WO2019233009A1 - 一种加氢裂化催化剂的制备方法 - Google Patents

一种加氢裂化催化剂的制备方法 Download PDF

Info

Publication number
WO2019233009A1
WO2019233009A1 PCT/CN2018/109793 CN2018109793W WO2019233009A1 WO 2019233009 A1 WO2019233009 A1 WO 2019233009A1 CN 2018109793 W CN2018109793 W CN 2018109793W WO 2019233009 A1 WO2019233009 A1 WO 2019233009A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrocracking catalyst
preparing
inorganic support
inorganic
Prior art date
Application number
PCT/CN2018/109793
Other languages
English (en)
French (fr)
Inventor
刘长坤
范文青
吴锦添
张黎
Original Assignee
中国中化股份有限公司
中化泉州石化有限公司
中化泉州能源科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国中化股份有限公司, 中化泉州石化有限公司, 中化泉州能源科技有限责任公司 filed Critical 中国中化股份有限公司
Priority to EP18921901.7A priority Critical patent/EP3785796B1/en
Priority to US17/059,475 priority patent/US11358135B2/en
Publication of WO2019233009A1 publication Critical patent/WO2019233009A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite

Definitions

  • the present invention specifically relates to a method for preparing a hydrocracking catalyst.
  • a hydrocracking process is a refining process that converts high boiling point raw materials into low boiling point naphtha and diesel fractions. Compared with catalytic cracking, its feedstock has high adaptability, high yield and good quality of diesel fraction, but the octane number of naphtha is relatively low. With the increasing demand of society for clean transportation fuel oil, hydrocracking process has become one of the core processes of modern refineries.
  • the hydrocracking catalyst is the core of the entire hydrocracking process, which usually includes a dual-functional center: one is an acid center, provided by a support, which basically determines the activity of the catalyst, and the acidic components during the development of the hydrocracking catalyst Materials such as sulfonated (chlorine or fluorine) alumina, amorphous silicon aluminum, and molecular sieves have been used. Since the 1970s, with the development of molecular sieve preparation technology, silicon aluminum molecular sieves have a clear structure and adjustable acidity. Has gradually become the mainstream component of acidic centers in hydrocracking catalysts.
  • the second is a metal center, which plays a hydrogenation / dehydrogenation role in the reaction process, provides the raw materials for the acid center, and saturates the acid center product in time to prevent deep cracking.
  • Metal centers are generally composed of Group VIB metals or Group VIB and Group VIIIB binary metal systems, providing true hydrogenation / dehydrogenation activity in the form of sulfides.
  • the acidic center is tightly coupled with the hydrogenation / dehydrogenation center, and the coordination of the two is the key to the successful operation of the hydrocracking catalyst.
  • inorganic oxides such as alumina
  • inorganic oxides such as alumina
  • the types of hydroxyl groups can be divided into five types with different coordination environments of aluminum atoms (Reference: Catal Rev. Sci. Eng. 17 (1 ), 31-70, 1978)
  • the formation of Al-O-M chemical bonds through condensation of these hydroxyl groups is the key reason for the strong interaction between the VIB metals and the alumina support.
  • the invention modifies the surface of the inorganic oxide support, and replaces all or part of the strong hydroxyl groups on the surface with other functional groups, so that it forms a weak interaction with the VI B metal, and even directly participates in the sulfurization of the VI B metal oxide.
  • the interaction between the transition metal and the surface of the inorganic support is essentially changed, which is conducive to the full presulfidation of the transition metal oxide, so as to exert the best hydrogenation / dehydrogenation performance in the hydrocracking reaction.
  • An object of the present invention is to provide a method for preparing a hydrocracking catalyst, and the obtained hydrocracking catalyst has a higher yield of diesel liquid.
  • a method for preparing a hydrocracking catalyst includes the following steps:
  • a group VIB metal element and a group VIIIB metal element are supported on the surface-modified inorganic support obtained in step 2) by an impregnation method, and then fully dried at 60-120 ° C. to obtain the hydrocracking catalyst.
  • the weight ratio of pseudo-boehmite, amorphous silica-alumina and molecular sieve used in step 1) is (20-80): (20-60): (1- 20).
  • the amount of acid solution used is 0.5-10% of the total weight of pseudo-boehmite, amorphous silica-alumina and molecular sieve, and the concentration is not more than 10% by weight ;
  • the acids used include inorganic acids such as nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, etc. Acid or formic acid, B Organic acids such as acids, oxalic acid and citric acid.
  • Step 2) The modification reagent contains two or more functional groups capable of reacting with each other, and one of the functional groups needs to be capable of reacting with the surface of the inorganic support, which may be a hydroxyl group, a carboxyl group, an amino group, an acid anhydride, and a southern compound.
