WO2019234825A1 - 画像処理装置及び画像処理プログラム - Google Patents

画像処理装置及び画像処理プログラム Download PDF

Info

Publication number
WO2019234825A1
WO2019234825A1 PCT/JP2018/021553 JP2018021553W WO2019234825A1 WO 2019234825 A1 WO2019234825 A1 WO 2019234825A1 JP 2018021553 W JP2018021553 W JP 2018021553W WO 2019234825 A1 WO2019234825 A1 WO 2019234825A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
saturation value
saturation
target pixel
threshold
Prior art date
Application number
PCT/JP2018/021553
Other languages
English (en)
French (fr)
Inventor
裕介 伴場
Original Assignee
Eizo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eizo株式会社 filed Critical Eizo株式会社
Priority to CN201880094312.XA priority Critical patent/CN112236811B/zh
Priority to US16/972,208 priority patent/US11276367B2/en
Priority to KR1020207037329A priority patent/KR102453070B1/ko
Priority to EP18921679.9A priority patent/EP3806083A4/en
Priority to PCT/JP2018/021553 priority patent/WO2019234825A1/ja
Priority to JP2020523884A priority patent/JP6992176B2/ja
Publication of WO2019234825A1 publication Critical patent/WO2019234825A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/026Control of mixing and/or overlay of colours in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/94Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/06Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using colour palettes, e.g. look-up tables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0686Adjustment of display parameters with two or more screen areas displaying information with different brightness or colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/10Mixing of images, i.e. displayed pixel being the result of an operation, e.g. adding, on the corresponding input pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/08Biomedical applications

