood adding unit 14 receives the preceding wave likelihood value D5i and the delayed wave likelihood value D6i, and adds the likelihood added value D14 obtained by adding the preceding wave likelihood value D5i and the delayed wave likelihood value D6 to the likelihood. Select as representative value D7i.
- the likelihood representative value D7i which is the likelihood addition value D14 of the likelihood addition unit 14, is output to the frequency deviation estimation determination unit 8 at the next stage.
- the frequency deviation estimation / determination unit 8 selects the lowest likelihood value as the likelihood value for determination among the likelihood representative values D71 to D7n output from the preceding wave / delayed wave likelihood processing units 71 to 7n.
- the frequency deviation estimation determination unit 8 determines a frequency correction value corresponding to the determination likelihood value among the first to n-th frequency correction values as a frequency deviation.
- the frequency deviation estimation determination unit 8 outputs frequency deviation estimation information S8 that indicates the determined frequency deviation.
- the receiver 102 of the second embodiment uses the first to n-th likelihood representative values with the preceding wave received signal S5 and the delayed wave received signal S6 as evaluation targets, as in the first embodiment. Certain likelihood representative values D71 to D7n are determined.
- the frequency deviation estimation determination unit 8 of the receiver 102 of the second embodiment can estimate the frequency deviation with high accuracy even in the delayed wave generation environment, as in the first embodiment.
- frequency deviation likelihood value generation units 51 to 5n each have a sequence estimation unit 15 and a transmission path estimation unit 25 therein, so that the accuracy of preceding wave likelihood values D51 to D5n is increased.
- the frequency deviation likelihood value generation units 61 to 6n each have the sequence estimation unit 16 and the transmission path estimation unit 26 therein, so that the accuracy of the delayed wave likelihood values D61 to D6n can be increased. .
