JP7007806B2 - 地上波測位システム - Google Patents

地上波測位システム Download PDF

Info

Publication number
JP7007806B2
JP7007806B2 JP2017036052A JP2017036052A JP7007806B2 JP 7007806 B2 JP7007806 B2 JP 7007806B2 JP 2017036052 A JP2017036052 A JP 2017036052A JP 2017036052 A JP2017036052 A JP 2017036052A JP 7007806 B2 JP7007806 B2 JP 7007806B2
Authority
JP
Japan
Prior art keywords
signal
station
delay time
phase difference
positioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017036052A
Other languages
English (en)
Other versions
JP2018141702A (ja
Inventor
泰行 富田
昌志 内藤
幸輝 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2017036052A priority Critical patent/JP7007806B2/ja
Publication of JP2018141702A publication Critical patent/JP2018141702A/ja
Application granted granted Critical
Publication of JP7007806B2 publication Critical patent/JP7007806B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、地上波を用いて、送信局と受信局の距離及び受信局の位置を算出する地上波測位システムに係り、特に測位の精度を向上させることができる地上波測位システムに関する。
[先行技術の説明:図9]
従来、地上波測位システムとして、双曲線航法(例えばデッカ航法)を用いたものがある。
双曲線航法は、3つ以上の送信局からの受信電波の到来遅延差に基づいて、2つ以上の双曲線を描き、その交点を受信局の位置(緯度、経度)として算出する方法である。到来遅延差は、受信信号の位相差として求められる。
地上波測位システムの概要について図9を用いて説明する。図9は、地上波測位システムの構成例を示す模式説明図である。
図9の地上波測位システムは、送信局として、地上に設けられた固定局である主局(M-1)と、従局(S-1)及び従局(S-2)とを備えており、船舶等に設けられた受信局10で各送信局からの信号を受信して測位を行う。つまり、受信局は移動局となるものである。
送信局は、HF帯の地上波を用いてトーン信号を送信する。
主局(M-1)がトーン信号を送信すると、従局(S-1),従局(S-2)はそれに同期してトーン信号を送信し、受信局10は各送信局からのトーン信号を受信する。
[信号フォーマット:図10]
次に、地上波測位システムで用いられる信号フォーマットについて図10を用いて説明する。図10は、地上波測位システムで用いられる信号フォーマットの説明図である。
図10に示すように、周波数としてf1とf2とが用いられ、1フレーム(760msec)は、40msec×19スロットで構成される。
主局(M-1)から周波数f1で送信される信号は、トリガ信号(T)、AFC用信号(A1)、データ(D)、AFC用信号(A2)で構成され、ガード信号(G)に続いて各送信局に割り当てられた送信スロット(S1~S6)、ガード信号(G)が設けられている。
主局から周波数f2で送信される信号はf1の信号に同期し、ガード信号(G)、送信スロット(S1~S6)、ガード信号(G)で構成される。
トリガ信号は、送信開始のトリガとなる基準信号である。
送信スロットは、各局に割り当てられたタイムスロットであり、ここでは、主局(M-1)がS1とS4、従局(S-1)がS2とS5、従局(S-2)がS3とS6を用いてトーン信号を送信する。
また、ガード信号の区間は、何も送信しない。
そして、主局(M-1)が周波数f1を用いて図10(a)のT,A1,D,A2,G及びS1で示される信号を送信すると、従局(S-1)及び従局(S-2)は、主局(M-1)からの信号を受信して、トリガ信号(T)によりタイミング同期、AFC用信号(A1,A2)により周波数補正、S1信号により位相補正を行い、周波数f1及びf2を用いて自己に割り当てられた送信スロットでトーン信号を送信する。
[送信信号と受信信号のイメージ:図11]