Definitions

  • the present invention relates to an image processing apparatus and an image processing program.
  • FIG. 1 shows the above-described GSDF curve and ⁇ 2.2 curve.
  • the relationship between the gradation value input to the display and the brightness value to be displayed is called “gradation characteristic”.
  • the gradation characteristic is different between the monochrome pixel and the color pixel.
  • an image processing technique for appropriately correcting gradation characteristics for each pixel of an input image has been developed.
  • Japanese Patent Application Laid-Open No. 2004-151561 mixes color gradation characteristics and monochrome gradation characteristics based on a mixing ratio determined based on a saturation value in pixel units of an input image or a saturation value in area units. Techniques for synthesizing are disclosed.
  • Patent Document 1 when using a saturation value in units of pixels, a doctor who is used to diagnosis on a display that only performs color gradation characteristic correction using a ⁇ 2.2 curve on a color image. For such diagnoses, the color image displayed on the display feels dark, and there is a concern that accurate diagnosis is not possible.
  • the saturation value for each area there is a concern that the screen display may be corrupted depending on the saturation calculation result for each area, and an appropriate brightness value cannot be output.
  • the present invention has been made in view of such circumstances, and an image processing apparatus and image processing for realizing display with a more appropriate brightness value in a display that displays monochrome pixels and color pixels together.
  • the purpose is to provide a program.
  • an image processing apparatus including a saturation value acquisition unit and a correction unit, wherein the saturation value acquisition unit includes a saturation value of a target pixel, or the target pixel and surrounding peripheral pixels.
  • the correction unit obtains a corrected gradation characteristic obtained by correcting the target pixel so that the color gradation characteristic and the monochrome gradation are obtained based on the saturation value.
  • the correction unit includes a mixing unit that determines a mixing ratio between a color gradation characteristic for a color pixel and a monochrome gradation characteristic for a monochrome pixel based on the acquired saturation value.
  • the relationship f1 (c) below the threshold is a proportional function.
  • the correction unit further has a relationship in which the threshold is set to be larger as the difference between the lightness value in the color gradation characteristic of the target pixel and the lightness value in the monochrome gradation characteristic of the target pixel is larger. Is used to determine and correct the mixing ratio W.
  • a tone characteristic after correction obtained by correcting the target pixel is a tone characteristic synthesized by mixing a color tone characteristic and a monochrome tone characteristic at a predetermined mixing ratio based on the saturation value.
  • a correction step for correcting the target pixel so as to match, where the saturation value is c, and the mixing ratio of the color gradation characteristics is W, the value of W when c is a variable is related
  • an image processing program that causes a computer to function as an image processing apparatus including a saturation value acquisition unit and a correction unit, and the saturation value acquisition unit causes the saturation of a target pixel to be detected.
  • An acquisition step of acquiring a value or a saturation value of a target small region including the target pixel and surrounding peripheral pixels, and a corrected gradation characteristic obtained by correcting the target pixel includes the saturation Correcting the target pixel so that it matches the tone characteristics synthesized by mixing color tone characteristics and monochrome tone characteristics at a predetermined mixing ratio based on the values, and the saturation value
  • c is the mixing ratio of the color gradation characteristics and W is the variable
  • FIG. 4A is a diagram illustrating a lookup table L1 for monochrome pixels.
  • FIG. 4B is a diagram illustrating a lookup table L2 for color pixels. It is a figure which shows the relationship between the saturation value c and the mixing ratio W. It is a processing flow explaining the procedure of a correction process.
  • FIG. 7A is a diagram illustrating the relationship between the saturation value and the mixture ratio in the first modification.
  • FIG. 7B is a diagram illustrating the relationship between the saturation value and the mixture ratio in the second modification.
  • FIG. 7C is a diagram illustrating a relationship between the saturation value and the mixture ratio in the third modification.
  • FIG. 8A is a diagram showing a difference in brightness value between the GSDF curve and the ⁇ 2.2 curve.
  • FIG. 8B is a diagram illustrating a difference ratio of brightness values between the GSDF curve and the ⁇ 2.2 curve.
  • FIG. 9A is a diagram in which the input gradation value is divided into regions for each difference ratio with respect to FIG. 8B.
  • FIG. 9B is a diagram in which a plurality of relationships between the saturation value c and the mixing ratio W are defined corresponding to the input gradation value area division. It is a processing flow explaining the procedure of the correction process which concerns on 2nd Embodiment.
  • unit may refer to, for example, a combination of hardware resources implemented by a circuit in a broad sense and software information processing that can be specifically realized by these hardware resources.
  • a circuit in a broad sense is a circuit that is realized by appropriately combining a circuit, a circuit, a processor, a memory, and the like. That is, an application specific integrated circuit (Application Specific Integrated Circuit: ASIC), a programmable logic device (for example, a simple programmable logic device (SPLD), a complex programmable logic device (ComplexProgramDCL), and a complex programmable logic device (ComplexProgramL) A programmable gate array (Field Programmable Gate Array: FPGA)) and the like are included.
  • ASIC Application Specific Integrated Circuit
  • SPLD simple programmable logic device
  • ComplexProgramDCL complex programmable logic device
  • ComplexProgramL complex programmable logic device
  • FPGA Field Programmable Gate Array
  • an area including one pixel of the input image or the pixel and peripheral pixels around the pixel is defined as a small area.
  • the image includes both still images / moving images, and in the case of moving images, it indicates one frame unless otherwise specified.
  • the image processing apparatus 100 includes a control unit 1, a storage unit 2, an operation unit 3, a display unit 4, a backlight 5, a communication unit 6, and a bus 7.
  • the control unit 1 reads a program (not shown) stored in the storage unit 2 and executes various arithmetic processes, and is configured by, for example, a CPU.
  • the storage unit 2 stores a look-up table for correcting gradation characteristics applied to the display unit 4 and various data and programs, and is configured by, for example, a memory, an HDD, or an SSD.
  • the program may be preinstalled at the time of shipment of the image processing apparatus 100, may be downloaded as an application from a site on the Web, or transferred from another information processing apparatus or recording medium by wired or wireless communication. May be. Details of the lookup table will be described later.
  • the operation unit 3 operates the image processing apparatus 100, and includes, for example, a motion recognition device using a switch, button, mouse, keyboard, touch panel, voice input unit, camera, or the like. For example, various setting information on the OSD (On Screen Display) is operated by the operation unit 3.
  • OSD On Screen Display
  • the display unit 4 displays input image data (including still images and moving images) as an image, and includes, for example, a liquid crystal display, an organic EL display, a touch panel display, electronic paper, and other displays.
  • the backlight 5 illuminates the display unit 4 from the back side of the display unit 4.
  • the backlight 5 is not necessary.
  • the communication unit 6 transmits / receives various data to / from other information processing apparatuses or components, and is configured by an arbitrary I / O.
  • the bus 7 is composed of a serial bus, a parallel bus, and the like, and electrically connects each part to enable transmission / reception of various data.
  • Each component may be realized by software or hardware.
  • various functions can be realized by the CPU executing a program.
  • the program may be stored in the built-in storage unit 2 or may be stored in a computer-readable non-transitory recording medium. Alternatively, the program stored in an external storage unit may be read and realized by so-called cloud computing.
  • it can be realized by various circuits such as ASIC, FPGA, or DRP.
  • control unit 1 includes a determination unit 11, a saturation value acquisition unit 12, and a correction unit 20.
  • the correction unit 20 includes a mixing unit 21, a monochrome correction unit 22, and a color correction unit 23.
  • the determination unit 11 determines whether the target pixel of the input image data input to the image processing apparatus 100 is monochrome or color.
  • various methods are known as determination methods.
  • the input tone values (R, G, B) of the target pixel are plotted in the RGB space, and the distance from the straight line defined in the (1, 1, 1) direction in the RGB space falls within the reference value
  • a method of determining monochrome may be adopted.
  • the input gradation value is defined as a 10-bit digital value that takes a value from 0 to 1023.
  • the saturation value acquisition unit 12 acquires a saturation value (hereinafter also referred to as a saturation value c) for the target pixel of the input image data input to the image processing apparatus 100 based on the input gradation value.
  • the saturation value is defined as an 8-bit digital value that takes a value from 0 to 255.
  • the saturation value acquisition unit 12 may acquire the saturation value for the target small region including the target pixel and the surrounding peripheral pixels.
  • the saturation value associated with each of the target pixel and the surrounding pixels may be calculated as an arithmetic mean to obtain the saturation value of the target small region, or the target small region
  • One of the saturation values may be acquired as a representative value.
  • the correction unit 20 performs color gradation characteristic correction for color pixels and monochrome gradation characteristic correction for monochrome pixels on the input image data.
  • the gradation characteristics refer to the relationship between the input gradation value of the target pixel of the input image data and the brightness value when the target pixel is output on the display.
  • Color gradation characteristic correction refers to correcting gradation characteristics for color pixels.
  • Monochrome gradation characteristic correction means correcting the gradation characteristic of a monochrome pixel.
  • the mixing unit 21 determines a mixing ratio (hereinafter also referred to as a mixing ratio W) between the color gradation characteristic and the monochrome gradation characteristic based on the saturation value acquired by the saturation value acquisition unit 12. Details of the specific processing contents of the mixing unit 21 will be described later.
  • the monochrome correction unit 22 performs monochrome gradation characteristic correction for each target pixel of the input image data. Details of the specific processing of the monochrome gradation characteristic correction performed by the monochrome correction unit 22 will be described later.
  • the color correction unit 23 performs color gradation characteristic correction for each target pixel of the input image data. Details of the specific processing of color gradation characteristic correction performed by the color correction unit 23 will be described later.
  • the storage unit 2 stores a lookup table L for performing gradation characteristic correction, and a mixing ratio table K in which the relationship between the saturation value c and the mixing ratio W is defined.
  • the display unit 4 is configured to display the input image data with brightness values corresponding to the gradation characteristics corrected by the monochrome correction unit 22 or the color correction unit 23 for the target pixel of the input image data.
  • the lookup table L stored in the storage unit 2 will be described with reference to FIGS. 4A and 4B.
  • the method of defining the look-up table L is merely an example, and is not limited to the aspect illustrated here.
  • the storage unit 2 stores a lookup table L1 for monochrome pixels and a lookup table L2 for color pixels.
  • the lookup table L1 input gradation values from 0 to 1023 and brightness values corresponding to the input gradation values are defined.
  • the lightness values M0 to M1023 are values that can be represented by 0 to 100%, where 0% represents the minimum lightness that can be expressed by the display unit 4, and 100% represents the maximum lightness that can be expressed by the display unit 4.
  • the input tone value and the lightness value are associated with each other one-to-one so as to satisfy the GSDF curve defined by the DICOM standard.
  • the brightness value may be defined as a 16-bit digital value that takes a value from 0 to 65535, for example, instead of 0 to 100%.
  • the input gradation value and the corresponding brightness value for each RGB are defined.
  • the relationship defined in the lookup table L1 is defined for each RGB. That is, the lightness values R0 to R1023 correspond to R (red), the lightness values G0 to G1023 correspond to G (green), and the lightness values B0 to B1023 correspond to B (blue), respectively.
  • the input gradation value and the lightness value are associated with each RGB one-to-one so as to satisfy the ⁇ 2.2 curve defined by the sRGB standard.
  • the gradation characteristic correction can be performed so that the brightness value satisfies the GSDF curve. Further, by referring to the lookup table L2 for the input gradation value of the color pixel, the gradation characteristic correction can be performed so that the brightness value satisfies the ⁇ 2.2 curve.
  • the mixing unit 21 Based on the saturation value c acquired by the saturation value acquisition unit 12, the mixing unit 21 performs color gradation characteristics (corresponding to the lookup table L2) for color pixels and monochrome gradation characteristics (lookup) for monochrome pixels.
  • the mixing ratio W for mixing (corresponding to the table L1) is determined.
  • the relationship between the saturation value c and the mixing ratio W is defined in the mixing ratio table K stored in the storage unit 2.
