WO2019230687A1 - 打音検査端末、打音検査システムおよび打音検査データ登録方法 - Google Patents

打音検査端末、打音検査システムおよび打音検査データ登録方法 Download PDF

Info

Publication number
WO2019230687A1
WO2019230687A1 PCT/JP2019/021008 JP2019021008W WO2019230687A1 WO 2019230687 A1 WO2019230687 A1 WO 2019230687A1 JP 2019021008 W JP2019021008 W JP 2019021008W WO 2019230687 A1 WO2019230687 A1 WO 2019230687A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
inspection
data
hammer
test
Prior art date
Application number
PCT/JP2019/021008
Other languages
English (en)
French (fr)
Inventor
亮太 藤井
昭年 泉
林 和典
良一 湯下
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/058,805 priority Critical patent/US20210223211A1/en
Priority to JP2020522198A priority patent/JPWO2019230687A1/ja
Priority to CN201980035595.5A priority patent/CN112166319A/zh
Publication of WO2019230687A1 publication Critical patent/WO2019230687A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0891Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values with indication of predetermined acceleration values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/222Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic

Definitions

  • This disclosure relates to a hammering inspection terminal, a hammering inspection system, and a hammering inspection data registration method.
  • Japanese Patent Application Laid-Open No. H10-228688 discloses an analysis of a hit made on an inspection object (for example, whether or not the hit is accurately performed on a hit point indicated by a laser beam, or an applied force at the time of hit. Is determined to be within a predetermined range.
  • Patent Document 2 discloses a technique in which a hammer is hit with a structure, the sound of the hit is measured with a microphone, and the computer diagnoses the state of the structure.
  • the hammer has a microphone in the outer part and incorporates an accelerometer.
  • the computer diagnoses the soundness of the structure based on the hitting signal measured by the microphone and the velocity signal obtained from the striking force measured by the accelerometer.
  • This disclosure is intended to support appropriate inspection management of inspection objects existing over a wide area in a hammering inspection performed by hitting an inspection object with a hammer.
  • the present disclosure determines whether or not the operator has hit the inspection object appropriately using a hammer, appropriately extracts the sound signal data when the hammer is hit, and the soundness of the structure (in other words, The purpose is to correctly diagnose the presence or absence of internal destruction.
  • the hammering inspection terminal of the present disclosure is a hammering inspection terminal that is worn by a user holding a hammer and is connected to be communicable with an external device, and indicates a sound collection unit and a current position of the hammering inspection terminal.
  • a positioning unit that obtains position information; and a processor that generates sounding inspection data in which the sounding signal data collected by the sound collecting unit while the hammer strikes the inspection object is associated with the position information;
  • a communication unit that transmits the generated sound hit inspection data to the external device.
  • the hammering inspection system is a hammering inspection system in which a hammer to which an acceleration sensor is attached and the hammering inspection terminal attached by a user who holds the hammer are connected to be able to communicate with each other.
  • a sound collection unit provided in the hammering test terminal, wherein the acceleration sensor acquires measurement values of the speed and inclination of the hammer when the hammer strikes the test object, and the hammering test terminal Determines whether or not the user has struck the hammer against the object to be inspected according to a predetermined standard based on the measured values of the hammer speed and inclination from the acceleration sensor, and according to the predetermined standard
  • the sound signal data collected by the sound collecting unit while being hit is recorded in an external device.
  • the sounding test data registration method of the present disclosure is a sounding test data registration method in a sounding test terminal that is worn by a user holding a hammer and is connected to be communicable with an external device. Obtaining position information indicating the current position of the terminal; collecting sound by the sound collection unit; and sounding signal data collected by the sound collection unit while the hammer strikes the inspection object; Generating sound hitting test data associated with the position information; and transmitting the generated sound hitting test data to the external device.
  • the present disclosure it is possible to associate and register the hitting signal data when the worker hits the inspection target with a hammer and the information on the position where the inspection target is hit, and the inspection target exists over a wide area. It can support proper inspection management of things.
  • Block diagram showing the configuration of the hammering inspection system Flow chart showing the sound test procedure of the terminal device The flowchart which shows the movement stop detection procedure in step S1. Flowchart showing the hammering detection procedure in step S3 The flowchart which shows the movement start detection procedure in step S5 Timing chart showing changes in sound signal Flowchart showing a sound-inspection procedure in the second embodiment The flowchart which shows the test
  • the flowchart which shows the hammering detection procedure in step S61 The flowchart which shows the sound-judgment determination procedure in step S63 Flowchart showing the hitting position detection procedure in step S65
  • the flowchart which shows the data transmission determination procedure in step S66 The figure which shows the tap sound test
  • a hammering test terminal and a hammering test that can determine whether or not an operator has hit a test object appropriately with a hammer and can appropriately extract hitting signal data when the hammer hits the test object.
  • An example of the system and the sound inspection data registration method will be described.
  • FIG. 1 is a block diagram showing the configuration of the sound hitting inspection system 5.
  • the hammering inspection system 5 has a configuration that includes a test hammer 10, a terminal device 30, and a cloud server 50.
  • the test hammer 10 and the terminal device 30 are connected so that data communication is possible via short-range wireless communication.
  • the terminal device 30 and the cloud server 50 are connected via a network NW so that data communication is possible.
  • the terminal device 30 is a mobile terminal or a tablet terminal.
  • the test hammer 10 has a hammer head 10z and a grip portion 10y. At the time of hammering inspection, the worker hm grips the grip portion 10y, hits the inspection object with the hammer head 10z, and applies a striking force to the sounding surface of the inspection object.
  • the test hammer 10 includes a sound collection unit 11, a short-range wireless communication unit 12, and an acceleration sensor 13.
  • the sound collection unit 11 is a single microphone attached to the surface of the grip unit 10y and having directivity in the direction of the hammer head 10z.
  • the sound collection unit 11 may be a non-directional microphone or a microphone array that forms a directivity direction in a predetermined direction and can collect sound in the directivity direction.
  • the sound collection unit 11 collects a sound including a hitting sound generated when the inspection target is hit with the hammer head 10z.
  • the acceleration sensor 13 is built in the hammer head 10z, detects the acceleration and the acceleration direction (the striking force and the striking direction of the hammer head 10z) when the hammer head 10z hits the inspection object, and acquires it as detection data.
  • the acceleration sensor 13 may acquire the speed and inclination obtained from the acceleration value as detection data. Examples of the acceleration sensor include those that can be mounted on an electronic substrate using, for example, MEMS (Micro Electro Mechanical Systems) technology.
  • the acceleration sensor 13 can detect acceleration in three axis (XYZ axis) directions.
  • the acceleration of the hammer head 10z detected by the acceleration sensor 13 immediately before the hammer head 10z hits the inspection object shows a large value.
  • the acceleration direction is perpendicular to and approaching the sounding surface of the inspection object.
  • the acceleration of the hammer head 10z detected by the acceleration sensor 13 shows a minimum value (a negative maximum value).
  • the acceleration direction (deceleration direction) is perpendicular to and away from the sound striking surface of the inspection object.
  • the short-range wireless communication unit 12 performs short-range wireless communication with the terminal device 30, and the sound data of the sound collected by the sound collection unit 11 and the detection data (data of acceleration and acceleration direction) detected by the acceleration sensor 13. ) Is transmitted to the terminal device 30.
  • the short-range wireless communication is performed by, for example, Bluetooth (registered trademark).
  • the terminal device 30 is operably held by the worker hm.
  • the terminal device 30 includes a processor 31, a short-range wireless communication unit 32, a microphone 33, a recording unit 34, a memory 35, a communication unit 36, a touch panel 37, an acceleration sensor 38, a sensor 39, a battery 40, a button 41, a GPS receiver 42, A camera 43 and a speaker 44 are provided.
  • the processor 31 controls the operation of each unit of the terminal device 30.
  • the processor 31 has functions of a sound hit determination unit 311, a recording control unit 312, a terminal device acceleration acquisition unit 313, and a hammer acceleration acquisition unit 314.
  • the terminal device acceleration acquisition unit 313 acquires data detected by the acceleration sensor 38 built in the terminal device 30 that detects the movement of the worker hm.
  • the hammer acceleration acquisition unit 314 acquires detection data of the acceleration and acceleration direction (tilt) of the test hammer 10 detected by the acceleration sensor 13 built in the test hammer 10.
  • the recording control unit 312 controls the operation of recording (recording) the sound data of the sound collected by the sound collecting unit 11 in the recording unit 34.
  • the recording control unit 312 determines whether to record based on the data acquired by the terminal device acceleration acquisition unit 313 and the data acquired by the hammer acceleration acquisition unit 314.
  • the hit sound determination unit 311 evaluates the frequency characteristic of the hit sound signal based on the detection data (acceleration and acceleration direction data) detected by the acceleration sensor 13 and determines whether or not the hit sound. Further, the hitting sound determination unit 311 analyzes the result of the hitting sound determination based on the learning data accumulated in the recording unit 34 (hitting sound analysis: OK / NG is determined). In the sound analysis, the sound determination unit 311 may use a learned model that has been machine-learned using learning data.
  • the processor 31 stores the result of the sound analysis and the sound signal data in the recording unit 34 in order to use it as learning data.
  • the learning data may include parameters (physical quantities) such as temperature and humidity detected by the sensor 39 during hitting and data determined to affect the hitting sound, in addition to the result of the hitting sound analysis and the hitting signal data. Good.
  • the processor 31 transmits the learning data to the cloud server 50 via the communication unit 36 and the network NW.
  • the near field communication unit 32 performs near field communication with the test hammer 10 and receives measurement data from the test hammer 10.
  • the microphone 33 is attached to the helmet me of the worker hm.
  • the microphone 33 may be attached to a site such as a shoulder or chest of work clothes.
  • the microphone 33 is a reference microphone used for noise cancellation that cancels wind noise and ambient noise included in the sound collected by the sound collection unit 11.
  • the microphone 33 may be used as a microphone that picks up the sound of the test hammer 10.
  • the microphone 33 may be a single microphone or a microphone array that forms a directivity direction in a predetermined direction and can collect sound in the directivity direction. In a second embodiment to be described later, a case where it is used as a microphone array is shown.
  • the recording unit 34 is a storage having a large-capacity storage medium capable of recording a lot of sound signal data.
  • the recording unit 34 has a hitting sound database (DB) 34z in which characteristics of many hitting signal data are registered.
  • the memory 35 is a storage medium such as a ROM or a RAM.
  • the communication unit 36 is connected to the network NW by wire or wireless, and can perform data communication with the cloud server 50.
  • the touch panel 37 has a display unit and an input unit, and functions as a user interface (UI) for the worker hm.
  • the acceleration sensor 38 is disposed inside the terminal device 30 possessed by the worker hm, and detects the movement of the worker hm.
  • the sensor 39 detects physical quantities such as temperature and humidity.
  • the battery 40 is a power source for the terminal device 30 and is a secondary battery such as a lithium ion battery.
  • the button 41 is a hard button that can be pressed by the operator hm, and includes a hammering test start button, a hammering test end button, and the like.
  • the GPS receiver 42 receives a GPS signal from a GPS satellite and acquires position data (latitude, longitude, altitude).
  • the cloud server 50 includes a processor 51, a communication unit 52, a memory 53, a storage 54, and an input / output interface (I / F) 55.
  • the communication unit 52 is connected to the network NW by wire or wireless and can perform data communication with the terminal device 30.
  • the memory 53 is a storage medium such as a ROM or a RAM.
  • the storage 54 has a large-capacity storage medium capable of recording a large amount of data.
  • An input device 56 and a monitor 57 are connected to the input / output I / F 55.
  • the input device 56 accepts various operations related to the hammering test.
  • the monitor 57 displays various types of information related to the hammering test.
  • the processor 51 When the processor 51 receives data such as acceleration (velocity) and acceleration direction (tilt) data of the acceleration sensor 13, sounding signal data, and sounding analysis results from the terminal device 30 via the communication unit 52, the processor 51 stores the data. 54.
  • the processor 51 performs machine learning using the above data as learning data, and generates a learned model in the storage 54.
  • the processor 51 may provide the learned model to the terminal device 30, or uses the learned model to determine whether or not the sound is hit and to perform a sound analysis according to a request from the terminal device 30. You may go.
  • a concrete structure such as a pier that supports a highway or a bridge is diagnosed as an inspection object. If there is an internal defect (crack) in a concrete structure, it can be diagnosed by performing a hammering test.
  • the worker hm instructs the terminal device 30 to start before starting the hammering inspection, that is, before hitting the inspection object with the test hammer 10.
  • This instruction may be performed when the worker hm speaks “start sounding test” in a voice and the microphone 33 picks up the sound. Alternatively, it may be performed by the operator hm pressing an examination start button included in the button 41 of the terminal device 30.
  • the terminal device 30 notifies the test hammer 10 via the short-range wireless communication unit 32 when there is an instruction to start an inspection.
  • the short-range wireless communication unit 12 receives this instruction, the sound collection unit 11 performs a sound collection operation for a certain period (for example, 1 minute).
  • the instructed timing ts (see FIG. 6) is a starting point of a sound collection period that is performed for a certain period.
  • FIG. 2 is a flowchart showing a hammering test procedure of the terminal device 30.
  • the processor 31 displays the previous hammering test result (yellow mark mk in FIG. 13) on the touch panel 37.
  • the processor 31 may provide voice guidance of the result of the previous sounding test using the speaker 44.
  • the terminal device 30 performs the measurement data recorded in time series. A marker is added so that the event time can be known. When not in the constant recording mode, the terminal device 30 does not need to add a marker, and the processes of steps S2, S4, and S6 described later may be omitted.
  • the processor 31 of the terminal device 30 performs a movement stop detection process for detecting the movement stop of the worker hm based on the detection data output from the acceleration sensor 38 (S1).
  • the processor 31 gives an inspection start marker mks (see FIG. 6) indicating the inspection start time (S2).
  • the inspection start marker mks represents the start of recording.
  • the processor 31 performs a hitting detection process for detecting that the test target is hit by the test hammer 10 (S3). Details of the sound detection processing will be described later. When the hitting sound is detected, the processor 31 gives the hitting marker mkd (S4). The processor 31 performs a movement start detection process for detecting the movement start of the worker hm based on the detection data output from the acceleration sensor 38 (S5).
  • the processor 31 assigns an inspection end marker mke indicating the inspection end time (S6). At this time, the processor 31 may notify the position where the speaker 44 strikes next and the sound leakage.
  • the processor 31 determines whether or not there is a trigger for stopping the hammering test (S7).
  • the trigger for stopping the hammering test is, for example, that the worker hm presses the hammering stop button included in the button 41. Alternatively, the worker hm may emit a sound indicating the completion of the inspection toward the microphone 33. If there is no trigger for stopping the hammering test, the processor 31 returns to the process of step S1. On the other hand, when there is a trigger for stopping the hammering test, this process is terminated as it is.
  • a period from when the inspection start marker mks is assigned at step S2 to when the inspection end marker mke is assigned at step S6 is a recording period (see FIG. 6).
  • FIG. 3 is a flowchart showing the movement stop detection procedure in step S1.
  • the processor 31 determines whether or not the absolute value of the acceleration detected by the acceleration sensor 38 within a predetermined time is equal to or greater than the threshold value N1 (S11).
  • the predetermined time is, for example, the time required to perform one hit sound test.
  • the absolute value of the worker's acceleration tends to show a small value that fluctuates during movement or stop, and a large value at the moment from movement to stop or from the stop state to movement. Therefore, in FIG. 3, when the value of the absolute value of the acceleration is less than the threshold value N1, the processor 31 determines that the worker hm is moving and repeats the process of step S11.
  • the processor 31 determines that it is the moment when the worker hm stops and detects the movement stop (S12). This movement stop may be displayed on the touch panel 37 or transmitted to the cloud server 50. Thereafter, the processor 31 ends this process and returns to the original process. In the determination process in step S11, determination including the direction of acceleration may be performed instead of using the absolute value of acceleration.
  • FIG. 4 is a flowchart showing the hammering detection procedure in step S3.
  • the processor 31 requests the test hammer 10 for acceleration data detected by the acceleration sensor 13 via the short-range wireless communication unit 32.
  • the short-range wireless communication unit 12 of the test hammer 10 transmits acceleration data detected by the acceleration sensor 13 to the terminal device 30 at short time intervals.
  • the processor 31 receives acceleration data from the test hammer 10 (S21).
  • the processor 31 acquires acceleration (for example, peak acceleration) and acceleration direction (inclination of the hammer head 10z) included in the received acceleration data.
  • the processor 31 determines whether or not the acceleration of the hammer head 10z in the vertical plus direction with respect to the sounding surface of the inspection object is equal to or greater than the threshold value N2 (S22).
  • the vertical plus direction is a direction (approach direction) in which the hammer head approaches vertically to the sound-struck surface.
  • the threshold value N2 is set to a value for determining whether the hammer head 10z has a sufficient hitting speed (a value suitable for a start timing for acquiring a hitting sound signal).