次に、従来の地上波測位システムにおける送信信号と受信信号について図11を用いて説明する。図11は、従来の地上波測位システムにおける送信信号と受信信号のイメージを示す説明図である。
図11では、(a)で送信局の送信信号のイメージを、(b)で受信局10(船)における受信信号のイメージを示している。
図11(a)に示すように、主局(M-1)がトリガ信号等に続いてスロットS1でトーン信号を送信すると、従局(S-1)はそれに同期してスロットS2でスロットS1の信号に連続するトーン信号を送信し、同様に従局(S-2)はスロット3でスロットS2に連続するトーン信号を送信する。
各送信局からの送信信号は、位相が一致し、連続したトーン信号となる。
図11(b)では、受信局10における受信の状態を示しており、ここでは主局(M-1)からの信号を受信したタイミングを基準として示している。
具体的には、受信局10においては、主局(M-1)からのトーン信号(S1)を受信すると、次のスロットで従局(S-1)のトーン信号(S2)を受信するが、ここで、送信局(従局(S-1))と受信局10との距離に応じて遅延が発生するため、図11(b)に示すように、スロットS1とスロットS2の受信信号は連続した信号とはならない。
つまり、スロットS1の受信信号に同期したトーン信号と比較すると、スロットS2における実際の受信信号は、距離に応じた位相差(位相ずれ)が発生している。
スロットS3でも同様に、主局(M-1)の送信信号に同期した受信信号から、従局(S-2)と受信局10との距離に応じた位相差が発生する。
[位相ずれの検出例:図12]
ここで、位相ずれの検出例について図12を用いて説明する。図12は、位相ずれの検出例を示す説明図である。
スロットの初めと終わりにはレベル変化等があるため、検出対象外(ガード)とし、主局(M-1)に同期した上段のトーン信号に対して、下段のトーン信号の位相ずれを検出する場合を考える。
図12に示すように、上段のAのピークが下段の(a)で受信された場合の位相のずれは180度(π)であり、更に1波長分遅延して(b)で受信されたとすると、位相のずれは540度(3π)となる。
しかしながら、ガード部分を除いた領域のみで検出すると、180度なのか540度なのかの区別は困難である。
このように、位相のずれが360度(2π)以上になった場合には、正確なずれを検出することはできない。
[2つの周波数を用いた場合:図13]
そこで、従来の地上波測位システムでは、2つの周波数(f1,f2)を用いて360度を超える位相のずれを検出するようにしている。
図13は、2つの周波数を用いて位相ずれを検出する場合を示す説明図である。
図13に示すように、周波数f1とf2とを用いることにより、周波数f1だけでは区別できない位相ずれについても、周波数f2の位相を比較することで、図13の(0)~(10)の範囲((10)は含まない)で位相のずれを検出することが可能となる。
但し、この方法でも、図13の(10)を越えると判断がつかなくなってしまう。
[関連技術]
尚、地上波測位システムに関する従来の技術としては、特開2009-186241号公報「受信装置、測距システム、測位システム、コンピュータプログラム及び受信時点特定方法」(住友電気工業株式会社、特許文献1)、特表2014-513271号公報「無線トランスミッタからレシーバまでの距離を推定する方法、移動端末の位置を計算する方法、移動端末、及び、位置特定装置」(シズベル テクノロジー エス.アール.エル、特許文献2)、特開平5-142326号公報「測位装置」(古野電気株式会社、特許文献3)がある。
特許文献1には、受信装置が遅延信号を解析して推定し、送信信号に含まれる基準信号のレプリカ信号と、推定された遅延信号とに基づいて、遅延信号の影響が反映された基準信号を再現信号として出力し、受信信号と再現信号との相関を取って受信時点を特定することが記載されている。
特許文献2には、レシーバが、トランスミッタからの信号からそれぞれ異なる周波数を含む3つのトーンを抽出し、第1の周波数間隔がある2つのトーン間の第1の位相差と、第2の周波数間隔がある別のトーン間の第2の位相差とを計測し、第1の周波数間隔と第2の周波数間隔、第1の位相差及び第2の位相差に基づいてトランスミッタからの距離を計算することが記載されている。
特許文献3には、船舶等に搭載する主局と陸地等に固定する複数の従局とを用いて、複数回分の位置データの変化から主局の移動量データを求め、移動量データから主局の現在位置を測位時間間隔より短周期で求めることが記載されている。
特開2009-186241号公報 特表2014-513271号公報 特開平5-142326号公報
しかしながら、従来の地上波測位システムでは、2つの周波数を用いた場合でも、遅延が大きくなると位相差を正確に検出することができず、測位結果に誤りを生じてしまうという問題点があった。
本発明は上記実状に鑑みて為されたもので、位相差を正確且つ迅速に検出して、精度の高い測位を行うことができる地上波測位システムを提供することを目的とする。