  • the mixing unit 21 can determine the mixing ratio W corresponding to the saturation value c acquired by the saturation value acquiring unit 12 by referring to the mixing ratio table K.
  • a first threshold value P and a second threshold value Q for the saturation value c are shown.
  • the correspondence relationship f (c) is based on the proportional relationship g (c) in a region where the saturation value c is equal to or greater than the first threshold value P (that is, a region after the point X in f (c)). Is configured to take a large value.
  • the saturation value c is equal to or greater than the first threshold value P
  • the value of the multiplier ⁇ is 1 to 20, preferably 1.5 to 15, and more preferably 2 to 10.
  • the value of the multiplier ⁇ is, for example, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15. 5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, and may be within a range between any two of the numerical values exemplified here.
  • the saturation value c when the saturation value c is equal to or greater than the first threshold value P, the above condition is satisfied for the saturation value of 50% or more of the saturation values from the first threshold value P to the maximum value 255.
  • the ratio is 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, and any two of the numerical values exemplified here. It may be within a range between the two. More preferably, the ratio can be set to 70%. In this way, for 70% or more of the saturation value c greater than or equal to the first threshold value P, it is possible to increase the mixing ratio of the color gradation characteristics more than the mixing ratio in the case of the proportional relationship g (c). For 70% or more of the saturation value c that is equal to or greater than the threshold value P, it is possible to express an image with an increased brightness value.
  • the saturation value c when the saturation value c is equal to or higher than the first threshold value P, the saturation value included in the region of 50% or more of the lower saturation values from the first threshold value P to the maximum value 255.
  • the regions are 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and 95% of the lower value, and are exemplified here. It may be within a range between any two of the numerical values. More preferably, the ratio can be 90%. In this way, the color gradation characteristic mixing ratio is increased in the 90% low value region of the saturation value from the first threshold value P to the maximum value 255 in the correspondence relationship f (c). It becomes possible to make it. As a result, it is possible to represent an image with an increased lightness value in a region of 90% or more where the value is low among the saturation values from the first threshold value P to the maximum value 255.
  • f1 (c) is a proportional function, which is consistent with the proportional relationship g (c).
  • at least a part of the sigmoid function is used for f2 (c).
  • f1 (c) and f2 (c) are not limited to this, and may be any relationship that satisfies f1 (c1) ⁇ f2 (c2). In this way, by making f1 (c) a proportional function, the mixing ratio of the monochrome gradation characteristics can be increased in the region where the saturation value c is low.
  • the slope of f (c) increases in the region where the saturation value c is not less than the first threshold value P and not more than the second threshold value, and the value of the mixing ratio W is greatly increased. Further, in the region where the saturation value c is not less than the second threshold and not more than the maximum value 255 (that is, the region after the point Y in f (c)), the slope decreases toward zero and f (c) is moderate. To increase.
  • the monochrome correction unit 22 refers to the lookup table L1 for the input tone value of the target pixel determined as a monochrome pixel by the determination unit 11, and acquires a brightness value. As described above, the lookup table L1 is defined to satisfy the GSDF curve. As a result, monochrome pixels can be displayed with brightness values that satisfy the GSDF curve.
  • the monochrome correction unit 22 refers to the look-up table L1 for the input tone value of the target pixel determined to be a color pixel by the determination unit 11, and determines a lightness value for mixing based on the mixing ratio W. .
  • the color correction unit 23 refers to the lookup table L1 for the input tone value of the target pixel determined to be a color pixel by the determination unit 11 and determines a lightness value for mixing based on the mixing ratio W.
  • the control unit 1 causes the display unit 4 to display the pixels determined to be monochrome pixels by the determination unit 11 based on the brightness value determined by the monochrome correction unit 22.
  • the control unit causes the display unit 4 to display pixels determined as color pixels by the determination unit 11 based on the lightness value determined by the monochrome correction unit 22 and the lightness value determined by the color correction unit 23.
  • the brightness value when displaying color pixels will be described in detail.
  • the brightness value after mixing (MR , MG, MB) can be obtained as the following (formula 1) to (formula 3).
  • the brightness value of the lookup table L1 is L1 (80)
  • the brightness value of the lookup table L2 is L1 (80). The same applies to the other input values 90 and 100.
  • step S10 the determination unit 11 performs monochrome determination on the target pixel of the input image data. If the determination unit 11 determines that the input pixel is monochrome, step S45 is executed. On the other hand, when the determination unit 11 determines that the input pixel is a color, step S20 is executed.
  • step S20 the saturation value acquisition unit 12 acquires the saturation value c for the target pixel or the target small area determined to be color by the determination unit 11.
  • step S30 the mixing unit 21 refers to the mixing ratio table K stored in the storage unit 2 based on the acquired saturation value c, and determines the mixing ratio W of the color gradation characteristics.
  • step S40 the monochrome correction unit 22 and the color correction unit 23 refer to the look-up tables L1 and L2 based on the input tone value of the input pixel, and based on the mixing ratio W determined in step S30.
  • the brightness value after gradation correction synthesized by mixing the values of the lookup tables L1 and L2 is determined.
  • the monochrome correction unit 22 refers to the lookup table L1 stored in the storage unit 2 with respect to the target pixel determined to be monochrome by the determination unit 11, and the input gradation of the target pixel. Determine the lightness value corresponding to the value.
  • step S50 the correction unit 20 determines whether or not the processing of S10 to S45 has been completed for all pixels of the input image data. If the process has not been completed, step S10 is executed again. On the other hand, if the process is complete, step S60 is executed.
  • step S60 the control unit 1 controls the display unit 4 so that the input image data is displayed with the brightness value determined in step S40 and / or step S45.
  • the control unit 1 includes the saturation value acquisition unit 12 and the correction unit 20.
  • the saturation value acquisition unit 12 acquires the saturation value of the target pixel or the target small area of the input image data.
  • the correction unit 20 determines that the corrected gradation characteristic obtained by correcting the target pixel includes a color gradation characteristic for a color pixel and a monochrome gradation characteristic for a monochrome pixel.
  • the target pixel is corrected so as to match the gradation characteristics mixed and synthesized at a predetermined mixing ratio.
  • FIG. 7A shows a correspondence relationship f (c) between the saturation value c and the mixture ratio W as the first modification.
  • the correspondence relationship W f (c) of the mixing ratio W with respect to the saturation value c is represented by one sigmoid function.
  • the correspondence relationship f (c) is expressed by the following equation.
  • FIG. 7B shows the correspondence f (c) between the saturation value c and the mixing ratio W as the second modification.
  • f1 (c) is a linear function
  • f2 (c) is a constant.
  • FIG. 7C shows a correspondence f (c) between the saturation value c and the mixing ratio W as the third modification.
  • the correspondence relationship f (c) ⁇ proportional relationship g (c). Even if it does in this way, it is possible to acquire the effect similar to the said embodiment.
  • the relationship between the saturation value c and the mixture ratio W is not limited to monotonous increase.
  • the mixing ratio W may be 0 below the threshold value P.
  • Second Embodiment> in consideration of the difference between the lightness value defined by the GSDF curve for the input gradation value and the lightness value defined by the ⁇ 2.2 curve, the saturation value c and the mixing ratio W Is different from the first embodiment in that the correspondence relationship F (c) is defined.
  • symbol is attached
  • FIG. 8A shows a GSDF curve ⁇ 2.2 curve.
  • the input gradation value is Z
  • the brightness value on the ⁇ 2.2 curve is B1
  • the brightness value on the GSDF curve is B2.
  • the difference between the lightness value B1 and the lightness value B2 varies depending on the input tone value.
  • FIG. 8B shows the difference ratio C between the lightness value B1 and the lightness value B2 based on FIG. 8A.
  • the difference ratio C is calculated by the following (Formula 4).
  • C
  • the large difference between the lightness value B1 and the lightness value B2 with respect to the input gradation value means that the lightness value after correction between the monochrome gradation characteristic correction by the GSDF curve and the color gradation characteristic correction by the ⁇ 2.2 curve. It means that the difference is large. In such a case, if the mixing ratio W of the color gradation characteristics is rapidly increased, noise is generated and the image quality is deteriorated.
  • regions I to IV are defined according to the difference ratio between the lightness value B1 and the lightness value B2. Then, input gradation values corresponding to the regions I to IV are defined as regions (1) to (4).
  • a plurality of correspondence relationships between the saturation value c and the mixing ratio W are prepared as F1 (c) to F4 (c).
  • the correspondence relationship F1 (c) is applied to the input gradation value belonging to the region (corresponding to the region (1)) where the difference between the lightness value B1 and the lightness value B2 is the smallest.
  • the correspondence F2 (c) is applied to the input gradation value in the region where the difference between the lightness value B1 and the lightness value B2 is the next smallest (corresponding to the region (2)).
  • the correspondence relationships F1 (c) to F4 (c) used for determining the mixing ratio are determined based on the input gradation value.
  • F1 (c) to F4 (c) can be realized by changing the coefficient b in [Expression 1] described above.
  • the first threshold values P1 to P4 corresponding to the relationships F1 (c) to F4 (c) are the smallest P1, the largest P2 and P3, and the largest P4. In other words, the first threshold value is set to increase as the difference ratio C between the lightness value B1 and the lightness value B2 increases.
  • the mixing ratio tables K1 to K4 in which the correspondence relationships F1 (c) to F4 (c) set in this way are respectively stored are stored in the storage unit 2.
  • the mixing unit 21 determines the mixing ratio W with reference to the mixing ratio table K corresponding to the input gradation value of the target pixel.
  • the color correction unit 23 refers to the look-up tables L1 and L2 based on the determined mixing ratio W, and performs tone characteristic correction on the input tone value.
  • the input gradation value having a large difference between the lightness value determined by the GSDF curve and the lightness value determined by the ⁇ 2.2 curve has a color gradation characteristic that is low when the saturation is low. Mixing ratio can be suppressed. With an input tone value with a small difference, the mixing ratio can be increased even when the saturation is low. As a result, an appropriate mixing ratio can be determined according to the input tone value.
  • step S25 after step S20, the correction unit 20 determines a relationship F (c) to be applied to the target pixel based on the input gradation value of the target pixel. Thereafter, step S30 is executed, and the mixing ratio W for the target pixel is determined.
  • the application of the present invention is not limited to the above embodiment.
  • a so-called 3D-1D look-up table that refers to a common 1D look-up table for color and monochrome after referring to a 3D look-up table that defines color gradation characteristics can also be applied.
  • a 3D look-up table in which the lightness value as the mixing result is defined around the lightness value satisfying the GSDF curve, the lightness value satisfying the ⁇ 2.2 curve, and the mixing ratio W based on the saturation value c is defined.
  • a method may be adopted.
  • a lightness value that becomes a gradation characteristic obtained by mixing the color gradation characteristic and the monochrome gradation characteristic at a mixing ratio W based on the saturation value c with R, G, and B as the axes in the input gradation value may be adopted.
  • a gradation characteristic obtained by combining an input gradation value based on a saturation value c with a color gradation characteristic and a monochrome gradation characteristic mixed at a mixing ratio W May be output.
  • the value of the monochrome look-up table L1 (lightness value) and the value of the color look-up table L2 (lightness value) are mixed based on the mixing ratio W for each pixel.
  • the color gradation characteristic and the monochrome gradation characteristic are based on the saturation value c.
  • the brightness value based on the tone characteristics synthesized by mixing at a mixing ratio W may be determined.
  • an example in which gradation characteristic correction is performed so that the lightness value satisfying the ⁇ 2.2 curve is performed for the gradation characteristic correction of the color pixel is not limited to the ⁇ 2.2 curve.
  • a value between 1.8 and 2.6 may be adopted, and a value that satisfies Rec.709, PQ method (Perceptual Quantization), HLG method (Hybrid Log Gamma), etc. Tonal characteristics may be employed.
  • the present invention is an image processing program that causes a computer to function as an image processing apparatus including a saturation value acquisition unit and a correction unit, and the saturation value acquisition unit performs the saturation value of the target pixel, or
  • the present invention can also be realized as a computer-readable non-transitory recording medium that stores the above-described program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Image Processing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

