WO2019230580A1 - スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法 - Google Patents

スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法 Download PDF

Info

Publication number
WO2019230580A1
WO2019230580A1 PCT/JP2019/020589 JP2019020589W WO2019230580A1 WO 2019230580 A1 WO2019230580 A1 WO 2019230580A1 JP 2019020589 W JP2019020589 W JP 2019020589W WO 2019230580 A1 WO2019230580 A1 WO 2019230580A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
welded joint
hardness
region
spot welded
Prior art date
Application number
PCT/JP2019/020589
Other languages
English (en)
French (fr)
Inventor
佑 銭谷
智史 広瀬
敦雄 古賀
幸一 ▲浜▼田
泰山 正則
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP19810484.6A priority Critical patent/EP3804899B1/en
Priority to CN201980035599.3A priority patent/CN112203793B/zh
Priority to US17/058,563 priority patent/US20210205915A1/en
Priority to MX2020012739A priority patent/MX2020012739A/es
Publication of WO2019230580A1 publication Critical patent/WO2019230580A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • B23K11/166Welding of coated materials of galvanized or tinned materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present disclosure relates to a spot welded joint, an automobile frame component including a spot welded joint, and a method for manufacturing a spot welded joint.
  • Patent Document 1 describes an energy absorbing member in which a hat material and a closing plate are joined to each other by spot welding.
  • high strength steel plates having a tensile strength of 980 MPa or more are widely used as high strength steel plates for automobiles.
  • high-strength steel sheets having a tensile strength of 1100 MPa or more have begun to be applied.
  • a high strength steel sheet having a tensile strength of 1100 MPa or more generally includes a quenched structure in order to obtain a high strength.
  • HAZ heat affected zone
  • HAZ includes a hardened structure.
  • the strength decreases if there is a region with low hardness.
  • a HAZ softened part does not affect the evaluation results of the tensile shear test and the cross tension test (JISZ3137) used for resistance spot welding joint evaluation.
  • JISZ3137 cross tension test
  • strain may concentrate locally on the HAZ softened part and the HAZ softened part may break.
  • structural members (lap welding members) constituting the automobile body such as A pillars, B pillars, roof rails, and side sills need to have high strength.
  • a structural member constituting an automobile body is manufactured by superposing a plurality of steel plate members and joining flanges (overlapping portions) by resistance spot welding to form a cylindrical closed cross section.
  • techniques such as increasing the strength of the material (base material) and increasing the number of welding (spot) spots are taken.
  • An in-plane tensile stress may be applied to a part of the flange of the member to be resistance spot welded at the time of collision. Even if the strength of the base material is increased and the spot hitting point is increased, if the above-described HAZ softened portion is generated, there may be a case where the impact resistance performance assumed from the strength of the base material and the shape of the part cannot be obtained. Therefore, when a steel plate member made of a high-strength steel plate is applied to a structural member of an automobile body, it is required to suppress the peripheral region of the nugget from being the starting point of fracture.
  • Patent Document 2 describes a welded joint in which the spot welded portion is heat-treated at 100 to 400 ° C. to improve the strength of the L-shaped tensile joint as a welded joint with improved characteristics of the spot welded portion.
  • Patent Document 3 describes a method of improving the strength of the cross tensile joint by performing post-energization on the spot weld.
  • the spot weld electrode is wound around a coil, and after welding, the spot welded portion and the melted portion are tempered by high-frequency induction heating immediately after welding.
  • a welding method is described that improves the joint strength evaluated from the product of the material strength.
  • Patent Document 5 discloses that a part of or all of the flange portion used for spot welding has a region having a strength of less than 1100 MPa, called a soft zone, thereby improving energy absorption capability. Pillars are listed.
  • Japanese Unexamined Patent Publication No. 2006-142905 Japanese Laid-Open Patent Publication No. 2010-059451 Japanese Unexamined Patent Publication No. 2015-093282 Japanese Patent No. 5457750 Japanese Patent No. 5894081
  • the present disclosure has been made in view of the above problems, and even when an in-plane tensile stress is applied, a spot welded joint that can suppress fracture from an area around the nugget, and an automobile skeleton component including the spot welded joint And a method for manufacturing the spot welded joint.
  • the present inventors investigated and examined spot welded joints of high-strength steel sheets. As a result, it has been found that by controlling the hardness in a predetermined region around the nugget including the HAZ softened portion, breakage at the HAZ softened portion during in-plane stress loading can be suppressed.
  • the HAZ softened part having a hardness lower than that of the base material is hardly formed with a steel sheet having a tensile strength of less than 980 MPa.
  • the HAZ softened part can occur in a steel sheet having a tensile strength of 980 MPa or more.
