WO2019232781A1 - 隔膜泵及其阀片 - Google Patents

隔膜泵及其阀片 Download PDF

Info

Publication number
WO2019232781A1
WO2019232781A1 PCT/CN2018/090412 CN2018090412W WO2019232781A1 WO 2019232781 A1 WO2019232781 A1 WO 2019232781A1 CN 2018090412 W CN2018090412 W CN 2018090412W WO 2019232781 A1 WO2019232781 A1 WO 2019232781A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
extension arm
extension
receiving groove
diaphragm pump
Prior art date
Application number
PCT/CN2018/090412
Other languages
English (en)
French (fr)
Inventor
张博涵
林书弘
郑先良
叶刚宏
Original Assignee
科际精密股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科际精密股份有限公司 filed Critical 科际精密股份有限公司
Priority to PCT/CN2018/090412 priority Critical patent/WO2019232781A1/zh
Priority to DE112018005014.9T priority patent/DE112018005014T5/de
Publication of WO2019232781A1 publication Critical patent/WO2019232781A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/102Adaptations or arrangements of distribution members the members being disc valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1066Valve plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/102Disc valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1087Valve seats

Definitions

  • the invention relates to a diaphragm pump and a valve plate thereof, and in particular to a diaphragm pump for conveying gas or liquid, and a valve plate located in the diaphragm pump for controlling the flow direction of gas or liquid.
  • Diaphragm pumps typically use a working diaphragm to be moved up and down by a delivery mechanism to deliver gas or liquid. In addition, it usually includes a pair of valves to control the input and output of gas or liquid respectively.
  • valve disc was housed in a valve seat.
  • one way is to adopt one-sided fixation, two-sided fixation, or center fixation around the valve disc.
  • the geometric shape of the valve seat is used to limit the degree of freedom of the valve plate; thereby achieving a sealing effect under a small effective moving distance.
  • the disadvantage is that the way of moving the valve disc is that it can be displaced to the sealing position by the cantilever swing of the valve disc.
  • This cantilevered swing mode will cause a large load on the diaphragm pump system.
  • the degree of freedom of valve flap swing will be greatly affected by the material and design differences, resulting in the valve flap opening and closing speed not keeping up with the operating frequency of the diaphragm pump, which will affect the flow and the stability of mass production. It is not particularly suitable for high-frequency diaphragm pumps.
  • the manner in which the valve plate swings causes fatigue of the valve plate and reduces its sealing effect.
  • the above-mentioned second fixing method does not have the problem of elastic fatigue caused by the aforementioned swing arm movement, it has the disadvantage that it cannot effectively control the center position of the valve plate when it moves, which causes the valve plate to cause an unnecessary action path on the operating path. And the frictional resistance caused by the shape of the limit, which reduces the operating efficiency of the valve plate and worsens the sealing effect.
  • the prior art valve disc uses a softer material to improve the sealing performance and reduce the system load of the diaphragm pump.
  • the softer material will cause too much deformation on the sealed side of the valve disc, increase the load on the conveying mechanism, and block the area of the fluid outlet on the non-sealed side of the valve disc, which will affect its flow rate.
  • the technical problem to be solved by the present invention is to provide a diaphragm pump, which adopts the corresponding geometric design of the valve disc and the valve seat, so that the valve disc achieves a sealing effect under a small effective action path and energy loss, so as to effectively control the valve disc. Central location.
  • a diaphragm pump which includes a valve seat, a valve cap body, and a pair of valve plates.
  • a surface of the valve seat is recessed to form a first receiving groove and a second receiving groove; wherein the first receiving groove has a first flow passage opening, and the second receiving groove has a second flow passage opening .
  • the gas nozzle cover is covered with the valve seat.
  • One of the valve discs is placed in the first accommodation groove, and the first accommodation groove has a geometric shape corresponding to the valve disc; the other of the valve discs is placed in the second accommodation groove. Inside the groove, and the second receiving groove has a geometric shape corresponding to the valve plate.
  • the valve disc has a seal portion and at least one extension arm. At least one of the extension arms extends outward from a part of the periphery of the seal portion.
  • the seal portion has two symmetrical geometric shapes. The end of the extension arm is in a protruding shape, and an edge of the valve plate forms a gap with the first receiving groove or the second receiving groove.
  • the technical problem to be solved by the present invention is also to provide a valve plate, which can achieve a sealing effect under a small effective action path and energy loss, so as to effectively control the center position of the valve plate.
  • a valve plate which includes a sealing portion and at least one extension arm. At least one of the extension arms extends outward with an equal width from the seal portion, the seal portion has two opposite semi-circular arc edges, the ends of at least one of the extension arms are protruding, and the upper portion of the valve disc Both the top and bottom surfaces are flat.
  • the valve disc and the valve seat have a corresponding geometric structure, thereby effectively controlling the center position of the valve disc.
  • the valve disc can achieve a sealing effect with a small effective operating path and energy loss.
  • FIG. 1 is a partial cross-sectional view of a diaphragm pump of the present invention.
  • FIG. 2 is another partial cross-sectional view of the diaphragm pump of the present invention.
  • FIG. 3 is an exploded perspective view of a valve seat and a valve plate according to the present invention.
  • FIG. 4 is a combined perspective view of a valve seat and a valve disc according to the present invention.
  • FIG. 5 is a plan view of a valve seat of the present invention.
  • FIG. 6 is a partial cross-sectional view of the valve seat of the present invention taken along the line VI-VI of FIG. 5.
  • Fig. 7 is a plan view of a valve plate according to the present invention.
  • Fig. 8 is a front view of a valve plate according to the present invention.
  • FIG. 9 is a perspective view of a valve cover of the present invention.
  • FIG. 10 is a bottom view of the valve cover of the present invention.
  • FIG. 11 is a combined plan view of a valve seat and a valve disc of the present invention.
  • FIG. 12 is a cross-sectional view of the present invention taken along the line XII-XII of FIG. 11.
  • FIG. 13 is a cross-sectional view of the present invention taken along the line XIII-XIII of FIG. 11.
  • FIG. 14 is a combined top view of a valve seat and a valve disc according to another embodiment of the present invention.
  • FIG. 15 is a top view of a valve plate according to another embodiment of the present invention.
  • the present invention provides a diaphragm pump, which includes a pump housing 1, a motor 2, a valve seat 3, a valve cover 4, a connecting rod assembly 5, a diaphragm assembly 6, Pair the valve discs 7a, 7b and an upper cover 8.
  • the motor 2 is installed on one side of the pump housing 1, and the valve seat 3 and the valve cover 4 are sequentially installed on the other side of the pump housing 1.
  • the valve cap body 4 is covered on the valve seat 3, and the upper cap 8 covers the outside of the valve cap body 4.
  • the nozzle cover 4 has an inlet 48 and an outlet 49 (see FIGS. 9 and 10), which can be used to input and output fluids, respectively.