モノクロ画素とカラー画素とを合わせて表示するディスプレイにおいて、より適切な明度値での表示を実現する。 対象画素の彩度値、または、当該対象画素とその周辺の周辺画素とを含む対象小領域の彩度値を取得し、前記対象画素を補正して得られる補正後の階調特性が、前記彩度値に基づいてカラー階調特性とモノクロ階調特性とを所定の混合比率で混合して合成された階調特性と一致するように、前記対象画素を補正し、前記彩度値をcとし、前記カラー階調特性の混合比率をWとすると、cを変数としたときのWの値は関係W=f(c)で表され、以下の条件を満たす、画像処理装置が提供される。 条件:前記彩度値cに対して前記混合比率Wが比例して増加する関係をW=g(c)とすると、前記彩度値が閾値以上の場合に、f(c)>αg(c)が満たされる彩度値cおよび乗数αが存在し、α≧1である。

Description

画像処理装置及び画像処理プログラム
 本発明は、画像処理装置及び画像処理プログラムに関する。
 近年、医療診断用ディスプレイにおいて、モノクロ画素とカラー画素とを合わせて表示することにより、総合的な診断を行うことが可能となっている。このような医療診断用ディスプレイに画像を表示する際、モノクロ画素を表示する場合にはDICOM(Digital Imaging and Communications in Medicine)規格で定められたGSDF(Grayscale Standard Display Function)カーブによる明度値の補正が一般に行われている。それに対して、カラー画素を表示する場合はsRGB規格で定められたγ2.2カーブによる明度値の補正が広く利用されている
 図1には、上述したGSDFカーブとγ2.2カーブとを示す。ディスプレイに入力される階調値と表示すべき明度値との関係を「階調特性」といい、図1に示すように、モノクロ画素とカラー画素とでは階調特性が異なる。そこで、入力画像の画素単位に階調特性を適切に補正する画像処理技術が開発されている。例えば、特許文献1は、入力画像の画素単位の彩度値、もしくはエリア単位の彩度値に基づいて決定される混合比率に基づいて、カラー階調特性とモノクロ階調特性とを混合して合成する技術が開示されている。
特開2016-180787号公報
 しかし、上記特許文献1における技術では、画素単位の彩度値を用いる場合は、カラー画像に対してγ2.2カーブによるカラー階調特性補正のみを行っているディスプレイでの診断に慣れている医師などの診断者にとって、ディスプレイに表示されるカラー画像が暗く感じられ、正確な診断をしかねるといった懸念が生じていた。また、エリア単位の彩度値を用いる場合は、エリアごとの彩度計算結果によっては画面表示が崩れ適切な明度値を出力できない懸念があった。
 本発明は、このような事情を鑑みてなされたものであり、モノクロ画素とカラー画素とを合わせて表示するディスプレイにおいて、より適切な明度値での表示を実現するための画像処理装置及び画像処理プログラムを提供することを目的とする。
 本発明によれば、彩度値取得部と補正部とを備える画像処理装置であって、前記彩度値取得部は、対象画素の彩度値、または、当該対象画素とその周辺の周辺画素とを含む対象小領域の彩度値を取得し、前記補正部は、前記対象画素を補正して得られる補正後の階調特性が、前記彩度値に基づいてカラー階調特性とモノクロ階調特性とを所定の混合比率で混合して合成された階調特性と一致するように、前記対象画素を補正し、前記彩度値をcとし、前記カラー階調特性の混合比率をWとすると、cを変数としたときのWの値は関係W=f(c)で表され、以下の条件を満たす、画像処理装置が提供される。
 条件:前記彩度値cに対して前記混合比率Wが比例して増加する関係をW=g(c)とすると、前記彩度値が閾値以上の場合に、f(c)>αg(c)が満たされる彩度値cおよび乗数αが存在し、α≧1である。
 これにより、対象画素の彩度とカラー階調特性との混合比率の関係を、対象画素の彩度が所定の閾値を超えた場合に変化させることが可能となり、対象画素の彩度が低いときにはカラー階調特性の混合比率をおさえつつ、対象画素の彩度が高いときにはカラー階調特性の混合比率を強めることができる。このため、対象画素の彩度が高いときにはその明度値を高める補正を実現することが可能となり、より適切な明度値でディスプレイ表示を行うことが可能となる。また、エリア単位の彩度値を用いないため、エリアごとの彩度値の違いにより画面表示が崩れる懸念もない。
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は、互いに組み合わせ可能である。また、各特徴が独立に発明を構成する。
 好ましくは、前記補正部は、取得された前記彩度値に基づいて、カラー画素用のカラー階調特性とモノクロ画素用のモノクロ階調特性との混合比率を決定する混合部を含む。
 好ましくは、前記関係f(c)は、前記閾値以下における関係W1=f1(c)と、前記閾値以上における関係W2=f2(c)とを含み、閾値以下の任意の彩度値をc1,閾値以上の任意の彩度値をc2とすると、f1(c1)≦f2(c2)が満たされる。
 好ましくは、前記閾値以下における関係f1(c)は比例関数である。
 好ましくは、前記閾値を第1閾値としたときの第2閾値が存在し、前記第2閾値は、前記第1閾値以上であり、前記彩度値が第2閾値以上の場合に、前記関係f2(c)の傾きがゼロに向かって減少する。
 好ましくは、前記関係f(c)はシグモイド関数の少なくとも一部である。
 好ましくは、前記補正部は、さらに、前記対象画素のカラー階調特性における明度値と、前記対象画素のモノクロ階調特性における明度値との差分が大きいほど、前記閾値がより大きく設定された関係を用いて、前記混合比率Wを決定して補正を行う。
 本発明の他の観点によれば、対象画素の彩度値、または、当該対象画素とその周辺の周辺画素とを含む対象小領域の彩度値を取得する取得ステップと、前記補正部により、前記対象画素を補正して得られる補正後の階調特性が、前記彩度値に基づいてカラー階調特性とモノクロ階調特性とを所定の混合比率で混合して合成された階調特性と一致するように、前記対象画素を補正する補正ステップとを含み、前記彩度値をcとし、前記カラー階調特性の混合比率をWとすると、cを変数としたときのWの値は関係W=f(c)で表され、以下の条件を満たす画像処理方法が提供される。
 条件:前記彩度値が最小値から最大値まで増加するのに伴い、前記混合比率が最小値から最大値まで比例して増加する関係をW=g(c)とすると、前記彩度値が閾値以上の場合に、f(c)>αg(c)が満たされる彩度値cおよび乗数αが存在し、α≧1である。
 本発明の他の観点によれば、コンピュータを、彩度値取得部と補正部とを備える画像処理装置として機能させる画像処理プログラムであって、前記彩度値取得部により、対象画素の彩度値、または、当該対象画素とその周辺の周辺画素とを含む対象小領域の彩度値を取得する取得ステップと、前記対象画素を補正して得られる補正後の階調特性が、前記彩度値に基づいてカラー階調特性とモノクロ階調特性とを所定の混合比率で混合して合成された階調特性と一致するように、前記対象画素を補正するステップとを含み、前記彩度値をcとし、前記カラー階調特性の混合比率をWとすると、cを変数としたときのWの値は関係W=f(c)で表され、以下の条件を満たす画像処理プログラムが提供される。
 条件:前記彩度値が最小値から最大値まで増加するのに伴い、前記混合比率が最小値から最大値まで比例して増加する関係をW=g(c)とすると、前記彩度値が閾値以上の場合に、f(c)>αg(c)が満たされる彩度値cおよび乗数αが存在し、α≧1である。
GSDFカーブとγ2.2カーブとを示すグラフである。 第1の実施の形態に係る画像処理装置100のハードウェア構成図である。 制御部1の機能ブロック図である。 図4Aは、モノクロ画素用のルックアップテーブルL1を示す図である。図4Bは、カラー画素用のルックアップテーブルL2を示す図である。 彩度値cと混合比率Wとの関係を示す図である。 補正処理の手順を説明する処理フローである。 図7Aは変形例1における彩度値と混合比率との関係を示す図である。図7Bは変形例2における彩度値と混合比率との関係を示す図である。図7Cは変形例3における彩度値と混合比率との関係を示す図である。 図8Aは、GSDFカーブとγ2.2カーブとにおける明度値の差分を示す図である。図8Bは、GSDFカーブとγ2.2カーブとにおける明度値の差分割合を示す図である。 図9Aは、図8Bに対して差分割合の大きさごとに入力階調値の領域分けをした図である。図9Bは、彩度値cと混合比率Wとの関係を、入力階調値の領域分けに対応して複数規定した図である。 第2の実施の形態に係る補正処理の手順を説明する処理フローである。
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。特に、本明細書において「部」とは、例えば、広義の回路によって実施されるハードウェア資源と、これらのハードウェア資源によって具体的に実現されうるソフトウェアの情報処理とを合わせたものを指しうる。
 また、広義の回路とは、回路(circuit)、回路類(circuitry)、プロセッサ(Processor)、及びメモリ(Memory)等を少なくとも適当に組み合わせることによって実現される回路である。すなわち、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CLPD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等を含むものである。
 また、本明細書では、入力画像の一画素、または、当該画素とその周辺の周辺画素とを含む領域を小領域と定義する。さらに、画像とは、静止画/動画の何れも含むものとし、動画の場合においては特に指定がない限りそのうちの1フレームを指すものとする。
 また、下記に詳述する実施形態においては、様々な情報やこれを包含する概念を取り扱うが、これらは、0又は1で構成される2進数のビット集合体として信号値の高低によって表され、広義の回路上で通信・演算が実行され得るものである。具体的には、「小領域」、「入力階調値」、「彩度値」、「明度値」、等が、かかる情報/概念に含まれ得る。これらについては、再度必要に応じて詳しく説明するものとする。
<第1の実施の形態>
(1.1.画像処理装置100の構成)
 図2を参照し、画像処理装置100の構成について説明する。なお、図2を用いた説明では、各構成要素の基本的な機能を説明するにとどめ、処理の詳細な説明は後述する。
 図2に示すように、画像処理装置100は、制御部1と、記憶部2と、操作部3と、表示部4と、バックライト5と、通信部6と、バス7とを備える。制御部1は、記憶部2に記憶されたプログラム(不図示)を読み出して種々の演算処理を実行するものであり、例えば、CPU等により構成される。
 記憶部2は、表示部4に適用される階調特性補正を行うルックアップテーブルや、種々のデータやプログラムを記憶するものであり、例えば、メモリ、HDD又はSSDにより構成される。ここで、プログラムは、画像処理装置100の出荷時点においてプリインストールされていてもよく、Web上のサイトからアプリケーションとしてダウンロードしてもよく、有線又は無線通信により他の情報処理装置又は記録媒体から転送されてもよい。ルックアップテーブルについては、詳細を後述する。
 操作部3は、画像処理装置100を操作するものであり、例えば、スイッチ、ボタン、マウス、キーボード、タッチパネル、音声入力部、又は、カメラ等を利用した動き認識装置により構成される。例えば、操作部3によりOSD(On Screen Display)上の各種設定情報が操作される。
 表示部4は、入力画像データ(静止画及び動画を含む)を画像として表示するものであり、例えば、液晶ディスプレイ、有機ELディスプレイ、タッチパネルディスプレイ、電子ペーパーその他のディスプレイで構成される。
 バックライト5は、表示部4の背面から表示部4を照明するものである。なお、表示部4が液晶ディスプレイでない場合には、バックライト5は不要である。
 通信部6は、他の情報処理装置又は各構成要素と種々のデータを送受信するものであり、任意のI/Oにより構成される。バス7はシリアルバス、パラレルバス等で構成され、各部を電気的に接続し、種々のデータの送受信を可能にするものである。
 各構成要素は、ソフトウェアによって実現してもよく、ハードウェアによって実現してもよい。ソフトウェアによって実現する場合、CPUがプログラムを実行することによって各種機能を実現することができる。プログラムは、内蔵の記憶部2に格納してもよく、コンピュータ読み取り可能な非一時的な記録媒体に格納してもよい。また、外部の記憶部に格納されたプログラムを読み出し、いわゆるクラウドコンピューティングにより実現してもよい。ハードウェアによって実現する場合、ASIC、FPGA、又はDRPなどの種々の回路によって実現することができる。
(1.2.機能構成)