  • Substituents such as -Cl, -Br, -I, etc.
  • siloxy groups phosphate groups, metaphosphate groups, or phosphite groups, etc.
  • another functional group must be capable of oxidizing with group VIB metal elements or group VIIB metal elements Reaction with a substance or a salt, which may be a hydroxyl group, a carboxyl group, an amino group, a mercapto group, an amido group, or a sulfamyl substituent.
  • step 3 the loading amount of the group VIB metal element on the inorganic support is 5-30%, and the loading amount of the group VIIIB metal element on the inorganic support is 1-15%.
  • the significant advantages of the present invention are:
  • the present invention modifies groups such as amino, hydroxyl, mercapto, and carboxylic acid groups on the surface of the inorganic support through chemical bonds, so that the obtained catalyst has a higher yield of diesel liquid.
  • the molecular sieve used is a super stable Y molecular sieve raw material, whose Si / Al (molar ratio) is 30, the unit cell size is 24.31, and the framework A1 / non-framework A1 ( 27 A1 NMR method) is 3.6.
  • the specific surface area (BET method) of the pseudo-boehmite used was 234 m 2 / g, the average pore size (BJH method) 6.7 nm, the single-point adsorption pore volume was 0.65 cc / g, and the Na 2 0 content (weight percentage ) ⁇ 0.1%.
  • the amorphous silicon aluminum used has a silicon content of 40% and a single-point adsorption pore volume (BET) of 1.56 cc / g.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the strip was extruded through a 2.5 mm orifice plate, dried at 120 ° C for 8 hours, and then baked in 500 ° C air atmosphere for 4 hours to obtain an inorganic carrier Z0.
  • Embodiment 2 [0024] Weigh 7.2 g of 3-phosphonopropionic acid, add it to 70 mL of 95% ethanol solution, and stir at room temperature for 20 min to fully dissolve it. Then, 40 g of the carrier Z0 prepared in Example 1 was added to the above solution, left to react at room temperature for 12 hours, and then heated to 70 ° C, followed by 3 hours of reaction. After the reaction, the excess ethanol solution was decanted, and the obtained solid particles were washed 3 times with 40 mL of absolute ethanol at room temperature, and then pre-dried at 70 ° C in an air atmosphere for 1 h, and then dried in a vacuum drying box at 70 ° C to obtain a surface Modified vector Z1.
  • the excess ethanol solution was decanted, and the obtained solid particles were washed 3 times with 40 mL of absolute ethanol at room temperature, and then pre-dried at room temperature for 4 h in an air atmosphere, and then dried in a vacuum drying box at 70 ° C to obtain surface modification.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the hydrocracking cycle oil is used as a wax oil raw material, the density is 0.923 g / ml, the nitrogen content in the raw material is 2.1 ppmw, the sulfur content is 23 ppmw, and the slip distribution is as shown in Table 2.
  • the hydrocracking unit adopts a one-pass hydrogenation process, and the unit mainly consists of gas feed, liquid feed, and hydrogenation. It consists of reaction, gas-liquid separation and product collection. It is equipped with a single reactor filled with hydrocracking catalyst and heated by a 5-stage electric furnace. The reaction effluent enters a high-pressure separator and a low-pressure separation tank for gas-liquid separation. The high-separation hydrogen-rich gas is separated through a separation tank, and jacketed water cooling is adopted to reduce the temperature and corresponding technical measures to allow the ammonium salt to crystallize and settle to prevent blockage of downstream pipelines and equipment.
  • the low-pressure exhaust gas after the pressure control valve is measured by a gas flow meter and consists of online chromatography analysis. Liquid product off-line analysis distillation range.
  • Hydrocracking reaction conditions are: hydrogen pressure 15 MPa, hydrogen flow rate 832 mL_min- ⁇ feedstock feed rate is 70mL.h- 1 ; the hydrocracking catalyst is filled with 14 cm- 3 and diluted to the original volume with quartz sand 4 times.
  • the test results of the prepared catalyst are shown in Table 3.
  • Catalysts C3 and C4 prepared by introducing thiol and amino groups onto the surface of the inorganic support Z0 through organosiloxane
  • the catalyst activity was slightly increased, but the product selectivity changed significantly.
  • the selectivity of catalyst C3 gaseous products and naphtha products decreased by 2 percentage points, and the corresponding diesel selection increased by 2 percentage points.
  • a similar phenomenon was observed in the hydrocracking reaction, but the diesel yield increased even more significantly, reaching 3.4 percentage points.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种加氢裂化催化剂的制备方法,其是在传统制备的无机载体表面通过化学键修饰新的官能团,然后再将VIB族金属元素和VIIIB族金属元素负载其上,制得加氢裂化催化剂。所得加氢裂化催化剂具有较高的柴油液收率。