  • the processor 31 When the acceleration of the hammer head 10z in the vertical plus direction is less than the threshold value N2, the processor 31 returns to the process of step S21 and urges the test hammer 10 to strike again, assuming that the hammer is not hit correctly by the test hammer 10.
  • step S22 when the acceleration of the hammer head 10z in the vertical plus direction is greater than or equal to the threshold value N2 with respect to the sounding surface of the inspection object, the processor 31 thereafter performs the following operation on the sounding surface of the inspection object. It is determined whether or not the acceleration of the hammer head 10z in the vertical minus direction is greater than or equal to a threshold value N3 (S23). At the moment when the hammer head 10z hits the sounding surface of the object to be inspected, the speed of the hammer head 10z becomes 0, so the acceleration of the hammer head 10z is reversed and has a large negative value.
  • the vertical minus direction is a direction (separation direction) in which the hammer head is separated vertically with respect to the sound striking surface.
  • the threshold value N3 is set to a value suitable for the end timing for acquiring the hitting sound signal. For example, a timing at which a certain time (a period required for the sound signal to attenuate) is added after the acceleration of the hammerhead 10z in the vertical minus direction becomes equal to or greater than the threshold value N3 may be set as the sound signal end timing. Alternatively, a timing obtained by adding a certain time (a period required for the sound signal to attenuate) from the time when the sound marker mkd is given may be set as the sound signal end timing.
  • the processor 31 repeats the process of step S23 on the assumption that the test hammer 10 has not been hit in the middle of hitting.
  • the processor 31 finishes hitting with the test hammer 10 and acquires a hitting signal. Thereafter, the processor 31 ends this process and returns to the original process.
  • the sound collection unit 11 picks up the hitting sound emitted from the hitting surface of the inspection object. As shown in the waveform g1 of the sound signal of FIG. 6, the sound signal collected by the sound collecting unit 11 suddenly increases after a short time from the moment of hitting and then gradually decreases. .
  • the processor 31 collects sound by the sound collection unit 11 based on the detection data (measured value) of the acceleration (speed) and acceleration direction (tilt) of the test hammer 10 detected by the acceleration sensor 13.
  • the sound signal data is extracted from the sound signal data.
  • the processor 31 adds the value 1 to the hit count and counts it.
  • the extracted sound signal data is recorded in the recording unit 34 by the processor 31 and also transmitted to the cloud server 50.
  • the OK / NG of how to strike the sound is determined from the acceleration value detected by the acceleration sensor 13, but the operator hm determines the OK / NG of how to tap the sound and the terminal device 30 may be input.
  • the operator hm may perform an operation of using a switch included in the button 41 of the terminal device 30 and setting the switch to OK by pressing the switch twice and setting NG by pressing the switch once.
  • the switch may be provided in the grip portion 10y of the test hammer 10.
  • the sound collection unit 11 may collect the sound data “OK” and “NG” generated by the worker hm.
  • OK / NG of how to strike the sound may be determined based on the length of time that the worker hm stays at the same place and repairs.
  • the number of times the worker hm is hitting with the test hammer 10 may be input to determine OK / NG of how to hit the hitting sound.
  • the determination of how to hit the hitting sound by the worker hm may be transmitted to the cloud server 50 as learning data together with the hitting signal data and the detection data of the acceleration sensor.
  • the processor 31 may display a message such as “Please tap again” on the touch panel 37 and prompt the worker hm to hit the test hammer again.
  • FIG. 5 is a flowchart showing the movement start detection procedure in step S5.
  • the processor 31 determines whether or not the absolute value of the acceleration detected by the acceleration sensor 38 within a predetermined time is equal to or greater than the threshold value N4 (S31).
  • the predetermined time is set to, for example, a time required for performing one hit sound test.
  • the absolute value of the worker's acceleration tends to show a small value that fluctuates during movement or stop, and a large value at the moment from movement to stop or from the stop state to movement. Therefore, in FIG. 5, when the absolute value of the acceleration is detected to be less than the threshold value N4, the processor 31 repeats the process of step S31, assuming that the worker hm has stopped.
  • the processor 31 determines that the worker hm has started walking and detects the start of movement (S32). This movement start may be displayed on the touch panel 37 or transmitted to the cloud server 50. In the determination process in step S31, determination including the direction of acceleration may be performed instead of using the absolute value of acceleration. Thereafter, the processor 31 ends this process and returns to the original process.
  • the stoppage of movement and the start of movement are determined using the acceleration detected by the acceleration sensor.
  • a positioning signal can be received from a GPS satellite, position data (latitude, longitude, altitude) obtained by a GPS receiver. Based on the above, the movement stop and movement start may be determined.
  • FIG. 6 is a timing chart showing changes in the sound signal. In FIG. 6, it is assumed that the worker hm strikes an inspection object three times with the test hammer 10 and the sound collecting unit 11 collects these hit sounds.
  • the sound hit inspection starts at timing ts.
  • the sound collection unit 11 starts sound collection from the timing ts and continues sound collection for a certain period (for example, 1 minute).
  • the acceleration of the acceleration sensor 13 becomes equal to or greater than the threshold value N2.
  • the processor 31 starts an operation of recording the sound signal data of the sound picked up by the sound pickup unit 11 in the recording unit 34.
  • the hitting signal suddenly increases after a short time from the moment of hitting, and then gradually decreases.
  • the processor 31 ends the operation of recording the hitting sound signal data of the hitting sound collected by the sound pickup unit 11 in the recording unit 34 when a predetermined time elapses from the timing tr and reaches the timing tf.
  • This fixed period (timing ts to timing tf) is a recording period required until the sound signal is sufficiently attenuated, and is, for example, 3 seconds.
  • the processor 31 repeats the operation of starting the recording operation at the timing tr and ending the recording operation at the timing tf.
  • timing ts to timing tf the sound data at the moment of sounding
  • the processor 31 notifies the worker hm or performs the inspection start operation without notifying the worker hm, You can start recording.
  • Japanese Patent Application Laid-Open No. 2010-271116 discloses a technology in which a hammer is hit with a structure, the sound of the hit is measured with a microphone, and a computer diagnoses the state of the structure.
  • the hammer has a microphone in the outer part and incorporates an accelerometer.
  • the computer diagnoses the soundness of the structure based on the hitting signal measured by the microphone and the velocity signal obtained from the striking force measured by the accelerometer.
  • the hitting signal data when the operator hits the inspection target with a hammer and the information on the position where the inspection target is hit are registered in association with each other, and the inspection target exists over a wide area.
  • An example of a percussion inspection terminal and percussion inspection data registration method for supporting proper inspection management of an object will be described.
  • the sound collection unit 11 of the test hammer 10 is a microphone array.
  • the sound collection unit 11 of the test hammer 10 may be a single microphone, and the microphone 33 of the terminal device 30 (the microphone 33 attached to the helmet me of the worker hm) may be a microphone array.
  • the microphone array is a microphone that forms directivity in a predetermined direction and can pick up sound in the directivity direction, and includes a plurality of (for example, eight) microphones, a plurality of delay devices, and an adder.
  • the microphone array applies the delay time corresponding to the arrival time difference in each microphone to the sound data of the sound collected by each microphone, aligns the phases of all sound waves, and then performs delay processing in the adder. Add later sound data.
  • the microphone array detects sound data in which directivity is formed in a predetermined direction by changing the delay time set in the delay device, and extracts and outputs sound data in the directivity direction.
  • the plurality of delay devices and adders may be incorporated in the processor 31 instead of the microphone array. In this case, the processor 31 extracts sound data in the directivity direction using sound data collected by a plurality of microphones.
  • the processor 31 estimates the sound source direction based on the sound data in the directivity direction collected by the microphone array.
  • the processor 31 determines that the sound is sounding. Further, the processor 31 may instruct the microphone array to form directivity in the direction of the sound source of the first hit, and may acquire the second and subsequent hits.
  • FIG. 7 is a flowchart showing a hammering test procedure in the second embodiment.
  • the processor 31 of the terminal device 30 acquires the result data of the previous sounding test (S51).
  • the processor 31 receives the previous sounding test result data from the cloud server 50 via the communication unit 36 and the network NW.
  • the communication unit 36 communicates with the communication unit 52 of the cloud server 50 via the network NW, and receives the result data of the previous sounding test accumulated in the storage 54.
  • the communication unit 36 stores the received result data of the previous hammering test in the recording unit 34. Note that when the result data of the previous sounding test is stored in the recording unit 34, the processor 31 receives the result data of the previous sounding test stored in the recording unit 34 without being received from the cloud server 50. Is read.
  • the processor 31 displays the sound test screen GM1 (see FIG. 13) on the touch panel 37 (S52).
  • This sound hit inspection screen GM1 is an initial screen and includes a determination m2 of the previous inspection result.
  • the processor 31 determines whether or not the user has pressed the start button bn1 on the touch panel 37 and has performed an operation for starting the hammering test (S53). When the operation for starting the hitting test is not performed, the processor 31 ends this process.
  • step S53 the processor 31 performs the inspection main process (S54). In this inspection main process, the main operation of the hammering inspection is performed.
  • the processor 31 determines whether or not the user has pressed the interrupt button bn3 (see FIG. 14) on the touch panel 37 and has performed an operation to interrupt the hammering test (S55). When an operation for interrupting the hammering test is performed, the processor 31 ends this process.
  • the processor 31 determines whether or not the hammering test is performed a predetermined number of times and the hammering test is ended (S56).
  • the number of hitting inspections is set in advance by the worker hm and stored in the memory 35.
  • the processor 31 counts the number of hammering tests.
  • the specified number of times is the number of times necessary for accurately performing the result of the hammering test, and is, for example, 3 times, 5 times, or the like. Note that the end of the hammering test may be performed by pressing the end button (not shown) displayed on the touch panel 37 by the user regardless of the number of hammering tests.
  • the end button is one of the buttons that are expanded by, for example, pressing the menu button bn2.
  • FIG. 8 is a flowchart showing the inspection main processing procedure in step S54.
  • the processor 31 performs a sound detection process for detecting a sound (S61).
  • the processor 31 determines whether or not a hitting sound is detected as a result of the hitting detection (S62). If no hitting sound is detected, the processor 31 returns to the process of step S61.
  • the processor 31 performs a hitting determination process (S63).
  • the processor 31 displays the sound test screen GM1 (see FIG. 14) including the sound determination result on the touch panel 37 (S64).
  • the processor 31 performs a sounding position detection process for detecting the position (latitude, longitude, altitude) at which the sounding test was performed (S65).
  • the processor 31 performs a data transmission determination process for determining whether or not to transmit the hitting signal data, the hitting determination result data, and the hitting position data (S66).
  • data including the hitting signal data, hitting determination result data, and hitting position data is referred to as hitting test data.
  • the processor 31 determines whether or not to transmit the hammering test data as a result of the data transmission determination (S67). When not transmitting the hammering test data, the processor 31 returns to the process of step S61. On the other hand, when transmitting the hammering test data, the hammering test data is transmitted to the cloud server 50 (S68).
  • the communication unit 36 communicates with the communication unit 52 of the cloud server 50 via the network NW, and transmits sound hit inspection data.
  • the processor 51 of the cloud server 50 stores the sound test data received by the communication unit 52 in the storage 54.
  • FIG. 9 is a flowchart showing the hammering detection procedure in step S61.
  • the processor 31 confirms sound data transmitted from the test hammer 10 via the short-range wireless communication unit 32 (S71). In the test hammer 10, sound is collected by the sound collection unit 11.
  • the short-range wireless communication unit 12 of the test hammer 10 communicates with the short-range wireless communication unit 32 of the terminal device 30 and transmits sound data of the sound collected by the sound collection unit 11 to the short-range wireless communication unit 32. .
  • the processor 31 of the terminal device 30 receives sound data via the short-range wireless communication unit 32.
  • the short-range wireless communication unit 12 of the test hammer 10 transmits the detection data of the acceleration detected by the acceleration sensor 13 in addition to the sound data of the sound collected by the sound collection unit 11. Therefore, in step S ⁇ b> 71, the processor 31 of the terminal device 30 also acquires acceleration detection data by the acceleration sensor 13.
  • the processor 31 determines whether or not the volume (sound pressure level) of the sound collected by the sound collection unit 11 is equal to or higher than the threshold N5 based on the sound data (S72). When the sound volume is less than the threshold value N5, the processor 31 determines that there is no hitting sound (S76). Thereafter, the processor 31 ends this process and returns to the original process.
  • the processor 31 aims at the sound data collected by the microphone 33 or the sound collection unit 11, that is, the direction (directivity direction) in which the sound collected by the microphone array is emitted. It is determined whether or not the sound is a direction sound (S73).
  • the processor 31 determines that the direction of the sound collected by the microphone array is from the position of the grip unit 10y to which the sound collection unit 11 is attached toward the striking surface of the hammer head 10z. Check if it is.
  • the processor 31 confirms whether the direction of the sound collected by the microphone array is a direction from the microphone 33 attached to the helmet me toward the strike surface of the hammer head 10z. To do. If the sound is not in the target direction, the processor 31 determines that there is no sound in step S76. Thereafter, the processor 31 ends this process and returns to the original process.
  • the processor 31 determines whether or not the likelihood of sound hitting that represents the sound hitting sound of the sound picked up by the sound pickup unit 11 is greater than or equal to the threshold N6. (S74).
  • the likelihood of the hitting sound is obtained by using the hitting signal data stored in the recording unit 34 by the processor 31 as learning data. For example, the processor 31 fetches the learned model of the hitting signal data from the cloud server 50 in advance into the memory 35, inputs the collected sound data, and acquires the likelihood of the hitting sound as its output. Good.
  • step S74 the processor 31 determines that there is no hitting sound in step S76. In this case, the processor 31 displays a message such as “Please tap again” on the touch panel 37, and prompts the worker hm to hit with the test hammer again. Thereafter, the processor 31 ends this process and returns to the original process. On the other hand, when the likelihood of the hitting sound is greater than or equal to the threshold value N6, the processor 31 determines that there is a hitting sound (S75). Thereafter, the processor 31 ends this process and returns to the original process.
  • FIG. 10 is a flowchart showing the sound hit determination procedure in step S63. If the processor 31 determines that there is a hitting sound in step S75, the processor 31 inputs the hitting signal data picked up by the sound pickup unit 11 (S81), and performs a feature extraction process for extracting features of the hitting signal data (S81). S82). In the feature extraction processing, the processor 31 performs general (known) such as normalization of sound volume (sound pressure level), Fourier transform, Mel frequency cepstrum coefficient (Mel-Frequency Cepstrum Coefficients), noise removal, etc. Perform signal processing.
  • general known
  • the processor 31 performs a matching process for determining whether the extracted feature matches the feature of the hitting signal data registered in the hitting sound database (DB) 34z stored in the recording unit 34 (S83). In this matching process, the processor 31 determines that the sounding test is normal (OK) when the extracted feature matches the feature of the registered sounding signal data. On the other hand, when the extracted feature and the feature of the registered hitting signal data do not match, the processor 31 determines that the hitting test is OK.
  • the processor 31 determines whether the sounding test is normal (OK) or abnormal (NG), and stores the sounding determination result in the recording unit 34 (S84). The processor 31 determines whether or not the number of sound hit determination results is equal to or greater than the threshold value N7 (S85). When the number of hitting determination results is less than the threshold value N7, the processor 31 ends this processing as it is and returns to the original processing.
  • the processor 31 updates the hitting test screen GM1 (see FIG. 14) displayed on the touch panel 37 based on the hitting determination result (see FIG. 14). S86). The processor 31 initializes the number of sound hit determination results after updating the sound hit inspection screen (S87). Thereafter, the processor 31 ends this process and returns to the original process.
  • FIG. 11 is a flowchart showing the hitting position detection procedure in step S65.
  • the processor 31 acquires the current position information (latitude, longitude, altitude) measured based on the GPS signal received by the GPS receiver 42 (S91). Based on the previously acquired position information and elapsed time, it is determined whether or not the position information acquired this time is appropriate (S92). That is, when the worker hm inspects a plurality of sounding locations, the time required for the sounding inspection at one location and the time required to move to the next sounding location are generally grasped.
  • the processor 31 moves to the next positioning coordinate in a time that is too short. Therefore, it is determined that the positioning coordinates are wrong. Therefore, in such a case, the processor 31 corrects the current position.
  • step S92 If it is determined in step S92 that the position information acquired this time is appropriate, the processor 31 ends this process and returns to the original process. On the other hand, when it is determined in step S92 that the position information acquired this time is not appropriate, the processor 31 performs current position correction processing for correcting the current position (S93). In this current position correction process, the processor 31 may correct the current position using, for example, the previous positioning coordinates and the current positioning coordinates. Further, the current position may be corrected from the variation of the latest five positioning coordinates. For example, if the four positioning coordinates of the last five times are substantially the same and the remaining one is different, the processor 31 omits one different current position and calculates the current position from the average of the substantially the same four positioning coordinates. You may ask for. Thereafter, the processor 31 ends this process and returns to the original process.