 図3を参照し、制御部1の機能について説明する。図3に示すように、制御部1は、判定部11と、彩度値取得部12と、補正部20とを備える。補正部20は、混合部21と、モノクロ補正部22と、カラー補正部23とを含む。
 判定部11は、画像処理装置100に入力される入力画像データの対象画素に対して、モノクロであるかカラーであるかを判定する。ここで、判定方法としては種々の方法が知られている。一例として、対象画素の有する入力階調値(R,G,B)をRGB空間にプロットし、RGB空間における(1,1,1)方向に規定される直線との距離が基準値に収まればモノクロと判定する方法を採用してもよい。なお、本実施形態では、入力階調値は0~1023までの値をとる10ビットのデジタル値として規定されている。
 彩度値取得部12は、画像処理装置100に入力される入力画像データの対象画素について、入力階調値に基づいて彩度値(以下、彩度値cともいう)を取得する。本実施形態では、彩度値は、0~255の値をとる8ビットのデジタル値として定義されている。ここで、彩度値取得部12は、対象画素とその周囲の周辺画素とを含む対象小領域についての彩度値を取得してもよい。その場合には、例えば、対象画素とその周囲の画素とのそれぞれに対応づけられた彩度値について、相加平均を演算して対象小領域の彩度値としてもよく、または、対象小領域内の1つの彩度値を代表値として取得してもよい。
 補正部20は、入力画像データについて、カラー画素用のカラー階調特性補正とモノクロ画素用のモノクロ階調特性補正とを行う。ここで、階調特性とは、入力画像データの対象画素の入力階調値と、当該対象画素がディスプレイで出力される際の明度値との関係をいう。カラー階調特性補正とは、カラー画素について階調特性を補正することをいう。モノクロ階調特性補正とは、モノクロ画素の階調特性を補正することをいう。
 混合部21は、彩度値取得部12が取得した彩度値に基づいて、カラー階調特性とモノクロ階調特性との混合比率(以下、混合比率Wともいう)を決定する。混合部21の具体的な処理の内容については、詳細を後述する。
 モノクロ補正部22は、入力画像データの対象画素ごとにモノクロ階調特性補正を実行する。モノクロ補正部22が行うモノクロ階調特性補正の具体的な処理の内容については、詳細を後述する。
 カラー補正部23は、入力画像データの対象画素ごとにカラー階調特性補正を実行する。カラー補正部23が行うカラー階調特性補正の具体的な処理の内容については、詳細を後述する。
 記憶部2は、一例としては、階調特性補正を行うためのルックアップテーブルLと、彩度値cと混合比率Wとの関係が規定された混合比率テーブルKとを記憶する。
 表示部4は、入力画像データの対象画素について、モノクロ補正部22、または、カラー補正部23により補正された階調特性に対応する明度値で入力画像データを表示するように構成される。
 (1.3.ルックアップテーブル)
 図4A及び図4Bを参照して、記憶部2に格納されるルックアップテーブルLについて説明する。ただし、ルックアップテーブルLの規定方法はあくまで一例にすぎず、ここで例示する態様に限定されない。
 図4A及び図4Bに示すように、記憶部2はモノクロ画素用のルックアップテーブルL1と、カラー画素用のルックアップテーブルL2とを記憶している。ルックアップテーブルL1には、0~1023までの入力階調値とそれに対応する明度値が規定されている。ここで、明度値M0~M1023は、0~100%で表せる値であり、0%は表示部4が表現できる最低明度を、100%は表示部4が表現できる最大明度を表す。ルックアップテーブルL1は、DICOM規格により定められるGSDFカーブを満たすように、入力階調値と明度値が1対1に対応づけられている。なお、明度値は、0~100%に代えて、例えば0~65535までの値をとる16ビットのデジタル値として規定してもよい。
 一方、ルックアップテーブルL2には、入力階調値とそれに対応するRGBごとの明度値が規定されている。ルックアップテーブルL2では、ルックアップテーブルL1で規定される関係を、RGBごとに規定する。すなわち、明度値R0~R1023がR(レッド)、明度値G0~G1023がG(グリーン)、明度値B0~B1023がB(ブルー)に、それぞれ対応している。ルックアップテーブルL2は、sRGB規格により定められるγ2.2カーブを満たすように、入力階調値と明度値がRGBごとに1対1に対応づけられている。
 これにより、モノクロ画素の入力階調値について、ルックアップテーブルL1を参照することにより、GSDFカーブを満たす明度値となるように階調特性補正を行うことができる。また、カラー画素の入力階調値について、ルックアップテーブルL2を参照することにより、γ2.2カーブを満たす明度値となるように階調特性補正を行うことができる。
(1.4.混合部21)
 混合部21は、彩度値取得部12が取得した彩度値cに基づいて、カラー画素用のカラー階調特性(ルックアップテーブルL2に相当)とモノクロ画素用のモノクロ階調特性(ルックアップテーブルL1に相当)とを混合するための混合比率Wを決定する。ここで、混合比率Wは、W=1のときにカラー階調特性となり、W=0のときにモノクロ階調特性となることを意味する。また、W=0.5のときにカラー階調特性とモノクロ階調特性を50%ずつ混合した階調特性が合成されることとなる。
 彩度値cと混合比率Wとの関係は、記憶部2に格納される混合比率テーブルKに規定されている。混合部21は、混合比率テーブルKを参照することにより、彩度値取得部12が取得した彩度値cに対応する混合比率Wを決定することができる。
 図5は、彩度値cと混合比率Wとの関係W=f(c)(以下、対応関係f(c)ともいう)を示す図であり、混合比率テーブルKに対応する。図5には、さらに、彩度値cが最小値0から最大値255まで増加するのに伴い、混合比率Wが最小値0から最大値1まで比例して増加する関係W=g(c)(以下、比例関係g(c)ともいう)が示されている。さらに、彩度値cに対する第1閾値Pと第2閾値Qとが示されている。
 図5に示すように、対応関係f(c)は、彩度値cが第1閾値P以上の領域(すなわち、f(c)における点X以降の領域)において、比例関係g(c)よりも大きな値をとり得るように構成されている。いいかえると、彩度値cが第1閾値P以上の場合に、f(c)>αg(c)という条件が満たされる彩度値cおよび乗数αが存在し、α≧1である。
 このように構成することにより、彩度値cの増加に比例してカラー階調特性の混合比率Wを増加させる比例関係g(c)に比べて、第1閾値P以上の場合に、カラー階調特性の混合比率Wを増加させることが可能となる。その結果、第1閾値P以上の場合に、入力画素に対するカラー階調特性の割合が高くなり、より明度値を高めた画像を実現することができる。
 ここで、乗数αの値は、1~20であり、好ましくは、1.5~15であり、さらに好ましくは、2~10である。乗数αの値は、具体的には例えば、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 ここで、彩度値cが第1閾値P以上の場合、第1閾値Pから最大値255までの彩度値の内、50%以上の割合の彩度値について、上記条件が満たされるようにする。当該割合は、具体的には、50%,55%,60%,65%,70%,75%,80%,85%,90%,95%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。より好ましくは、当該割合を70%とすることができる。こうすると、第1閾値P以上の彩度値cの70%以上について、カラー階調特性の混合比率を、比例関係g(c)の場合の混合比率よりも増加させることが可能となり、第1閾値P以上の彩度値cの70%以上について、明度値を高めた画像を表現することが可能となる。
 また、好ましくは、彩度値cが第1閾値P以上の場合、第1閾値Pから最大値255までの彩度値の内、値の低い方の50%以上の領域に含まれる彩度値について上記条件が満たされるようにする。当該領域は、具体的には、値の低い方の50%,55%,60%,65%,70%,75%,80%,85%,90%,95%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。より好ましくは、当該割合を90%とすることができる。このようにすることで、対応関係f(c)のうち、第1閾値Pから最大値255までの彩度値の内、値の低い90%の領域について、カラー階調特性の混合比率を増加させることが可能となる。その結果、第1閾値Pから最大値255までの彩度値の内、値の低い90%以上の領域において、明度値を高めた画像を表現することが可能となる。
 また、図5に示す例では、彩度値cと混合比率Wとの関係f(c)は、第1閾値P以下における関係W=f1(c)と、第1閾値P以上における関係W=f2(c)とを含んでおり、第1閾値P以下の任意の彩度値をc1,第1閾値P以上の任意の彩度値をc2とすると、f1(c1)≦f2(c2)が満たされている。
 さらに、図5の例では、f1(c)は比例関数であり、比例関係g(c)と一致している。一方、図5の例では、f2(c)はシグモイド関数の少なくとも一部が用いられている。ここで、f1(c)及びf2(c)はこれに限定されず、f1(c1)≦f2(c2)を満たす関係であればよい。このように、f1(c)を比例関数にすることにより、彩度値cが低い領域において、モノクロ階調特性の混合比率を高めることができる。これにより、彩度値cが低い領域において、カラー階調特性の混合比率が高いことによるノイズの発生を抑制しつつ、モノクロ階調特性の比率を高めすぎることによる意図したカラー表示からの乖離が大きくなることを防止することが可能となる。
 さらに、f(c)は、彩度値cが第1閾値P以上で第2閾値以下の領域では、その傾きが上昇し、混合比率Wの値が大きく上昇する。さらに、彩度値cが第2閾値以上で最大値255以下の領域(すなわち、f(c)における点Y以降の領域)では、その傾きはゼロに向かって減少し、f(c)は緩やかに増加する。
 このように彩度値cと混合比率Wとの関係を規定することにより、彩度値cの低い領域においてはカラー階調特性の混合比率を抑えてモノクロ階調特性とカラー階調特性を混合した階調特性補正を行いつつ、第1閾値P以上の領域においてはカラー階調特性の混合比率を大きくすることが可能となる。
(1.5.モノクロ補正部22)
 モノクロ補正部22は、判定部11によりモノクロ画素と判定された対象画素の入力階調値について、ルックアップテーブルL1を参照し、明度値を取得する。上述のとおり、ルックアップテーブルL1は、GSDFカーブを満たすように規定されている。その結果、モノクロ画素を、GSDFカーブを満たす明度値で表示することが可能となる。
 また、モノクロ補正部22は、判定部11によりカラー画素と判定された対象画素の入力階調値について、ルックアップテーブルL1を参照し、混合比率Wに基づいて混合するための明度値を決定する。
(1.6.カラー補正部23)
 カラー補正部23は、判定部11によりカラー画素と判定された対象画素の入力階調値について、ルックアップテーブルL1を参照し、混合比率Wに基づいて混合するための明度値を決定する。
 制御部1は、判定部11によりモノクロ画素と判定された画素を、モノクロ補正部22が決定した明度値に基づいて、表示部4に表示させる。一方、制御部は、判定部11によりカラー画素と判定された画素を、モノクロ補正部22が決定した明度値とカラー補正部23が決定した明度値とに基づいて、表示部4に表示させる。
 以下、カラー画素を表示させる場合の明度値について、具体的に説明する。一例として、対象画素の入力階調値が(R、G、B)=(80、90、100)、カラー階調特性の混合比率Wが0.7とした場合、混合後の明度値(MR、MG、MB)は以下の(式1)~(式3)として求まる。
 MR=L2(80)×0.7+L1(80)×0.3        (式1)
 MG=L2(90)×0.7+L1(90)×0.3        (式2)
 MB=L2(100)×0.7+L1(100)×0.3      (式3)
 ここで、入力値を80としたときのルックアップテーブルL1の明度値をL1(80)、ルックアップテーブルL2の明度値をL1(80)としている。他の入力値90、100に対しても同様であるとする。
(1.7.補正処理の手順)
 図6を参照し、本実施形態における補正処理の手順を説明する。以下の処理は、例えばCPUにより構成される制御部1により実行される。
 ステップS10において、判定部11は、入力画像データの対象画素についてモノクロ判定を行う。判定部11が、入力画素をモノクロと判定した場合には、ステップS45が実行される。一方、判定部11が、入力画素をカラーと判定した場合には、ステップS20が実行される。
 ステップS20において、彩度値取得部12は、判定部11によってカラーであると判定された対象画素又は対象小領域に対する彩度値cを取得する。
 次に、ステップS30において、混合部21は、取得された彩度値cにもとづき、記憶部2に格納されている混合比率テーブルKを参照し、カラー階調特性の混合比率Wを決定する。