- the preceding wave / delayed wave likelihood processing unit 7i of the second embodiment determines the likelihood value by determining the addition value of the preceding wave likelihood value D5i and the delayed wave likelihood value D6i as the likelihood representative value D7i.
- the likelihood values of the preceding wave reception signal S5 and the delayed wave reception signal S6 can be reflected in all the degree representative values D71 to D7n.
- the preceding wave / delayed wave likelihood processing unit 7i of the second embodiment is configured to include the likelihood adding unit 14 instead of the likelihood selecting unit 13, so that either the preceding wave or the delayed wave is provided.
- the frequency deviation can always be estimated using the likelihood values of both the preceding wave and the delayed wave, instead of one likelihood value. As a result, an effect of increasing the estimation accuracy of the frequency deviation as compared with the conventional frequency deviation estimation method can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Noise Elimination (AREA)
- Circuits Of Receivers In General (AREA)
Abstract
本発明は、遅延波発生環境下においても、高い精度で周波数偏差を推定することができる受信機を提供することを目的とする。そして、本発明の受信機において、信号切替部(2)は、先行波/遅延波タイミング推定部(3)からのタイミング情報に基づき、先行波受信信号(S5)及び遅延波受信信号(S6)を抽出する。そして、先行波受信信号(S5)及び遅延波受信信号(S6)を評価対象として、第1~第nの周波数補正部(41~4n)、第1~第nの先行波用尤度値生成部(51~5n)、第1~第nの遅延波用尤度値生成部(61~6n)及び第1~第nの尤度処理部(71~7n)による処理を経て、第1~第nの尤度代表値(D71~D7n)を決定している。
Description
この発明は受信機に関するものであり、特に、受信信号を用いて周波数偏差を推定する受信機に関するものである。
従来、最尤系列推定を用いた周波数偏差推定方式が知られている。従来の周波数偏差推定方式は、例えば、非特許文献1に開示されている。
また、周波数偏差推定方式を採用した従来の受信機として、例えば、特許文献1に開示された受信機がある。
従来の受信機は、受信信号を標本化し、受信信号からシンボルレートの既知系列を抽出し、抽出した既知系列に対して、周波数補正を行っている。この時、抽出した既知系列に対して、複数の異なる周波数補正値が付与される。
続いて、複数の周波数補正値で周波数補正された後の複数の信号に対し、それぞれ伝送路推定及び系列推定が行われ、複数の信号それぞれの尤度が複数の尤度として算出される。算出された複数の尤度のうち、最も低い値を示す尤度に対応する周波数補正値が周波数偏差として推定される。
岡ノ上和広他著「TDMAディジタル移動通信における周波数オフセット補正機能を有するMLSE受信機の構成」電子情報通信学会論文誌B、1990年、p.736-744
周波数偏差推定方式を採用した従来の受信機は、受信信号から既知系列を抽出する際に、シンボルレートで抽出する構成となっている。
このため、遅延波が発生し複数パスが到来するような遅延波発生環境では、既知系列の先行波あるいは遅延波の到来タイミングが頻繁に出現したり、消失したりする影響を受け、既知系列をナイキストタイミングで取得することが困難であった。なお、「既知系列をナイキストタイミングで取得する」とは、正確には、「既知系列を正確なナイキスト周波数でサンプリングする」ことを意味する。