  • FIG. 12 is a flowchart showing the data transmission determination procedure in step S66.
  • the processor 31 determines whether or not the sound test screen GM1 has been updated as a result of the sound determination process (S101). If the sound test screen GM1 has not been updated, the processor 31 ends this processing as it is and returns to the original processing.
  • the processor 31 determines whether or not the communication unit 36 is in an environment where the network NW can be used (S102). If the network NW is not in an environment where the network NW can be used, the processor 31 stores the current sounding signal data, sounding determination result data, and sounding position data, which cannot be transmitted, in the recording unit 34 (S104). Thereafter, the processor 31 ends this process and returns to the original process.
  • the processor 31 transmits the hitting test data (including hitting signal data, hitting determination result data, and hitting position data) to the cloud server 50. (S103).
  • the processor 31 transmits the sound signal data for a plurality of times, instead of the sound signal data for a single time.
  • the hitting sound within a predetermined time for example, about 10 to 30 seconds
  • the hitting sound for a predetermined number of times for example, five times
  • the communication frequency can be suppressed.
  • the load of the transmission processing of the terminal device 30 is reduced, which leads to suppression of network traffic.
  • the processor 31 also transmits sound hit inspection data that could not be transmitted in the past.
  • the data transmitted to the cloud server 50 may include an OK / NG determination of the worker hm.
  • the transmitted data may be audio data such as “OK” or “abnormal” that the worker hm pronounces.
  • the worker hm presses a determination result input button included in the button 41 of the terminal device 30 and inputs the audio data through the microphone 33.
  • the processor 31 may perform voice recognition based on the voice data and acquire OK or abnormality content as text information. When there is an abnormality, for example, the movement stop time is longer than usual. This is considered to require time for repairs performed when there is an abnormality.
  • the processor 31 associates each sound hit determination result with the sound signal data as learning data, and Send to server 50.
  • the hit sound determination result includes, for example, OK near NG, middle of NG and OK, discard of sound that is not clearly hit sound, and the like. Further, the sound hit determination result includes the determination result of the worker hm.
  • the processor 31 discards the transmission data. Thereby, useless transmission can be omitted. Further, when the sound receiving position is moved by the GPS receiver 42 until one set of sound signal data is transmitted, the processor 31 instructs the worker hm to redo the sound. Alternatively, the position coordinates by the GPS receiver 42 may be corrected. The correction of the position coordinates by the GPS receiver 42 is, for example, measuring the passage of seconds since the registration of the previous hammering test, calculating the moving distance by multiplying the walking speed by the number of seconds, and taking this moving distance into account. May be performed.
  • the position information of the entrance of the tunnel is acquired by the position coordinates by the GPS receiver 42.
  • the camera 43 of the terminal device 30 always images the inside of the tunnel, and when a point whose distance is known in advance from the tunnel entrance is reflected in the captured image, the position Based on the information, the position coordinate by the GPS receiver 42 may be corrected, and the position where the worker hm performs the hammering test may be estimated. Further, when the position coordinates of the point in the tunnel are registered, the position may be estimated as the position where the worker hm performs the sound hit inspection.
  • the communication unit 36 of the terminal device 30 communicates with the communication unit 52 of the cloud server 50 via the network NW and transmits the data. Thereafter, the processor 31 ends this process and returns to the original process.
  • the processor 51 of the cloud server 50 accumulates the data received by the communication unit 52 in the storage 54.
  • the processor 51 performs machine learning using the data stored in the storage 54 as learning data, and generates a learned model necessary for sound hit determination by artificial intelligence (AI).
  • AI artificial intelligence
  • the processor 51 of the cloud server 50 uses the generated learned model and outputs the sound hit determination result for the input sound signal data. May be.
  • FIG. 13 is a diagram showing a hammering test screen GM1 displayed on the touch panel 37 of the terminal device 30.
  • an image GZ1 including the previous sounding position, a status m1, a determination m2 of the previous inspection result, a start button bn1, and a menu button bn2 are displayed.
  • the image GZ1 may be an image captured by a camera or an illustration map on which a map is drawn.
  • the status m1 is blank when the inspection is performed for the first time. Further, during the examination, the display of the status m1 is updated as shown in FIG. In FIG.
  • the status m ⁇ b> 1 indicates that the test result of the current hammering test and “OK” are displayed.
  • the current position, the previous inspection result, the current inspection result, and the mark mk indicating that the number of times has not been reached are drawn superimposed on the map cz.
  • the map cz is a map including a road that is an inspection object, and includes a road surface on the road that is the inspection object.
  • the mark mk for example, the mark mk representing the current position represents a red (white in the figure) star shape. Result of this sound hit inspection:
  • the mark mk representing OK represents a blue (black in the figure) round shape.
  • NG and the mark mk representing after repair represent a triangle of gray color (indicated by a halftone dot in the figure).
  • the result of the previous hammering test The mark mk representing OK represents a yellow (white in the figure) round shape.
  • Result of previous sounding inspection Mark mk indicating NG and after repair represents a yellow triangle.
  • the mark mk indicating that the number of hits has not been reached is a “not yet” character mark.
  • the worker hm can easily and visually confirm on the touch panel or the like that it has been determined that there has been an abnormality in the inspection object during the past hammering inspection and the location of the hammering inspection performed in the past.
  • the sound test screen GM1 displays the sound test result and the sound test position in association with each other on the map cz. Therefore, when the worker hm performs a hammering test, it is easy to grasp the inspection status, and convenience is improved.
  • the image GZ1 displayed on the sound test screen GM1 may transition in conjunction with the current position measured by the GPS receiver 42. Thereby, the operator hm can easily grasp the sounding inspection position near the current position during the inspection, and the operability is improved.
  • the sounding surface of the inspection object at the time of sounding that is imaged by the camera 43 may be displayed on the sounding inspection screen GM1.
  • a menu item developed by the menu button bn2 is selected.
  • the image picked up by the camera 43 may be an image (still image or moving image) at the moment of tapping, or may be a video that is always recorded.
  • image data of an image captured by the camera 43 may be transmitted to the cloud server 50.
  • FIG. 14 is a diagram showing a sound test screen GM1 displayed on the touch panel 37 of the terminal device 30 during the sound test.
  • “Inspection” was displayed in the status m1 before the sounding judgment result was obtained, but “OK”, “Insufficient number of inspections”,
  • the messages are updated to “Crack 80%”, “Cavity 60”, “OK (Crack 20%)”, and “Tap again”.
  • “OK” is displayed in the status m1 when there is a certain number of hits within a certain time from the start of the inspection, and as a result, 80% or more is OK.
  • “Insufficient number of inspections” is displayed in the status m1 when there is no sound hitting a predetermined number of times within a predetermined time from the start of inspection. “Please tap once more” is displayed in the status m1 when the ratio of OK to NG is almost half or when the sound signal data cannot be extracted due to disturbance sound and the correct judgment cannot be made. Is done.
  • the above status may be notified by voice instead of being guided on the screen.
  • the status may be displayed on a display worn by an operator in front of the eyes using AR (augmented reality) technology.
  • FIG. 15 is a diagram showing an inspection record screen GM2 and an inspection record graph gh displayed on the monitor 57 of the cloud server 50.
  • the processor 51 of the cloud server 50 based on the hitting determination result data and hitting position data transmitted from the terminal device 30 in step S103, the image GZ2 in which the current hitting test result is superimposed on the map cz2 by the mark mk2. Is generated.
  • the image GZ2 may be an image captured by a camera or an illustration map on which a map is drawn.
  • the processor 51 displays the generated image GZ2 on the monitor 57.
  • an image GZ2 in which the mark mk2 is superimposed on the result of the current hammering test on the map cz2 is displayed.
  • the mark mk2 which is superimposed on the map cz2, and represents the current sounding test result is a blue circle except for one place, indicating that the sounding test result is OK. In one place, a mark mk2 indicating that the current hammering test result is NG and that it is after repair is displayed as a gray triangle. Further, as a supplementary note, “2015/11/30 crack” and the date and cause of the NG sound test result are indicated.
  • the processor 51 creates an inspection record graph gh representing an inspection record history.
  • the vertical axis of the inspection record graph gh represents a value obtained by quantifying normal (OK) and abnormal (NG). The higher the value, the more normal, and the lower the value, the more abnormal.
  • the horizontal axis of the inspection record graph gh represents the inspection year.
  • This inspection record graph gh corresponds to the sounding position (mark mk2 displayed as a gray triangle) that was NG in the current sounding test displayed on the map cz2. Since it was NG in the hammering test of 2015/11/30, the numerical value indicated by the dotted line frame gp is a low numerical value.
  • the test hammer 10 to which the acceleration sensor 13 is attached and the terminal device 30 (mounted by the operator hm (user) holding the test hammer 10).
  • a tapping sound inspection terminal is communicably connected.
  • the sound inspection system 5 includes a microphone 33 provided in the sound collection unit 11 provided in the test hammer 10 or the terminal device 30.
  • the acceleration sensor 13 acquires measured values of the speed and inclination of the test hammer 10 when the test hammer 10 strikes the inspection object.
  • the terminal device 30 determines whether or not the worker hm has struck the test hammer 10 against the inspection object according to a predetermined standard based on the detection data (measurement values) of the speed and inclination of the test hammer 10 from the acceleration sensor 13. Determine.
  • the terminal device 30 records in the cloud server 50 (external device) the sound signal data collected by the sound collection unit 11 while being beaten according to a predetermined standard. Thereby, it is possible to appropriately determine whether or not the operator has correctly hit the inspection object using the test hammer, and to accurately extract the sound signal data when the operator hits the test object.
  • the terminal device 30 when it is determined that the terminal device 30 is not hit according to a predetermined standard, the terminal device 30 notifies the worker hm that the test object is hit again. Thus, since it is possible to notify the operator that the strike is performed again when the strike method is inappropriate, it is possible to record the sound signal data when the strike is performed with an appropriate strike method.
  • the terminal device 30 records learning data in which the sound signal data is associated with the measured values of the speed and inclination of the test hammer 10.
  • the learning data to be used for the AI determination processing as to whether or not the collected sound signal data includes the tapping sound signal data extracted when the tapping is performed according to a predetermined standard is used. Accumulation can be performed efficiently, and the reliability of the AI determination process can be improved.
  • the terminal device 30 includes a sensor 39 (first sensor) that measures at least one parameter of temperature and humidity.
  • the terminal device 30 records the parameters measured by the sensor 39 while being beaten according to a predetermined standard in the learning data.
  • the terminal device 30 generates sound signal data collected by the sound collection unit 11 based on the detection data (measured value) of the acceleration (speed) and acceleration direction (tilt) of the test hammer 10 from the acceleration sensor 13.
  • the sound signal data recorded in the cloud server 50 is extracted from the inside.
  • the terminal device 30 further includes an acceleration sensor 38 (second sensor) that detects the movement state of the worker hm. Thereby, since the terminal device 30 can detect the stop of the worker himself, when the test hammer is moved when it is not in a stopped state (for example, the worker is moving), recording of the sound signal data is erroneously started. Can be suppressed.
  • an acceleration sensor 38 second sensor
  • the terminal device 30 further includes a switch (input unit) included in the button 41 for inputting result information on how to hit the inspection object by the test hammer 10.
  • the terminal device 30 includes the result information in the learning data and records it in the cloud server 50.
  • the terminal device 30 can register the result of good / bad hitting based on the subjectivity of the worker hm in the learning data, so that the sound can be efficiently generated using the hitting signal data when the hitting is good.
  • the signal data can be analyzed (for example, whether or not a hit is made according to a predetermined standard).
  • the terminal device 30 in the first and second embodiments is attached by the worker hm holding the test hammer 10 and is connected to the cloud server 50 so as to be communicable.
  • the terminal device 30 is picked up by the microphone 33, the GPS receiver 42 (positioning unit) that acquires position information indicating the current position of the terminal device 30, and the microphone 33 while the test hammer 10 strikes the inspection object.
  • a processor 31 that generates sound inspection data in which the sound signal data and position information are associated with each other, and a communication unit 36 that transmits the generated sound inspection data to the cloud server 50 are provided.
  • the hammering signal data when the operator hits the inspection object using a hammer and the information on the position where the inspection object is hit are registered in association with each other, and the inspection object existing over a wide area is appropriately registered. Can support proper inspection management.
  • the processor 31 performs a determination process as to whether or not the sound data collected by the sound collection unit 11 is a hitting sound, and is based on the determination process in the position information of the terminal device 30 (in other words, the worker hm). Then, the result information indicating whether there is an abnormality in the inspection object hit with the test hammer 10 is determined.
  • the communication unit 36 transmits the determined result information to the cloud server 50 including the hitting test data.
  • the terminal device 30 determines when the worker hm strikes the inspection object with the test hammer 10 according to whether or not the sound data collected in the position information of the worker hm includes a hitting sound. The presence or absence of abnormality due to sound can be determined, and the result can be registered in the cloud server 50 or the like.
  • the processor 31 determines result information indicating the presence / absence of an abnormality of the inspection object struck by the test hammer 10 based on the voice of the worker hm in the position information collected by the sound collection unit 11.
  • the communication unit 36 transmits the determined result information to the cloud server 50 including the hitting test data.
  • the terminal device 30 can easily set the presence or absence of abnormality when the worker hm strikes the inspection object with the test hammer 10 with the voice of the worker hm, and can register the result in the cloud server 50 or the like.
  • the processor 31 displays a mark mk (first marker) indicating the determined result information in association with the position information on the touch panel 37 (display unit).
  • a mark mk first marker
  • the operator hm can easily and visually confirm the presence or absence of abnormality when the test object is hit with the test hammer 10 at the current position.
  • the processor 31 acquires the sound test data at the time of the past sound test from the cloud server 50 via the communication unit 36.
  • the processor 31 includes a mark mk (second marker) indicating that there is an abnormality and the past when the result information indicating that there is an abnormality in the inspection object is included in the sound inspection data at the time of the past sound inspection. Is displayed on the touch panel 37 in association with the position information at the time of the beating sound inspection. As a result, the worker hm can easily and visually confirm on the touch panel or the like that it has been determined that there has been an abnormality in the inspection object during the past hammering inspection and the location of the hammering inspection performed in the past. .
  • the processor 31 determines whether or not the number of times of hitting the inspection object at the current position is less than a predetermined number based on the hitting signal data picked up by the sound pickup unit 11.
  • the processor 31 displays a message indicating the determination result on the touch panel 37 according to the determination that the number of hits is less than the predetermined number.
  • the processor 31 uses the sound signal data collected by the sound collecting unit 11 during a predetermined period when the test hammer 10 has hit the test object a plurality of times as the sound signal data at the current position of the same terminal device 30. Generate sound inspection data. Thereby, the hitting signal data hit within a predetermined period (for example, within 30 seconds) from the start of hitting can be collectively registered in the cloud server or the like as hitting test data at the same place.
  • the processor 31 determines whether there is an abnormality in each inspection object when the test hammer 10 is struck multiple times within a predetermined period based on the voice of the worker hm in the position information collected by the sound collection unit 11.
  • the result information indicating is determined.
  • the communication unit 36 includes the result information of each determined hit as the hitting test data and transmits it to the cloud server 50.
  • the terminal device 30 can easily set the presence or absence of abnormality when the worker hm strikes the inspection object with a hammer a plurality of times within a predetermined period (for example, within 30 seconds) with the operator's voice.
  • the type of presence or absence of abnormalities can be finely classified and registered in a cloud server or the like.
  • the communication unit 36 transmits to the cloud server 50 the sound test data including the sound signal data collected by the sound collecting unit 11 during a predetermined period.
  • a predetermined period for example, 30 seconds
  • the hammering test data is transmitted to the cloud server or the like.
  • the traffic flowing through the network can be effectively reduced as compared with the case where transmission is always performed.
  • the hammering signal data when the worker hits the inspection object using the hammer and the information on the position where the inspection object is hit are registered in association with each other, and the inspection object existing over a wide area is registered. It is useful because it can support appropriate inspection management.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