上記従来例の問題点を解決するための本発明は、地上波を送信する送信局としての主局及び従局と、主局からの受信信号と従局からの受信信号との位相差を求め、位相差に基づいて測位を行う移動可能な受信局とを備えた地上波測位システムであって、送信局の主局及び従局が、それぞれ、遅延時間検出信号としてインパルス応答信号を生成する信号生成部を備え、送信スロット内の特定のタイミングで遅延時間検出信号を送信すると共に、特定のタイミングに続く別のタイミングでトーン信号を送信し、受信局が、主局及び従局からの遅延時間検出信号の受信タイミングに基づいて、従局の遅延時間を検出する遅延時間検出部と、検出された遅延時間に基づいて、従局からのトーン信号の位相差検出範囲を1波長以内に絞り込んで、主局からのトーン信号に対する位相差を検出する位相差検出部とを備えたことを特徴としている。
また、本発明は、上記地上波測位システムにおいて、送信局が、第1の周波数と第2の周波数を用いて遅延時間検出信号をタイミングをずらして送信し、受信局が、第1の周波数と第2の周波数で送信された遅延時間検出信号を包絡線検波して両者の差分を取り、差分信号がゼロとなるゼロクロス点を主局と従局について検出し、主局のゼロクロス点と従局のゼロクロス点とを比較して従局の遅延時間を算出することを特徴としている。
また、本発明は、上記地上波測位システムにおいて、インパルス応答信号は、第1の周波数及び第2の周波数それぞれ窓関数を乗算して生成することを特徴としている。
本発明によれば、地上波を送信する送信局としての主局及び従局と、主局からの受信信号と従局からの受信信号との位相差を求め、位相差に基づいて測位を行う移動可能な受信局とを備えた地上波測位システムであって、送信局の主局及び従局が、それぞれ、遅延時間検出信号としてインパルス応答信号を生成する信号生成部を備え、送信スロット内の特定のタイミングで遅延時間検出信号を送信すると共に、特定のタイミングに続く別のタイミングでトーン信号を送信し、受信局が、主局及び従局からの遅延時間検出信号の受信タイミングに基づいて、従局の遅延時間を検出する遅延時間検出部と、検出された遅延時間に基づいて、従局からのトーン信号の位相差検出範囲を1波長以内に絞り込んで、主局からのトーン信号に対する位相差を検出する位相差検出部とを備えた地上波測位システムとしているので、遅延時間の検出により位相差を360度以内に絞り込んでから、トーン信号による精密な位相差の検出を行うことができ、測位の精度を向上させることができる効果がある。
また、本発明によれば、送信局が、第1の周波数と第2の周波数を用いて遅延時間検出信号をタイミングをずらして送信し、受信局が、第1の周波数と第2の周波数で送信された遅延時間検出信号を包絡線検波して両者の差分を取り、差分信号がゼロとなるゼロクロス点を主局と従局について検出し、主局のゼロクロス点と従局のゼロクロス点とを比較して従局の遅延時間を算出する上記地上波測位システムとしているので、単一の周波数で遅延時間を検出する場合に比べて、高精度で検出することができる効果がある。
本測位システムの特徴部分に関する概略構成図である。 本測位システムの送信信号を示す概略説明図である。 本測位システムで用いられる遅延時間検出信号の波形の例を示す説明図である。 本測位システムにおける遅延時間を検出するイメージを示す図である。 遅延検出信号の生成例を示す説明図である。 遅延時間検出部22の概略構成図である。 ゼロクロス点検出部22の概略構成図である。 ゼロクロス点検出の例を示す説明図である。 地上波測位システムの構成例を示す模式説明図である。 地上波測位システムで用いられる信号フォーマットの説明図である。 従来の地上波測位システムにおける送信信号と受信信号のイメージを示す説明図である。 位相ずれの検出例を示す説明図である。 2つの周波数を用いて位相ずれを検出する場合を示す説明図である。
本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要]
本発明の実施の形態に係る地上波測位システム(本測位システム)は、双曲線航法によって測位を行う地上波測位システムであって、送信局が、2つの周波数f1とf2とを用いて、各スロットの前半でパルス状の遅延時間検出信号を出力し、後半で連続したトーン信号を送信すると共に、受信局が、f1とf2で受信した遅延時間検出信号に基づいて従局の遅延時間を検出し、トーン信号を用いて当該遅延時間に対応する位相差を含む1波長分(位相差360度)の範囲について、主局に同期した信号からの位相差を検出するものであり、遅延時間検出信号によって遅延時間を把握して位相差360度以内にまで絞りこんだ後、トーン信号によって正確な位相差を検出することができ、大幅な信号フォーマットの変更を行うことなく位相差を精度よく求めることができ、正確な位置を算出することができるものである。
[本測位システムの概略構成:図1]