Description

一种加氢裂化催化剂的制备方法
技术领域
[0001] 本发明具体涉及一种加氢裂化催化剂的制备方法。
背景技术
[0002] 加氢裂化工艺是一种将高沸点原料转变成低沸点的石脑油和柴油馏分的炼油工 艺。 与催化裂化相比, 其原料适应性高, 柴油馏分的产率高、 品质好, 但是石 脑油的辛烷值相对较低。 随着社会对清洁交通燃料油的需求不断增加, 加氢裂 化工艺已成为现代炼厂的核心工艺之一。
[0003] 加氢裂化催化剂是整个加氢裂化工艺的核心, 其通常包括双功能中心: 一为酸 性中心, 由载体提供, 其基本决定催化剂的活性, 在加氢裂化催化剂发展过程 中酸性组分曾采用如南素化 (氯或氟) 的氧化铝、 无定型硅铝以及分子筛等材 料, 从上世纪 70年代以来, 随着分子筛制备技术的发展, 硅铝分子筛由于其结 构明确、 酸性可调, 逐渐成为加氢裂化催化剂中酸性中心的主流组分。 第二个 是金属中心, 其在反应过程中起到加氢 /脱氢作用, 为酸性中心提供反应原料, 并及时饱和酸性中心产物, 防止深度裂化。 金属中心一般由 VIB族金属或 VIB族 与 VIIIB族二元金属体系组成, 以硫化物形态提供真正的加氢 /脱氢活性。 酸性中 心与加氢 /脱氢中心紧密结合, 且二者协调作用是加氢裂化催化剂成功运行的关 键。
[0004] 为了满足社会对清洁交通燃料油不断增加的需求, 在加氢裂化工艺中需要充分 利用高沸点的原料以生产更多的石脑油和柴油产品, 并减少生产低值气态产品(: C1-C4)。 同时为了降低生产操作费用, 工业生产希望使用更高活性的催化剂, 以降低反应温度。 具体到催化剂设计时则希望同步提高催化剂的酸性中心性能 和金属中心性能: 酸性中心的性能可以通过增加酸性材料 (如分子筛) 的酸强 度或其使用量得到提高; 而金属中心性能则由于受到载体所能提供的有效比表 面积以及金属本身特性的限制, 不能简单的通过增加使用量得到提高。 因此, 如何提高金属中心性能一直是该领域研究的热点。 发明概述
技术问题
[0005] 无机氧化物 (如氧化铝) 的表面具有大量的羟基, 羟基的种类随着铝原子配位 环境的不同可分为五种类型 (参考文献: Catal Rev. Sci. Eng. 17(1), 31-70, 1978)
。 这些羟基通过缩合作用形成 Al-O-M化学键是 VIB族金属与氧化铝载体之间形 成较强作用的关键原因。 本发明对无机氧化物载体进行表面修饰, 将其表面的 强羟基全部或部分替换为其他官能团, 使其与 VI B金属之间形成弱的相互作用 , 甚至直接参与到 VI B金属氧化物的硫化过程中, 从而在本质上改变过渡金属 与无机载体表面之间相互作用, 有利于过渡金属氧化物充分预硫化, 从而在加 氢裂化反应中发挥最佳的加 /脱氢性能。
问题的解决方案
技术解决方案
[0006] 本发明的目的在于提供一种加氢裂化催化剂的制备方法, 其所得加氢裂化催化 剂具有较高的柴油液收率。
[0007] 为实现上述目的, 本发明采用如下技术方案:
[0008] 一种加氢裂化催化剂的制备方法, 其包括如下步骤:
[0009] 1) 将拟薄水铝石、 无定型硅铝和分子筛按一定比例充分混合后, 加入一定量 的酸溶液, 捏合 2-60min, 然后挤条成型; 所得成型体在 110-200°C干燥 2-12h后 , 在 400-900°C焙烧 2-8h, 制备得到无机载体;
[0010] 2) 在步骤 1) 所得无机载体中加入其重量 0.5-20%的改性试剂, 10-120°C进行反 应, 从而在无机载体表面通过化学键连接新的官能团, 得到表面修饰的无机载 体;
[0011] 3) 采用浸渍法将 VIB族金属元素和 VIIIB族金属元素负载在步骤 2) 所得表面修 饰的无机载体上, 然后经 60-120°C充分干燥, 得到所述加氢裂化催化剂。
[0012] 步骤 1) 中所用拟薄水铝石、 无定型硅铝和分子筛的重量比为 (20-80):(20-60):(1- 20)。
[0013] 所用酸溶液的加入量为拟薄水铝石、 无定型硅铝和分子筛总重的 0.5- 10%, 其 浓度为不超过 10wt% ; 所用酸包括硝酸、 磷酸、 盐酸、 硫酸等无机酸或甲酸、 乙 酸、 乙二酸、 柠檬酸等有机酸。
[0014] 步骤 2) 所述改性试剂中含有两种或两种以上能相互反应的官能团, 其中一种 官能团需能够与无机载体表面反应, 其可为羟基、 羧基、 氨基、 酸酐、 南素取 代基 (如 -Cl, -Br, -I等) 、 硅氧基、 磷酸基、 偏磷酸基或亚磷酸基等, 另一种 官能团需能与含有 VIB族金属元素或 VIIB族金属元素的氧化物或盐反应, 其可为 羟基、 羧基、 氨基、 巯基、 酰胺基或南素取代基等。
[0015] 步骤 3) 中 VIB族金属元素在无机载体上的负载量为 5-30%, VIIIB族金属元素 在无机载体上的负载量为 1-15%。
发明的有益效果
有益效果
[0016] 本发明的显著优势在于: 本发明通过化学键在无机载体表面修饰氨基、 羟基、 巯基、 羧酸基等基团, 使所得催化剂具有较高的柴油液收率。
发明实施例
本发明的实施方式
[0017] 为了使本发明所述的内容更加便于理解, 下面结合具体实施方式对本发明所述 的技术方案做进一步的说明, 但是本发明不仅限于此。
[0018] 所用分子筛为超稳 Y分子筛原料, 其 Si/Al (摩尔比) 为 30, 晶胞尺寸为 24.31, 骨架 A1/非骨架 A1 (27A1 NMR法) 为 3.6。
[0019] 所用拟薄水铝石的比表面积 (BET法) 为 234 m 2/g, 平均孔径 (BJH法) 6.7 nm, 单点吸附孔容为 0.65 cc/g, Na 20含量 (重量百分比) <0.1%。
[0020] 所用无定型硅铝中硅含量为 40%, 单点吸附孔体积 (BET) 为 1.56 cc/g。
[0021] 实施例 1 :