打音検査システムでは、加速度センサが取り付けられ作業者が把持するテストハンマーと、作業者により装着される端末装置とが通信可能に接続される。端末装置は、マイクと、端末装置の現在位置を示す位置情報を取得するGPS受信器と、テストハンマーが検査対象物を叩く間にマイクにより収音される打音信号データと位置情報とを対応付けた打音検査データを生成するプロセッサと、生成された打音検査データをクラウドサーバに送信する通信部と、を備える。端末装置は、テストハンマーが検査対象物を叩く時の速度および傾きの検知データに基づいて、検査対象物が所定の基準に従って叩かれる間に、テストハンマーまたは端末装置に設けられた収音部により収音される打音信号データをクラウドサーバに記録する。

Description

打音検査端末、打音検査システムおよび打音検査データ登録方法
 本開示は、打音検査端末、打音検査システムおよび打音検査データ登録方法に関する。
 特許文献1には、検査対象物に対して行った打撃についての分析(例えば、打撃がレーザービームによって指し示された打撃地点に対して正確に行われたか否か、あるいは打撃の際の加力が所定の範囲内にあるものであったか否か)を判定することが開示されている。
 また、構造物(例えばコンクリート)の内部破壊(つまり、クラック等のひび割れ)の有無を調べる場合には、作業者がハンマーで構造物の表面を複数回叩き、その叩かれた時の反響音(以下、「打音」という)を耳で聴き、内部破壊が生じているか否かを判断している。
 これに対し、ハンマーで構造物に打撃を加え、その打音をマイクロホンで測定し、コンピュータが構造物の状態を診断する技術が特許文献2に開示されている。特許文献2では、ハンマーは、アウター部にマイクロホンを有し、加速度計を内蔵する。コンピュータは、マイクロホンによって測定された打音信号、および加速度計によって測定された打撃力から得られる速度信号を基に、構造物の健全性を診断する。
日本国特開2005-121571号公報 日本国特開2010-271116号公報
 本開示は、検査対象物をハンマーで叩いて行う打音検査において、広域にわたって存在する検査対象物の適切な検査管理を支援することを目的とする。
 さらに本開示は、作業者がハンマーを用いて検査対象物を適切に叩いたか否かを判定し、ハンマーで叩いた時の打音信号データを適切に抽出して、構造物の健全性(言い換えると、内部破壊の有無等)を正しく診断することを目的とする。
 本開示の打音検査端末は、ハンマーを把持するユーザにより装着され、外部装置と通信可能に接続される打音検査端末であって、収音部と、前記打音検査端末の現在位置を示す位置情報を取得する測位部と、前記ハンマーが検査対象物を叩く間に前記収音部により収音される打音信号データと前記位置情報とを対応付けた打音検査データを生成するプロセッサと、生成された前記打音検査データを前記外部装置に送信する通信部と、を備える。
 本開示の打音検査システムは、加速度センサが取り付けられたハンマーと前記ハンマーを把持するユーザにより装着される前記打音検査端末とが通信可能に接続される打音検査システムであって、前記ハンマーまたは前記打音検査端末に設けられた収音部を更に備え、前記加速度センサは、前記ハンマーが検査対象物を叩く時の前記ハンマーの速度および傾きの測定値を取得し、前記打音検査端末は、前記加速度センサからの前記ハンマーの速度および傾きの測定値に基づいて、前記ユーザが前記ハンマーを前記検査対象物に対して所定の基準に従って叩いたか否かを判定し、前記所定の基準に従って叩かれる間に前記収音部により収音される打音信号データを外部装置に記録する。
 また、本開示の打音検査データ登録方法は、ハンマーを把持するユーザにより装着され、外部装置と通信可能に接続される打音検査端末における打音検査データ登録方法であって、前記打音検査端末の現在位置を示す位置情報を取得するステップと、収音部により音を収音するステップと、前記ハンマーが検査対象物を叩く間に前記収音部により収音される打音信号データと前記位置情報とを対応付けた打音検査データを生成するステップと、生成された前記打音検査データを前記外部装置に送信するステップと、を有する。
 本開示によれば、作業者がハンマーを用いて検査対象物を叩いた時の打音信号データとその検査対象物を叩いた位置の情報とを対応付けて登録でき、広域にわたって存在する検査対象物の適切な検査管理を支援できる。
 さらに本開示によれば、作業者がハンマーを用いて検査対象物を適切に叩いたか否かを判定することができ、ハンマーで叩いた時の打音信号データを適切に抽出して、構造物の健全性(言い換えると、内部破壊の有無等)を正しく診断することができる。
打音検査システムの構成を示すブロック図 端末装置の打音検査手順を示すフローチャート ステップS1における移動停止検知手順を示すフローチャート ステップS3における打音検知手順を示すフローチャート ステップS5における移動開始検知手順を示すフローチャート 打音信号の変化を示すタイミングチャート 実施の形態2における打音検査手順を示すフローチャート ステップS54における検査メイン処理手順を示すフローチャート ステップS61における打音検知手順を示すフローチャート ステップS63における打音判定手順を示すフローチャート ステップS65における打音位置検出手順を示すフローチャート ステップS66におけるデータ送信判定手順を示すフローチャート 端末装置のタッチパネルに表示される打音検査画面を示す図 端末装置のタッチパネルに打音検査中に表示される打音検査画面を示す図 クラウドサーバのモニタに表示される検査記録画面および検査記録グラフを示す図
(実施の形態1)
 実施の形態1では、作業者がハンマーを用いて検査対象物を適切に叩いたか否かを判定し、ハンマーで叩いた時の打音信号データを適切に抽出できる打音検査端末、打音検査システムおよび打音検査データ登録方法の例を説明する。
 図1は、打音検査システム5の構成を示すブロック図である。打音検査システム5は、テストハンマー10と、端末装置30と、クラウドサーバ50と、を含む構成を有する。テストハンマー10と端末装置30は、近距離無線通信を介してデータ通信可能に接続される。端末装置30とクラウドサーバ50は、ネットワークNWを介してデータ通信可能に接続される。端末装置30は、携帯端末やタブレット端末である。
 テストハンマー10は、ハンマーヘッド10zおよびグリップ部10yを有する。打音検査時、作業者hmは、グリップ部10yを把持し、ハンマーヘッド10zで検査対象物を叩き、検査対象物の打音面に打撃力を加える。
 テストハンマー10は、収音部11、近距離無線通信部12、および加速度センサ13を有する。収音部11は、グリップ部10yの表面に取り付けられ、ハンマーヘッド10zの方向に指向性を有する単一のマイクである。なお、収音部11は、無指向性のマイクであってもよいし、所定の方向に指向方向を形成し、指向方向の音を収音可能なマイクアレイでもよい。収音部11は、ハンマーヘッド10zで検査対象物を叩いた時に発せられる打音を含む音を収音する。
 加速度センサ13は、ハンマーヘッド10zに内蔵され、ハンマーヘッド10zで検査対象物を叩く時の加速度および加速方向(ハンマーヘッド10zの打撃力および打撃方向)を検知し、検知データとして取得する。加速度センサ13は、加速度の値から得られる速度および傾きを検知データとして取得してもよい。加速度センサとして、例えばMEMS(Micro Electro Mechanical Systems)技術を用いて電子基板に搭載可能なものが挙げられる。加速度センサ13は、3軸(XYZ軸)方向の加速度を検知可能である。
 ハンマーヘッド10zが検査対象物を打撃する直前、加速度センサ13によって検知される、ハンマーヘッド10zの加速度は大きな値を示す。加速方向は検査対象物の打音面に対して垂直かつ接近方向である。
 ハンマーヘッド10zが検査対象物を叩いた直後、加速度センサ13によって検知される、ハンマーヘッド10zの加速度は最小値(マイナスの最大値)を示す。加速方向(減速方向)は、検査対象物の打音面に対して垂直かつ離間方向である。
 近距離無線通信部12は、端末装置30と近距離無線通信を行い、収音部11によって収音された音の音データ、および加速度センサ13で検知された検知データ(加速度および加速方向のデータ)を端末装置30に送信する。近距離無線通信は、例えば、Bluetooth(登録商標)で行われる。
 端末装置30は、作業者hmによって操作自在に所持される。端末装置30は、プロセッサ31、近距離無線通信部32、マイク33、記録部34、メモリ35、通信部36、タッチパネル37、加速度センサ38、センサ39、バッテリ40、ボタン41、GPS受信器42、カメラ43、およびスピーカ44を有する。
 プロセッサ31は、端末装置30の各部の動作を制御する。プロセッサ31は、打音判定部311、録音制御部312、端末装置加速度取得部313、およびハンマー加速度取得部314の各機能を有する。端末装置加速度取得部313は、作業者hmの移動を検知する、端末装置30に内蔵の加速度センサ38で検知されたデータを取得する。ハンマー加速度取得部314は、テストハンマー10に内蔵の加速度センサ13で検知された、テストハンマー10の加速度および加速方向(傾き)の検知データを取得する。
 録音制御部312は、収音部11で収音された音の音データを記録部34に記録する(録音する)動作を制御する。録音制御部312は、端末装置加速度取得部313によって取得されたデータ、およびハンマー加速度取得部314によって取得されたデータを基に、録音するか否かを判断する。
 打音判定部311は、加速度センサ13で検知された検知データ(加速度および加速方向のデータ)を基に、打音信号の周波数特性を評価し、打音か否かを判定する。また、打音判定部311は、記録部34に蓄積された学習データを基に、打音判定の結果を分析する(打音分析:OK/NGを判定)。この打音分析では、打音判定部311は、学習データを用いて機械学習された学習済みモデルを利用してもよい。
 また、プロセッサ31は、打音分析の結果および打音信号データを学習データとして利用するために、記録部34に蓄積する。学習データは、打音分析の結果および打音信号データの他、叩かれる間にセンサ39によって検知された、温度および湿度等のパラメータ(物理量)、打音に影響すると判断されるデータを含んでもよい。プロセッサ31は、上記学習データを、通信部36およびネットワークNWを介してクラウドサーバ50に送信する。
 近距離無線通信部32は、テストハンマー10と近距離無線通信を行い、テストハンマー10から計測データを受信する。
 マイク33は、作業者hmのヘルメットmeに装着される。なお、マイク33は、作業服の肩や胸等の部位に装着されてもよい。マイク33は、収音部11で収音される音に含まれる、風切り音や周囲のノイズ等を打ち消す、ノイズキャンセルに使用されるレファレンスマイクである。なお、マイク33は、テストハンマー10の打音を収音するマイクとして使用されてもよい。その場合、マイク33は、単一のマイクでもよいし、所定の方向に指向方向を形成し、指向方向の音を収音可能なマイクアレイでもよい。後述する実施の形態2では、マイクアレイとして使用される場合を示す。
 記録部34は、多くの打音信号データを記録可能な大容量の記憶媒体を有するストレージである。記録部34は。多くの打音信号データの特徴が登録された打音データベース(DB)34zを有する。メモリ35は、ROMやRAM等の記憶媒体である。通信部36は、有線あるいは無線でネットワークNWに接続され、クラウドサーバ50とデータ通信可能である。
 タッチパネル37は、表示部および入力部を有し、作業者hmに対するユーザインタフェース(UI)として機能する。加速度センサ38は、作業者hmに所持される端末装置30の内部に配置され、作業者hmの移動を検知する。センサ39は、温度および湿度等の物理量を検知する。バッテリ40は、端末装置30の電源であり、リチウムイオン電池等の二次電池である。ボタン41は、作業者hmが押下操作可能なハードボタンであり、打音検査開始ボタン、打音検査終了ボタン等を含む。GPS受信器42は、GPS衛星からGPS信号を受信し、位置データ(緯度、経度、高度)を取得する。
 カメラ43は、テストハンマー10によって叩かれる検査対象物の打音面を撮像し、また、検査位置等の周囲の環境の画像を撮像する。カメラ43によって撮像される画像は、静止画像および動画像のいずれも可能である。スピーカ44は、音声を出力する。例えば、スピーカ44は作業者hmに打音検査に関する情報を報知する。
 クラウドサーバ50は、プロセッサ51、通信部52、メモリ53、ストレージ54および入出力インターフェース(I/F)55を有する。通信部52は、有線あるいは無線でネットワークNWに接続され、端末装置30とデータ通信可能である。メモリ53は、ROMやRAM等の記憶媒体である。ストレージ54は、多くのデータを記録可能な大容量の記憶媒体を有する。入出力I/F55には、入力装置56およびモニタ57が接続される。入力装置56は、打音検査に関する各種の操作を受け付ける。モニタ57は、打音検査に関する各種情報を表示する。
 プロセッサ51は、通信部52を介して端末装置30から、加速度センサ13の加速度(速度)および加速方向(傾き)のデータ、打音信号データ、打音分析の結果等のデータを受信すると、ストレージ54に蓄積する。プロセッサ51は、上記データを学習データとして機械学習を行い、ストレージ54に学習済みモデルを生成する。プロセッサ51は、この学習済みモデルを端末装置30に提供してもよいし、この学習済みモデルを利用し、端末装置30からの要求に応じ、打音か否かの判定や、打音分析を行ってもよい。
 上記構成を有する打音検査システム5の動作を示す。
 例えば、高速道路や橋を支える橋脚等のコンクリート構造物を検査対象物として診断する場合を想定する。コンクリート構造物に内部欠陥(クラック)がある場合、打音検査を行うことでその診断が可能である。
 作業者hmは、打音検査を開始する前、つまり、テストハンマー10で検査対象物を叩く前に、端末装置30に開始を指示する。この指示は、作業者hmが声で「打音検査開始」と発声し、マイク33がこの音声を収音することで行われてもよい。また、作業者hmが端末装置30のボタン41に含まれる検査開始ボタンを押下することで行われてもよい。端末装置30は、検査開始の指示があると、近距離無線通信部32を介して、テストハンマー10に通知する。近距離無線通信部12がこの指示を受信すると、収音部11は一定期間(例えば1分間)収音動作を行う。この指示されたタイミングts(図6参照)は、一定期間行われる収音区間の開始点となる。
 図2は、端末装置30の打音検査手順を示すフローチャートである。打音検査の開始時、プロセッサ31は、タッチパネル37に前回の打音検査の結果(図13の黄色のマークmk)を表示する。なお、プロセッサ31は、前回の打音検査の結果をスピーカ44で音声案内してもよい。
 また、収音部11で収音された音の音データを記録部34に常時記録する、常時録音モードで打音検査を行う場合、端末装置30は、時系列に記録される測定データに対し、イベント時刻が分かるように、マーカを付与する。常時録音モードでない場合、端末装置30は、マーカを付与しなくてもよく、後述するステップS2、S4、S6の処理は省かれてもよい。