  • the HAZ softened portion is remarkably generated in a spot welded portion of a high strength steel plate having a tensile strength of 1100 MPa or higher and a hot stamp material (high strength steel plate member) formed by hot stamping which has been strengthened by quenching treatment.
  • a spot welded joint includes a first steel plate having a tensile strength of 1100 MPa or more and a hard martensite structure as a main component, and a second steel plate superimposed on the first steel plate.
  • An area of 0.5 ⁇ D to 1.0 ⁇ D in the plate thickness direction of the first steel plate and in the plate surface direction from the center of the nugget of the cross section in the plate thickness direction passing through the center of the nugget A difference between the maximum hardness value and the minimum hardness value of the region is 80 HV or less, and the maximum hardness value of the region is lower than the maximum hardness value of the first steel plate; .
  • another nugget may be provided in the cross section.
  • the hardness control region may be present in all the cross sections.
  • the maximum value of the hardness in the region may be 250 HV to 450 HV.
  • the first steel plate and the second steel plate may be plated steel plates.
  • An automobile frame part according to another aspect of the present disclosure includes the spot welded joint according to any one of (1) to (5).
  • a method for manufacturing a spot welded joint according to another aspect of the present disclosure includes a resistance spot formed by superimposing a first steel plate and a second steel plate each having a tensile strength of 1100 MPa or more and a hard martensite structure as a main component.
  • a nugget having a diameter D at the interface between the first steel plate and the second steel plate is formed between the first steel plate and the second steel plate, and the first steel plate
  • An area of 0.5 ⁇ D to 1.0 ⁇ D in the plate thickness direction of the first steel plate and in the plate surface direction from the center of the nugget of the cross section in the plate thickness direction passing through the center of the nugget of the steel plate Temper everything.
  • the difference between the maximum hardness value and the minimum hardness value in the region is 80 HV or less, and the maximum hardness value in the region is the first value. Tempering may be performed so as to be lower than the maximum value of the hardness of the steel plate.
  • the region of all the cross sections may be tempered.
  • the maximum value of the hardness of the region may be 250 HV to 450 HV.
  • the spot welded joint of the present disclosure even when an in-plane tensile stress is applied, breakage from the HAZ softened portion around the nugget is less likely to occur. For this reason, when it uses for the structural member which comprises a motor vehicle body, high collision-resistant performance can be obtained. Further, in the automobile frame part of the present disclosure, breakage from the HAZ softened portion is difficult to occur. For this reason, high collision-resistant performance can be obtained. Moreover, in the manufacturing method of the spot welded joint of this indication, when it uses for the structural member which comprises a motor vehicle body, the spot welded joint which can obtain a high collision-resistant performance can be manufactured.
  • a spot welded joint according to an embodiment of the present disclosure (a spot welded joint according to the present embodiment), an automobile frame component according to the present embodiment, and a method for manufacturing the spot welded joint according to the present embodiment will be described with reference to the drawings. To do.
  • the spot welded joint 1 includes a first steel plate 11, a second steel plate 12 stacked on the first steel plate 11, and a first steel plate 11.
  • a nugget 2 having a diameter D at the interface between the first steel plate 11 and the second steel plate 12 formed between the second steel plates 12 is provided. That is, the first steel plate 11 and the second steel plate 12 are joined by the nugget 2.
  • the spot welded joint 1 includes a hardness control region 33 occupying the first region 32.
  • the first region 32 has a plate surface direction (at least one direction perpendicular to the plate thickness direction of the first steel plate 11 in the cross section in the plate thickness direction of the first steel plate 11 passing through the center O of the nugget 2. For example, between the position 0.5 ⁇ D away from the center O of the nugget 2 and the position 1.0 ⁇ D away from the center O of the nugget 2 in the direction of the arrow 102 in FIG. And may be called a range of up to 1.0 ⁇ D) and the entire thickness of the first steel plate 11.
  • the hardness control region 33 occupying the first region 32 means that the hardness control region 33 includes the entire first region 32.
  • the HAZ softened portion is formed in a region separated from the nugget by a predetermined distance.
  • it occurs in the range of 0.5 ⁇ D to 1.0 ⁇ D in the plate surface direction from the center O of the nugget. Therefore, in the spot welded joint 1 according to the present embodiment, the hardness of the first region 32 is described later by performing a tempering process on the hardness control region 33 in order to suppress breakage from around the nugget 2. Control.
  • a tempering process on the hardness control region 33 in order to suppress breakage from around the nugget 2.
  • the hardness of the second region 34 is also the hardness of the first region 32. It is desirable to control in the same way.