その結果、従来の受信機は、上記遅延波発生環境下では、伝送路推定精度が劣化し、その結果、尤度算出精度、周波数偏差の推定精度が低くなるという問題点があった。
本発明では、上記のような問題点を解決し、遅延波発生環境下においても、高い精度で周波数偏差を推定することができる受信機を得ることを目的としている。
この発明に係る受信機は、アナログ受信信号を受信してディジタル受信信号に変換する標本化部と、前記ディジタル受信信号に基づき、先行波及び遅延波のタイミング推定を行い、先行波及び遅延波用のタイミング情報を出力する先行波/遅延波タイミング推定部と前記タイミング情報に基づき、前記ディジタル受信信号から先行波受信信号と遅延波受信信号とを抽出する信号切替部と、前記先行波受信信号及び前記遅延波受信信号に対し、第1~第nの周波数補正値による周波数補正処理を行い、第1~第nの先行波用周波数補正信号及び第1~第nの遅延波用周波数補正信号を得る第1~第nの周波数補正部と、前記第1~第nの先行波用周波数補正信号に対し尤度値を求めて、第1~第nの先行波用尤度値を得る第1~第nの先行波用尤度値生成部と、前記第1~第nの遅延波用周波数補正信号に対し尤度値を求めて、第1~第nの遅延波用尤度値を得る第1~第nの遅延波用尤度値生成部と、第1~第nの先行波用尤度値及び第1~第nの遅延波用尤度値を受け、第1~第nの尤度代表値を決定する尤度処理を実行する第1~第nの尤度処理部とを備え、第iの尤度処理部は、第iの先行波用尤度値及び第iの遅延波用尤度値に基づき第iの尤度代表値を決定し、前記第1~第nの尤度代表値内で最も低い尤度代表値を判定用尤度値とし、前記第1~第nの周波数補正値のうち、前記判定用尤度値に対応する周波数補正値を周波数偏差として推定する周波数偏差推定判定部をさらに備える。
請求項1記載の本願発明の受信機は、先行波受信信号及び遅延波受信信号を評価対象として、第1~第nの周波数補正部、第1~第nの先行波用尤度値生成部、第1~第nの遅延波用尤度値生成部及び第1~第nの尤度処理部による処理を経て、第1~第nの尤度代表値を決定している。
そして、請求項1記載の本願発明は、第1~第nの尤度代表値のうち、最も低い尤度代表値を判定用尤度値とし、第1~第nの周波数補正値のうち、上記判定用尤度値に対応する周波数補正値を周波数偏差として推定している。
その結果、請求項1記載の本願発明は、遅延波が発生し複数パスが到来するような遅延波発生環境下においても、精度良く周波数偏差を推定することができる。
この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
<実施の形態1>
図1は2つの無線機間の通信形態を模式的に示す説明図である。同図に示すように、無線機100A及び100B間で通信が行われている。図1では無線機100Aが送信処理を行い、無線機100Bが受信処理を行っている状態を示している。
図1は2つの無線機間の通信形態を模式的に示す説明図である。同図に示すように、無線機100A及び100B間で通信が行われている。図1では無線機100Aが送信処理を行い、無線機100Bが受信処理を行っている状態を示している。
図2は、この発明における無線機の内部構成を模式的に示す説明図である。図2で示す無線機100は、図1で示す無線機100A及び100Bそれぞれに対応する。
同図に示すように、無線機100は送信機101及び受信機102を内部に有している。送信機101及び受信機102のうちの一方とアンテナ105とがスイッチ106を介して接続される。送信機101がアンテナ105と接続される場合、送信機101がアンテナ105を利用した送信処理が行え、受信機102がアンテナ105と接続される場合、受信機102はアンテナ105を利用した受信処理が行える。
受信機102は、アナログ信号を処理するアナログ処理回路103とディジタル信号を処理するディジタル処理回路104を備える。
ディジタル処理回路104が専用のハードウェアで実現される場合、例えば、単一回路や複合回路、プログラム化したプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、あるいはこれらを組み合わせた回路等が考えられる。
また、プロセッサは、例えば、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等により実現される。
また、ディジタル処理回路104の全部もしくは一部を、ソフトウェアに基づくプロセッサを用いたプログラム処理によって実行するようにしても良い。
図1で示す無線機100Aは、内部の送信機101とアンテナ105とをスイッチ106を介して接続することにより、内部の送信機101により、アンテナ105を利用した送信処理を行うことができる。
一方、図1で示す無線機100Bは、内部の受信機102とアンテナ105とをスイッチ106を介して接続することにより、内部の受信機102により、アンテナ105を利用した受信処理を行うことができる。