 端末装置30のプロセッサ31は、加速度センサ38から出力される検知データを基に、作業者hmの移動停止を検知する、移動停止検知処理を行う(S1)。作業者hmの移動停止が検知されると、プロセッサ31は、検査開始時刻を表す検査開始マーカmks(図6参照)を付与する(S2)。検査開始マーカmksは録音開始を表す。
 プロセッサ31は、テストハンマー10によって被検査対象が叩かれたことを検知する、打音検知処理を行う(S3)。打音検知処理の詳細については後述する。プロセッサ31は、打音が検知されると、打音マーカmkdを付与する(S4)。プロセッサ31は、加速度センサ38から出力される検知データを基に、作業者hmの移動開始を検知する、移動開始検知処理を行う(S5)。
 作業者hmの移動開始が検知されると、プロセッサ31は、検査終了時刻を表す検査終了マーカmkeを付与する(S6)。このとき、プロセッサ31は、スピーカ44で次に叩く位置や音声漏れを報知してもよい。
 プロセッサ31は、打音検査を停止させるトリガの有無を判別する(S7)。打音検査を停止させるトリガは、例えば、作業者hmがボタン41に含まれる打音停止ボタンを押下することである。また、作業者hmがマイク33に向かって検査終了の音声を発することでもよい。打音検査を停止させるトリガが無かった場合、プロセッサ31は、ステップS1の処理に戻る。一方、打音検査を停止させるトリガがあった場合、そのまま本処理を終了する。
 常時録音モードの場合、ステップS2で検査開始マーカmksが付与されてからステップS6で検査終了マーカmkeが付与されるまでの期間は、録音期間となる(図6参照)。
 図3は、ステップS1における移動停止検知手順を示すフローチャートである。プロセッサ31は、加速度センサ38によって所定時間内に検知される加速度の絶対値が閾値N1以上であるか否かを判別する(S11)。所定時間は、例えば打音検査を1箇所行うために要する時間である。作業者の加速度の絶対値は、移動中または停止中においては変動する小さな値を示し、一方、移動中から停止に至る瞬間または停止状態から移動に至る瞬間においては大きな値を示す傾向にある。従って、図3において、加速度の絶対値が閾値N1未満の値を検知した場合、プロセッサ31は、作業者hmが移動中であると判断し、ステップS11の処理を繰り返す。
 一方、加速度の絶対値が閾値N1以上の値を検知した場合、プロセッサ31は、作業者hmが停止した瞬間であると判断し、移動停止を検知する(S12)。この移動停止は、タッチパネル37に表示されてもよいし、クラウドサーバ50に送信されてよい。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。なお、ステップS11における判定処理では、加速度の絶対値を用いる代わりに、加速度の向きを含めた判定を行っても良い。
 図4は、ステップS3における打音検知手順を示すフローチャートである。プロセッサ31は、近距離無線通信部32を介して、テストハンマー10に対し、加速度センサ13によって検知される加速度のデータを要求する。テストハンマー10の近距離無線通信部12は、この要求に応じ、加速度センサ13によって検知される加速度のデータを短い時間間隔で端末装置30に送信する。
 プロセッサ31は、テストハンマー10からの加速度データを受信する(S21)。プロセッサ31は、受信した加速度のデータに含まれる、加速度(例えばピーク加速度)および加速方向(ハンマーヘッド10zの傾き)を取得する。プロセッサ31は、検査対象物の打音面に対し、垂直プラス方向となるハンマーヘッド10zの加速度が閾値N2以上であるか否かを判別する(S22)。垂直プラス方向は、打音面に対し、ハンマーヘッドが垂直に接近する方向(接近方向)である。ここでは、ハンマーヘッド10zが所定の基準に従って叩かれたか、即ち、ハンマーヘッド10zが検査対象物の打音面に正面方向から正しく叩かれているか否かが判定される。閾値N2は、ハンマーヘッド10zが叩く際の速度が十分であるかを判定するための値(打音の信号を取得する開始タイミングに適した値)に設定される。
 垂直プラス方向となるハンマーヘッド10zの加速度が閾値N2未満である場合、プロセッサ31は、テストハンマー10によって正しく叩かれていないとして、ステップS21の処理に戻り、再度、テストハンマー10による叩きを促す。
 また、ステップS22で、検査対象物の打音面に対し、垂直プラス方向となるハンマーヘッド10zの加速度が閾値N2以上である場合、プロセッサ31は、その後、検査対象物の打音面に対し、垂直マイナス方向となるハンマーヘッド10zの加速度が閾値N3以上であるか否かを判別する(S23)。ハンマーヘッド10zが検査対象物の打音面を叩いた瞬間、ハンマーヘッド10zの速度は値0となるので、ハンマーヘッド10zの加速度は、反転して大きなマイナス値である。垂直マイナス方向は、打音面に対し、ハンマーヘッドが垂直に離れる方向(離間方向)である。閾値N3は、打音の信号を取得する終了タイミングに適した値に設定される。例えば、垂直マイナス方向となるハンマーヘッド10zの加速度が閾値N3以上となってから一定時間(打音信号が減衰に要する期間)を加えたタイミングを打音信号の終了タイミングとしてもよい。また、打音マーカmkdが付与された時刻から一定時間(打音信号が減衰に要する期間)を加えたタイミングを打音信号の終了タイミングとしてもよい。
 垂直マイナス方向となるハンマーヘッド10zの加速度が閾値N3未満である場合、プロセッサ31は、テストハンマー10が叩いている途中で叩き終わっていないとして、ステップS23の処理を繰り返す。垂直マイナス方向となるハンマーヘッド10zの加速度が閾値N3以上になると、プロセッサ31は、テストハンマー10による叩きを終えて打音信号を取得する。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。
 テストハンマー10によって検査対象物の打音面が叩かれると、収音部11は、検査対象物の打音面から発せられる打音を収音する。収音部11によって収音される打音信号は、図6の打音信号の波形g1に示すように、叩いた瞬間から少しの時間を経て、急激に大きくなり、その後、漸次減少していく。
 このように、プロセッサ31は、加速度センサ13によって検知された、テストハンマー10の加速度(速度)および加速方向(傾き)の検知データ(測定値)に基づいて、収音部11によって収音される音信号データの中から、打音信号データを抽出する。プロセッサ31は、打音信号データを抽出できると、叩き回数に値1を加えて計数する。抽出された打音信号データは、プロセッサ31によって記録部34に記録されると共に、クラウドサーバ50にも送信される。
 なお、ここでは、加速度センサ13によって検知される加速度の値から、打音の叩き方のOK/NGを判断したが、作業者hmが打音の叩き方のOK/NGを判断して端末装置30に入力するようにしてもよい。例えば、端末装置30のボタン41に含まれるスイッチを用い、このスイッチの2回押しでOKとし、1回押しでNGとする操作を、作業者hmが行ってもよい。なお、スイッチは、テストハンマー10のグリップ部10yに設けられてもよい。また、作業者hmが発音する「OK」,「NG」の音声データを収音部11が収音してもよい。また、作業者hmが同一の箇所に留まって修理している時間の長短によって打音の叩き方のOK/NGを判断してもよい。また、作業者hmがテストハンマー10で叩いている回数を入力し、打音の叩き方のOK/NGを判断してもよい。これらの作業者hmによる打音の叩き方の判定は、打音信号データや加速度センサの検知データと共に、学習データとしてクラウドサーバ50に送信されてもよい。
 また、打音の叩き方がNGである場合、プロセッサ31は、タッチパネル37に「もう一度叩いてください」等のメッセージを表示し、作業者hmに再度、テストハンマーによる叩きを促してもよい。
 図5は、ステップS5における移動開始検知手順を示すフローチャートである。プロセッサ31は、加速度センサ38によって所定時間内に検知される加速度の絶対値が閾値N4以上であるか否かを判別する(S31)。所定時間は、例えば打音検査を1箇所行うために要する時間に設定される。作業者の加速度の絶対値は、移動中または停止中においては変動する小さな値を示し、一方、移動中から停止に至る瞬間または停止状態から移動に至る瞬間においては大きな値を示す傾向にある。従って、図5において、加速度の絶対値が閾値N4未満の値を検知した場合、プロセッサ31は、作業者hmが止まっているとして、ステップS31の処理を繰り返す。
 一方、ステップS31で加速度の絶対値が閾値N4以上の値を検知した場合、プロセッサ31は、作業者hmが歩行を開始したと判断し、移動開始を検知する(S32)。この移動開始は、タッチパネル37に表示されてもよいし、クラウドサーバ50に送信されてよい。ステップS31における判定処理では、加速度の絶対値を用いる代わりに、加速度の向きを含めた判定を行っても良い。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。
 なお、ここでは、加速度センサによって検知される加速度を用いて移動停止および移動開始を判断したが、GPS衛星から測位信号を受信できる場合、GPS受信器により得られる位置データ(緯度、経度、高度)を基に、移動停止および移動開始を判断してもよい。
 図6は、打音信号の変化を示すタイミングチャートである。図6では、作業者hmがテストハンマー10で検査対象物を3回叩き、収音部11がこれらの打音を収音する場合を想定する。
 作業者hmが、タッチパネル37に表示された開始ボタンbn1を押下すると、タイミングtsで打音検査が開始する。収音部11は、タイミングtsから収音を開始し、一定の期間(例えば1分間)、収音を継続する。
 テストハンマー10のハンマーヘッド10zによる打撃が検査対象物の打音面に加えられると、加速度センサ13の加速度が閾値N2以上になる。プロセッサ31は、このタイミングtrで、収音部11で収音された打音の打音信号データを記録部34に記録する動作を開始する。検査対象物に打撃が加えられると、打音信号の波形g1に示すように、叩いた瞬間から少しの時間を経て、打音信号は、急激に大きくなり、その後、漸次減少していく。
 プロセッサ31は、このタイミングtrから一定時間が経過し、タイミングtfになると、収音部11で収音された打音の打音信号データを記録部34に記録する動作を終了する。この一定期間(タイミングts~タイミングtf)は、打音信号が十分に減衰した状態に至るまでに要する録音期間であり、例えば3秒である。その後、同じように、加速度センサ13の値が閾値N2以上になると、プロセッサ31は、タイミングtrで記録動作を開始し、タイミングtfで記録動作を終了する動作を繰り返す。この結果、一定期間(タイミングts~タイミングtf)の打音信号データ、つまり、打音時の瞬間の音データだけ、図6では、3回分の打音信号データが記録部34に記録される。したがって、作業者hmによる打音信号の空白期間に、別の作業者による打音検査によって打音の波形g2が発生しても、この打音信号データは、記録部34に記録されない。
 このように、加速度センサ13の値を用いることで、打音における瞬間の音の範囲だけを打音信号データとして抽出できる。したがって、作業者hmの近くにいる別の作業者が発生させる打音を誤認識することを減らせる。また、作業者hmが検査開始動作(開始ボタンの押下、開始の合図等)を忘れた場合、プロセッサ31は、作業者hmに通知する、あるいは通知することなく検査開始動作を行い、打音の録音を開始できる。
(実施の形態2)
 構造物(例えばコンクリート)の内部破壊(つまり、クラック等のひび割れ)の有無を調べる場合には、作業者がハンマーで構造物の表面を複数回叩き、その叩かれた時の反響音(以下、「打音」という)を耳で聴き、内部破壊が生じているか否かを判断している。
 これに対し、ハンマーで構造物に打撃を加え、その打音をマイクロホンで測定し、コンピュータが構造物の状態を診断する技術が日本国特開2010-271116号公報に開示されている。この文献では、ハンマーは、アウター部にマイクロホンを有し、加速度計を内蔵する。コンピュータは、マイクロホンによって測定された打音信号、および加速度計によって測定された打撃力から得られる速度信号を基に、構造物の健全性を診断する。
 実施の形態2では、作業者がハンマーを用いて検査対象物を叩いた時の打音信号データとその検査対象物を叩いた位置の情報とを対応付けて登録し、広域にわたって存在する検査対象物の適切な検査管理を支援する打音検査端末および打音検査データ登録方法の例を説明する。
 実施の形態2における打音検査システムの構成は、実施の形態1と同様であるので、実施の形態1と同一の構成要素については同一の符号を付すことでその説明を省略する。実施の形態2では、テストハンマー10の収音部11は、マイクアレイである。なお、テストハンマー10の収音部11を単一のマイクとし、端末装置30のマイク33(作業者hmのヘルメットmeに装着されたマイク33)をマイクアレイとしてもよい。
 マイクアレイは、所定の方向に指向性を形成し、指向方向の音を収音可能なマイクであり、複数(例えば8個)のマイクロホン、複数の遅延器および加算器を有する。マイクアレイは、各マイクロホンが収音した音の音データに対し、各遅延器において、各マイクロホンにおける到達時間差に対応する遅延時間を与えて全ての音波の位相を揃えた後、加算器において遅延処理後の音データを加算する。マイクアレイは、遅延器に設定される遅延時間を変更することで、所定の方向に指向性が形成された音データを検出し、指向方向の音データを抽出して出力する。なお、複数の遅延器および加算器は、マイクアレイでなく、プロセッサ31が内蔵してもよい。この場合、プロセッサ31は、複数のマイクロホンで収音された音データを用いて、指向方向の音データを抽出する。
 プロセッサ31は、マイクアレイによって収音された指向方向の音データを基に、音源方向を推定する。プロセッサ31は、音源方向がハンマーヘッド10zによって叩かれる検査対象物の打音面方向(正面方向)である場合、打音と判断する。また、プロセッサ31は、1回目に叩いた打音の音源方向に指向性を形成するように、マイクアレイに指示し、2回目以降の打音を取得してもよい。
 図7は、実施の形態2における打音検査手順を示すフローチャートである。端末装置30のプロセッサ31は、前回の打音検査の結果データを取得する(S51)。前回の打音検査の結果データがクラウドサーバ50に蓄積されている場合、プロセッサ31は、通信部36およびネットワークNWを介して、クラウドサーバ50から前回の打音検査の結果データを受信する。通信部36は、ネットワークNWを介して、クラウドサーバ50の通信部52と通信を行い、ストレージ54に蓄積された前回の打音検査の結果データを受信する。通信部36は、受信した前回の打音検査の結果データを記録部34に記憶する。なお、前回の打音検査の結果データが記録部34に記憶されている場合、プロセッサ31は、クラウドサーバ50から受信することなく、記録部34に記憶されている前回の打音検査の結果データを読み出す。