 次に、ステップS40において、モノクロ補正部22およびカラー補正部23は、入力画素の入力階調値に基づいてルックアップテーブルL1およびL2を参照し、ステップS30で決定された混合比率Wに基づいてルックアップテーブルL1およびL2の値を混合して合成された階調補正後の明度値を決定する。
 一方、ステップS45において、モノクロ補正部22は、判定部11によってモノクロであると判定された対象画素に対し、記憶部2に格納されているルックアップテーブルL1を参照し、対象画素の入力階調値に対応する明度値を決定する。
 ステップS50において、補正部20は、入力画像データの全画素について、上記S10~S45の処理が完了したかどうかを判定する。処理が完了していない場合、ステップS10が再度実行される。一方、処理が完了している場合、ステップS60が実行される。
 ステップS60において、制御部1は、ステップS40および/またはステップS45で決定された明度値で入力画像データが表示されるように、表示部4を制御する。
 以上のようにして、本実施形態では、制御部1は彩度値取得部12と補正部20とを備える。彩度値取得部12は、入力画像データの対象画素、または対象小領域の彩度値を取得する。補正部20は、取得された彩度値に基づいて、対象画素を補正して得られる補正後の階調特性が、カラー画素用のカラー階調特性とモノクロ画素用のモノクロ階調特性とを所定の混合比率で混合して合成された階調特性と一致するように、対象画素を補正する。
 ここで、彩度値をcとし、カラー階調特性の混合比率をWとすると、cを変数としたときの混合比率Wの対応関係W=f(c)は、比例関係g(c)に対してf(c)>αg(c)が満たされる彩度値cおよび乗数αが存在し、α≧1であるという条件が満たされる。
 上記構成とすることにより、比例関係g(c)で定める場合と比較して、第1閾値P以上の領域において、カラー階調特性の混合比率Wを高めることが可能となる。その結果、第1閾値P以上の領域において、混合された階調特性をγ2.2カーブに基づく階調特性に近づけることができる。
(1.8.変形例)
 図7Aに、変形例1としての彩度値cと混合比率Wとの対応関係f(c)を示す。この例では、彩度値cに対する混合比率Wの対応関係W=f(c)は、1つのシグモイド関数で表される。具体的には、対応関係f(c)は、以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、係数aおよびbについては、図7Aに示す例では、a=18,b=128としているが、この例に限定されない。このようにすることで、1つの関数を用いて上述の条件を満たすように彩度値と混合比率との関係を規定することが可能となり、対応関係f(c)を規定するのが容易となる。
 図7Bに、変形例2としての彩度値cと混合比率Wとの対応関係f(c)を示す。この例では、彩度値cに対する混合比率Wの対応関係W=f(c)は、f1(c)は1次関数であり、f2(c)は定数となっている。このようにすることで、よりシンプルな演算で彩度値cに対する混合比率Wを取得することが可能となる。
 図7Cに、変形例3としての彩度値cと混合比率Wとの対応関係f(c)を示す。この例では、彩度値cが閾値Pに到達するまでは、対応関係f(c)<比例関係g(c)となっている。このようにしても、上記実施形態と同様の効果を得ることが可能である。
 ここで、図7Cにおいて、閾値Pに到達するまで、彩度値cと混合比率Wとの関係は単調増加に限定されない。例えば、閾値P以下で、混合比率Wは0であってもよい。具体的には、図7Cに一点鎖線で示すように、0とPの間の任意の閾値をSとし、0≦c≦SまではW=0であり、c≧Sでは、Wはf(P)に向かって単調増加するようにしてもよい。
 以下、上記実施形態において、彩度値cが低い場合においてモノクロ階調特性の混合比率を高める理由について説明する。モノクロ画素とカラー画素が混在する低彩度画像において、モノクロ画素用のモノクロ階調特性と、カラー画素用のカラー階調特性との明度値の差が大きい場合、当該明度値の差がノイズしてユーザに知覚されることがある。そこで、ノイズが知覚されないように、低彩度画像のカラー画素に対して、モノクロ階調特性の混合比率を強めた階調特性補正を行う必要がある。
 同様に、モノクロ画素とカラー画素が混在する高彩度画像において、モノクロ階調特性とカラー階調特性との明度値の差が大きい場合、当該明度値の差がノイズとして知覚される懸念がある。しかし、高彩度画像では、ノイズが知覚されることは稀である。その理由は、カラー(RGB各色)の明度はモノクロの明度に比べて低いため、高彩度における明度の差をユーザが知覚しにくいからである。
 また、別の理由として、低彩度画像においては色差による差異を知覚しやすいが、高彩度画像においては色差による差異を知覚しづらいことも挙げられる。このように、高彩度画像においては、カラー階調特性の混合比率を高めても、ノイズの出現はユーザにとって気にならない程度となる。そして、高彩度においては、カラー階調特性の混合比率を高めることにより、画像品質を低下させることなくディスプレイに表示されるカラー画像が暗く感じられることを防止することが可能となる。
<2.第2の実施の形態>
 第2の実施の形態では、入力階調値に対するGSDFカーブにより規定される明度値と、γ2.2カーブにより規定される明度値との差分を考慮して、彩度値cと混合比率Wとの対応関係F(c)を規定する点で第1の実施の形態と異なる。なお、第1の実施の形態と同様の構成には同一の符号を付しており、説明は繰り返さない。
 図8Aには、GSDFカーブγ2.2カーブが示されている。ここで、入力階調値がZのときにおけるγ2.2カーブ上の明度値をB1、GSDFカーブ上の明度値をB2とする。図8Aに示すように、入力階調値によって明度値B1と明度値B2との差分は変化している。
 図8Bには、図8Aに基づいて、明度値B1と明度値B2との差分割合Cを示している。ここで、差分割合Cは、以下の(式4)によって算出される。
 C=|(B1-B2)/B2|(||は絶対値) (式4)
 ここで、入力階調値に対する明度値B1と明度値B2の差分が大きいということは、GSDFカーブによるモノクロ階調特性補正と、γ2.2カーブによるカラー階調特性補正との補正後における明度値の差が大きいことを意味する。このような場合、カラー階調特性の混合比率Wを急激に高めると、ノイズが発生して画像品質が低下することとなる。
 そこで、図9Aに示すように、明度値B1と明度値B2の差分割合の大きさに応じた領域I~領域IVを規定する。そして、領域I~領域IVに対応する入力階調値を領域(1)~(4)として規定する。
 さらに、図9Bに示すように、彩度値cと混合比率Wとの対応関係をF1(c)~F4(c)のように複数用意する。ここで、図8Bおよび図9において、明度値B1と明度値B2の差分がもっとも小さい領域(領域(1)に相当)に属する入力階調値については、対応関係F1(c)を適用する。そして、明度値B1と明度値B2の差分が次に小さい領域(領域(2)に相当)における入力階調値については、対応関係F2(c)を適用する。このようにして、入力階調値に基づいて、混合比率の決定に用いられる対応関係F1(c)~F4(c)が決定される。
 ここで、対応関係F1(c)~F4(c)を決定する際の入力階調値としては、対象画素の有する入力階調値(R,G,B)の3つの相加平均を採用してもよく、または、3つの中の特定の1つを代表値として採用してもよい。
 関係F1(c)~F4(c)は、具体的には、前述の[数1]における係数bを変化させることで、実現することができる。一例として、F1(c)は、a=18,b=55、F2(c)は、a=18,b=70、F3(c)は、a=18,b=96、F4(c)はa=18,b=128とする上記[数1]に記載のシグモイド関数を含んでいる。
 そして、関係F1(c)~F4(c)にそれぞれ対応する第1閾値P1~P4は、P1が最も小さく、P2、P3と大きくなり、P4が最も大きい。言い換えると、明度値B1と明度値B2との差分割合Cが大きくなるほど、第1閾値がより大きくなるように設定される。このようにして設定された対応関係F1(c)~F4(c)がそれぞれ規定された混合比率テーブルK1~K4が記憶部2に格納される。
 混合部21は、対象画素の入力階調値に対応する混合比率テーブルKを参照し、混合比率Wを決定する。そして、上記実施形態と同様に、カラー補正部23は決定された混合比率Wに基づいて、ルックアップテーブルL1およびL2を参照し、入力階調値に対して階調特性補正を行う。
 このような構成とすることにより、GSDFカーブにより定まる明度値と、γ2.2カーブにより定まる明度値との差分の絶対値が大きい入力階調値では、彩度が低い場合にカラー階調特性の混合比率を抑えることができる。そして、当該差分が小さい入力階調値では、彩度が低い場合でも混合比率を高めることができる。その結果、入力階調値に応じて適切な混合比率を決定することが可能となる。
 図10を参照し、第2の実施の形態における補正処理の手順を説明する。なお、第2の実施の形態と同様の処理には同一の符号を付しており、説明は繰り返さない。
 ステップS20の後のステップS25において、補正部20は、対象画素の入力階調値に基づいて、当該対象画素に対して適用すべき関係F(c)を決定する。その後、ステップS30が実行され、当該対象画素についての混合比率Wが決定される。
<3.他の実施の形態>
 本発明の適用は、上記実施形態に限定されない。例えば、カラー階調特性を規定する3Dルックアップテーブルを参照した後に、カラー用及びモノクロ用で共通の1Dルックアップテーブルを参照する、いわゆる3D-1Dルックアップテーブルでも適用することができる。
 また、GSDFカーブを満たす明度値、γ2.2カーブを満たす明度値、および、彩度値cに基づく混合比率Wを軸として、混合結果としての明度値が規定された3Dルックアップテーブルを規定する方法を採用してもよい。
 また、入力階調値におけるR、G、Bを軸として、彩度値cに基づきカラー階調特性とモノクロ階調特性とが混合比率Wで混合されて合成された階調特性となる明度値が規定された3Dルックアップテーブルを規定する方法を採用してもよい。
 また、ルックアップテーブルを用いる代わりに演算式を用いて、入力階調値を彩度値cに基づきカラー階調特性とモノクロ階調特性とが混合比率Wで混合されて合成された階調特性となる明度値を出力してもよい。
 また、上記実施形態では、画素毎にモノクロ用のルックアップテーブルL1の値(明度値)と、カラー用のルックテーブルL2の値(明度値)とを混合比率Wに基づいて混合したが、入力画素の入力階調値に混合比率Wに基づいた補正係数を演算することで(又はルックアップテーブルで同様の処理をすることで)、彩度値cに基づきカラー階調特性とモノクロ階調特性とが混合比率Wで混合されて合成された階調特性による明度値を決定するようにしてもよい。
 また、上記実施形態では、カラー画素の階調特性補正についてγ2.2カーブを満たす明度値となるような階調特性補正を行う例を示したが、γ2.2カーブに限定されず、例えばガンマ値は1.8~2.6の値を採用してもよく、また、Rec.709、PQ方式(Perceptual Quantization)、又は、HLG方式(Hybrid Log Gamma)等を満たす明度値になるような階調特性を採用してもよい。
 さらに、本発明は、コンピュータを彩度値取得部と補正部とを備える画像処理装置として機能させる画像処理プログラムであって、前記彩度値取得部により、対象画素の彩度値、または、当該対象画素とその周辺の周辺画素とを含む対象小領域の彩度値を取得する取得ステップと、前記補正部により、前記対象画素を補正して得られる補正後の階調特性が、取得された前記彩度値に基づいてカラー階調特性とモノクロ階調特性とを所定の混合比率で混合して合成された階調特性と一致するように、前記対象画素を補正する補正ステップと、を備え、前記彩度値をcとし、前記カラー階調特性の混合比率をWとすると、cを変数としたときのWの値は関係W=f(c)で表され、上述の条件を満たす、画像処理プログラムとして実現することもできる。
 さらに、本発明は、上述のプログラムを格納する、コンピュータ読み取り可能な非一時的な記録媒体として実現することもできる。
 本発明に係る種々の実施形態を説明したが、これらは、例として提示したものであり、発明の範囲を限定することは意図していない。当該新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。当該実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1:表示制御部、2:記憶部、3:操作部、4:表示部、5:バックライト、6:通信部、7:バス、11:判定部、12:彩度値取得部、13:混合部、20:補正部、21:混合部、22:モノクロ補正部、23:カラー補正部、100:画像処理装置、K:混合比率テーブル、L:ルックアップテーブル