無線機100Aから送信され、無線機100Bにて受信される信号は、通常、無線機100Bに直接受信される先行波W5と、無線機100Aと無線機100Bとの間に存在する障害物などに反射して入力される遅延波W6A及びW6Bとを含んでいる。すなわち、無線機100A及び100B間の送受信信号には2種類の信号(先行波,遅延波)が存在する。
図1では、無線機100Aから送信され、無線機100Bが受信する場合を説明したが、無線機100Bから送信され、無線機100Aが受信する場合も同様である。
図3は、この発明の実施の形態1の受信機102の内部構成の詳細を示すブロック図である。図3に示すように、受信機102は、標本化部1、信号切替部2、先行波/遅延波タイミング推定部3、周波数補正部41~4n(n≧2)、周波数偏差尤度値生成部51~5n及び61~6n、先行波/遅延波尤度処理部71~7n、及び周波数偏差推定判定部8を内部に有する。
なお、図3で示した受信機102の各構成部のうち、アナログ処理回路103内に標本化部1が設けられ、ディジタル処理回路104内に信号切替部2、先行波/遅延波タイミング推定部3、周波数補正部41~4n、周波数偏差尤度値生成部51~5n、周波数偏差尤度値生成部61~6n、先行波/遅延波尤度処理部71~7n及び周波数偏差推定判定部8が設けられる。
次に、この発明の実施の形態1による受信機102の備える各構成部の動作について説明する。
標本化部1は、アンテナ105を介して受信機102に入力されたアナログ受信信号S0を標本化することで、ディジタル受信信号S1に変換するA/D変換処理を行う。ディジタル受信信号S1は、信号切替部2と先行波/遅延波タイミング推定部3とに付与される。
先行波/遅延波タイミング推定部3は、ディジタル受信信号S1に基づきタイミング推定を行い、先行波タイミング及び遅延波タイミングを指示するタイミング情報を算出し、このタイミング情報を信号切替部2に出力する。例えば、先行波/遅延波タイミング推定部3は、ディジタル受信信号S1内に含まれる既知系列やシンクワード等の同期語に基づき、先行波タイミング及び遅延波タイミングを推定することにより、タイミング情報を算出することができる。
信号切替部2は、先行波/遅延波タイミング推定部3からのタイミング情報に基づき、ディジタル受信信号S1から先行波信号の既知系列をナイキストタイミングで取得することにより先行波受信信号S5を抽出し、ディジタル受信信号S1から遅延波信号の既知系列をナイキストタイミングで取得することにより遅延波受信信号S6を抽出する。
なお、上記タイミング情報が指示する遅延波タイミングは、先行波タイミングを基準として、先行波タイミングより遅れたタイミングで、ディジタル受信信号S1内の既知系列がナイキストタイミングで取得されるように設定される。また、抽出される遅延波受信信号S6として、例えば、最も到来タイミングの遅い遅延波受信信号や、複数の遅延波受信信号の内、最も電力の高い遅延波受信信号が考えられる。
信号切替部2によって抽出された先行波受信信号S5及び遅延波受信信号S6は周波数補正部41~4nそれぞれに付与される。
周波数補正部41~4nは先行波受信信号S5及び遅延波受信信号S6に対し、第1~第nの周波数補正値を用いた周波数補正処理を行い第1~第nの先行波用周波数補正信号及び第1~第nの遅延波用周波数補正信号を出力する。第1~第nの周波数補正値の内容は互いに異なっている。
各周波数補正部4i(i=1~nのいずれか)は、先行波受信信号S5及び遅延波受信信号S6信号それぞれに対し、第iの周波数補正値を加える周波数補正処理を行い、第iの先行波用周波数補正信号及び第iの遅延波用周波数補正信号を出力する。すなわち、周波数補正部4iによる先行波受信信号S5及び遅延波受信信号S6信号に対する周波数補正処理は同じ第iの周波数補正値を用いて行われる。なお、本明細書中において、「n」は2以上の整数を意味し、「i」は1以上n以下を満足する任意の整数を意味する。
周波数補正部41~4nから出力される第1~第nの先行波用周波数補正信号は周波数偏差尤度値生成部51~5nに付与される。周波数偏差尤度値生成部51~5nは第1~第nの先行波用尤度値生成部として機能する。
周波数補正部41~4nから出力される第1~第nの遅延波用周波数補正信号は周波数偏差尤度値生成部61~6nに付与される。周波数偏差尤度値生成部61~6nは第1~第nの遅延波用尤度値生成部として機能する。
第i(i=1~nのいずれか)の先行波用尤度値生成部である周波数偏差尤度値生成部5iは、系列推定部15と伝送路推定部25を内部に有する。伝送路推定部25は第iの先行波用周波数補正信号の伝送路推定を行い伝送路推定情報を得る。この伝送路推定情報が先行波用伝送路推定情報となる。
系列推定部15は、伝送路推定部25より受ける伝送路推定情報と第iの先行波用周波数補正信号とに基づき、第iの先行波用周波数補正信号の系列推定を行う。系列推定部15による系列推定の実行により、第iの先行波用周波数補正信号の尤度が先行波尤度値D5iとして算出される。この先行波尤度値D5iが第iの先行波尤度値となる。