  • the second region 34 is further between a position 1.0 ⁇ D away from the center O of the nugget 2 and a position 2.5 ⁇ D away from the center O (1.0 ⁇ D to 2.5 ⁇ D). And the entire thickness of the first steel plate 11.
  • the hardness control region shown in FIG. 2 includes a first region and a second region. That is, as shown in FIG. 2, the hardness of the first region 32 and the second region 34 is set so that the hardness control region 33 for tempering occupies the first region 32 and the second region 34. It is preferable to control.
  • the hardness control area 33 shown in FIGS. 1 and 2 may have a first area 32 or a peripheral area adjacent to the first area 32 and the second area 34.
  • the peripheral region is a region affected by the heat of tempering when the first region 32 or the first region 32 and the second region 34 are tempered to control the hardness. That is, the peripheral region is a hardness transition portion between the high hardness portion (base material portion) not affected by the heat of tempering and the first region 32 or the second region 34.
  • the first region 32 and the second region 34 have a thickness of 0.75 ⁇ D or more in a direction perpendicular to the cross section (direction perpendicular to the paper surface of FIG. 1 or FIG. 2). More preferably, the thickness in the direction perpendicular to the cross section of the first region 32 and the second region 34 is more preferably D (1.0 ⁇ D) or more. If it does so, since all the positions of the HAZ softening part 31 which a strain
  • the diameter D of the nugget 2 is such that the nugget 2 is at the interface between the first steel plate 11 and the second steel plate 12 in the cross section in the thickness direction of the first steel plate 11 passing through the center O of the nugget 2.
  • the nugget 2 is obtained by superposing the first steel plate 11 and the second steel plate 12 and performing resistance spot welding.
  • the first steel plate 11 is a steel plate having a tensile strength of 1100 MPa or more mainly composed of a hard martensite structure. This is because the HAZ softened portion 31 does not appear clearly in a steel plate having a tensile strength of less than 1100 MPa, so that the problem of the invention does not occur.
  • the second steel plate 12 is not limited.
  • a high-strength steel sheet having a tensile strength of 1100 MPa or more generally has a structure mainly composed of a hardened structure such as hard martensite (at least 50 area% or more, for example, 80 area% or more). ing. Such a structure is obtained by transformation of the structure by quenching.
  • hard martensite is tempered in the HAZ around the nugget by the heat of resistance spot welding. That is, hard martensite changes into a soft structure such as tempered martensite, bainite, and ferrite. Thereby, the area
  • the HAZ softened portion 31 becomes a starting point of fracture.
  • the structure fraction of the hard martensite of the 1st steel plate 11 can be confirmed by observing the structure
  • the martensite area ratio of the first steel plate 11 is obtained by averaging the observed area ratios of the martensite of the 20 visual fields. Then, using the same sample, it etches using picral, observes a 100-micrometer square visual field at 1000-times magnification with an optical microscope, and calculates
  • the ratio of the hard martensite in the martensite of 20 fields of view is obtained and averaged, and the average value is multiplied by the martensite area ratio of the first steel plate 11 obtained above, whereby the hard martensite of the first steel plate 11 is obtained.
  • the tissue fraction (area ratio) can be determined. If the average area ratio of hard martensite is 50% or more, it is determined that the hard martensite structure is the main component.
  • the hardness of the first region 32 is controlled. Specifically, the difference between the maximum hardness value and the minimum hardness value of the first region 32 is 80 HV or less. Further, the maximum hardness value in the first region 32 is lower than the maximum hardness value of the first steel plate 11. More desirably, the difference between the maximum hardness value and the minimum hardness value of the first region 32 and the second region 34 is 80 HV or less. In this case, it is preferable that the maximum hardness in the first region 32 and the second region 34 is lower than the maximum hardness of the first steel plate 11.
  • the HAZ softened portion 31 breaks.
  • the difference (hardness difference) between the maximum value and the minimum hardness value of hardness in the first region 32 described above is 50 HV or less.
  • the hardness of the portion affected by the welding heat is lower than the hardness before welding. Therefore, the maximum value of the hardness of the first steel plate 11 is determined by measuring the hardness at a position of the first steel plate 11 that is not affected by the heat of resistance spot welding and using the maximum value. What is necessary is just to measure the hardness of the position 15 mm or more away from the nugget 2 in the direction which does not have another nugget as a position which is not received the heat influence by resistance spot welding, for example.
  • the load is set to 1.0 kgf, and ten positions not affected by the heat of resistance spot welding, the position of 1/8 of the plate thickness from the surface of the first steel plate 11, The hardness at the 3/8 position, the 5/8 position, and the 7/8 position is measured, and the maximum value is used.