ここで、本測位システムの特徴部分に関する概略構成について図1を用いて説明する。図1は、本測位システムの特徴部分に関する概略構成図である。
尚、本測位システムの送信局及び受信局は、本測位システムの特徴部分以外の構成として、従来の送信局及び受信局と同等の構成を備えているが、説明を簡単にするために図示は省略する。
図1に示すように、本測位システムは、送信局1と受信局2とを備えている。
従来と同様に、送信局1は、主局(M-1)、従局(S-1)、従局(S-2)に相当し、受信局2は、船舶に設けられ、移動局となるものである。
送信局1は、本測位システムの特徴部分である信号生成部11と、従来と同様の送信部12とを備えている。
また、受信局2は、従来と同様の受信部21及び測位処理部24と、本測位システムの特徴部分である遅延時間検出部22及び位相差検出部23とを備えている。
そして、本測位システムは、送信局1からの送信信号のパターンを従来とは異なるものとして、受信局2において地上波測位システムにおいて重要となる位相のずれを精度よく求めるようにするものである。
本測位システムの各部について説明する。
送信局1の信号生成部11は、送信信号を生成する。
特に、本測位システムの信号生成部11は、図10に示した送信スロットS1~S6で送信する信号パターンとして、従来とは異なる信号パターンを生成する。
具体的には、1スロット分の送信信号として、パルス状の遅延時間検出信号と、連続したトーン信号とを生成する。信号生成部11で生成される信号パターンについては後述する。
送信部12は、信号生成部11で生成された信号パターンを無線信号として送信する。尚、送信周波数は、f1とf2の2種類としている。
受信局2の受信部21は、無線信号を受信する。
遅延時間検出部22は、本測位システムの特徴部分であり、従局から受信した遅延時間検出信号に基づいて、主局に同期した信号からの遅延時間を検出し、位相差検出部23に遅延時間を出力する。
遅延時間検出信号は既知のパルス状の信号であるため、主局に同期したスロット先頭から遅延時間検出信号の受信までの時間を検出することで、各従局の遅延時間(絶対的な遅延時間)を求めることが可能となる。
本測位システムでは、位相差検出部23における位相差の検出精度を向上させるために、遅延時間を利用している。遅延時間検出部22の構成及び動作については後述する。
位相差検出部23は、従来と同様に、従局から受信したトーン信号に基づいて、主局に同期した信号からの位相のずれ(位相差)を検出するものであるが、本測位システムの特徴として、遅延時間検出部22から入力された遅延時間に基づいて、当該遅延時間に対応する位相差近傍のトーン信号の1波長分(位相差360度分)で位相のずれを検出する。
1波長分とは、f1又はf2の内いずれか一方の1波長分であり、例えば波長の短いほうの1波長分とする。
位相差検出部23におけるトーン信号を用いた位相差の検出方法は従来と同様であるが、遅延時間が大きくて位相差が360度を越える場合であっても、検出範囲は位相差360度以内に限定されるため、正確な位相差を迅速に検出することができるものである。
測位処理部24は、従来と同様に、位相差検出部23で検出された位相差に基づいて、双曲線航法により、受信局2の位置(緯度・経度)や、各送信局からの距離を算出する。
[本測位システムの送信信号:図2]
まず、本測位システムの送信局1から送信される送信信号について図2を用いて説明する。図2は、本測位システムの送信信号を示す概略説明図である。
図2に示すように、従来の地上波測位システムでは、送信局1からの送信信号は送信スロット(S1~S6)の40msec全てを使って連続したトーン信号を送信していたが、本測位システムでは、スロットの前半の特定タイミングでパルス状の遅延時間検出信号を送信し、後半の20msecで連続したトーン信号を送信する。
この信号パターンを、f1とf2の2種類の周波数で送信する。
[遅延時間検出信号の波形:図3]
次に、本測位システムで用いられる遅延時間検出信号の波形について図3を用いて説明する。図3は、本測位システムで用いられる遅延時間検出信号の波形の例を示す説明図である。
本測位システムでは、遅延時間検出信号として、インパルス応答波形信号を用いている。
具体的には、送信局1の信号生成部11において、f1及びf2のトーン信号に窓関数(hann窓)を乗算することにより遅延時間検出信号を生成する。生成される遅延時間検出信号は、図3に示すようなパルス波形となる。
[遅延時間検出の概念:図4]
ここで、本測位システムにおける遅延時間検出の概念について図4を用いて説明する。図4は、本測位システムにおける遅延時間を検出するイメージを示す図である。
図4に示すように、本測位システムでは、送信局1が、1スロット(40msec)の前半20msecの中ほどで遅延時間検出信号を送信し、後半20msecはトーン信号を送信する。