  • the pair of valve plates 7a, 7b are provided between the valve seat 3 and the valve cap body 4.
  • the diaphragm assembly 6 is housed in the pump housing 1 and is located below the valve seat 3.
  • the link assembly 5 is disposed in the pump housing 1, and the link assembly 5 is connected between the motor 2 and the diaphragm assembly 6.
  • the pair of valve plates 7a, 7b respectively control the unidirectional input and the unidirectional output of the fluid.
  • the link assembly 5 can be driven to generate reciprocating motion, so that the link assembly 5 can drive the diaphragm assembly 6 to reciprocate, so as to change the diaphragm cavity 39 formed between the diaphragm assembly 6 and the valve seat 3.
  • the volume is matched by the pair of valve plates 7a and 7b to realize the functions of sucking in fluid and discharging fluid.
  • the diaphragm pump uses the deformation of the diaphragm to form a volume change of the diaphragm cavity 39 to generate a negative pressure and a positive pressure.
  • the negative pressure is a suction fluid, and the fluid is discharged by the positive pressure.
  • the fluid may be a gas or a liquid.
  • the structure of the above-mentioned diaphragm pump is only one implementation applicable to the present invention, and the present invention is not limited to the structure of the above-mentioned dia
  • the surface of the valve seat 3 in this embodiment is recessed to form a first receiving groove 31 and a second receiving groove 32.
  • the first receiving groove 31 has a first flow passage opening 310 and a second receiving groove 31.
  • the receiving groove 32 has a second flow passage opening 320.
  • the first flow passage opening 310 and the second flow passage opening 320 communicate with the diaphragm cavity 39 at the bottom of the valve seat 3.
  • the first flow passage opening 310 has a closed convex bulge 312 around it to support the sealing portion 73 of the valve plate 7a.
  • the convex bulge 312 in this embodiment is shaped like a circular fence.
  • a plurality of non-closed support blocks 322 are provided around the second runner opening 320 to support the sealing portion 73 of the valve disc 7b.
  • the shape of the first receiving groove 31 substantially corresponds to the shape of the valve plate 7 a.
  • a pair of extension regions 315; the main channel 313 of the sealing region has a circular shape.
  • the first accommodating groove 31 further includes a buffer flow passage 314 communicating with one side of the main flow passage 313 of the sealing area.
  • the buffer flow passage 314 and the main flow passage 313 in the sealed area are substantially egg-shaped.
  • the buffer flow channel 314 is provided to facilitate the fluid flow.
  • the first receiving groove 31 is for the fluid to flow out of the valve seat 3.
  • the area of the buffer flow passage 314 is smaller than the area of the main flow passage 313 in the sealed area.
  • the distance W (sealed area) or W '(non-sealed area) between the center of the main flow channel and the buffer flow channel is 0.2-0.7 times the diameter A1 of the sealing portion of the valve disc. Since the valve plate itself is an elastic body, the advantage of this design in this embodiment is that the buffer area formed by the buffer flow channel 314 is smaller than the main channel area formed by the main channel 313 of the sealing area, thereby limiting the valve plate 7a from leaving the sealing area The sealing hole of the main channel 313 can also ensure the sealing function. In addition, since the inlet and outlet of the flow channel are on the same coordinate axis, the flow channel of the buffer zone is smaller than the mainstream channel in the above design, which can avoid increasing the path of the fluid and reducing the efficiency of fluid transportation.
  • the shape of the second accommodating groove 32 substantially corresponds to the shape of the valve plate 7b, and can be divided into a non-sealed area main channel 323 located at the periphery of 322 and a pair of extension areas 325 extending outward from the non-sealed area main channel 323.
  • the second accommodating groove 32 further includes a buffer flow passage 324 communicating with the non-sealed area main flow passage 323 side.
  • the valve seat 3 forms a pair of positioning walls 328, and the pair of positioning walls 328 are formed around a part of the second receiving groove 32 to limit the displacement of the valve plate 7 b.
  • the positioning wall 328 in this embodiment is substantially U-shaped, but is not limited thereto.
  • the buffer flow channel 324 is provided to facilitate the fluid flow.
  • the second accommodation groove 32 is for the fluid to flow into the valve seat 3, and preferably, the area of the buffer flow passage 324 is greater than or equal to the area of the main passage 323 in the non-sealed area. This can increase the efficiency of fluid transfer.
  • valve cap body 4 covers the valve seat 3.
  • the valve cap body 4 has a first upper chamber 41 and a second upper chamber 42, and the shape of the first upper chamber 41 Corresponding to the first receiving groove 31, the shape of the second upper chamber 42 corresponds to the second receiving groove 32.
  • valve discs 7a is placed in the first accommodation groove 31, and the first accommodation groove 31 has a geometric shape corresponding to the valve disc 7a; the other valve disc 7b is placed in the second accommodation groove 32, and The second receiving groove 32 has a geometrical shape corresponding to the valve plate 7b.
  • the pair of valve plates 7a, 7b of the present invention have the same geometric shape.
  • the valve plates 7a, 7b are preferably made of a material having elasticity, such as plastic or rubber.
  • Each valve disc 7a, 7b has a sealing portion 73 and a pair of extension arms 75.
  • the pair of extension arms 75 extend outward from a part of the periphery of the seal portion 73.
  • the pair of extension arms 75 extend outward with equal width from two opposite sides of the seal portion 73.
  • the number of the extending arms 75 in this embodiment may be at least one, or may be a plurality of extending arms 75 extending outward at an equal angle.
  • the sealing portion 73 has two symmetrical geometric shapes.
  • the sealing portion 73 of this embodiment has two opposite semi-circular arc edges.
  • the ends of the extension arms 75 are convex.
  • the ends of the extension arms 75 are circular.
  • the extension arm 75 can provide the functions of balancing and limiting the valve plates 7a, 7b. This geometric design can effectively limit the center position of the valve discs 7a, 7b within a certain range, and automatically correct the center position.
  • valve plates 7a, 7b of this embodiment are both flat.
  • the present invention is not limited to this, and it is preferable that the sealing sides of the valve discs 7a, 7b maintain a flat design, thereby ensuring the sealability.
  • the non-sealed sides of the valve plates 7a, 7b may not be limited to a flat surface, for example, the extension arm 75 may be slightly inclined.
  • the edges of the valve discs 7a and 7b form a gap with the first accommodation groove 31 or the second accommodation groove 32, which can generate point or line contact, thereby reducing the contact resistance of the extension arm 75 and taking into account the valve disc 7a. 7b Limitation of effective motion path.
  • the sealing portions 73 of the valve plates 7a and 7b are substantially circular and define a center C and a diameter A1.
  • the center C of the sealing portion 73 to the end of the extension arm 75 The length C1 is equal to 0.6 to 2.0 times the diameter A1 of the sealing portion 73.
  • the length of the extension arm 75 protruding from the sealing portion 73 may be only the diameter A1 of the sealing portion 73.
  • the width B1 of the extension arm 75 is equal to 0.1 to 0.5 times the diameter A1 of the seal portion 73. The longer the length of the extension arm 75 and the wider the width, the larger the friction resistance between the extension arm 75 and the valve seat 3 will limit the displacement of the valve discs 7a, 7b.