  • the maximum value and minimum value of the hardness of the first region 32 are measured using a Vickers hardness tester with a load of 100 gf. Specifically, in the cross section in the thickness direction including the center O of the nugget of the first steel plate 11, the position of 1/8 of the plate thickness from the surface of the first steel plate 11, the position of 3/8, For the position 7/8, the hardness is measured at intervals of 0.1 mm from one end portion in the direction perpendicular to the plate thickness direction of the first region 32 (that is, the plate surface direction) to the other end portion. Then, the maximum value and the minimum value of the measured hardness are set as the maximum value and the minimum value of the hardness of the first region 32.
  • spot welds are generally formed at a plurality of positions of the stacked steel sheets.
  • the spot welded joint 1 includes a nugget 2 and another nugget, as shown in FIG. 3, a cross section in the plate thickness direction passing through the center O of the nugget 2 of the first steel plate 11 is observed. It is preferable that other nuggets 2 are included in the same cross section. In other words, it is preferable to provide the hardness control region 33 at least in the direction from the nugget 2 toward the other nugget 2 ′ (the direction of the arrow 102 in FIG. 3) in order to suppress breakage at the HAZ softened portion 31.
  • the spot welded joint 1 according to this embodiment can be applied to other than the B pillar.
  • the direction connecting the nuggets is the dominant direction in which tensile stress occurs.
  • tensile stress can occur in either direction, depending on the part being applied and the state of the collision.
  • the maximum value of the hardness of the first region 32 included in the hardness control region 33 is preferably 250 HV to 450 HV. More preferably, the maximum hardness value of the second region 34 is 250 HV to 450 HV. If the maximum hardness value is less than 250 HV, there is a concern that sufficient strength cannot be obtained as a structural member. Further, if it exceeds 450 HV, there is a concern that it exceeds the strength of the base material.
  • the first steel plate 11 and / or the second steel plate 12 may be a plated steel plate. Corrosion resistance can be improved by using a plated steel sheet. Examples of the plated steel plate include a hot dip galvanized steel plate, an alloyed hot dip galvanized steel plate, an electrogalvanized steel plate, and an aluminum plated steel plate.
  • the automobile frame part according to the present embodiment is an automobile frame part including at least one spot welded joint 1 according to the above-described embodiment.
  • the automobile frame part according to the present embodiment is an automobile frame part including at least one spot welded joint 1 according to the above-described embodiment.
  • the automobile skeleton component according to the present embodiment includes the spot welded joint 1 according to the present embodiment in which breakage at the HAZ softened portion is suppressed. For this reason, when a high-strength steel plate is used, high impact resistance performance is obtained.
  • the spot welded joint 1 according to the present embodiment performs resistance spot welding by superposing a first steel plate 11 having a tensile strength of 1100 MPa or more and a hard martensite structure as a main component and a second steel plate 12.
  • the nugget 2 having a diameter D at the interface between the first steel plate 11 and the second steel plate 12 is formed between the first steel plate 11 and the second steel plate 12, and then the nugget of the first steel plate 11 is formed.
  • a certain first area 32 can be manufactured by tempering.
  • the hardness control region 33 occupying the first region 32 may be tempered. It is desirable to temper not only the first region 32 but also the second region 34 in order to obtain high joint strength. Therefore, it is preferable that the hardness control region 33 occupies both the first region 32 and the second region 34.
  • the hardness control region 33 is provided in at least one direction in which in-plane tensile stress is applied to the first steel plate 11 subjected to resistance spot welding. That is, the HAZ softened portion 31 and its surrounding area in at least one direction from the center O of the nugget 2 are tempered. Thereby, the hardness difference in the 1st field 32 containing HAZ softening part 31 can be made small. In this way, the spot welded joint 1 according to this embodiment in which breakage from the HAZ softened portion 31 is suppressed can be manufactured.
  • Resistance spot welding may be performed under conditions according to the application, and is not limited.
  • the tempering conditions are not particularly limited, but tempering is preferably performed at a temperature of 500 to 700 ° C. in order to make hard martensite, which is a quenched structure, into a tempered structure. If the tempering temperature is less than 500 ° C., the hardness difference may not be sufficiently reduced. On the other hand, it is not preferable that the tempering temperature is higher than 700 ° C. This is because a part of the structure is transformed into austenite, and the austenite becomes a quenched structure again in cooling after tempering. When the hardened structure is formed again, the hardness of the first region 32 may not be sufficiently reduced.
  • a method that can be locally heated such as heat treatment using a laser or heat treatment by energization.
  • the aim of the hardness by tempering is that the hardness of the first region 32 occupied by the hardness control region 33 in at least one direction from the nugget 2 is the base material portion of the first steel plate 11.