受信局2では、主局からの信号を受信して、スロットタイミングを認識し、各従局のスロットにおいて受信した遅延時間検出信号のタイミングと、主局からの受信信号に同期した遅延のない場合のタイミングとを比較して、その時間的な差を当該従局からの受信信号の遅延時間として検出する。
トーン信号を用いた位相差検出は、検出可能な範囲が狭く、それを超えると正確な位相差が求められなかったが、本測位システムでは、遅延時間によって、トーン信号を用いた位相差検出の範囲を絞り込むことによって、検出精度を向上させるものである。
[遅延時間検出信号の生成例:図5]
本測位システムにおける遅延時間検出信号の生成について図5を用いて説明する。図5は、遅延検出信号の生成例を示す説明図である。
上述したように、遅延時間検出信号はパルス波形であるため、1つの周波数信号のみでも遅延時間を検出することは可能であるが、本測位システムでは、検出精度を向上させるために、送信局1の信号生成部11が、異なる周波数である周波数f1と周波数f2について窓関数を乗算してインパルス応答波形信号を生成する。
図5に示すように、窓関数長は6msecとし、スロットの前半20msecの中央付近で生成する。
ここで、図5に示すように、f1の遅延時間検出信号とf2の遅延時間検出信号とは、窓長(6msec)の1/4区間のずれを生じさせて生成するようにしている。
そして、後述するように、受信局2の遅延時間検出部22では、周波数f1とf2で受信したスロット(S1~S6)毎に、遅延時間検出信号を用いてゼロクロス点を検出し、主局のゼロクロス点と従局のゼロクロス点とを比較して遅延時間を検出する。ゼロクロス点については後述するが、f1とf2で受信した遅延時間検出信号の差分がゼロとなる点である。
[遅延時間検出部22の構成:図6]
遅延時間検出部22の構成について図6を用いて説明する。図6は、遅延時間検出部22の概略構成図である。
図6に示すように、遅延時間検出部22は、S1ゼロクロス点検出部25と、S2ゼロクロス点検出部26と、S3ゼロクロス点検出部27と、遅延時間算出部28とを備えている。
尚、スロットS4~S6については、それぞれS1ゼロクロス点検出部25、S2ゼロクロス点検出部26、S3ゼロクロス点検出部27で処理するものとし、スロットS4~S6用のゼロクロス点検出部を省略しているが、それらを設けてもよい。
また、スロットS4~S6については、それぞれスロットS1~S3と同様の処理が行われるため、以下、説明を省略する。
S1ゼロクロス点検出部25は、周波数f1で受信したスロットS1の遅延時間検出信号と、周波数f2で受信したスロットS1の遅延時間検出信号に基づいて、主局(M-1)のゼロクロス点を検出する。主局(M-1)のゼロクロス点は、遅延時間検出の基準となるものである。
S2ゼロクロス点検出部26は、周波数f1及びf2で受信したスロットS2の遅延時間検出信号に基づいて、従局(S-1)のゼロクロス点を検出する。
S3ゼロクロス点検出部27は、周波数f1及びf2で受信したスロットS3の遅延時間検出信号に基づいて、従局(S-2)のゼロクロス点を検出する。
S1ゼロクロス点検出部25、S2ゼロクロス点検出部26、S3ゼロクロス点検出部27(ゼロクロス点検出部)の構成については後述する。
遅延時間算出部28は、各従局の遅延時間を算出する。
具体的には、遅延時間算出部28は、S1ゼロクロス点検出部25から出力された主局のゼロクロス点と、S2ゼロクロス点検出部26から出力された従局(S-1)のゼロクロス点とを比較して、その差を従局(S-1)の遅延時間として算出する。
同様に、遅延時間算出部28は、主局のゼロクロス点とS3ゼロクロス点検出部27から出力された従局(S-2)のゼロクロス点とを比較して、その差を従局(S-2)の遅延時間として算出する。
算出された各従局の遅延時間は位相差検出部23に出力される。
[ゼロクロス点検出部の構成:図7]
次に、図6に示した各ゼロクロス点検出部25~27の構成について図7を用いて説明する。図7は、ゼロクロス点検出部の概略構成図である。尚、S1ゼロクロス点検出部25、S2ゼロクロス点検出部26、S3ゼロクロス点検出部27は、いずれも同じ構成である。
図7に示すように、ゼロクロス点検出部25~27は、受信信号を入力して周波数f1を通過させるバンドパスフィルタ(BPF;Band Pass Filter)31と、f2を通過させるBPF41と、バッファ32,42と、直交検波部33,43と、包絡線検出部34,44と、加算部50と、ゼロクロス点算出部51とを備えている。
BPF31は、受信信号から周波数f1の信号を抽出する。
BPF41は、受信信号から周波数f2の信号を抽出する。
バッファ32,42は、一時的に信号を保持して周波数f1の受信信号と周波数f2の受信信号のスロット先頭のタイミングを合わせる。
直交検波部33,43は、入力された信号を直交検波する。
包絡線検出部34,44は、直交検波された信号について包絡線(信号のエンベロープ)を検出する。