Claims (9)

  1.  彩度値取得部と補正部とを備える画像処理装置であって、
     前記彩度値取得部は、対象画素の彩度値、または、当該対象画素とその周辺の周辺画素とを含む対象小領域の彩度値を取得し、
     前記補正部は、前記対象画素を補正して得られる補正後の階調特性が、前記彩度値に基づいてカラー階調特性とモノクロ階調特性とを所定の混合比率で混合して合成された階調特性と一致するように、前記対象画素を補正し、
     前記彩度値をcとし、前記カラー階調特性の混合比率をWとすると、cを変数としたときのWの値は関係W=f(c)で表され、以下の条件を満たす、画像処理装置。
     条件:前記彩度値cに対して前記混合比率Wが比例して増加する関係をW=g(c)とすると、前記彩度値が閾値以上の場合に、
    f(c)>αg(c)
    が満たされる彩度値cおよび乗数αが存在し、α≧1である。
  2.  請求項1において、
     前記補正部は、取得された前記彩度値に基づいて、カラー画素用のカラー階調特性とモノクロ画素用のモノクロ階調特性との混合比率を決定する混合部を含む、画像処理装置。
  3.  請求項1または請求項2において、
     前記関係f(c)は、
      前記閾値以下における関係W1=f1(c)と、
      前記閾値以上における関係W2=f2(c)とを含み、
     閾値以下の任意の彩度値をc1,閾値以上の任意の彩度値をc2とすると、
     f1(c1)≦f2(c2)が満たされる、画像処理装置。
  4.  請求項3において、
     前記閾値以下における関係f1(c)は比例関数である、画像処理装置。
  5.  請求項3または請求項4において、
     前記閾値を第1閾値としたときの第2閾値が存在し、
     前記第2閾値は、前記第1閾値以上であり、
     前記彩度値が第2閾値以上の場合に、前記関係f2(c)の傾きがゼロに向かって減少する、画像処理装置。
  6.  請求項1または請求項2において、
     前記関係f(c)はシグモイド関数の少なくとも一部である、画像処理装置。
  7.  請求項1~請求項6のいずれか1項において、
     前記補正部は、さらに、前記対象画素のカラー階調特性における明度値と、前記対象画素のモノクロ階調特性における明度値との差分が大きいほど、前記閾値がより大きく設定された関係を用いて、前記混合比率Wを決定して補正を行う、画像処理装置。
  8.  画像処理方法であって、
     対象画素の彩度値、または、当該対象画素とその周辺の周辺画素とを含む対象小領域の彩度値を取得する取得ステップと、
     前記対象画素を補正して得られる補正後の階調特性が、前記彩度値に基づいてカラー階調特性とモノクロ階調特性とを所定の混合比率で混合して合成された階調特性と一致するように、前記対象画素を補正する補正ステップとを含み、
     前記彩度値をcとし、前記カラー階調特性の混合比率をWとすると、cを変数としたときのWの値は関係W=f(c)で表され、以下の条件を満たす、画像処理方法。
     条件:前記彩度値が最小値から最大値まで増加するのに伴い、前記混合比率が最小値から最大値まで比例して増加する関係をW=g(c)とすると、前記彩度値が閾値以上の場合に、
    f(c)>αg(c)
    が満たされる彩度値cおよび乗数αが存在し、α≧1である。
  9.  コンピュータを、彩度値取得部と補正部とを備える画像処理装置として機能させる画像処理プログラムであって、
     前記彩度値取得部により、対象画素の彩度値、または、当該対象画素とその周辺の周辺画素とを含む対象小領域の彩度値を取得する取得ステップと、
     前記補正部により、前記対象画素を補正して得られる補正後の階調特性が、前記彩度値に基づいてカラー階調特性とモノクロ階調特性とを所定の混合比率で混合して合成された階調特性と一致するように、前記対象画素を補正するステップとを前記コンピュータに実行させ、
     前記彩度値をcとし、前記カラー階調特性の混合比率をWとすると、cを変数としたときのWの値は関係W=f(c)で表され、以下の条件を満たす、画像処理プログラム。
     条件:前記彩度値が最小値から最大値まで増加するのに伴い、前記混合比率が最小値から最大値まで比例して増加する関係をW=g(c)とすると、前記彩度値が閾値以上の場合に、
    f(c)>αg(c)
    が満たされる彩度値cおよび乗数αが存在し、α≧1である。
PCT/JP2018/021553 2018-06-05 2018-06-05 画像処理装置及び画像処理プログラム WO2019234825A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880094312.XA CN112236811B (zh) 2018-06-05 2018-06-05 图像处理装置及记录介质
US16/972,208 US11276367B2 (en) 2018-06-05 2018-06-05 Image processing device and an image processing program
KR1020207037329A KR102453070B1 (ko) 2018-06-05 2018-06-05 화상 처리 장치 및 화상 처리 프로그램
EP18921679.9A EP3806083A4 (en) 2018-06-05 2018-06-05 IMAGE PROCESSING DEVICE AND IMAGE PROCESSING PROGRAM
PCT/JP2018/021553 WO2019234825A1 (ja) 2018-06-05 2018-06-05 画像処理装置及び画像処理プログラム
JP2020523884A JP6992176B2 (ja) 2018-06-05 2018-06-05 画像処理装置、画像処理方法及び画像処理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021553 WO2019234825A1 (ja) 2018-06-05 2018-06-05 画像処理装置及び画像処理プログラム