 プロセッサ31は、タッチパネル37に打音検査画面GM1(図13参照)を表示する(S52)。この打音検査画面GM1は、初期画面であり、前回の検査結果の判定m2を含む。プロセッサ31は、ユーザがタッチパネル37に対して開始ボタンbn1を押下し、打音検査を開始する操作を行ったか否かを判別する(S53)。打音検査を開始する操作が行われていない場合、プロセッサ31は、本処理を終了する。
 ステップS53で打音検査を開始する操作が行われた場合、プロセッサ31は、検査メイン処理を行う(S54)。この検査メイン処理では、打音検査の主となる動作が行われる。
 プロセッサ31は、ユーザがタッチパネル37に対して中断ボタンbn3(図14参照)を押下し、打音検査を中断する操作を行ったか否かを判別する(S55)。打音検査を中断する操作が行われた場合、プロセッサ31は、本処理を終了する。
 ステップS55で打音検査を中断する操作が行われていない場合、プロセッサ31は、打音検査が規定回数行われ、打音検査を終了するか否かを判別する(S56)。打音検査の回数は、あらかじめ作業者hmによって設定されてメモリ35に記憶されている。また、打音検査が行われる度に、プロセッサ31によって打音検査の回数が計数される。規定回数は、打音検査の結果を正確に行うために必要な回数であり、例えば3回、5回等である。なお、打音検査の終了は、打音検査の回数によらず、タッチパネル37に表示される終了ボタン(図示せず)がユーザによって押下されたことで行われてもよい。終了ボタンは、例えばメニューボタンbn2を押下することによって展開されるボタンの1つである。打音検査が規定回数行われ、打音検査を終了すると、打音検査画面GM1(図14参照)が更新される。打音検査を終了しない場合、プロセッサ31は、ステップS54に戻り、検査メイン処理を継続する。また、ステップS56で打音検査を終了する場合、プロセッサ31は、本処理を終了する。
 図8は、ステップS54における検査メイン処理手順を示すフローチャートである。プロセッサ31は、実施の形態1と同様、打音を検知するための打音検知処理を行う(S61)。プロセッサ31は、打音検知の結果、打音が検知されたか否かを判別する(S62)。打音が検知されなかった場合、プロセッサ31は、ステップS61の処理に戻る。
 一方、打音が検知された場合、プロセッサ31は、打音判定処理を行う(S63)。プロセッサ31は、打音判定結果を含む打音検査画面GM1(図14参照)をタッチパネル37に表示する(S64)。
 プロセッサ31は、打音検査を行った位置(緯度、経度、高度)を検出する、打音位置検出処理を行う(S65)。プロセッサ31は、打音信号データ、打音判定結果データ、および打音位置データを送信するか否かを判定するデータ送信判定処理を行う(S66)。ここで、打音信号データ、打音判定結果データ、および打音位置データを含むデータを打音検査データと称する。
 プロセッサ31は、データ送信判定の結果、打音検査データの送信を行うか否かを判別する(S67)。打音検査データの送信を行わない場合、プロセッサ31は、ステップS61の処理に戻る。一方、打音検査データの送信を行う場合、打音検査データをクラウドサーバ50に送信する(S68)。通信部36は、ネットワークNWを介して、クラウドサーバ50の通信部52と通信を行い、打音検査データを送信する。クラウドサーバ50のプロセッサ51は、通信部52で受信した打音検査データをストレージ54に保存する。
 図9は、ステップS61における打音検知手順を示すフローチャートである。プロセッサ31は、近距離無線通信部32を介して、テストハンマー10から送信される音データを確認する(S71)。テストハンマー10では、収音部11によって音が収音される。テストハンマー10の近距離無線通信部12は、端末装置30の近距離無線通信部32と通信を行い、収音部11によって収音された音の音データを近距離無線通信部32に送信する。端末装置30のプロセッサ31は、近距離無線通信部32を介して音データを受信する。また、テストハンマー10の近距離無線通信部12は、収音部11によって収音された音の音データの他、加速度センサ13によって検知された加速度の検知データを併せて送信する。したがって、ステップS71では、端末装置30のプロセッサ31は、加速度センサ13によって加速度の検知データも取得する。
 プロセッサ31は、音データを基に、収音部11で収音された音の音量(音圧レベル)が閾値N5以上であるか否かを判別する(S72)。音量が閾値N5未満である場合、プロセッサ31は、打音無しと判定する(S76)。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。
 ステップS72で音量が閾値N5以上である場合、プロセッサ31は、マイク33あるいは収音部11で収音された音データ、つまり、マイクアレイで収音された音が発する方向(指向方向)が目的方向の音であるか否かを判別する(S73)。収音部11がマイクアレイである場合、プロセッサ31は、マイクアレイで収音された音の方向が、収音部11が取り付けられたグリップ部10yの位置からハンマーヘッド10zの打撃面に向かう方向であるかを確認する。また、マイク33がマイクアレイである場合、プロセッサ31は、マイクアレイで収音された音の方向が、ヘルメットmeに装着されたマイク33からハンマーヘッド10zの打撃面に向かう方向であるかを確認する。目的の方向の音でない場合、プロセッサ31は、ステップS76で打音無しと判定する。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。
 ステップS73で目的方向の音である場合、プロセッサ31は、収音部11で収音された音の打音らしさを表す、打音らしさの尤度が閾値N6以上であるか否かを判別する(S74)。打音らしさの尤度は、プロセッサ31が記録部34に蓄積した打音信号データを学習データとして用いることで得られる。例えば、プロセッサ31は、クラウドサーバ50から、あらかじめ打音信号データの学習済みモデルをメモリ35に取り込み、収音された音データを入力し、その出力として打音らしさの尤度を取得してもよい。
 ステップS74で閾値N6未満である場合、プロセッサ31は、ステップS76で打音無しと判定する。この場合、プロセッサ31は、タッチパネル37に「もう一度叩いてください」等のメッセージを表示し、作業者hmに再度、テストハンマーによる叩きを促す。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。一方、打音らしさの尤度が閾値N6以上である場合、プロセッサ31は、打音有りと判定する(S75)。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。
 図10は、ステップS63における打音判定手順を示すフローチャートである。プロセッサ31は、ステップS75で打音有りと判定した場合、収音部11で収音された打音信号データを入力し(S81)、打音信号データの特徴を抽出する特徴抽出処理を行う(S82)。特徴抽出処理において、プロセッサ31は、音声データに対し、音量(音圧レベル)の正規化、フーリエ変換、メル周波数ケプストラム係数(Mel-Frequency Cepstrum Coefficients)、ノイズ除去等の一般的な(公知の)信号処理を行う。
 プロセッサ31は、抽出した特徴と、記録部34に記憶された打音データベース(DB)34zに登録されている打音信号データの特徴との一致を判別するマッチング処理を行う(S83)。このマッチング処理では、プロセッサ31は、抽出した特徴と、登録されている打音信号データの特徴とが一致した場合、打音検査が正常(OK)であると判定する。一方、プロセッサ31は、抽出した特徴と、登録されている打音信号データの特徴とが不一致である場合、打音検査がOKであると判定する。
 プロセッサ31は、マッチング処理の結果、打音検査が正常(OK)であるか異常(NG)であるかを判定し、その打音判定結果を記録部34に記憶する(S84)。プロセッサ31は、打音判定結果の回数が閾値N7以上であるか否かを判別する(S85)。打音判定結果の回数が閾値N7未満である場合、プロセッサ31は、そのまま本処理を終了し、元の処理に復帰する。
 一方、ステップS85で打音判定結果の回数が閾値N7以上である場合、プロセッサ31は、打音判定結果に基づき、タッチパネル37に表示される打音検査画面GM1(図14参照)を更新する(S86)。プロセッサ31は、打音検査画面の更新後、打音判定結果の回数を初期化する(S87)。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。
 図11は、ステップS65における打音位置検出手順を示すフローチャートである。プロセッサ31は、GPS受信器42で受信したGPS信号を基に、測位した現在の位置情報(緯度、経度、高度)を取得する(S91)。前回取得した位置情報と経過時間を基に、今回取得した位置情報は適切であるか否かを判別する(S92)。つまり、作業者hmが複数の打音箇所を検査する場合、1箇所の打音検査に要する時間、および次の打音箇所に移動するまでの時間は、概ね把握される。例えば、前回と今回の測位座標の差分が〇m以上あり、かつ、前回測位してからの経過時間が〇秒以内である場合、プロセッサ31は、短すぎる時間に次の測位座標に移動していることになるので、測位座標に間違っていると判断する。したがって、このような場合、プロセッサ31は、現在位置を補正することになる。
 ステップS92で今回取得した位置情報が適切であると判別された場合、プロセッサ31は、本処理を終了し、元の処理に復帰する。一方、ステップS92で今回取得した位置情報が適切でないと判別された場合、プロセッサ31は、現在位置を補正する現在位置補正処理を行う(S93)。この現在位置補正処理では、プロセッサ31は、例えば、前回測位座標と今回の測位座標とを用いて現在位置を補正してもよい。また、直近5回の測位座標のバラツキから現在位置を補正してもよい。例えば、直近5回のうち、4回の測位座標が略同一であり、残り1つが異なる場合、プロセッサ31は、異なる1つの現在位置を省き、略同一の4回の測位座標の平均から現在位置を求めてもよい。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。
 図12は、ステップS66におけるデータ送信判定手順を示すフローチャートである。プロセッサ31は、ステップS86において、打音判定処理の結果、打音検査画面GM1が更新されたか否かを判別する(S101)。打音検査画面GM1が更新されていない場合、プロセッサ31は、そのまま本処理を終了し、元の処理に復帰する。
 一方、ステップS101で打音検査画面GM1が更新された場合、プロセッサ31は、通信部36がネットワークNWを利用可能な環境にあるか否かを判別する(S102)。ネットワークNWを利用可能な環境にない場合、プロセッサ31は、送信不可である、今回の打音信号データ、打音判定結果データ、および打音位置データを記録部34に保存する(S104)。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。
 また、ステップS102でネットワークNWを利用可能な環境にある場合、プロセッサ31は、打音検査データ(打音信号データ、打音判定結果データ、および打音位置データを含む)をクラウドサーバ50に送信する(S103)。プロセッサ31は、打音信号データを送信する際、1回の打音信号データでなく、複数回の打音信号データをまとめて送信する。所定時間(例えば、位10秒~30秒)内の打音は、同じ検査箇所の打音であるとして1セットとして取り扱われる。あるいは、所定回数(例えば、5回)分の打音は、1セットとして取り扱われる。クラウドサーバ50への送信タイミングを1セット毎とすることで、通信頻度を抑えることができる。端末装置30の送信処理の負荷を軽減し、ネットワークトラフィックの抑制に繋がる。また、プロセッサ31は、過去に送信できなかった打音検査データも併せて送信する。
 また、クラウドサーバ50に送信されるデータは、作業者hmのOK/NGの判断を含んでもよい。この場合、送信されるデータは、作業者hmが発音する「OK」や「異常あり」等の音声データであってもよい。作業者hmは、端末装置30のボタン41に含まれる判定結果入力ボタンを押下し、マイク33を通じて、上記音声データを入力する。プロセッサ31は、この音声データを基に、音声認識を行い、OKあるいは異常の内容をテキスト情報として取得してもよい。異常ありの場合、例えば移動停止時間が通常より長いことが挙げられる。これは、異常があった場合に行われる修理に時間を要していると考えられる。
 また、1セットの打音信号データの間で、打音判定の結果がOKとNGに分かれた場合、プロセッサ31は、それぞれの打音判定結果を打音信号データに関連付けて学習データとして、クラウドサーバ50に送信する。打音判定結果は、例えば、NG寄りのOK、NGとOKの中間、明らかに打音でない音の破棄等を含む。また、打音判定結果は、作業者hmの判断結果を含む。
 作業者hmが、1セット分のデータ送信が完了するまでの間に、タッチパネル37に表示された送信停止ボタンを押下する等のキャンセル動作を行った場合、プロセッサ31は、送信データを破棄する。これにより、無駄な送信を省くことができる。また、プロセッサ31は、1セットの打音信号データを送信するまでの間、GPS受信器42による打音位置の移動があった場合、作業者hmに打音のやり直しを指示する。あるいは、GPS受信器42による位置座標を補正してもよい。GPS受信器42による位置座標の補正は、例えば、前回打音検査の登録時からの秒数の経過を計時し、歩行速度に秒数を乗算して移動距離を算出し、この移動距離を加味して行われてもよい。
 また、GPS受信器42が使えない場合、例えばトンネルの入口の位置情報は、GPS受信器42による位置座標で取得される。トンネル内では、作業者hmがトンネル内を進んでいく時に、端末装置30のカメラ43で常時トンネル内を撮像し、予めトンネル入口から距離が分かっているポイントが撮像画像に映った場合、その位置情報を基に、GPS受信器42による位置座標を補正して、作業者hmが打音検査を行う位置を推定してもよい。また、トンネル内のポイントの位置座標が登録されている場合、その位置を作業者hmが打音検査を行う位置として推定してもよい。
 端末装置30の通信部36は、ネットワークNWを介して、クラウドサーバ50の通信部52と通信を行い、上記データを送信する。この後、プロセッサ31は、本処理を終了し、元の処理に復帰する。
 クラウドサーバ50のプロセッサ51は、通信部52で受信した上記データをストレージ54に蓄積する。プロセッサ51は、ストレージ54に蓄積された上記データを学習データとして、機械学習を行い、人工知能(AI:artificial intelligence)による打音判定に必要な学習済みモデルを生成する。端末装置30から、クラウドサーバ50に打音判定の依頼があった場合、クラウドサーバ50のプロセッサ51は、生成した学習済みモデルを利用し、入力した打音信号データに対する打音判定結果を出力してもよい。