  • the length from the center of the first runner opening 310 of the first accommodation groove 31 to the end of the first accommodation groove 31 is C2.
  • the length from the center of the second flow passage opening 320 of the second accommodation groove 32 to the end of the second accommodation groove 32 is C2 '.
  • the length from the center of the sealing portion 73 of the valve discs 7a, 7b to the end of the extension arm 75 is C1, which conforms to the following relationship:
  • the above dimensional design has the advantage that it can ensure the conditions of minimum degree of freedom of the valve discs 7a, 7b, and the freedom under this condition will not cause the valve discs 7a, 7b to leave the sealing area and affect its sealing.
  • the arc-shaped end of the extension arm 75 has a radius R1, and the radius R1 of the end of the extension arm 75 is equal to 0.3 to 0.5 times the width B1 of the extension arm 75.
  • the effect of the above dimensional design is that the R angle is within a width value of 0.3 to 0.5 times, the arc angle at this ratio is relatively smooth, the frictional impact is small, and the guiding is good.
  • FIG. 8 is a side view of the valve plates 7 a and 7 b.
  • the thickness T of the sealing portion 73 is equal to or greater than the thickness T1 of the extension arm 75.
  • the above dimensional design has the advantage that the thickness T1 of the extension arm 73 of the valve discs 7a, 7b is not greater than the thickness T of the center position of the valve discs 7a, 7b because the extension arm 75 itself functions as a limit. Obstructing the movement of the center of the valve disc will not cause the action of the valve disc to slow down and affect its flexibility. In addition, it can also avoid causing the friction area to be too large, affecting the overall freedom of the valve disc.
  • the present invention has been tested.
  • the thickness T1 of the extension arm 75 is equal to 0.5 to 1 times the depth T2 of the first receiving groove 31 or the second receiving groove 32.
  • the effect of this structural design is that the valve discs have not been wasted in too much energy to reach their positioning in the tested range.
  • the thickness T1 of the extension arm 75 is less than 0.5 times the depth of the accommodation groove, the extension arm of the valve disc reaches the positioning earlier, but the center of the valve disc needs to deform the extension arm to reach the positioning, which will cause unnecessary energy loss, and Affect efficiency.
  • the width B2 of the extension area 315 of the first accommodation groove 31 or the width B2 'of the extension area 325 of the second accommodation groove 32 is larger than the width B1 of the extension arm 75.
  • the width B2 of the extension area 315 of the first accommodation groove 31 or the width B2 ′ of the extension area 325 of the second accommodation groove 32 minus the width B1 of the extension arm 75 is less than or equal to twice the width of the extension arm 75. width.
  • the degree of freedom under this condition can ensure that the extension arm 75 does not disengage the center of the valve disc from the sealing area under its limiting condition.
  • the degree of freedom under this condition does not cause the extension arm 75 to cause excessive friction during movement, and avoids affecting the free movement of the valve disc.
  • FIG. 11 is a top view of a valve seat and a valve plate according to the present invention.
  • the valve discs 7a and 7b have a sealed side 71 and an unsealed side 72.
  • the valve discs 7a and 7b have different hardness designs on the sealed side 71 and the unsealed side 72. More specifically, the hardness of the sealed side 71 is smaller than that of the non-sealed side 72.
  • the design can be achieved by partial gluing, hardening or laminating.
  • the sealing side 71 uses a softer hardness to make it better in sealing, and the non-sealing test 72 uses a harder hardness to increase its strength.
  • the advantage of this design is that one side can ensure that the non-sealed side 72 will not be deformed because the material is too soft, avoiding blocking the area of the outlet flow channel and affecting the flow rate. Strength to avoid affecting the thickness of the valve discs 7a, 7b and the process.
  • valve plates 7 a and 7 b of this embodiment are placed at different heights after being placed on the valve seat 3.
  • the top surface of the valve disc 7a is aligned with the top surface 30f of the valve seat 3.
  • the non-sealed side 72 of the valve disc 7a is aligned with the top surface 30f of the valve seat 3.
  • the bottom surface of the valve disc 7b is aligned with the top surface 30f of the valve seat 3.
  • the non-sealed side 72 of the valve disc 7b is aligned with the top surface 30f of the valve seat 3, and the sealed side 71 of the valve disc 7b is high above the valve.
  • the bottom mask of the extension region 325 of the second receiving slot 32 in this embodiment has an abutment surface 3251 and a slope 3252.
  • the abutment surface 3251 is close to the end of the extension area 325, and the abutment surface 3251 carries the extension arm 75 of the valve disc 7b.
  • the slope 3252 extends from the abutment surface 3251 toward the second flow passage opening 320, and the slope 3252 does not contact the extension arm 75 of the valve plate 7b.
  • FIG. 14 is a schematic diagram of a second embodiment of a valve seat according to the present invention.
  • This embodiment is characterized in that the first receiving groove or the second receiving groove may have a tapered extension region.
  • the first receiving groove 310a has a sealing area main passage 313 and two extension areas 315 extending outward from the sealing area main passage 313.
  • the extension arm 75 of the valve plate 7 a is placed in the extension region 315, and both sides of the extension region 315 are parallel and maintain a gap with the extension arm 75.
  • the end of the extension region 315 forms a cone shape.
  • the end of the extension region 315 has two opposite inclined surfaces 317, and the two inclined surfaces 317 each contact the arc-shaped end of the extension arm 75.
  • two sides of the end of the extension arm 75 form two point contact with the extension area 315 to provide a more balanced constraint.
  • FIG. 15 is a top view of a valve plate according to another embodiment of the present invention.
  • a pair of extension arms 77 of the valve disc 7c of this embodiment are relatively extended outwardly in a tapered manner by the sealing portion 73.
  • the distal end of the extension arm 77 is tapered and has a hypotenuse 773, and the valve disc 7c as a whole is symmetrical along the center point thereof, and is symmetrical with each other.
  • the shape of the extension area of the valve seat may correspond to the shape of the extension arm 77.
  • the features and functions of the present invention are at least that the present invention adopts a corresponding geometric structure between the valve disc and the valve seat, thereby effectively controlling the center position of the valve disc.
  • the valve disc can achieve a sealing effect with a small effective operating path and energy loss.
  • the two sides of the valve disc have different hardnesses, which can reduce excessive deformation in the non-sealed area, thereby achieving a sealing effect with the smallest effective action path and the smallest energy loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种隔膜泵及其阀片,隔膜泵包括一阀座(3)、一气嘴盖体(4)及一对阀片(7a,7b)。阀座(3)的表面凹陷地形成一第一容置槽(31)及一第二容置槽(32);第一容置槽(31)具有一第一流道口(310),第二容置槽(32)具有一第二流道口(320)。气嘴盖体(4)盖合于阀座(3)。其中一个阀片(7a)置于第一容置槽(31)内,并且第一容置槽(31)具有对应于阀片(7a)的几何外形;另一个阀片(7b)置于第二容置槽(32)内,并且第二容置槽(32)具有对应于阀片(7b)的几何外形。其中阀片(7a,7b)具有一密封部(73)及至少一延伸臂(75),至少一延伸臂(75)由密封部(73)向外延伸,密封部(73)具有两个相对称的几何外形,至少一延伸臂(75)的末端呈圆弧状,阀片(7a,7b)的边缘与第一容置槽(31)或第二容置槽(32)形成一间隙。