Publications (1)

Publication Number Publication Date
WO2019234825A1 true WO2019234825A1 (ja) 2019-12-12

Family

ID=68770900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021553 WO2019234825A1 (ja) 2018-06-05 2018-06-05 画像処理装置及び画像処理プログラム

Country Status (6)

Country Link
US (1) US11276367B2 (ja)
EP (1) EP3806083A4 (ja)
JP (1) JP6992176B2 (ja)
KR (1) KR102453070B1 (ja)
CN (1) CN112236811B (ja)
WO (1) WO2019234825A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039324A (ja) * 2003-07-15 2005-02-10 Konica Minolta Business Technologies Inc 画像処理装置及びプログラム
JP2011232382A (ja) * 2010-04-23 2011-11-17 Nanao Corp 画像表示装置、画像領域検出方法及びコンピュータプログラム
JP2013089074A (ja) * 2011-10-19 2013-05-13 Nanao Corp 表示装置及び表示方法
WO2014057586A1 (ja) * 2012-10-12 2014-04-17 Necディスプレイソリューションズ株式会社 表示装置及び表示方法
JP2016180787A (ja) 2015-03-23 2016-10-13 株式会社Jvcケンウッド 画像補正装置、画像補正方法及び画像補正プログラム
JP2018084760A (ja) * 2016-11-25 2018-05-31 パナソニック液晶ディスプレイ株式会社 液晶表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330094A (ja) * 2005-05-23 2006-12-07 Matsushita Electric Ind Co Ltd カラー画像表示装置、カラー画像表示方法、プログラムおよび記録媒体
US8164594B2 (en) * 2006-05-23 2012-04-24 Panasonic Corporation Image processing device, image processing method, program, storage medium and integrated circuit
JP2008006191A (ja) * 2006-06-30 2008-01-17 Fujifilm Corp 画像処理装置
WO2008087886A1 (ja) * 2007-01-16 2008-07-24 Konica Minolta Medical & Graphic, Inc. 画像表示方法、画像表示システム、画像表示装置及びプログラム
WO2008105268A1 (ja) * 2007-02-28 2008-09-04 Nikon Corporation 画像処理方法
JP5183568B2 (ja) * 2009-05-21 2013-04-17 キヤノン株式会社 画像処理装置及び方法、及びプログラムを記録した記憶媒体
US9214112B2 (en) * 2009-09-29 2015-12-15 Panasonic Intellectual Property Management Co., Ltd. Display device and display method
JP5470415B2 (ja) * 2012-03-30 2014-04-16 Eizo株式会社 イプシロンフィルタの閾値決定方法およびローパスフィルタの係数決定方法
JP5184707B1 (ja) * 2012-03-30 2013-04-17 株式会社ナナオ 液晶表示装置
JP5837009B2 (ja) * 2012-09-26 2015-12-24 キヤノン株式会社 表示装置及びその制御方法
US20150262552A1 (en) * 2012-10-18 2015-09-17 Nec Display Solutions, Ltd. Display device and image display method
JP2016090723A (ja) * 2014-10-31 2016-05-23 シャープ株式会社 液晶表示装置及び画素データ処理方法
KR102385628B1 (ko) * 2015-10-28 2022-04-11 엘지디스플레이 주식회사 표시장치 및 그의 구동방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039324A (ja) * 2003-07-15 2005-02-10 Konica Minolta Business Technologies Inc 画像処理装置及びプログラム
JP2011232382A (ja) * 2010-04-23 2011-11-17 Nanao Corp 画像表示装置、画像領域検出方法及びコンピュータプログラム
JP2013089074A (ja) * 2011-10-19 2013-05-13 Nanao Corp 表示装置及び表示方法
WO2014057586A1 (ja) * 2012-10-12 2014-04-17 Necディスプレイソリューションズ株式会社 表示装置及び表示方法
JP2016180787A (ja) 2015-03-23 2016-10-13 株式会社Jvcケンウッド 画像補正装置、画像補正方法及び画像補正プログラム
JP2018084760A (ja) * 2016-11-25 2018-05-31 パナソニック液晶ディスプレイ株式会社 液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806083A4

Also Published As

Publication number Publication date
CN112236811B (zh) 2023-05-09
KR20210015904A (ko) 2021-02-10
KR102453070B1 (ko) 2022-10-07
JPWO2019234825A1 (ja) 2021-04-08
EP3806083A1 (en) 2021-04-14
US20210233490A1 (en) 2021-07-29
US11276367B2 (en) 2022-03-15
CN112236811A (zh) 2021-01-15
EP3806083A4 (en) 2021-05-26
JP6992176B2 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5296889B2 (ja) 画像処理装置および画像処理方法
US7769231B2 (en) Method and apparatus for improving quality of images using complementary hues
US8411936B2 (en) Apparatus and method for color reproduction
JP6122716B2 (ja) 画像処理装置
US9432551B2 (en) Image processing apparatus configured to execute correction on scan image data
CN113016026A (zh) 图像处理系统、图像处理装置以及计算机程序
JP2010199659A (ja) 画像処理装置、及び画像処理方法
JP2014140160A (ja) 画像処理装置および画像処理方法
JP2010183232A (ja) 色域変換装置
JP5878586B2 (ja) 画像色調整方法及びその電子装置
US10834293B2 (en) Image processing device, storage medium, display apparatus and image processing method
WO2015029633A1 (ja) 液晶表示装置および液晶表示装置における画像表示方法
JP4047859B2 (ja) 平板表示装置の色補正装置及びその方法
WO2019234825A1 (ja) 画像処理装置及び画像処理プログラム
US9905195B2 (en) Image processing method
JP2020145553A (ja) 画像処理装置、画像処理方法、及びプログラム
JP4305917B2 (ja) 映像信号処理装置及びテレビジョン装置
JP6749504B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP6701687B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
EP3301902A1 (en) Lightness independent non-linear relative chroma mapping
JP2017220889A (ja) 画像処理装置その制御方法、及び表示装置
JP5203344B2 (ja) 制御装置およびその制御方法、制御装置に用いられる表示制御装置、電子機器、制御プログラム、並びに該プログラムを記録した記録媒体
JP2023044689A (ja) 画像処理装置
CN115862534A (zh) 颜色校正方法、装置、电子设备及存储介质
JP2005099892A (ja) 画像処理装置およびその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020523884

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207037329

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018921679

Country of ref document: EP

Effective date: 20210111