[0022] 称取拟薄水铝石 220 g (干基, 以下所有原材料如非特别指出, 所有重量皆为干 基重量) 、 无定型硅铝 160 g、 分子筛 20 g, 将这三种固体粉末充分混合后, 向 其中加入预先配制的稀硝酸溶液 (6.6g、 67wt%浓硝酸用 400g去离子水稀释) ,
15分钟强力捏合后, 通过 2.5mm的孔板挤条, 经 120°C干燥 8h后再在 500°C空气气 氛中焙烧 4h, 得到无机载体 Z0。
[0023] 实施例 2: [0024] 称取 7.2g 3 -膦酰基丙酸, 加入到 70mL 95%的乙醇溶液中, 室温搅拌 20min使之 充分溶解。 然后向上述溶液中加入 40g实施例 1制备的载体 Z0, 室温放置反应 12h 后加热到 70°C, 再反应 3h。 反应结束后倾倒出多余的乙醇溶液, 用 40mL无水乙 醇室温洗涤所得固体颗粒 3次, 然后在空气气氛下 70 °C预干燥 lh, 再放入真空干 燥箱 70 °C充分干燥, 得到经表面修饰的载体 Z1。
[0025] 实施例 3:
[0026] 称取 6.4g 3 -氨基丙烷 -1-磷酸加入到 70mL 95%的乙醇溶液中, 室温搅拌 20min使 之充分溶解。 然后向上述溶液中加入 40g实施例 1制备的载体 Z0, 反应容器用氮 气吹扫后并保持氮气氛微正压, 室温放置反应 12h后加热到 60°C, 再反应 3h。 反 应结束后倾倒出多余的乙醇溶液, 用 40mL无水乙醇室温洗涤所得固体颗粒 3次, 然后在空气气氛下室温预干燥 4h, 再放入真空干燥箱在 70 °C充分干燥, 得到经 表面修饰的载体 Z2。
[0027] 实施例 4:
[0028] 称取 5.5g 3 -巯丙基三乙氧基硅烷加入到 80mL
95%的乙醇溶液中, 室温搅拌 20min使之充分溶解。 然后向上述溶液中加入 40g实 施例 1制备的载体 Z0, 室温放置反应 8h后加热到 80°C, 再反应 4h。 反应结束后倾 倒出多余的乙醇溶液, 用 40mL无水乙醇室温洗涤所得固体颗粒 3次, 然后在空气 气氛下 70 °C预干燥 lh, 再放入真空干燥箱 70°C充分干燥, 得到经表面修饰的载 体 Z3。
[0029] 实施例 5:
[0030] 称取 5.2g 3 -氨基丙基三乙氧基硅烷加入到 80mL
95%的乙醇溶液中, 室温搅拌 20min使之充分溶解。 然后向上述溶液中加入 40g实 施例 1制备的载体 Z0, 反应容器用氮气吹扫后并保持氮气氛微正压, 室温放置反 应 8h后加热到 60°C, 再反应 4h。 反应结束后倾倒出多余的乙醇溶液, 用 40mL无 水乙醇室温洗涤所得固体颗粒 3次, 然后在空气气氛下室温预干燥 4h, 再放入真 空干燥箱在 70 °C充分干燥, 得到经表面修饰的载体 Z4。
[0031] 实施例 1-5所得载体的性能数据见表 1。
[0032] 表 1实施例 1-5所得载体性能
Figure imgf000006_0002
实施例 6: 加氢裂化催化剂的制备