Description

隔膜泵及其阀片 技术领域
本发明涉及一种隔膜泵及其阀片,尤其涉及一种用以输送气体或液体的隔膜泵,以及位于隔膜泵内用以控制气体或液体流向的阀片。
背景技术
小型装置用以输送气体或液体,例如可以使用隔膜泵。隔膜泵通常利用一工作隔膜被一输送机构向上及向下移动以进行输送气体或液体。此外,通常包括一对阀片分别控制气体或液体的输入与输出。
以往阀片被收容于一阀座内,为着合适的定位阀片,一种方式是在为阀片的周围采取单侧固定、双侧固定或中心固定的方式。或者,另一种方式,采用阀座的几何外型来限制阀片的自由度;借此在较小的有效移动距离下达到密封效果。
上述第一种固定方式,虽有效限制其中心位置,但缺点在于阀片移动的方式,是靠阀片的悬臂摆动来位移到密封位置。此种悬臂式的摆动方式会造成隔膜泵系统较大的负载。再者,阀片摆动的自由度会因材料以及设计上的不同有较大影响,导致阀片开阖速度跟不上隔膜泵的作动频率,进而影响流量以及量产的稳定性不好。特别不适用于高频的隔膜泵。另外,在阀片的寿命上,阀片摆动的方式导致阀片弹性疲乏而降低其密封效果。
上述第二种固定方式,虽无前述的摆臂运动产生弹性疲乏的问题,但缺点在于,无法有效的控制阀片运动时的中心位置,导致阀片在作动路径上造成多余的动作路径,以及与限位外型造成磨擦阻力,导致减低阀片的作动效率使密封效果变差。
为改善第一种固定方式的问题,有现有技术的阀片采用较软的材料,以提高密封性以及减少隔膜泵的系统负载。然而,较软的材料会反向导致阀片的密封侧变形量太大,增加输送机构的负载,以及在阀片的非密封侧更多堵住流体出口的面积,而影响其流量。
发明内容
本发明所要解决的技术问题,在于提供一种隔膜泵,采用阀片与阀座的对应几何设计,使阀片在较小的有效动作路径以及能量损耗下达到密封效果,以有效控制阀片的中心位 置。
为解决上述技术问题,根据本发明的其中一种方案,提供一种隔膜泵,其包括一阀座、一气嘴盖体及一对阀片。所述阀座的表面凹陷地形成一第一容置槽及一第二容置槽;其中所述第一容置槽具有一第一流道口,所述第二容置槽具有一第二流道口。所述气嘴盖体盖合于所述阀座。其中一个所述阀片置于所述第一容置槽内,并且所述第一容置槽具有对应于所述阀片的几何外形;另一个所述阀片置于所述第二容置槽内,并且所述第二容置槽具有对应于所述阀片的几何外形。其中所述阀片具有一密封部及至少一延伸臂,至少一所述延伸臂由所述密封部的部分外围向外延伸,所述密封部具有两个相对称的几何外形,至少一所述延伸臂的末端呈突出状,所述阀片的边缘与所述第一容置槽或所述第二容置槽形成一间隙。
本发明所要解决的技术问题,还在于提供一种阀片,能在较小的有效动作路径以及能量损耗下达到密封效果,以有效控制阀片的中心位置。
为解决上述技术问题,根据本发明的其中一种方案,提供一种阀片,其包括一密封部及至少一延伸臂。至少一所述延伸臂由所述密封部以等宽度向外延伸,所述密封部具有两个相对的半圆弧边,至少一所述延伸臂的末端呈突出状,所述阀片的上表面与下表面均呈平坦状。
本发明具有以下有益效果:本发明采用阀片与阀座具有相对应的几何结构,借此以有效控制阀片的中心位置。阀片可以在较小的有效动作路径以及能量损耗下达到密封效果。
为了能更进一步了解本发明为达成既定目的所采取的技术、方法及功效,请参阅以下有关本发明的详细说明、附图,相信本发明的目的、特征与特点,当可由此得以深入且具体的了解,然而附图与附件仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
图1为本发明的隔膜泵的局部剖视图。
图2为本发明的隔膜泵的另一局部剖视图。
图3为本发明的阀座与阀片的分解立体图。
图4为本发明的阀座与阀片的组合立体图。
图5为本发明的阀座的俯视图。
图6为本发明的阀座沿着图5的VI-VI线的局部剖视图。
图7为本发明的阀片的俯视图。
图8为本发明的阀片的主视图。
图9为本发明的气嘴盖体的立体图。
图10为本发明的气嘴盖体的仰视图。
图11为本发明的阀座与阀片的组合俯视图。
图12为本发明沿着图11的XII-XII线的剖视图。
图13为本发明沿着图11的XIII-XIII线的剖视图。
图14为本发明的阀座与阀片另一实施例的组合俯视图。
图15为本发明另一实施例的阀片的俯视图。
具体实施方式
请参阅图1至图2,本发明提供一种隔膜泵,包括一泵壳体1、马达2、一阀座3、一气嘴盖体4、一连杆组件5、一隔膜片组件6、一对阀片7a、7b及一上盖8。
马达2安装在泵壳体1的一侧,阀座3及气嘴盖体4依序安装在泵壳体1的另一侧上。气嘴盖体4盖合于阀座3,上盖8覆盖于气嘴盖体4的外侧。气嘴盖体4具有一入口48及一出口49(请参阅图9及图10),可用以分别输入及输出流体。阀座3及气嘴盖体4之间设置该对阀片7a、7b。隔膜片组件6收容于泵壳体1内且位于阀座3的下方。连杆组件5设置于泵壳体1内,且连杆组件5连接于马达2及隔膜片组件6之间。该对阀片7a、7b分别控制流体能单向地输入与单向地输出。当马达2转动时,可驱动连杆组件5产生往复运动,使连杆组件5可带动隔膜片组件6做往复振动,以改变隔膜片组件6和阀座3之间所形成的隔膜腔39的容积,再由该对阀片7a、7b的配合,实现吸入流体和排出流体的功能。该隔膜泵为利用隔膜片的变形,形成隔膜腔39的容积变化来产生负压及正压,其负压为吸入流体,再由正压将流体排出,所述的流体可为气体或液体。上述隔膜泵的构造仅为本发明可应用的一种实施,本发明并不限制于上述隔膜泵的构造。