加算部50は、f1の包絡線からf2の包絡線を減算して差分信号を出力する。
ゼロクロス点検出部51は、差分信号に基づいてゼロクロス点を検出する。尚、ゼロクロス点は、差分信号のグラフが横軸と交わる点であり、出力(振幅)がゼロとなる点(タイミング)である。
図5に示した遅延時間検出信号の場合には、主局のゼロクロス点は20msecの中心(スロットの先頭から10msec)のタイミングとなる。
このように、2つの周波数を用いてゼロクロス点を検出し、図6に示した遅延時間算出部28で、主局のゼロクロス点と従局のゼロクロス点とのずれを求めることで、1つの周波数のみを用いる場合よりも遅延時間を精度よく求めることができるものである。
[ゼロクロス点検出の例:図8]
ここで、ゼロクロス点検出の例について図8を用いて説明する。図8は、ゼロクロス点検出の例を示す説明図である。
図7に示したように、バッファ32,42によってf1とf2のスロットタイミングを合わせて包絡線を検出し、加算部50において、f1のエンベロープからf2のエンベロープを減算すると、図8に示すように差分信号が算出される。
ゼロクロス点算出部51は、差分信号が横軸と交わる点をゼロクロス点として検出する。
実際の処理では、差分信号をサンプリング周波数fsでサンプリングして、信号の値が0となる時点をゼロクロス点として検出するが、サンプリングされた信号値は通常0にならないので、0を挟む2点について当該2点内を内挿補間し、信号の値が0となる時点をゼロクロス点として求めるようにしてもよい。
これにより、ゼロクロス点の検出精度を向上させることができるものである。
[本測位システムにおける位相差の検出]
次に、位相差検出部23における位相差の検出について説明する。
上述したように、本測位システムでは、遅延時間検出部22でおおよその遅延時間を求め、位相差検出部23で、当該遅延時間に対応する位相差近傍の1波長分(位相差360度分)で位相差を算出するようにしている。
具体的には、位相差検出部23は、遅延時間を中心とする1波長分を位相差検出範囲とし、当該検出範囲について主局に同期した信号からの位相のずれを算出する。
これにより、例えば、図12のように1周波数を用いた検出において360度を超える位相差があった場合や、図13のように2周波数を用いた検出において(10)を超える(3600度を超える)位相差であった場合でも、遅延時間に対応する位相差前後の1波長以内に絞り込めるため、位相差を正確に検出することができるものである。
これにより、地上波測位システムの測位精度を向上させることができるものである。
尚、本測位システムでは2波を用いて遅延時間を検出するようにしたが、図4に示したように、1波でもおおよその遅延時間を検出することは可能であり、1つの周波数のみを送受信して遅延時間を検出する構成としてもよい。
具体的には、主局から受信した遅延時間検出信号の受信タイミングと、従局から受信した遅延時間検出信号の受信タイミングとを比較して、従局の遅延時間を算出する。
その場合でも、算出された遅延時間に対応する位相差を中心とする1波長分(位相差360度分)を用いてトーン信号による位相差検出を行うことにより、従来に比べて精度の高い位相差検出を短時間で行うことができ、測位の精度及び処理速度を向上させることができるものである。
[実施の形態の効果]
本発明の実施の形態に係る地上波測位システムによれば、送信局1の信号生成部11が、1スロット内に、パルス波形の遅延時間検出信号とトーン信号とを含む信号パターンを生成し、受信局2の遅延時間検出部22が、遅延時間検出信号に基づいて遅延時間を検出し、位相差検出部23が、トーン信号を用いて、当該遅延時間に対応する位相差を中心としてトーン信号の1波長分で位相差を検出するようにしているので、遅延時間によって位相差の範囲を360度以内に絞り込んでからトーン信号による位相差検出ができ、遅延が大きい場合であっても正確な位相差を検出して、測位の精度を向上させ、測位処理の時間を短縮することができる効果がある。
また、本測位システムによれば、送信局1が、周波数f1と周波数f2とを用いて、遅延時間検出信号を特定時間ずらして生成し、受信局2が、f1とf2で受信した遅延時間検出信号の差分を取って差分信号のゼロクロス点を求め、主局のゼロクロス点と従局のゼロクロス点とを比較して、従局の遅延時間を検出するようにしているので、遅延時間を精度よく算出することができる効果がある。
また、本測位システムによれば、従来のシステムと比べて、送信局1で送信信号のパターンを変更して、受信局2で遅延時間検出の処理を追加しているだけであるため、信号フォーマットや構成の大規模な変更が不要であり、低コストで実現することができる効果がある。
本発明は、測位の精度を向上させることができる地上波測位システムに適している。
1…送信局、 2,10…受信局、 11…信号生成部、 12…送信部、 21…受信部、 22…遅延時間検出部、 23…位相差検出部、 24…測位処理部