第i(i=1~nのいずれか)の遅延波用尤度値生成部である周波数偏差尤度値生成部6iは、系列推定部16と伝送路推定部26を内部に有する。伝送路推定部26は第iの遅延波用周波数補正信号の伝送路推定を行って伝送路推定情報を得る。この伝送路推定情報が遅延波用伝送路推定情報となる。
系列推定部16は、伝送路推定部26より受ける伝送路推定情報と第iの遅延波用周波数補正信号とに基づき、第iの遅延波用周波数補正信号の系列推定を行う。系列推定部16による系列推定の実行により、第iの遅延波用周波数補正信号の尤度が第iの遅延波尤度値D6iとして算出される。この遅延波尤度値D6iが第iの遅延波尤度値となる。
周波数偏差尤度値生成部51~5nから出力される第1~第nの先行波用尤度値である先行波尤度値D51~D5n、及び、周波数偏差尤度値生成部61~6nから出力される第1~第nの遅延波用尤度値である遅延波尤度値D61~D6nが先行波/遅延波尤度処理部71~7nに付与される。
図4は実施の形態1の先行波/遅延波尤度処理部7iの構成を模式的に示す説明図である。同図に示すように、先行波/遅延波尤度処理部7i(i=1~nのいずれか)に第iの先行波用尤度値である先行波尤度値D5iと、第iの遅延波用尤度値である遅延波尤度値D6iとが付与される。
先行波/遅延波尤度処理部7iは、図4に示すように、尤度選択部13を内部に有する。尤度選択部13は、先行波尤度値D5i及び遅延波尤度値D6iを受け、先行波尤度値D5i及び遅延波尤度値D6iのうち低い方の尤度値を尤度選択値D13として選択する。この尤度選択値D13が尤度代表値D7iとなる。尤度選択部13が選択した尤度代表値D7iが次段の周波数偏差推定判定部8に出力される。
周波数偏差推定判定部8では、先行波/遅延波尤度処理部71~7nから出力された尤度代表値D71~D7nを受け、尤度代表値D71~D7nのうち、最も低い尤度値を判定用尤度値として選択する。
そして、周波数偏差推定判定部8は、第1~第nの周波数補正値のうち、判定用尤度値に対応する周波数補正値を周波数偏差として判定する。
例えば、判定用尤度値が先行波尤度値D5k(k=1~nのうちの一つ)であった場合、第kの先行波用周波数補正信号及び第kの遅延波用周波数補正信号を出力した周波数補正部4kが採用した第kの周波数補正値が周波数偏差として判定される。なお、本明細書中において、「k」は1以上n以下の整数のうち、一つの整数を意味する。
なお、周波数偏差推定判定部8は、周波数補正部41~4nが採用している第1~第nの周波数補正値を認識している必要がある。したがって、周波数偏差推定判定部8は、周波数補正部41~4nから第1~第nの周波数補正値の情報を取得する、図示しない内部のメモリ内に第1~第nの周波数補正値の情報を格納しておく等の処理が必要となる。
そして、周波数偏差推定判定部8は、判定した周波数偏差を指示する周波数偏差推定情報S8を出力する。
以上説明したように、実施の形態1の受信機102は、先行波受信信号S5及び遅延波受信信号S6を評価対象として、周波数補正部41~4n、周波数偏差尤度値生成部51~5n、周波数偏差尤度値生成部61~6n、及び先行波/遅延波尤度処理部71~7nによる処理を経て、第1~第nの尤度代表値である尤度代表値D71~D7nを決定している。
そして、実施の形態1の受信機102の周波数偏差推定判定部8は、尤度代表値D71~D7n内で最も低い尤度代表値を判定用尤度値とし、周波数補正部41~4nが用いた第1~第nの周波数補正値のうち、上記判定用尤度値に対応する周波数補正値を周波数偏差として推定している。
その結果、実施の形態1の受信機102は、遅延波が発生し複数パスが到来するような遅延波発生環境下においても、精度良く周波数偏差を推定することができる。
さらに、実施の形態1の受信機102において、周波数偏差尤度値生成部51~5nはそれぞれ内部に系列推定部15及び伝送路推定部25を有することにより先行波尤度値D51~D5nの精度を高めることができ、周波数偏差尤度値生成部61~6nはそれぞれ内部に系列推定部16及び伝送路推定部26を有することにより、遅延波尤度値D61~D6nの精度を高めることができる。
加えて、実施の形態1の先行波/遅延波尤度処理部7iは、先行波尤度値D5i及び遅延波尤度値D6iのうち、尤度値が小さい方を尤度代表値D7iとして決定しているため、尤度代表値D7iの精度を高めることができる。
以上説明したように、実施の形態1の受信機102は、先行波受信信号S5における先行波尤度値D51~D5nと遅延波受信信号S6における遅延波尤度値D61~D6nとに基づき、先行波/遅延波尤度処理部71~7nにより尤度代表値D71~D7nを得ている。
すなわち、実施の形態1の受信機102は、先行波及び遅延波の双方がナイキストタイミングとなるよう既知系列を用いて抽出された先行波受信信号S5及び遅延波受信信号S6を、周波数偏差を推定するための標本信号としている。