请参阅图3,本实施例的阀座3的表面凹陷地形成一第一容置槽31及一第二容置槽32;其中第一容置槽31具有一第一流道口310,第二容置槽32具有一第二流道口320。第一流道口310及第二流道口320连通至阀座3底部的隔膜腔39。在本实施例,第一流道口310的周围具有一封闭状的凸垣312,以支撑阀片7a的密封部73。本实施例凸垣312形状像圆形围墙。第二流道口320的周围具多个非封闭状的支撑块322,以支撑阀片7b 的密封部73。
请参阅图4及图5,第一容置槽31的形状大致对应于阀片7a的形状,可分为位于凸垣312外围的密封区主流道313及由密封区主流道313向外延伸的一对延伸区315;密封区主流道313呈一圆环状。此外,第一容置槽31还包括连通于密封区主流道313一侧的缓冲流道314。缓冲流道314与密封区主流道313大致呈一蛋形。本实施例提供缓冲流道314更有利于流体的流动。依本实施例的第一容置槽31为供流体流出阀座3,优选为,缓冲流道314的面积小于密封区主流道313的面积。主流道与缓冲流道的中心距离W(密封区)或W’(非密封区)为0.2-0.7倍阀片的密封部直径A1。由于阀片本身为弹性体,本实施例此种设计的优点在于,缓冲流道314形成的缓冲区区域小于密封区主流道313形成的主流道区域,借此可以限制阀片7a不离开密封区主流道313的密封孔,还可以确保密封的功能。此外,由于流道出入口为同一坐标轴在线,上述设计安排缓冲区的流道小于主流道可避免增加流体行经的路径,避免降低流体输送的效率。
第二容置槽32形状大致对应于阀片7b的形状,可分为位于322外围的非密封区主流道323及由非密封区主流道323向外延伸的一对延伸区325。此外,第二容置槽32还包括连通于非密封区主流道323一侧的缓冲流道324。其中阀座3形成一对定位墙328,该对定位墙328形成于第二容置槽32的部分周围,以限制阀片7b的位移。本实施例的定位墙328大致呈U字形,但不限制于此。本实施例提供缓冲流道324更有利于流体的流动。依本实施例的第二容置槽32为供流体流入阀座3,优选为,缓冲流道324的面积大于或等于非密封区主流道323的面积。借此可增加流体输送的效率。
请参阅图9及图10,气嘴盖体4盖合于阀座3,气嘴盖体4具有一第一上腔室41及一第二上腔室42,第一上腔室41的形状对应于第一容置槽31,第二上腔室42的形状对应于第二容置槽32。
其中一个阀片7a置于第一容置槽31内,并且第一容置槽31具有对应于所述阀片7a的几何外形;另一个阀片7b置于第二容置槽32内,并且第二容置槽32具有对应于阀片7b的几何外形。
本发明的该对阀片7a,7b具有相同的几何外形,阀片7a,7b优选是以具有弹性的材料制成,例如塑料或橡胶等。每一阀片7a,7b具有一密封部73及一对延伸臂75。该对延伸臂75由密封部73的部分外围向外延伸,此外,该对延伸臂75由密封部73的两相对侧以等宽度向外延伸。本实施例的延伸臂75的数量可以是至少一个,也可以是多个而呈等 角度向外延伸。密封部73具有两个相对称的几何外形,本实施例的密封部73具有两个相对的半圆弧边,延伸臂75的末端呈突出状,本实施例的延伸臂75末端呈圆弧状,但本发明不限制于此。延伸臂75可以提供阀片7a,7b平衡以及限位的功用。此种几何形设计,可以有效限制阀片7a,7b的中心位置在一定范围内,并自动更正中心位置。
本实施例的阀片7a,7b的上表面与下表面均呈平坦状。然而,本发明不限制于此,优选的,阀片7a,7b的密封侧维持平面设计,借此可以确保密封性。阀片7a,7b的非密封侧可不限制为平面,例如延伸臂75可以稍为呈斜面。阀片7a,7b的边缘与第一容置槽31或第二容置槽32形成一间隙,可以产生点或线的接触,借此可以降低延伸臂75的接触阻力,并兼顾阀片7a,7b有效动作路径的限制。
请同时参阅图4及图6,本实施例中,阀片7a,7b的密封部73大致呈圆形且定义有一中心C及一直径A1,密封部73的中心C至延伸臂75的末端的长度C1等于0.6至2.0倍密封部73的直径A1。换句说话,延伸臂75突出于密封部73的长度可以只有密封部73的直径A1。延伸臂75的宽度B1等于0.1至0.5倍密封部73的直径A1。延伸臂75的长度愈长,宽度愈宽,延伸臂75与阀座3具有较大的摩擦阻力,将更限制阀片7a,7b的位移。
第一容置槽31的第一流道口310的中心至第一容置槽31的末端的长度为C2。第二容置槽32的第二流道口320的中心至第二容置槽32的末端的长度为C2’。阀片7a,7b的密封部73的中心至延伸臂75的末端的长度为C1,符合下列关系式:
C2-C1≤0.2*C1;C2’-C1≤0.2*C1。上述尺寸设计的优点在于,可以确保阀片7a,7b最小自由度的条件,该条件下的自由度不会使阀片7a,7b脱离密封区域而影响其密封。