Claims (3)

  1. 地上波を送信する送信局としての主局及び従局と、前記主局からの受信信号と前記従局からの受信信号との位相差を求め、前記位相差に基づいて測位を行う移動可能な受信局とを備えた地上波測位システムであって、
    前記送信局の主局及び従局が、それぞれ、遅延時間検出信号としてインパルス応答信号を生成する信号生成部を備え、送信スロット内の特定のタイミングで前記遅延時間検出信号を送信すると共に、前記特定のタイミングに続く別のタイミングでトーン信号を送信し、
    前記受信局が、前記主局及び前記従局からの遅延時間検出信号の受信タイミングに基づいて、前記従局の遅延時間を検出する遅延時間検出部と、前記検出された遅延時間に基づいて、前記従局からのトーン信号の位相差検出範囲を1波長以内に絞り込んで、前記主局からのトーン信号に対する位相差を検出する位相差検出部とを備えたことを特徴とする地上波測位システム。
  2. 各送信局が、第1の周波数と第2の周波数を用いて遅延時間検出信号をタイミングをずらして送信し、
    受信局が、前記第1の周波数と前記第2の周波数で送信された遅延時間検出信号を包絡線検波して両者の差分を取り、差分信号がゼロとなるゼロクロス点を主局と従局について検出し、前記主局のゼロクロス点と前記従局のゼロクロス点とを比較して前記従局の遅延時間を算出することを特徴とする請求項1記載の地上波測位システム。
  3. インパルス応答信号は、第1の周波数及び第2の周波数にそれぞれ窓関数を乗算して生成することを特徴とする請求項2記載の地上波測位システム。
JP2017036052A 2017-02-28 2017-02-28 地上波測位システム Active JP7007806B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036052A JP7007806B2 (ja) 2017-02-28 2017-02-28 地上波測位システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036052A JP7007806B2 (ja) 2017-02-28 2017-02-28 地上波測位システム