 図13は、端末装置30のタッチパネル37に表示される打音検査画面GM1を示す図である。打音検査画面GM1(初期画面)には、前回の打音位置を含む画像GZ1、ステータスm1、前回の検査結果の判定m2、開始ボタンbn1、およびメニューボタンbn2が表示される。画像GZ1は、カメラで撮像された画像でもよいし、地図が描画されたイラストマップでもよい。ステータスm1は、始めて検査を行う場合、空白である。また、検査中、ステータスm1の表示は、図14に示すように、更新される。図13では、ステータスm1には、今回打音検査を行った検査結果、OKであることが表示される。また、画像GZ1には、現在位置、前回の検査結果、今回の検査結果、および回数未達を表すマークmkがマップczに重畳して描画される。マップczは、検査対象物である道路を含む地図であり、検査対象である道路上の路面を含む。また、マークmkとして、例えば、現在位置を表すマークmkは、赤色(図中、白色)の星形を表す。今回の打音検査の結果:OKを表すマークmkは、青色(図中、黒色)の丸形を表す。今回の打音検査の結果:NGかつ修理後を表すマークmkは、グレー色(図中、網点表示)の三角形を表す。前回の打音検査の結果:OKを表すマークmkは、黄色(図中、白色)の丸形を表す。前回の打音検査の結果:NGかつ修理後を表すマークmkは、黄色の三角形を表す。打音回数未達を表すマークmkは、「未」の文字マークである。
 例えば、現在位置を示す星形のマークmkの近傍には、前回の打音検査の結果がNGを表す黄色(図中、白色)の三角形のマークmkと、今回の打音検査の結果がOKを表す青色(図中、黒色)の丸形のマークmkとが一部重なるように表示される。作業者hmは、過去の打音検査時に検査対象物の異常があったと判断された旨とその過去に行われた打音検査の場所とをタッチパネル等で容易かつ視覚的に確認できる。
 このように、打音検査画面GM1には、打音検査結果と打音検査位置とがマップcz上で対応付けられて表示される。したがって、作業者hmが打音検査を行う際、検査状況を把握し易く、利便性が向上する。
 なお、打音検査画面GM1に表示される画像GZ1は、GPS受信器42で測位される現在位置と連動して遷移するようにしてもよい。これにより、作業者hmが、検査中、現在位置近傍の打音検査位置を容易に把握でき、操作性が向上する。
 また、カメラ43と連動させて、打音検査画面GM1にカメラ43で撮像された、打音時の検査対象物の打音面が映し出されるようにしてもよい。この撮像モードは、メニューボタンbn2によって展開されるメニュー項目を選択することが行われる。なお、カメラ43で撮像される画像は、叩いた瞬間の画像(静止画、動画)でもよいし、常時録画の映像でもよい。さらに、カメラ43で撮像される画像の画像データをクラウドサーバ50に送信するようにしてもよい。
 図14は、端末装置30のタッチパネル37に打音検査中に表示される打音検査画面GM1を示す図である。打音検査画面GM1(図14参照)では、打音判定結果が得られる前、ステータスm1には、「検査中」が表示されていたが、「OK」、「検査回数が足りません」、「ひび割れ80%」、「空洞60」、「OK(ひび割れ20%)」、「もう一度叩いてください」のメッセージに更新される。「OK」は、検査開始から一定時間内に一定回数打音があり、その結果、8割以上がOKである場合、ステータスm1に表示される。「検査回数が足りません」は、検査開始から一定時間内に一定回数打音が無かった場合、ステータスm1に表示される。「もう一度叩いてください」は、OKとNGの割合が半々に近い場合や、外乱音で打音信号データを抽出できず、正しい判定ができなかった場合、叩き回数が少ないとして、ステータスm1に表示される。
 なお、上記ステータスは、画面で案内される代わりに、音声で報知されてもよい。また、上記ステータスは、AR(拡張現実)の技術を用いて、作業者が眼前に装着しているディスプレイに表示されてもよい。
 図15は、クラウドサーバ50のモニタ57に表示される検査記録画面GM2および検査記録グラフghを示す図である。クラウドサーバ50のプロセッサ51は、ステップS103で端末装置30から送信された、打音判定結果データおよび打音位置データを基に、マップcz2上に今回の打音検査結果をマークmk2重畳した画像GZ2を生成する。画像GZ2は、カメラで撮像された画像でもよいし、地図が描画されたイラストマップでもよい。プロセッサ51は、生成した画像GZ2をモニタ57に表示する。図15に示す検査記録画面GM2には、マップcz2上に今回の打音検査結果を、マークmk2を重畳した画像GZ2が表示される。マップcz2上に重畳された、今回の打音検査結果を表すマークmk2は、1箇所を除き、青色の丸形であり、打音検査の結果がOKであることが示される。1箇所には、今回の打音検査結果がNGであり、修理後であることを表すマークmk2は、グレー色の三角形で表示される。また、付記として、「2015/11/30 ひび割れ」と、打音検査結果がNGであった日付および原因が表記される。
 プロセッサ51は、検査記録の履歴を表す検査記録グラフghを作成する。検査記録グラフghの縦軸は、正常(OK)および異常(NG)を数値化した値を表す。数値が高いほど、正常であり、数値が低いほど異常であることを示す。検査記録グラフghの横軸は、検査年を表す。この検査記録グラフghは、マップcz2上に表示された、今回の打音検査でNGであった打音位置(グレー色の三角形で表示されたマークmk2)に対応するものである。2015/11/30の打音検査でNGであったので、点線枠gpで示される数値化した値は、低い数値となっている。
 このように、実施の形態1、2における打音検査システム5では、加速度センサ13が取り付けられたテストハンマー10と、テストハンマー10を把持する作業者hm(ユーザ)により装着される端末装置30(打音検査端末)とが通信可能に接続される。打音検査システム5は、テストハンマー10に設けられた収音部11または端末装置30に備わるマイク33を備える。加速度センサ13は、テストハンマー10が検査対象物を叩く時のテストハンマー10の速度および傾きの測定値を取得する。端末装置30は、加速度センサ13からのテストハンマー10の速度および傾きの検知データ(測定値)に基づいて、作業者hmがテストハンマー10を検査対象物に対して所定の基準に従って叩いたか否かを判定する。端末装置30は、所定の基準に従って叩かれる間に収音部11により収音される打音信号データをクラウドサーバ50(外部装置)に記録する。これにより、作業者がテストハンマーを用いて検査対象物を正しく叩いたかどうかを適切に判定し、テストハンマーで叩いた時の打音信号データを的確に抽出することができる。
 また、端末装置30は、所定の基準に従って叩かれていないと判定された場合に、作業者hmに対して検査対象物を再度叩く旨を報知する。これにより、叩き方が不適切の場合に再度叩くことを作業者に報知できるので、適切な叩き方で叩かれた時の打音信号データを記録できる。
 また、端末装置30は、打音信号データをクラウドサーバ50に記録する時、打音信号データとテストハンマー10の速度および傾きの測定値とを対応付けた学習データを記録する。これにより、収音された音信号データの中に所定の基準に従った叩き方で叩かれた時に抽出される打音信号データが含まれるか否かのAI判断処理に用いるための学習データを効率的に蓄積でき、AI判断処理の信頼性を向上できる。
 また、端末装置30は、温度および湿度のうち少なくとも一方のパラメータを測定するセンサ39(第1センサ)を有する。端末装置30は、所定の基準に従って叩かれる間にセンサ39により測定されるパラメータを学習データに含めて記録する。これにより、適切に叩かれた時の作業者の周囲の温度および湿度のうち少なくとも一方を学習データとして登録することで、学習データの信頼性を一層向上でき、AI判断処理の信頼性を適切に担保できる。
 また、端末装置30は、加速度センサ13からのテストハンマー10の加速度(速度)および加速方向(傾き)の検知データ(測定値)に基づいて、収音部11により収音される音信号データの中から、クラウドサーバ50に記録される打音信号データを抽出する。これにより、テストハンマーを把持する作業者本人の近くにいる他の作業者が他のテストハンマーを把持して叩いた時の音信号データが収音部により収音された場合でも、作業者本人のテストハンマーで叩いた時の打音信号データを誤認識することなく適切に抽出できる。また、作業者本人が検査開始動作(例:マイクに向かって声で合図、ボタンもしくはUI上のアイコンの押下)を失念した場合でも打音信号データの記録(=録音)を自動的に開始できる。
 また、端末装置30は、作業者hmの移動状態を検知する加速度センサ38(第2センサ)を更に有する。これにより、端末装置30は、作業者本人の立ち止まりを検知できるので、立ち止まっている状態でない場合(例えば作業者が移動中)にテストハンマーが動いたことで打音信号データを誤って記録を開始することを抑制できる。
 また、端末装置30は、テストハンマー10による検査対象物への叩き方の結果情報を入力する、ボタン41に含まれるスイッチ(入力部)を更に備える。端末装置30は、この結果情報を学習データに含めてクラウドサーバ50に記録する。これにより、端末装置30は、作業者hmの主観に基づく叩き方の良し悪しの結果を学習データに含めて登録できるので、叩き方が良かった時の打音信号データを用いて効率的に音信号データの分析(例えば所定の基準に従った叩き方がされたかどうか)を行える。
 また、実施の形態1、2における端末装置30は、テストハンマー10を把持する作業者hmにより装着され、クラウドサーバ50と通信可能に接続される。端末装置30は、マイク33と、端末装置30の現在位置を示す位置情報を取得するGPS受信器42(測位部)と、テストハンマー10が検査対象物を叩く間にマイク33により収音される打音信号データと位置情報とを対応付けた打音検査データを生成するプロセッサ31と、生成された打音検査データをクラウドサーバ50に送信する通信部36と、を備える。これにより、作業者がハンマーを用いて検査対象物を叩いた時の打音信号データとその検査対象物を叩いた位置の情報とを対応付けて登録し、広域にわたって存在する検査対象物の適切な検査管理を支援することができる。
 また、プロセッサ31は、収音部11により収音された音データが打音であるか否かの判定処理を行い、端末装置30(言い換えると、作業者hm)の位置情報における判定処理に基づいて、テストハンマー10で叩いた検査対象物の異常の有無をしめす結果情報を判別する。通信部36は、判別された結果情報を打音検査データとして含めてクラウドサーバ50に送信する。これにより、端末装置30は、作業者hmの位置情報において収音された音データに打音が含まれるか否かに応じて、作業者hmが検査対象物をテストハンマー10で叩いた時の音による異常の有無を判別でき、その結果をクラウドサーバ50等に登録できる。
 また、プロセッサ31は、収音部11により収音された位置情報における作業者hmの音声に基づいて、テストハンマー10で叩いた検査対象物の異常の有無を示す結果情報を判別する。通信部36は、判別された結果情報を打音検査データとして含めてクラウドサーバ50に送信する。これにより、端末装置30は、作業者hmが検査対象物をテストハンマー10で叩いた時の異常の有無を作業者hmの音声で簡単に設定でき、その結果をクラウドサーバ50等に登録できる。
 また、プロセッサ31は、判別された結果情報を示すマークmk(第1マーカ)と位置情報とを対応付けてタッチパネル37(表示部)に表示する。これにより、作業者hmは、現在位置においてテストハンマー10で検査対象物を叩いた時の異常の有無をタッチパネル37で容易かつ視覚的に確認できる。
 また、プロセッサ31は、過去の打音検査時の打音検査データをクラウドサーバ50から通信部36を介して取得する。プロセッサ31は、過去の打音検査時の打音検査データに検査対象物の異常がある旨の結果情報が含まれる場合に、その異常がある旨を示すマークmk(第2マーカ)とその過去の打音検査時の位置情報とを対応付けてタッチパネル37に表示する。これにより、作業者hmは、過去の打音検査時に検査対象物の異常があったと判断された旨とその過去に行われた打音検査の場所とをタッチパネル等で容易かつ視覚的に確認できる。
 また、プロセッサ31は、収音部11により収音された打音信号データに基づいて、現在位置における検査対象物に対する叩き回数が所定回数未満かどうかを判別する。プロセッサ31は、叩き回数が所定回数未満であるとの判別に従い、その判別結果を示すメッセージをタッチパネル37に表示する。これにより、作業者hmは、現在位置において検査対象物に対する、テストハンマーでの叩く回数が足りていないことを早急に把握でき、所定回数分の叩く打音検査の作業を的確に行える。
 また、プロセッサ31は、テストハンマー10が検査対象物を複数回叩いた所定期間に収音部11により収音された打音信号データを、同一の端末装置30の現在位置における打音信号データとして打音検査データを生成する。これにより、叩き始めから所定期間(例えば30秒以内)内に叩かれた打音信号データを同じ場所における打音検査データとして纏めてクラウドサーバ等に登録できる。
 また、プロセッサ31は、収音部11により収音された位置情報における作業者hmの音声に基づいて、所定期間内にテストハンマー10で複数回叩いた時のそれぞれの検査対象物の異常の有無を示す結果情報を判別する。通信部36は、判別されたそれぞれの叩かれた時の結果情報を打音検査データとして含めてクラウドサーバ50に送信する。これにより、端末装置30は、作業者hmが検査対象物を所定期間(例えば30秒以内)に複数回ハンマーで叩いた時の異常の有無を作業者の音声で簡易に設定でき、検査対象物の異常の有無の種類をきめ細かく分類付けてクラウドサーバ等に登録できる。
 また、通信部36は、所定期間に収音部11により収音された打音信号データを含む打音検査データをクラウドサーバ50に送信する。これにより、同一の打音検査端末の現在位置においてハンマーで叩き始めてから所定期間(例えば30秒)分の打音検査データが生成された時点でクラウドサーバ等に送信するので、打音検査データを常時送信し続ける場合に比べて、ネットワークを流れるトラフィックを効果的に低減できる。
 以上、図面を参照しながら各種の実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 なお、本出願は、2018年5月28日出願の日本特許出願(特願2018-101368および特願2018-101369)に基づくものであり、その内容は本出願の中に参照として援用される。
 本開示は、作業者がハンマーを用いて検査対象物を叩いた時の打音信号データとその検査対象物を叩いた位置の情報とを対応付けて登録し、広域にわたって存在する検査対象物の適切な検査管理を支援でき、有用である。
 5 打音検査システム
 10 テストハンマー
 11 収音部
 13,38 加速度センサ
 30 端末装置
 33 マイク
 37 タッチパネル
 39 センサ
 41 ボタン
 42 GPS受信器
 50 クラウドサーバ
 51 プロセッサ
 52 通信部