延伸臂75末端的圆弧状具有一半径R1,延伸臂75末端的半径R1,等于0.3至0.5倍所述延伸臂75的宽度B1。上述尺寸设计的功效在于,R角在0.3~0.5倍的宽度值内,该比例下的圆弧角较为平滑,其摩擦影响较小以及导向性较好。
请同时参阅图6至图8,图8为阀片7a,7b的侧视图,密封部73的厚度T等于或大于延伸臂75的厚度T1。上述尺寸设计优点在于,由于阀片7a,7b的延伸臂75本身功用在于限位,因此安排阀片7a,7b的延伸臂73的厚度T1不大于阀片7a,7b中心位置厚度T,可以避免阻碍阀片中心的运动,才不会造成阀片的动作变缓慢而影响其灵活性。此外,也可以避免造成摩擦面积过大,影响阀片整体自由度。
此外,本发明经过测试,优选的,延伸臂75的厚度T1等于0.5倍至1倍的第一容置 槽31或所述第二容置槽32的深度T2。此种结构设计的功效在于,经测试过该范围内阀片不会浪费过多能量来使其到达定位。当延伸臂75的厚度T1小于0.5倍容置槽的深度,阀片的延伸臂提早到定位,但阀片中心则需要额外使延伸臂变形才能到定位,这样会造成不必要的能量损失,以及影响效率。
当延伸臂75的厚度T1大于1倍容置槽的深度时,其阀片中心到达定位后,该延伸臂则尚未到定位。此种情形会造成延伸臂过度变形,影响阀片中心的密封效果以及造成阀片本身不必要的形变而影响其稳定性。在上述尺寸范围以外的运动过程,会对阀片本体造成过大的变形,因而导致阀片本体造成永久的形变。该形变则会使阀片的动作失效,严重影响泵浦的效率。
如图5及图7所示,第一容置槽31的延伸区315的宽度B2或第二容置槽32的延伸区325的宽度B2’大于延伸臂75的宽度B1。本实施例中,第一容置槽31的延伸区315的宽度B2或第二容置槽32的延伸区325的宽度B2’减去延伸臂75的宽度B1小于或等于两倍延伸臂75的宽度。也就是说符合下列关系式:
B2-B1≤2*B1;或B2’-B1≤2*B1。
上述尺寸设计的功效在于,该条件下的自由度,可以确保延伸臂75在其限位条件下不会使阀片的中心脱离密封区。此外,该条件下的自由度,不会使延伸臂75在运动过程中造成过多的摩擦,避免影响阀片的自由运动。
请参阅图11至图13,图11为本发明的阀座与阀片的俯视图。其中阀片7a、7b具有一密封侧71及一非密封侧72,在此实施中,阀片7a、7b在密封侧71以及非密封侧72采用不同硬度设计。更具体的说,密封侧71的硬度小于非密封侧72的硬度。该设计可以通过局部上胶、硬化处理或是异料贴合的方式实现。密封侧71采用较软的硬度使其密封性较好,非密封测72采用较硬的硬度来增加其强度。此种设计的优点在于,一面可以确保非密封侧72不会因为材质太软而变形,避免阻挡出口流道的面积并影响流量,另一面,不需要变更阀片7a、7b的几何形状来增加强度,避免影响阀片7a、7b厚度以及工艺。
补充说明,如图11及图12所示,本实施例的阀片7a、7b置放于阀座3后,分别位于不同的高度。阀片7a的顶面切齐于阀座3的顶面30f,换句说话,阀片7a的非密封侧72切齐于阀座3的顶面30f。阀片7b的底面切齐于阀座3的顶面30f,换句说话,阀片7b的非密封侧72切齐于阀座3的顶面30f,阀片7b的密封侧71高出于阀座3的顶面30f,在安装时,使阀片7b的密封侧71直接抵接于气嘴盖体4的第二上腔室42。本实施例的 此种结构有利于安装置放阀片7a、7b。配合上述安排,本实施例的第二容置槽32的延伸区325底面具有一抵接面3251及一斜坡3252。抵接面3251靠近延伸区325的末端,抵接面3251承载阀片7b的延伸臂75。斜坡3252由抵接面3251朝向第二流道口320延伸,斜坡3252并没有接触阀片7b的延伸臂75。
请参阅图14,为本发明的阀座第二实施例的示意图。本实施例的特点在于,第一容置槽或第二容置槽可以具有锥形的延伸区。以部分的阀座3a并以第一容置槽310a为例,第一容置槽310a具有密封区主流道313、由密封区主流道313向外延伸的两个延伸区315。阀片7a的延伸臂75置于延伸区315内,延伸区315的两侧呈平行状且与延伸臂75保持一间隙。延伸区315的末端形成一锥形,具体的说,延伸区315的末端具有两个相对的倾斜面317,两个倾斜面317各接触于延伸臂75的圆弧状末端。通过上述结构,延伸臂75末端的两侧与延伸区315形成两个点接触,提供较平衡的约束。
请参阅图15,为本发明另一实施例的阀片的俯视图。与上述实施例的差异在于,本实施例的阀片7c的一对延伸臂77相对地由密封部73以渐缩的方式向外延伸。此外,延伸臂77的末端呈尖锥状而具有斜边773,阀片7c整体沿着其中心点,上下相互对称且左右相互对称。对应于本实施例,阀座的延伸区外形可以对应于延伸臂77的外形。
本发明的特点及功能至少在于,本发明采用阀片与阀座具有相对应的几何结构,借此以有效控制阀片的中心位置。此外,阀片可以在较小的有效动作路径以及能量损耗下达到密封效果。阀片的两侧具有不同硬度,借此可以减少非密封区域的过度变形,因而达到在最小的有效动作路径以及最小的能量损耗下,达到密封效果。
以上所述仅为本发明的可行实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (19)