  • the difference between the maximum hardness value and the minimum hardness value in the first region 32 is less than 80 HV in terms of Vickers hardness.
  • the hardness control region 33 in the entire circumferential direction of the nugget 2 in the in-plane direction of the first steel plate. That is, it is desirable to perform tempering so that the first region 32 satisfies the above hardness in all cross sections in the plate thickness direction passing through the center O of the nugget 2 of the first steel plate. This is because by tempering in the entire circumferential direction of the nugget 2, the effect can be obtained regardless of the in-plane tensile stress in which direction of the first steel plate. Further, tempering the second region 34 is also desirable in order to more reliably suppress breakage from the HAZ softened portion 31.
  • the tempering is performed while the conditions are controlled so that the maximum hardness value of the first region 32 in the hardness control region 33 is 250 HV to 450 HV, sufficient strength can be secured as a structural member. Therefore, it is preferable because a welded joint in which breakage from the HAZ softened portion 31 is suppressed can be manufactured. In order to suppress breakage from the HAZ softened portion 31 more reliably, it is desirable that the maximum value of the hardness in the second region 34 is 250 HV to 450 HV.
  • Specific tempering conditions for obtaining a predetermined hardness are determined by a method such as investigating changes in hardness by tempering spot welded joints manufactured under similar conditions in advance under various conditions. can do.
  • a tensile test piece having a distance between gauge points of 50 mm as shown in FIG. 6 was collected.
  • Three tensile test pieces were collected from the same steel sheet, and one was subjected to a tensile test according to JISZ2241: 2011 as it was to determine the tensile strength of the steel sheet.
  • etching was performed using picral, and a 100 ⁇ m square field of view was observed with an optical microscope at a magnification of 1000 times, and the ratio of hard martensite in martensite was determined within the observation field. .
  • the ratio of the hard martensite in the martensite of 20 visual fields was calculated
  • a tab plate having a plate thickness of 1.6 mm and a 20 mm square was placed on one portion of the parallel portion, and resistance spot welding was performed using the single-phase AC spot welder under the following conditions.
  • a nugget with a nugget diameter D of 5 ⁇ ⁇ t (t: plate thickness (mm) of the tensile test piece) was formed between the tensile test piece and the tab plate by resistance spot welding.
  • Applied pressure 400kgf Energizing time 20 cyc
  • one of the two test pieces welded was tempered by irradiating a laser from the first steel plate side. Tempering was performed on the regions including the joint numbers 1 to 5 and the entire range of 0.5 ⁇ D to 2.5 ⁇ D from the nugget center. For joint numbers 6 to 10, tempering was performed on the region including the entire range of 0.5 ⁇ D to 1.0 ⁇ D from the nugget center. For the joint numbers 11 to 19, the width of 0.75 ⁇ D in the direction parallel to the longitudinal direction of the nugget specimen and the range of 0.5 ⁇ D to 2.5 ⁇ D from the center of the nugget I went back. For joint number 20, the position corresponding to the hardness control region after welding was tempered in advance using a laser before welding, and then resistance spot welding was performed. Tempering was not performed after welding.
  • the cross section in the thickness direction of the steel sheet is in the range of 0.5 ⁇ D to 2.5 ⁇ D from the center of the nugget (joint numbers 1 to 5, 11 to 20) or 0.5 ⁇ D to 1 from the center of the nugget.
  • the minimum hardness value and the maximum hardness value in the range of 0.0 ⁇ D were measured.
  • the position of the target region is 1/8 of the plate thickness from the surface of the steel plate, 3/8 position, 5/8 position, 7/8 position at one end in the plate surface direction.
  • the hardness was measured at an interval of 0.1 mm from one part to the other end, and the maximum and minimum values of hardness were obtained.
  • the load is set to 1.0 kgf using a Vickers hardness tester at 10 locations 15 mm to 20 mm away from one nugget in the opposite direction to the other nugget. From the surface, the hardness was measured at a position of 1/8 of the plate thickness, a position of 3/8, a position of 5/8, and a position of 7/8. The results are shown in Table 1.
  • joint numbers 1 to 5 and 17 to 19 the difference between the maximum and minimum values of Vickers hardness in the range of 0.5 ⁇ D to 2.5 ⁇ D from the center of the nugget
  • the maximum value of the Vickers hardness in this region was lower than the maximum value of the Vickers hardness of the base material part, so that the breaking position was not the HAZ softened part, and the elongation at break was baked. It became 250% or more with respect to the case where no return was performed.
  • joint numbers 6 to 10 the difference between the maximum value and the minimum value of the Vickers hardness in the range of 0.5 ⁇ D to 1.5 ⁇ D from the center of the nugget is 80 HV or less.