Claims (32)

  1.  ハンマーを把持するユーザにより装着され、外部装置と通信可能に接続される打音検査端末であって、
     収音部と、
     前記打音検査端末の現在位置を示す位置情報を取得する測位部と、
     前記ハンマーが検査対象物を叩く間に前記収音部により収音される打音信号データと前記位置情報とを対応付けた打音検査データを生成するプロセッサと、
     生成された前記打音検査データを前記外部装置に送信する通信部と、を備える、
     打音検査端末。
  2.  前記プロセッサは、
     前記収音部により収音された音データが打音か否かの判定処理を行い、前記位置情報における前記判定処理に基づいて、前記ハンマーで叩いた前記検査対象物の異常の有無を示す結果情報を判別し、
     前記通信部は、
     判別された前記結果情報を前記打音検査データとして含めて前記外部装置に送信する、
     請求項1に記載の打音検査端末。
  3.  前記プロセッサは、
     前記収音部により収音された前記位置情報における前記ユーザの音声に基づいて、前記ハンマーで叩いた前記検査対象物の異常の有無を示す結果情報を判別し、
     前記通信部は、
     判別された前記結果情報を前記打音検査データとして含めて前記外部装置に送信する、
     請求項1に記載の打音検査端末。
  4.  前記プロセッサは、
     判別された前記結果情報を示す第1マーカと前記位置情報とを対応付けて表示部に表示する、
     請求項2または3に記載の打音検査端末。
  5.  前記プロセッサは、
     過去の打音検査時の前記打音検査データを、前記外部装置から前記通信部を介して取得し、
     過去の打音検査時の前記打音検査データに前記検査対象物の異常がある旨の結果情報が含まれる場合に、その異常がある旨を示す第2マーカとその過去の打音検査時の位置情報とを対応付けて前記表示部に表示する、
     請求項4に記載の打音検査端末。
  6.  前記プロセッサは、
     前記収音部により収音された前記打音信号データに基づいて、前記現在位置における前記検査対象物に対する叩き回数が所定回数未満かどうかを判別し、
     前記叩き回数が前記所定回数未満であるとの判別に従い、その判別結果を示すメッセージを前記表示部に表示する、
     請求項4に記載の打音検査端末。
  7.  前記プロセッサは、
     前記ハンマーが前記検査対象物を複数回叩いた所定期間に前記収音部により収音された前記打音信号データを、同一の前記打音検査端末の現在位置における打音信号データとして前記打音検査データを生成する、
     請求項1に記載の打音検査端末。
  8.  前記プロセッサは、
     前記収音部により収音された前記位置情報における前記ユーザの音声に基づいて、前記所定期間内に前記ハンマーで複数回叩いた時のそれぞれの前記検査対象物の異常の有無を示す結果情報を判別し、
     前記通信部は、
     判別されたそれぞれの叩かれた時の前記結果情報を前記打音検査データとして含めて前記外部装置に送信する、
     請求項7に記載の打音検査端末。
  9.  前記通信部は、前記所定期間に前記収音部により収音された前記打音信号データを含む前記打音検査データを前記外部装置に送信する、
     請求項7に記載の打音検査端末。
  10.  請求項1に記載の打音検査端末と、前記ユーザが把持する前記ハンマーと、を備える打音検査システムであって、
     前記ハンマーは、加速度センサをさらに備え、
     前記加速度センサは、
     前記ハンマーが検査対象物を叩く時の前記ハンマーの速度および傾きの測定値を取得し、
     前記収音部は、前記ハンマーまたは前記打音検査端末に設けられ、
     前記打音検査端末は、
     前記加速度センサからの前記ハンマーの速度および傾きの測定値に基づいて、前記ユーザが前記ハンマーを前記検査対象物に対して所定の基準に従って叩いたか否かを判定し、
     前記所定の基準に従って叩かれる間に前記収音部により収音される打音信号データを前記外部装置に記録する、
     打音検査システム。
  11.  前記打音検査端末は、
     前記所定の基準に従って叩かれていないと判定された場合に、前記ユーザに対して前記検査対象物を再度叩く旨を報知する、
     請求項10に記載の打音検査システム。
  12.  前記打音検査端末は、
     前記打音信号データを前記外部装置に記録する時、前記打音信号データと前記ハンマーの速度および傾きの測定値とを対応付けた学習データを記録する、
     請求項10に記載の打音検査システム。
  13.  前記打音検査端末は、
     温度および湿度のうち少なくとも一方のパラメータを測定する第1センサを有し、
     前記所定の基準に従って叩かれる間に前記第1センサにより測定される前記パラメータを前記学習データに含めて記録する、
     請求項12に記載の打音検査システム。
  14.  前記打音検査端末は、
     前記加速度センサからの前記ハンマーの速度および傾きの測定値に基づいて、前記収音部により収音される音信号データの中から、前記外部装置に記録される前記打音信号データを抽出する、
     請求項10に記載の打音検査システム。
  15.  前記打音検査端末は、
     前記ユーザの移動状態を検知する第2センサを更に有する、
     請求項10に記載の打音検査システム。
  16.  前記ハンマーによる前記検査対象物への叩き方の結果情報を入力する入力部を更に備え、
     前記打音検査端末は、
     前記結果情報を前記学習データに含めて前記外部装置に記録する、
     請求項12または13に記載の打音検査システム。
  17.  ハンマーを把持するユーザにより装着され、外部装置と通信可能に接続される打音検査端末における打音検査データ登録方法であって、
     前記打音検査端末の現在位置を示す位置情報を取得し、
     収音部により音を収音し、
     前記ハンマーが検査対象物を叩く間に前記収音部により収音される打音信号データと前記位置情報とを対応付けた打音検査データを生成し、
     生成された前記打音検査データを前記外部装置に送信する、
     打音検査データ登録方法。
  18.  前記収音部により収音された音データが打音か否かの判定処理を行い、前記位置情報における前記判定処理に基づいて、前記ハンマーで叩いた前記検査対象物の異常の有無を示す結果情報を判別し、
     判別された前記結果情報を前記打音検査データとして含めて前記外部装置に送信する、
     請求項17に記載の打音検査データ登録方法。
  19.  前記収音部により収音された前記位置情報における前記ユーザの音声に基づいて、前記ハンマーで叩いた前記検査対象物の異常の有無を示す結果情報を判別し、
     判別された前記結果情報を前記打音検査データとして含めて前記外部装置に送信する、
     請求項17に記載の打音検査データ登録方法。
  20.  判別された前記結果情報を示す第1マーカと前記位置情報とを対応付けて表示部に表示する、
     請求項18または19に記載の打音検査データ登録方法。
  21.  過去の打音検査時の前記打音検査データを、前記外部装置から取得し、
     過去の打音検査時の前記打音検査データに前記検査対象物の異常がある旨の結果情報が含まれる場合に、その異常がある旨を示す第2マーカとその過去の打音検査時の位置情報とを対応付けて前記表示部に表示する、
     請求項20に記載の打音検査データ登録方法。
  22.  前記収音部により収音された前記打音信号データに基づいて、前記現在位置における前記検査対象物に対する叩き回数が所定回数未満かどうかを判別し、
     前記叩き回数が前記所定回数未満であるとの判別に従い、その判別結果を示すメッセージを前記表示部に表示する、
     請求項20に記載の打音検査データ登録方法。
  23.  前記ハンマーが前記検査対象物を複数回叩いた所定期間に前記収音部により収音された前記打音信号データを、同一の前記打音検査端末の現在位置における打音信号データとして前記打音検査データを生成する、
     請求項18に記載の打音検査データ登録方法。
  24.  前記収音部により収音された前記位置情報における前記ユーザの音声に基づいて、前記所定期間内に前記ハンマーで複数回叩いた時のそれぞれの前記検査対象物の異常の有無を示す結果情報を判別し、
     判別されたそれぞれの叩かれた時の前記結果情報を前記打音検査データとして含めて前記外部装置に送信する、
     請求項23に記載の打音検査データ登録方法。
  25.  前記所定期間に前記収音部により収音された前記打音信号データを含む前記打音検査データを前記外部装置に送信する、
     請求項23に記載の打音検査データ登録方法。
  26.  前記ハンマーは、加速度センサをさらに備え、
     前記加速度センサは、前記ハンマーが前記検査対象物を叩く時の前記ハンマーの速度および傾きの測定値を取得し、
     前記収音部は、前記ハンマーまたは前記打音検査端末に設けられ、
     前記加速度センサからの前記ハンマーの速度および傾きの測定値に基づいて、前記ユーザが前記ハンマーを前記検査対象物に対して所定の基準に従って叩いたか否かを判定し、
     前記所定の基準に従って叩かれる間に前記収音部により収音される打音信号データを前記外部装置に記録する、
     請求項18に記載の打音検査データ登録方法。
  27.  前記所定の基準に従って叩かれていないと判定された場合に、前記ユーザに対して前記検査対象物を再度叩く旨を報知する、
     請求項26に記載の打音検査データ登録方法。
  28.  前記打音信号データを前記外部装置に記録する時、前記打音信号データと前記ハンマーの速度および傾きの測定値とを対応付けた学習データを記録する、
     請求項26に記載の打音検査データ登録方法。
  29.  前記打音検査端末は、温度および湿度のうち少なくとも一方のパラメータを測定する第1センサを更に備え、
     前記所定の基準に従って叩かれる間に前記第1センサにより測定される前記パラメータを前記学習データに含めて記録する、
     請求項28に記載の打音検査データ登録方法。
  30.  前記加速度センサからの前記ハンマーの速度および傾きの測定値に基づいて、前記収音部により収音される音信号データの中から、前記外部装置に記録される前記打音信号データを抽出する、
     請求項26に記載の打音検査データ登録方法。
  31.  前記打音検査端末は、前記ユーザの移動状態を検知する第2センサを更に備える、
     請求項26に記載の打音検査データ登録方法。
  32.  前記打音検査端末は、前記ハンマーによる前記検査対象物への叩き方の結果情報を入力する入力部を更に備え、
     前記結果情報を前記学習データに含めて前記外部装置に記録する、
     請求項28または29に記載の打音検査データ登録方法。
PCT/JP2019/021008 2018-05-28 2019-05-28 打音検査端末、打音検査システムおよび打音検査データ登録方法 WO2019230687A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/058,805 US20210223211A1 (en) 2018-05-28 2019-05-28 Hammering test terminal, hammering test system, and hammering test data registration method
JP2020522198A JPWO2019230687A1 (ja) 2018-05-28 2019-05-28 打音検査端末、打音検査システムおよび打音検査データ登録方法
CN201980035595.5A CN112166319A (zh) 2018-05-28 2019-05-28 敲打检查终端、敲打检查系统以及敲打检查数据登记方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-101369 2018-05-28
JP2018101368 2018-05-28
JP2018-101368 2018-05-28
JP2018101369 2018-05-28

Publications (1)

Publication Number Publication Date
WO2019230687A1 true WO2019230687A1 (ja) 2019-12-05

Family

ID=68696981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021008 WO2019230687A1 (ja) 2018-05-28 2019-05-28 打音検査端末、打音検査システムおよび打音検査データ登録方法

Country Status (4)

Country Link
US (1) US20210223211A1 (ja)
JP (1) JPWO2019230687A1 (ja)
CN (1) CN112166319A (ja)
WO (1) WO2019230687A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354132A1 (en) 2022-10-13 2024-04-17 Subaru Corporation Tapping inspection system and tapping inspection method
JP7471043B2 (ja) 2021-06-22 2024-04-19 ダイハツ工業株式会社 物品の打音検査システム、及び物品の打音検査方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11386650B2 (en) * 2020-12-08 2022-07-12 Here Global B.V. Method, apparatus, and system for detecting and map coding a tunnel based on probes and image data
CN115476347B (zh) * 2021-06-16 2023-12-12 北京小米机器人技术有限公司 通信链路的建立方法、装置、控制设备及机器人
CN113638414A (zh) * 2021-08-27 2021-11-12 四川华西管桩工程有限公司 桩基施工中的管桩自动识别收锤方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080255806A1 (en) * 2005-11-04 2008-10-16 Luigi Sambuelli Pole Monitoring Kit, in Particular for Wooden Poles
JP2011180007A (ja) * 2010-03-02 2011-09-15 Nihon Bisoh Co Ltd 構造物調査システムおよびこれに用いる位置測定装置
JP2014134471A (ja) * 2013-01-10 2014-07-24 Takenaka Komuten Co Ltd 壁面診断結果記録システム、壁面診断結果記録方法、及び壁面診断結果記録プログラム
JP2014206383A (ja) * 2013-04-10 2014-10-30 福岡県 ろう付け物品の打音検査方法及びその装置
JP2015169435A (ja) * 2014-03-04 2015-09-28 中国電力株式会社 コンクリート構造物の健全性検査装置、健全性検査用ハンマ及び健全性検査方法
JP2017166894A (ja) * 2016-03-15 2017-09-21 株式会社エッチアンドビーシステム 非破壊検査方法、及び非破壊検査装置
JP2017227632A (ja) * 2016-06-16 2017-12-28 日本電気株式会社 点検システム、移動ロボット装置及び点検方法
JP2018013348A (ja) * 2016-07-19 2018-01-25 日本電信電話株式会社 打音検査システムおよび打音検査方法
JP2019082402A (ja) * 2017-10-30 2019-05-30 株式会社フジタ 検査対象物の状態評価装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502329A (en) * 1982-04-07 1985-03-05 Mitsubishi Denki Kabushiki Kaisha Method for checking insulative condition of insulated windings used in electrical appliances
US9188498B2 (en) * 2011-09-19 2015-11-17 James Kenyon Sprague Tire pressure measuring device
US9620107B2 (en) * 2012-12-31 2017-04-11 General Electric Company Voice inspection guidance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080255806A1 (en) * 2005-11-04 2008-10-16 Luigi Sambuelli Pole Monitoring Kit, in Particular for Wooden Poles
JP2011180007A (ja) * 2010-03-02 2011-09-15 Nihon Bisoh Co Ltd 構造物調査システムおよびこれに用いる位置測定装置
JP2014134471A (ja) * 2013-01-10 2014-07-24 Takenaka Komuten Co Ltd 壁面診断結果記録システム、壁面診断結果記録方法、及び壁面診断結果記録プログラム
JP2014206383A (ja) * 2013-04-10 2014-10-30 福岡県 ろう付け物品の打音検査方法及びその装置
JP2015169435A (ja) * 2014-03-04 2015-09-28 中国電力株式会社 コンクリート構造物の健全性検査装置、健全性検査用ハンマ及び健全性検査方法
JP2017166894A (ja) * 2016-03-15 2017-09-21 株式会社エッチアンドビーシステム 非破壊検査方法、及び非破壊検査装置
JP2017227632A (ja) * 2016-06-16 2017-12-28 日本電気株式会社 点検システム、移動ロボット装置及び点検方法
JP2018013348A (ja) * 2016-07-19 2018-01-25 日本電信電話株式会社 打音検査システムおよび打音検査方法
JP2019082402A (ja) * 2017-10-30 2019-05-30 株式会社フジタ 検査対象物の状態評価装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471043B2 (ja) 2021-06-22 2024-04-19 ダイハツ工業株式会社 物品の打音検査システム、及び物品の打音検査方法
EP4354132A1 (en) 2022-10-13 2024-04-17 Subaru Corporation Tapping inspection system and tapping inspection method

Also Published As

Publication number Publication date
CN112166319A (zh) 2021-01-01
JPWO2019230687A1 (ja) 2021-06-24
US20210223211A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2019230687A1 (ja) 打音検査端末、打音検査システムおよび打音検査データ登録方法
CN105741836B (zh) 声音识别装置以及声音识别方法
WO2019015455A1 (zh) 一种基于声源定位的电缆防外力破坏装置
JP6584721B1 (ja) 情報処理装置、情報処理システム、方法、及びプログラム
JP6423686B2 (ja) 劣化診断支援システムおよび劣化診断支援方法
CN110045016A (zh) 一种基于声频分析的隧道衬砌无损检测方法
US20220146303A1 (en) Optical fiber sensing system, state detection apparatus, state detection method, and computer readable medium
US11422527B2 (en) Automatic inspection system
JP5208625B2 (ja) 構造物の品質種別の判別方法
CN117577098B (zh) 一种卫星宽带短报文通信的语音通信方法及系统
JP2012168022A (ja) コンクリート系構造物の品質診断方法
US11790505B2 (en) Information processing apparatus, information processing method, and information processing system
CN110572600A (zh) 一种录像处理方法及电子设备
CN105807273B (zh) 声源跟踪方法和装置
CN104594393A (zh) 一种用于基桩低应变检测的测量仪器及现场监督系统
JP2015169435A (ja) コンクリート構造物の健全性検査装置、健全性検査用ハンマ及び健全性検査方法
JPH1138862A (ja) 地震被害対策支援装置
KR102311106B1 (ko) 실시간 타격음 분석을 통한 혼합현실 기반 콘크리트 내부 공동 평가 및 위치 인식 시스템과 그 방법
JP4617125B2 (ja) 配管系統識別方法および配管系統識別システム
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
JP7295732B2 (ja) 音響測定装置およびプログラム
JP2022062971A (ja) 検出装置及び検出方法
JP2011242269A (ja) 検査装置
JP2001330595A (ja) 打音検査装置
CN111818356A (zh) 一种基于场景识别的高危作业直播中断的智能方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810185

Country of ref document: EP

Kind code of ref document: A1