[0034] 将实施例 1-5制备的载体经充分干燥后取样测试其吸水率。 然后分别取该载体 与偏钨酸铵和硝酸镍的混合水溶液进行等体积浸渍, 使其负载上 18%的 W和 5.4% 的 Ni (理论重量) , 然后经干燥后, 在 500°C空气气氛中焙烧 4h, 所得催化剂分 别标记为 CO、 Cl、 C2、 C3和 C4。
[0035] 实施咧 7: 蜡油加氢裂化反应
[0036] 采用为加氢裂化循环油为蜡油原料, 其密度为 0.923 g/ml, 原料中氮含量为 2.1 ppmw , 硫含量为 23 ppmw, 其溜程分布为如表 2。
[0037] 表 2馏程分布情况
[]
Figure imgf000006_0001
[0038] 加氢裂化装置采用一次通过加氢工艺, 装置主要由气体进料、 液体进料、 加氢 反应、 气液分离和产品收集等几部分组成。 配置有单台反应器填装加氢裂化催 化剂, 采用 5段电炉加热。 反应流出物进入高压分离器和低压分离罐进行气液分 离。 高分富氢气体经分液罐分液, 并采用夹套水冷却降温和相应的技术措施, 让铵盐结晶、 沉降, 防止堵塞下游的管线和设备。 压控阀之后的低压尾气用气 体流量表计量, 并由在线色谱分析组成。 液体产品离线分析馏程。
[0039] 加氢裂化反应条件为: 氢气压力 15 MPa, 氢气流速 832 mL_min - ^ 原料进料速 率为 70mL.h - 1 ; 加氢裂化催化剂填装 14 cm - 3并用石英砂稀释至原来体积的 4倍。 所制备催化剂的测试结果见表 3。
[0040] 表 3催化剂测试结果
[]
Figure imgf000007_0001
[0041] 结果表明, 与无机载体 Z0制得的催化剂 C0相比, 将无机载体 Z0表面官能团置 换成羧酸和氨基后得到的催化剂 C1和 C2反应活性提高 2-3°C, 但是产品选择性没 有显著变化。 这是由于虽然官能团置换后金属中心的性能得到提高, 但是催化 剂载体中引入了 P元素, P元素增强了载体的酸性使得催化剂裂化性能也得到提 高。 因此催化剂整体表现为催化剂活性提高, 同时保持了各类产品的选择性。
[0042] 而通过有机硅氧烷将巯基和氨基引入到无机载体 Z0表面制得的催化剂 C3和 C4 的催化剂活性略有提高, 但是产品选择性发生了显著变化, 其中催化剂 C3气态 产品和石脑油产品的选择性共降低 2个百分点, 相应的柴油选择提高了 2个百分 点; 在使用催化剂 C4的加氢裂化反应中也观察到类似现象, 但是柴油收率提高 得更加显著, 达到 3.4个百分点。 原因是催化剂 C3和 C4的载体中通过有机硅氧烷 引入不同官能团, 显著提高了金属性能, 但是 Si元素的引入对于载体酸性的增强 不如 P元素明显, 因而催化剂整体表现为催化剂活性略有提高, 但是柴油选择性 显著增加。
[0043] 以上实验证明通过载体表面的修饰引入新的官能团, 弱化过渡金属与载体表面 之间的强相互作用, 确实有助于过渡金属的硫化从而提高金属中心的加 /脱氢的 性能。
[0044] 以上所述仅为本发明的较佳实施例, 凡依本发明申请专利范围所做的均等变化 与修饰, 皆应属本发明的涵盖范围。