したがって、実施の形態1の受信機102は、既知系列の到来タイミングが瞬時的に変化した場合でも、タイミング推定精度の劣化に伴う周波数偏差の推定精度の低下を防ぐことができ、従来の周波数偏差推定方式と比較して周波数偏差の推定精度を高くする効果を奏する。
<実施の形態2>
図5は実施の形態2である受信機102における先行波/遅延波尤度処理部7iの構成を模式的に示す説明図である。同図に示すように、先行波/遅延波尤度処理部7i(i=1~nのいずれか)に第iの先行波用尤度値ある先行波尤度値D5iと、第iの遅延波用尤度値である遅延波尤度値D6iとが付与される。なお、先行波/遅延波尤度処理部7iの内部構成以外は、図1~図3で示した実施の形態1の受信機102と同じである。以下、図5を参照して、実施の形態2の特徴を中心に説明する。
図5は実施の形態2である受信機102における先行波/遅延波尤度処理部7iの構成を模式的に示す説明図である。同図に示すように、先行波/遅延波尤度処理部7i(i=1~nのいずれか)に第iの先行波用尤度値ある先行波尤度値D5iと、第iの遅延波用尤度値である遅延波尤度値D6iとが付与される。なお、先行波/遅延波尤度処理部7iの内部構成以外は、図1~図3で示した実施の形態1の受信機102と同じである。以下、図5を参照して、実施の形態2の特徴を中心に説明する。
実施の形態2の先行波/遅延波尤度処理部7iは、図5に示すように、尤度加算部14を内部に有する。尤度加算部14は、先行波尤度値D5i及び遅延波尤度値D6iを受け、先行波尤度値D5i及び遅延波尤度値D6を加算して得られる尤度加算値D14を尤度代表値D7iとして選択する。尤度加算部14の尤度加算値D14である尤度代表値D7iが次段の周波数偏差推定判定部8に出力される。
周波数偏差推定判定部8は、先行波/遅延波尤度処理部71~7nから出力された尤度代表値D71~D7nのうち、最も低い尤度値を判定用尤度値として選択する。
そして、周波数偏差推定判定部8は、第1~第nの周波数補正値のうち、判定用尤度値に対応する周波数補正値を周波数偏差として判定する。
そして、周波数偏差推定判定部8は、判定した周波数偏差を指示する周波数偏差推定情報S8を出力する。
以上説明したように、実施の形態2の受信機102は、実施の形態1と同様、先行波受信信号S5及び遅延波受信信号S6を評価対象として、第1~第nの尤度代表値である尤度代表値D71~D7nを決定している。
したがって、実施の形態2の受信機102の周波数偏差推定判定部8は、実施の形態1と同様、遅延波発生環境下においても、精度良く周波数偏差を推定することができる。
さらに、実施の形態2の受信機102において、周波数偏差尤度値生成部51~5nはそれぞれ内部に系列推定部15及び伝送路推定部25を有することにより先行波尤度値D51~D5nの精度を高めることができ、周波数偏差尤度値生成部61~6nはそれぞれ内部に系列推定部16及び伝送路推定部26を有することにより、遅延波尤度値D61~D6nの精度を高めることができる。
加えて、実施の形態2の先行波/遅延波尤度処理部7iは、先行波尤度値D5iと遅延波尤度値D6iとの加算値を尤度代表値D7iとして決定することにより、尤度代表値D71~D7nすべてに先行波受信信号S5及び遅延波受信信号S6の尤度値を反映させることができる。
上述したように、実施の形態2の先行波/遅延波尤度処理部7iは、尤度選択部13ではなく尤度加算部14を備える構成とすることにより、先行波あるいは遅延波のどちらか一方の尤度値ではなく、常に先行波及び遅延波両方の尤度値を用いて周波数偏差を推定することができる。その結果、従来の周波数偏差推定方式と比較して周波数偏差の推定精度を高くする効果が得られる。
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
したがって、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
1 標本化部、2 信号切替部、3 先行波/遅延波タイミング推定部、41~4n 周波数補正部、51~5n,61~6n 周波数偏差尤度値生成部、71~7n 先行波/遅延波尤度処理部、8 周波数偏差推定判定部、100,100A,100B 無線機、101 送信機、102 受信機。
Claims (4)
- アナログ受信信号を受信してディジタル受信信号に変換する標本化部(1)と、
前記ディジタル受信信号に基づき、先行波及び遅延波のタイミング推定を行い、先行波及び遅延波用のタイミング情報を出力する先行波/遅延波タイミング推定部(3)と
前記タイミング情報に基づき、前記ディジタル受信信号から先行波受信信号と遅延波受信信号とを抽出する信号切替部(2)と、
前記先行波受信信号及び前記遅延波受信信号に対し、第1~第n(n≧2)の周波数補正値による周波数補正処理を行い、第1~第nの先行波用周波数補正信号及び第1~第nの遅延波用周波数補正信号を得る第1~第nの周波数補正部(41~4n)と、
前記第1~第nの先行波用周波数補正信号に対し尤度値を求めて、第1~第nの先行波用尤度値を得る第1~第nの先行波用尤度値生成部(51~5n)と、