  • the maximum value of Vickers hardness in this region was lower than the maximum value of Vickers hardness of the base metal part, so that the fracture was a tempered part around the nugget, but the elongation at break was tempered. It improved to 150% or more with respect to the case where it did not perform.
  • the difference between the maximum value and the minimum value of the Vickers hardness of the tempered portion is 80 HV or more, or the maximum value of the Vickers hardness in this region is the base material portion. It was higher than the maximum value of Vickers hardness. The reason is considered to be insufficient heating during tempering.
  • about the joint number 20 it is thought that the HAZ softening part which generate
  • the spot welded joint of the present disclosure even when an in-plane tensile stress is applied, the fracture from the HAZ softened portion in the nugget peripheral region can be suppressed. Anti-collision performance can be obtained. Moreover, in the automobile skeleton component of the present disclosure, it is possible to suppress breakage from the HAZ softened portion, and thus it is possible to obtain predetermined crash resistance performance. Moreover, in the manufacturing method of the spot welded joint of this indication, when it uses for the structural member which comprises a motor vehicle body, the spot welded joint which can obtain predetermined collision-resistant performance can be manufactured. Therefore, industrial applicability is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

このスポット溶接継手は、引張強さが1100MPa以上、かつ、硬質マルテンサイト組織を主体とする、第1の鋼板と、前記第1の鋼板に重ねられた第2の鋼板と、前記第1の鋼板と前記第2の鋼板との間に形成された、前記第1の鋼板と前記第2の鋼板との界面における直径がDのナゲットと、前記第1の鋼板の、前記ナゲットの中心を通る板厚方向の断面の、前記第1の鋼板の前記板厚方向の全てかつ前記ナゲットの中心から板面方向に0.5×D~1.0×Dの領域を占め、前記領域の硬度の最大値と硬度の最小値との差が80HV以下であり、前記領域の前記硬度の最大値が前記第1の鋼板の硬度の最大値よりも低い、硬度制御領域と、を備える。

Description

スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法
 本開示は、スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法に関する。
 本願は、2018年05月31日に、日本に出願された特願2018-105233号に基づき優先権を主張し、その内容をここに援用する。
 複数の鋼板部材を重ねて構成される構造物では、鋼板部材同士を重ね合わせた重ね合わせ部に対して、抵抗スポット溶接による接合が広く行われている。
 例えば、特許文献1では、ハット材とクロージングプレートとがスポット溶接により互いに接合されるエネルギー吸収部材が記載されている。