Claims

权利要求书
[权利要求 1] 一种加氢裂化催化剂的制备方法, 其特征在于: 包括如下步骤:
1) 将拟薄水铝石、 无定型硅铝和分子筛按一定比例充分混合后, 加 入一定量的酸溶液, 捏合 2-60min, 然后挤条成型; 所得成型体经干 燥、 焙烧后制备得到无机载体;
2) 在步骤 1) 所得无机载体中加入其重量 0.5-20%的改性试剂, 10-12 0°C进行反应, 从而在无机载体表面通过连接新的官能团, 得到表面 修饰的无机载体;
3) 采用浸渍法将 VIB族金属元素和 VIIIB族金属元素负载在步骤 2) 所得表面修饰的无机载体上, 然后经 60-120°C充分干燥, 得到所述加 氢裂化催化剂。
[权利要求 2] 根据权利要求 1所述加氢裂化催化剂的制备方法, 其特征在于: 步骤 1
) 中所用拟薄水铝石、 无定型硅铝和分子筛的重量比为 (20-80):(20-60 ):(1-20)。
[权利要求 3] 根据权利要求 1所述加氢裂化催化剂的制备方法, 其特征在于: 步骤 1
) 中所用酸溶液的加入量为拟薄水铝石、 无定型硅铝和分子筛总重的 0.5-10% , 其浓度为不超过 10wt%;
所用酸为无机酸或有机酸。
[权利要求 4] 根据权利要求 1所述加氢裂化催化剂的制备方法, 其特征在于: 步骤 2
) 所述改性试剂中含有两种或两种以上官能团, 其中一种官能团需能 与无机载体表面反应, 另一种官能团需能与含有 VIB族金属元素或 VI IB族金属元素的氧化物或盐反应。
[权利要求 5] 根据权利要求 4所述加氢裂化催化剂的制备方法, 其特征在于: 所述 能与无机载体表面反应的官能团包括羟基、 羧基、 酸酐、 氨基、 卤素 取代基、 硅氧基、 磷酸基、 偏磷酸基、 亚磷酸基中的任意一种。
[权利要求 6] 根据权利要求 4所述加氢裂化催化剂的制备方法, 其特征在于: 所述 能与 VIB族金属或 VIIB族金属的氧化物或盐反应的官能团包括羟基、 羧基、 氨基、 巯基、 酰胺基、 南素取代基中的任意一种。 [权利要求 7] 根据权利要求 1所述加氢裂化催化剂的制备方法, 其特征在于: 步骤 3 ) 中 VIB族金属元素在无机载体上的负载量为 5-30%, VIIIB族金属元 素在无机载体上的负载量为 1-15%。
PCT/CN2018/109793 2018-06-04 2018-10-11 一种加氢裂化催化剂的制备方法 WO2019233009A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18921901.7A EP3785796B1 (en) 2018-06-04 2018-10-11 Method for preparing hydrocracking catalyst
US17/059,475 US11358135B2 (en) 2018-06-04 2018-10-11 Method for preparing hydrocracking catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810565360.4A CN108722473B (zh) 2018-06-04 2018-06-04 一种加氢裂化催化剂的制备方法
CN201810565360.4 2018-06-04

Publications (1)

Publication Number Publication Date
WO2019233009A1 true WO2019233009A1 (zh) 2019-12-12

Family

ID=63932064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109793 WO2019233009A1 (zh) 2018-06-04 2018-10-11 一种加氢裂化催化剂的制备方法

Country Status (4)