前記第1~第nの遅延波用周波数補正信号に対し尤度値を求めて、第1~第nの遅延波用尤度値を得る第1~第nの遅延波用尤度値生成部(61~6n)と、
第1~第nの先行波用尤度値及び第1~第nの遅延波用尤度値を受け、第1~第nの尤度代表値を決定する尤度処理を実行する第1~第nの尤度処理部(71~7n)とを備え、第i(i=1~nのいずれか)の尤度処理部は、第iの先行波用尤度値及び第iの遅延波用尤度値に基づき第iの尤度代表値を決定し、
前記第1~第nの尤度代表値内で最も低い尤度代表値を判定用尤度値とし、前記第1~第nの周波数補正値のうち、前記判定用尤度値に対応する周波数補正値を周波数偏差として推定する周波数偏差推定判定部(8)をさらに備える、
受信機。 - 請求項1記載の受信機であって、
第i(i=1~nのいずれか)の先行波用尤度値生成部は、
第iの先行波用周波数補正信号に対し、伝送路推定を行い先行波用伝送路推定情報を得る伝送路推定部(25)と、
前記先行波用伝送路推定情報に基づき、前記第iの先行波用周波数補正信号に対し、系列推定を行って前記第iの先行波用尤度値を得る系列推定部(15)とを含み、
第i(i=1~nのいずれか)の遅延波用尤度値生成部は、
第iの遅延波用周波数補正信号に対し、伝送路推定を行い遅延波用伝送路推定情報を得る伝送路推定部(26)と、
前記遅延波用伝送路推定情報に基づき、前記第iの遅延波用周波数補正信号に対し、系列推定を行って前記第iの遅延波用尤度値を得る系列推定部(16)とを含む、
受信機。 - 請求項1または請求項2記載の受信機であって、
前記第iの尤度処理部は、第iの先行波用尤度値及び第iの遅延波用尤度値のうち、尤度値が小さい方を前記第iの尤度代表値として決定する、
受信機。 - 請求項1または請求項2記載の受信機であって、
前記第iの尤度処理部は、第iの先行波用尤度値と第iの遅延波用尤度値との加算値を前記第iの尤度代表値として決定する、
受信機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020523925A JP6932257B2 (ja) | 2018-06-07 | 2018-06-07 | 受信機 |
PCT/JP2018/021798 WO2019234875A1 (ja) | 2018-06-07 | 2018-06-07 | 受信機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/021798 WO2019234875A1 (ja) | 2018-06-07 | 2018-06-07 | 受信機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019234875A1 true WO2019234875A1 (ja) | 2019-12-12 |
Family
ID=68769787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/021798 WO2019234875A1 (ja) | 2018-06-07 | 2018-06-07 | 受信機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6932257B2 (ja) |
WO (1) | WO2019234875A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002101143A (ja) * | 2000-09-21 | 2002-04-05 | Mitsubishi Electric Corp | 周波数オフセット補正機能付き受信機 |
WO2010021041A1 (ja) * | 2008-08-21 | 2010-02-25 | 富士通株式会社 | 受信機および受信方法 |
JP4440141B2 (ja) * | 2005-02-25 | 2010-03-24 | 三菱電機株式会社 | 受信機 |
JP2013038637A (ja) * | 2011-08-09 | 2013-02-21 | Mitsubishi Electric Corp | 受信装置および受信方法 |
-
2018
- 2018-06-07 WO PCT/JP2018/021798 patent/WO2019234875A1/ja active Application Filing
- 2018-06-07 JP JP2020523925A patent/JP6932257B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002101143A (ja) * | 2000-09-21 | 2002-04-05 | Mitsubishi Electric Corp | 周波数オフセット補正機能付き受信機 |
JP4440141B2 (ja) * | 2005-02-25 | 2010-03-24 | 三菱電機株式会社 | 受信機 |