  1. 一种隔膜泵,其特征在于,包括:
    一阀座,所述阀座的表面凹陷地形成一第一容置槽及一第二容置槽;其中所述第一容置槽具有一第一流道口,所述第二容置槽具有一第二流道口;
    一气嘴盖体,所述气嘴盖体盖合于所述阀座;
    一对阀片,其中一个所述阀片置于所述第一容置槽内,并且所述第一容置槽具有对应于所述阀片的几何外形;另一个所述阀片置于所述第二容置槽内,并且所述第二容置槽具有对应于所述阀片的几何外形;
    其中所述阀片具有一密封部及至少一延伸臂,至少一所述延伸臂由所述密封部的部分外围向外延伸,所述密封部具有两个相对称的几何外形,至少一所述延伸臂的末端呈突出状,所述阀片的边缘与所述第一容置槽或所述第二容置槽形成一间隙。
  2. 如权利要求1所述的隔膜泵,其特征在于,至少一个所述阀片具有一对所述延伸臂,一对所述延伸臂由所述密封部的两相对侧以等宽度向外延伸。
  3. 如权利要求1所述的隔膜泵,其特征在于,所述阀片的所述密封部具有两个相对的半圆弧边,而呈一圆形,且定义有一中心及一直径,所述密封部的所述中心至所述延伸臂的末端的长度等于0.6至2.0倍所述密封部的直径。
  4. 如权利要求3所述的隔膜泵,其特征在于,所述延伸臂的宽度等于0.1至0.5倍所述密封部的直径。
  5. 如权利要求1所述的隔膜泵,其特征在于,所述第一容置槽的所述第一流道口的中心至所述第一容置槽的末端的长度为C2,所述第二容置槽的所述第二流道口的中心至所述第二容置槽的末端的长度为C2’,所述阀片的所述密封部的中心至所述延伸臂的末端的长度为C1,其中C2-C1≤0.2*C1;C2’-C1≤0.2*C1。
  6. 如权利要求1所述的隔膜泵,其特征在于,所述延伸臂末端的圆弧状具有一半径,所述延伸臂末端的半径等于0.3至0.5倍所述延伸臂的宽度。
  7. 如权利要求1所述的隔膜泵,其特征在于,所述密封部的厚度等于或大于所述延伸臂的厚度。
  8. 如权利要求1所述的隔膜泵,其特征在于,所述延伸臂的厚度小于或等于所述第一容置槽或所述第二容置槽的深度,所述延伸臂的厚度等于0.5倍至1倍所述第一容置槽或所述第二容置槽的深度。
  9. 如权利要求1所述的隔膜泵,其特征在于,所述第一容置槽或所述第二容置槽各具有至少一延伸区,所述第一容置槽的所述延伸区的宽度或所述第二容置槽的所述延伸区的宽度减去所述延伸臂的宽度小于或等于两倍所述延伸臂的宽度。
  10. 如权利要求1所述的隔膜泵,其特征在于,所述阀座形成一定位墙,所述定位墙形成于所述第二容置槽的部分周围,以限制所述阀片的所述延伸臂。
  11. 如权利要求1所述的隔膜泵,其特征在于,所述第一容置槽或所述第二容置槽各具有至少一延伸区,所述阀片的所述延伸臂置于所述延伸区内,至少一所述延伸区的末端形成一锥形,且具有两个相对的倾斜面,所述倾斜面各接触于所述延伸臂的圆弧状末端。
  12. 如权利要求1所述的隔膜泵,其特征在于,一个所述阀片的顶面切齐于所述阀座的顶面,另一个所述阀片的底面切齐于所述阀座的顶面。
  13. 如权利要求1所述的隔膜泵,其特征在于,所述第二容置槽的具有一延伸区,所述延伸区的底面具有一抵接面及一斜坡,所述抵接面靠近所述延伸区的末端,所述抵接面承载所述阀片的所述延伸臂,所述斜坡由所述抵接面朝向所述第二流道口延伸,所述斜坡并没有接触所述阀片的所述延伸臂。
  14. 一种阀片,其特征在于,包括:
    一密封部,及
    至少一延伸臂,至少一所述延伸臂由所述密封部以等宽度向外延伸,所述密封部具有两个相对的半圆弧边,至少一所述延伸臂的末端呈突出状,所述阀片的上表面与下表面均呈平坦状。
  15. 如权利要求14所述的阀片,其特征在于,所述阀片的所述密封部呈一圆形且定义有一中心及一直径,所述密封部的所述中心至所述延伸臂的末端的长度等于0.6至2.0倍所述密封部的直径。
  16. 如权利要求14所述的阀片,其特征在于,所述延伸臂的宽度等于0.1至0.5倍所述密封部的直径。
  17. 如权利要求14所述的阀片,其特征在于,所述延伸臂末端的圆弧状具有一半径,所述延伸臂末端的半径等于0.3至0.5倍所述延伸臂的宽度。
  18. 如权利要求14所述的阀片,其特征在于,所述密封部的厚度等于或大于所述延伸臂的厚度。
  19. 如权利要求14所述的阀片,其特征在于,所述阀片具有一密封侧及一非密封侧, 所述密封侧的硬度小于所述非密封侧的硬度。
PCT/CN2018/090412 2018-06-08 2018-06-08 隔膜泵及其阀片 WO2019232781A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/090412 WO2019232781A1 (zh) 2018-06-08 2018-06-08 隔膜泵及其阀片
DE112018005014.9T DE112018005014T5 (de) 2018-06-08 2018-06-08 Membranpumpe und zugehöriger Ventilteller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090412 WO2019232781A1 (zh) 2018-06-08 2018-06-08 隔膜泵及其阀片