 現在、自動車用の高強度鋼板として、引張強さが980MPa以上の高強度鋼板が広く用いられている。近年では引張強さ1100MPa以上の高強度鋼板も適用されはじめている。引張強さ1100MPa以上の高強度鋼板は、一般に高い強度を得るために焼き入れ組織を含む。抵抗スポット溶接を行うと、鋼板を溶接するナゲットが形成され、ナゲットの周囲に熱影響部(heat affected zone)(以下、HAZという)が生じる。一般にHAZは焼き入れ組織を含む。但し、焼き入れ組織を有する高強度鋼板に、抵抗スポット溶接を行った場合、焼き入れ組織である母材より硬さが低い領域(HAZ軟化部)が形成される。母材の焼き入れ組織がスポット抵抗溶接の熱により焼き戻されるからである。
 一般に、硬さが低い領域があると強度が低下する。しかし、このようなHAZ軟化部は、抵抗スポット溶接の継手評価に用いられる引張せん断試験、及び十字引張試験(JISZ3137)の評価結果には影響しない。但し、面内引張応力が負荷された場合には、HAZ軟化部に局所的にひずみが集中してHAZ軟化部に破断を生じる場合がある。
 自動車が衝突した際にキャビン内の乗客を保護する必要がある。このため、Aピラー、Bピラー、ルーフレール、サイドシルといった自動車車体を構成する構造部材(重ね溶接部材)は、高い強度を備える必要がある。一般に自動車車体を構成する構造部材は、複数の鋼板部材を重ね合わせてフランジ(重ね合わせ部)を抵抗スポット溶接により接合して筒状の閉断面を形成して製造される。衝突時の変形抵抗を向上させ、少ない変形量でより多くの衝突エネルギーを吸収させるには、素材(母材)の高強度化や溶接(スポット)打点の増加といった手法がとられる。
 抵抗スポット溶接される上記部材のフランジの一部には、衝突時に面内引張応力が負荷されることがある。母材を高強度化し、スポット打点を増加しても、前述のHAZ軟化部が生じると、母材の強度と部品の形状とから想定される耐衝突性能を得られない場合がある。
 従って、高強度鋼板からなる鋼板部材を自動車車体の構造部材に適用する場合には、ナゲットの周辺領域が破断の起点となるのを抑制することが求められる。
 従来、抵抗溶接スポット溶接によって形成された溶接部材の特性を改善するための検討がなされてきた。例えば、特許文献2には、スポット溶接部の特性を改善した溶接継手として、スポット溶接部を100~400℃で熱処理し、L字引張継手強度を向上させた溶接継手が記載されている。また、特許文献3には、スポット溶接部に後通電を行い、十字引張継手強度を改善させる方法が記載されている。特許文献4には、スポット溶接電極の周囲をコイルで巻いたもので溶接後速やかに高周波誘導加熱してスポット溶接部及び溶融部を焼き戻すことで、TSSと材料強度との比と、CTSと材料強度との積とから評価される接合強度を改善する溶接方法が記載されている。
 しかしながら、これらの特許文献2~4に開示された技術では、TSSやCTSの向上には一定の効果が得られるものの、鋼板に面内引張応力が負荷された際のHAZ軟化部での破断について考慮されていない。
 このような課題に対し、特許文献5には、スポット溶接に供されるフランジ部の一部または全部にソフトゾーンと呼ばれる1100MPa未満の強度を有する領域を有することで、エネルギー吸収能力を高めたBピラーが記載されている。
 しかしながら、特許文献5に開示されたBピラーでは、サイドフランジを軟化させる必要があるので、曲げ性能が低下するおそれがある。また、特許文献5では溶接の前に部品内で軟化領域を設けるので、部品の形状精度が低下するという課題もある。部品の形状精度が低下すると、溶接時に部品間に隙間が生じることになり、溶接が難化する。
日本国特開2006-142905号公報 日本国特開2010-059451号公報 日本国特開2015-093282号公報 日本国特許第5459750号公報 日本国特許第5894081号公報
 本開示は、上記の課題に鑑みてなされたものであり、面内引張応力が負荷された場合でも、ナゲットの周辺の領域から破断を抑制できるスポット溶接継手、そのスポット溶接継手を備える自動車骨格部品、及びそのスポット溶接継手の製造方法を提供することを課題とする。
 本発明者らは、高強度鋼板のスポット溶接継手に対して調査、検討を行った。その結果、HAZ軟化部を含むナゲット周辺の所定の領域における硬度を制御することで、面内応力負荷時のHAZ軟化部での破断を抑制できることを見出した。
 母材より硬さが低いHAZ軟化部は、980MPa未満の引張強さの鋼板ではほとんど形成されない。HAZ軟化部は、980MPa以上の引張強さの鋼板において発生し得る。特に、焼き入れ処理によって高強度化された引張強さ1100MPa以上の高強度鋼板やホットスタンプで成形したホットスタンプ材(高強度鋼板部材)のスポット溶接部でHAZ軟化部の発生は著しい。
 本開示は、上記の知見に基づいてなされたものであり、その要旨は以下の通りである。
(1)本開示の一態様に係るスポット溶接継手は、引張強さが1100MPa以上、かつ、硬質マルテンサイト組織を主体とする、第1の鋼板と、前記第1の鋼板に重ねられた第2の鋼板と、前記第1の鋼板と前記第2の鋼板との間に形成された、前記第1の鋼板と前記第2の鋼板との界面における直径がDのナゲットと、前記第1の鋼板の前記ナゲットの中心を通る板厚方向の断面の、前記第1の鋼板の前記板厚方向の全てかつ前記ナゲットの中心から板面方向に0.5×D~1.0×Dの領域を占め、前記領域の硬度の最大値と硬度の最小値との差が80HV以下であり、前記領域の前記硬度の最大値が前記第1の鋼板の硬度の最大値よりも低い、硬度制御領域と、を備える。