WO2010021041A1 (ja) * | 2008-08-21 | 2010-02-25 | 富士通株式会社 | 受信機および受信方法 |
JP2013038637A (ja) * | 2011-08-09 | 2013-02-21 | Mitsubishi Electric Corp | 受信装置および受信方法 |
Non-Patent Citations (1)
Title |
---|
OKANOUE, KAZUHIRO ET AL.: "Configuration of an MLSE Receiver Having Frequency Offset Correction Function for TDMA Digital Mobile Communication", IEICE TRANSACTIONS ON COMMUNICATIONS, vol. J73-B2, no. 11, 25 November 1990 (1990-11-25), pages 736 - 744 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019234875A1 (ja) | 2020-12-17 |
JP6932257B2 (ja) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5267900B2 (ja) | 到来方向推定装置およびそれを備えた無線通信装置 | |
JP2009545754A5 (ja) | ||
US20170343661A1 (en) | Pulse radar, method of correcting transmission pulse in pulse radar, and method of correcting reception pulse in pulse radar | |
CN104467927A (zh) | 一种用于补偿接收信道相位的方法及装置 | |
JP6411831B2 (ja) | 到来方向推定装置、位置推定装置、位置推定システム | |
WO2019234875A1 (ja) | 受信機 | |
JP6538365B2 (ja) | 測定装置 | |
US8588355B2 (en) | Timing recovery controller and operation method thereof | |
KR20110067908A (ko) | 위성 항법 신호 생성 장치 | |
JP2010004347A (ja) | マルチアンテナ受信回路及びマルチアンテナ受信装置、並びにマルチアンテナ受信方法 | |
TWI390862B (zh) | 虛擬雜訊碼追蹤電路與虛擬雜訊碼追蹤方法 | |
KR101644560B1 (ko) | 통신 신호에 대한 tdoa/fdoa 정보 추정 장치 및 방법 | |
KR101831198B1 (ko) | 통신 신호에 대한 감소된 연산량을 가지는 2-단계 tdoa/fdoa 정보 추정 방법 | |
JP7007806B2 (ja) | 地上波測位システム | |
EP3531562B1 (en) | Maximum likelihood sequence estimation circuit, reception device, and maximum likelihood sequence estimation method | |
JP6556400B2 (ja) | タイミング推定装置およびタイミング推定方法 | |
JP2011101149A (ja) | Ofdm信号受信におけるマルチパス歪み等化装置および受信装置 | |
JP6461041B2 (ja) | 同期信号生成システム、位相差演算装置、及び同期信号生成装置 | |
JP6140055B2 (ja) | 伝搬測定システム及び伝搬測定方法 | |
JP6466313B2 (ja) | Mimo無線伝送システム、mimo無線伝送方法および受信機 | |
CN104660532B (zh) | 均衡装置、均衡方法以及接收装置 | |
US11552662B1 (en) | Method for improving detection in multipath channels | |
WO2012106866A1 (zh) | 一种信号解调方法及接收装置 | |
JP4973255B2 (ja) | 無線フレーム時間同期装置 | |
JP5020110B2 (ja) | 回線品質測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18921357 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020523925 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18921357 Country of ref document: EP Kind code of ref document: A1 |