Publications (1)

Publication Number Publication Date
WO2019232781A1 true WO2019232781A1 (zh) 2019-12-12

Family

ID=68770030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090412 WO2019232781A1 (zh) 2018-06-08 2018-06-08 隔膜泵及其阀片

Country Status (2)

Country Link
DE (1) DE112018005014T5 (zh)
WO (1) WO2019232781A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009646A (ja) * 2004-06-24 2006-01-12 Canon Inc 切替弁
CN201714643U (zh) * 2010-07-20 2011-01-19 厦门坤锦电子科技有限公司 隔膜气泵
CN206158970U (zh) * 2016-10-24 2017-05-10 武汉优利可科技有限公司 Scr尿素喷射隔膜泵

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009646A (ja) * 2004-06-24 2006-01-12 Canon Inc 切替弁
CN201714643U (zh) * 2010-07-20 2011-01-19 厦门坤锦电子科技有限公司 隔膜气泵
CN206158970U (zh) * 2016-10-24 2017-05-10 武汉优利可科技有限公司 Scr尿素喷射隔膜泵

Also Published As

Publication number Publication date
DE112018005014T5 (de) 2020-07-16

Similar Documents

Publication Publication Date Title
JP2017528638A5 (zh)
WO2023159732A1 (zh) 一种截止阀
KR100702209B1 (ko) 더블 블레이드밸브
WO2019232781A1 (zh) 隔膜泵及其阀片
TWI698607B (zh) 閘閥
CN215902348U (zh) 一种防止蝶阀堵塞的自吹扫结构及包括该结构的蝶阀
TWI666384B (zh) 隔膜泵及其閥片
CN208203518U (zh) 一种隔膜泵
TWM567310U (zh) Diaphragm pump and its valve
CN110578683B (zh) 隔膜泵及其阀片
CN209705312U (zh) 一种可调节管道内部流速大小的控制阀
JP2006528742A (ja) ストロークが制御されたポンプバルブ
CN211039697U (zh) 一种气动角座阀
CN212690895U (zh) 一种具备降噪功能的球阀
TWM570362U (zh) Diaphragm pump and valve plate with limit structure
KR20200017808A (ko) 밀폐형 압축기용 밸브 장치 및 그 밸브 스톱퍼
CN210034428U (zh) 一种防自吸阀门
CN208416908U (zh) 隔膜泵及其阀片
JP3219236U (ja) ダイヤフラムポンプ及びそのバルブプレート
CN208431386U (zh) 一种蝶阀
CN208619746U (zh) 一种开阀无磨损双偏心电控球阀
CN206694584U (zh) 管道换向阀
CN217815011U (zh) 一种多重密封型蝶阀
CN211117665U (zh) 一种硫化橡胶的斜密封面中线蝶阀阀体
CN214118997U (zh) 一种用于波纹管的截止阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921932

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18921932

Country of ref document: EP

Kind code of ref document: A1