Publications (2)

Publication Number Publication Date
JP2018141702A JP2018141702A (ja) 2018-09-13
JP7007806B2 true JP7007806B2 (ja) 2022-01-25

Family

ID=63526540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036052A Active JP7007806B2 (ja) 2017-02-28 2017-02-28 地上波測位システム

Country Status (1)

Country Link
JP (1) JP7007806B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051789A (ja) * 2018-09-25 2020-04-02 株式会社日立国際電気 地上波測位システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065278B2 (ja) * 1987-01-14 1994-01-19 日本電気株式会社 距離測定装置
JPS6431076A (en) * 1987-07-28 1989-02-01 Furuno Electric Co Position measuring system

Also Published As

Publication number Publication date
JP2018141702A (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
US9197989B2 (en) Reference signal transmission method and system for location measurement, location measurement method, device, and system using the same, and time synchronization method and device using the same
JP5739822B2 (ja) 速度・距離検出システム、速度・距離検出装置、および速度・距離検出方法
JP2010522879A (ja) 測位のためのシステムおよび方法
CN105007150A (zh) 低信噪比sc-fde系统同步方法及同步装置
WO2016208167A1 (ja) 音源位置検出装置、音源位置検出方法、音源位置検出プログラムおよび記憶媒体
CN103475429A (zh) 用于估计和消除电磁信号尤其是ssr响应的多径延迟的方法
JP4750660B2 (ja) 受信装置及び測位システム並びに測位方法
JP2016138787A (ja) パッシブレーダ装置
JP7007806B2 (ja) 地上波測位システム
JP6130195B2 (ja) レーダシステム
KR102124549B1 (ko) 로란 시스템의 신호 복조 장치
JP2007024642A (ja) 到来波方向推定装置、到来波方向推定方法および位置推定システム
US9791537B2 (en) Time delay estimation apparatus and time delay estimation method therefor
JP6461041B2 (ja) 同期信号生成システム、位相差演算装置、及び同期信号生成装置
JP2005134215A (ja) 信号到来時間差測定システム
US9961511B2 (en) Position detection system, method therefor, and computer-readable medium
CN111224912B (zh) 空地链路信号到达时间差确定方法、侦收站及存储介质
KR102041470B1 (ko) eLoran 기반의 시각동기 장치 및 방법
JP2020051789A (ja) 地上波測位システム
JP4948485B2 (ja) 方位探知装置
EP1345465A1 (en) Method and system for determining a propagation delay, and an electronic device
JP2581417B2 (ja) バイスタティックレーダ
JP2021196233A (ja) 到来方向推定装置、到来方向推定方法及び到来方向推定プログラム
KR101607134B1 (ko) Gps tod polling을 이용한 수집시각 동기화 방법
KR20210013806A (ko) 위상 보정 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107

R150 Certificate of patent or registration of utility model

Ref document number: 7007806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150