Country Link
US (1) US11358135B2 (zh)
EP (1) EP3785796B1 (zh)
CN (1) CN108722473B (zh)
WO (1) WO2019233009A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632620B (zh) * 2020-06-16 2023-08-25 中化泉州石化有限公司 一种中油型加氢裂化催化剂
CN111760585A (zh) * 2020-07-09 2020-10-13 中化泉州石化有限公司 一种硫化型加氢裂化催化剂的制备方法
CN111889133A (zh) * 2020-08-06 2020-11-06 中化泉州石化有限公司 一种硫化型加氢裂化催化剂的制备方法
CN114797945A (zh) * 2022-04-11 2022-07-29 中国石油大学胜利学院 一种键合相类芬顿催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130169A (ja) * 2002-10-08 2004-04-30 Catalysts & Chem Ind Co Ltd 炭化水素接触分解用触媒組成物の製造方法
CN103301888A (zh) * 2013-06-21 2013-09-18 中国海洋石油总公司 一种蜡油加氢预处理催化剂载体的制备方法
CN103447074A (zh) * 2013-09-18 2013-12-18 中国海洋石油总公司 一种控制酸性位分布的加氢裂化催化剂的制备方法
CN106391105A (zh) * 2015-07-28 2017-02-15 中国石油化工股份有限公司 一种含复合分子筛的多级孔加氢裂化催化剂及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360449A (en) * 1979-09-04 1982-11-23 Conoco Inc. Alumina dispersion behavior
US4495061A (en) * 1980-06-16 1985-01-22 Chevron Research Company Hydrocarbon conversion catalyst and process using said catalyst
US7115198B2 (en) * 2003-10-22 2006-10-03 Chevron U.S.A. Inc. Hydrocarbon conversion using molecular sieve SSZ-51
CN102872890A (zh) * 2011-07-11 2013-01-16 中国石油化工股份有限公司 一种加氢处理催化剂的制备方法
CN103184069B (zh) * 2011-12-28 2015-01-21 中国石油天然气股份有限公司 一种劣质焦化蜡油加氢处理的方法
CN105727990B (zh) * 2014-12-12 2019-02-15 中国石油天然气股份有限公司 一种钯-铜系负载型加氢催化剂的制备方法
CN106268917B (zh) * 2015-05-18 2019-01-08 中国石油化工股份有限公司 一种加氢裂化催化剂及其应用
CN106582778A (zh) * 2015-10-15 2017-04-26 中国石油化工股份有限公司 轻循环油加氢裂化催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130169A (ja) * 2002-10-08 2004-04-30 Catalysts & Chem Ind Co Ltd 炭化水素接触分解用触媒組成物の製造方法
CN103301888A (zh) * 2013-06-21 2013-09-18 中国海洋石油总公司 一种蜡油加氢预处理催化剂载体的制备方法
CN103447074A (zh) * 2013-09-18 2013-12-18 中国海洋石油总公司 一种控制酸性位分布的加氢裂化催化剂的制备方法
CN106391105A (zh) * 2015-07-28 2017-02-15 中国石油化工股份有限公司 一种含复合分子筛的多级孔加氢裂化催化剂及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REFERENCE: CATAL REV. SCI. ENG., vol. 17, no. 1, 1978, pages 31 - 70
See also references of EP3785796A4

Also Published As

Publication number Publication date
US20210205801A1 (en) 2021-07-08
CN108722473B (zh) 2020-10-02
EP3785796A1 (en) 2021-03-03
EP3785796A4 (en) 2021-08-04
CN108722473A (zh) 2018-11-02
US11358135B2 (en) 2022-06-14
EP3785796B1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2019233009A1 (zh) 一种加氢裂化催化剂的制备方法
JP7169354B2 (ja) 変性y型分子篩及び製造方法、水素化分解触媒及び製造方法、並びに、炭化水素油の水素化分解方法
WO2009062386A1 (en) A selective nickle based htdrogenation catalyst and the preparation thereof
CN105289706B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN105289701B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN105289705B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN108714434B (zh) 一种轻油型加氢裂化催化剂及其制备方法
CN105289683B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN107442166A (zh) 适于生产生物柴油的加氢催化剂及其制备方法和应用
CN105312078B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN105709789A (zh) 一种重油加氢裂化催化剂及其制备方法和应用
WO2023232122A1 (zh) 一种重油加氢脱硫催化剂及其制备方法
CN108816273B (zh) 一种高轻油选择性的加氢裂化催化剂的制备方法
RU2607908C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
JP2002363575A (ja) 重質炭化水素油の2段階水素化処理方法
JP2022553834A (ja) 水素化処理用途用のシリカ-アルミナ複合材料
CN107224992A (zh) 适于高效生产生物柴油的加氢催化剂及其制备方法和应用
CN111760585A (zh) 一种硫化型加氢裂化催化剂的制备方法
RU2607905C1 (ru) Катализатор гидрокрекинга углеводородного сырья
CN105289720B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN105312084B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
RU2794727C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
RU2626401C1 (ru) Способ гидроочистки сырья гидрокрекинга
RU2788742C1 (ru) Катализатор гидрокрекинга углеводородного сырья
CN105618120B (zh) 一种加氢裂化催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018921901

Country of ref document: EP

Effective date: 20201124

NENP Non-entry into the national phase

Ref country code: DE