(2)上記(1)に記載のスポット溶接継手では、前記断面内に他のナゲットを備えてもよい。
(3)上記(1)または(2)に記載のスポット溶接継手では、全ての前記断面に前記硬度制御領域があってもよい。
(4)上記(1)~(3)のいずれかに記載のスポット溶接継手では、前記領域の前記硬度の最大値が、250HV~450HVであってもよい。
(5)上記(1)~(4)のいずれか一項に記載のスポット溶接継手では、前記第1の鋼板及び前記第2の鋼板がめっき鋼板であってもよい。
(6)本開示の別の態様に係る自動車骨格部品は、上記(1)~(5)のいずれかに記載のスポット溶接継手を備える。
(7)本開示の別の態様に係るスポット溶接継手の製造方法は、引張強さが1100MPa以上かつ硬質マルテンサイト組織を主体とする第1の鋼板と第2の鋼板とを重ね合わせて抵抗スポット溶接を行うことによって、前記第1の鋼板と前記第2の鋼板との間に、前記第1の鋼板と前記第2の鋼板との界面における直径がDのナゲットを形成し、前記第1の鋼板の前記ナゲットの中心を通る板厚方向の断面の、前記第1の鋼板の前記板厚方向の全てかつ前記ナゲットの中心から板面方向に0.5×D~1.0×Dの領域の全てを焼き戻す。
(8)上記(7)に記載のスポット溶接継手の製造方法は、前記領域の硬度の最大値と硬度の最小値との差が80HV以下、かつ前記領域の前記硬度の最大値が前記第1の鋼板の硬度の最大値よりも低くなるように焼き戻しを行ってもよい。
(9)上記(7)または(8)に記載のスポット溶接継手の製造方法は、全ての前記断面の前記領域に焼き戻しを行ってもよい。
(10)上記(8)または(9)に記載のスポット溶接継手の製造方法は、前記領域の前記硬度の最大値が、250HV~450HVであってもよい。
 本開示のスポット溶接継手によれば、面内引張応力が負荷された場合でも、ナゲット周辺のHAZ軟化部からの破断が生じにくくなる。このため、自動車車体を構成する構造部材に用いた場合、高い耐衝突性能を得ることができる。
 また、本開示の自動車骨格部品では、HAZ軟化部からの破断が生じにくくなる。このため、高い耐衝突性能を得ることができる。
 また、本開示のスポット溶接継手の製造方法では、自動車車体を構成する構造部材に用いた場合に、高い耐衝突性能を得ることができるスポット溶接継手を製造することができる。
本実施形態に係るスポット溶接継手のナゲット中心を通る板厚方向の断面図である。 本実施形態に係るスポット溶接継手のナゲット中心を通る板厚方向の断面図である。 本実施形態に係るスポット溶接継手のナゲット中心を通る板厚方向の断面図であって、断面内に他のナゲットを含む場合の例である。 本実施形態に係る自動車骨格部品の一例であるBピラーの模式図である。 本実施形態に係る自動車骨格部品の一例であるBピラーのB-Bにおける断面図である。 実施例で用いた試験片を示す模式図である。
 本開示の一実施形態に係るスポット溶接継手(本実施形態に係るスポット溶接継手)、本実施形態に係る自動車骨格部品、本実施形態に係るスポット溶接継手の製造方法について、図面を参照して説明する。
 まず、本実施形態に係るスポット溶接継手について説明する。
 図1、図2に示すように、本実施形態に係るスポット溶接継手1は、第1の鋼板11と、第1の鋼板11に重ねられた第2の鋼板12と、第1の鋼板11と第2の鋼板12の間に形成された第1の鋼板11と第2の鋼板12との界面における直径がDのナゲット2とを備える。すなわち、ナゲット2によって、第1の鋼板11と第2の鋼板12とは接合されている。
 また、本実施形態に係るスポット溶接継手1は、第1の領域32を占める硬度制御領域33を備える。第1の領域32は、ナゲット2の中心Oを通る第1の鋼板11の板厚方向の断面において、板面方向(第1の鋼板11の板厚方向と垂直な方向の少なくとも一つの方向、例えば図1中の矢印102の方向)の、ナゲット2の中心Oから0.5×D離れた位置とナゲット2の中心Oから1.0×D離れた位置の間(以下0.5×D~1.0×Dの範囲と呼ぶ場合がある)かつ第1の鋼板11の板厚全域である。
 本実施形態において、第1の領域32を占める硬度制御領域33とは、第1の領域32の全体を、硬度制御領域33が含むことを意味する。
 通常、HAZ軟化部は、ナゲットから所定の距離だけ離れた領域に形成される。本実施形態に係るスポット溶接継手1では、ナゲットの中心Oから板面方向に0.5×D~1.0×Dの範囲に生じる。そのため、本実施形態に係るスポット溶接継手1では、ナゲット2周辺からの破断を抑制するため、硬度制御領域33に焼き戻しの処理を行うことで、第1の領域32の硬度を後述するように制御する。
 例えば、十字引張強さ等の観点であれば、第1の鋼板と第2の鋼板との界面付近のみ焼き戻すことで継手強度の改善効果が得られる可能性がある。しかしながら、面内引張応力が負荷された場合のHAZ軟化部からの破断を防止するためには、第1の鋼板11の板厚全域に焼き戻し処理を行って硬度を制御する必要がある。
 また、上述したように、本開示においては、図1に示すように、HAZ軟化部が0.5×D~1.0×Dの範囲に生じるスポット溶接継手を対象としている。これはナゲット2とHAZ軟化部とに挟まれる範囲の硬度だけを制御してもHAZ軟化部からの破断を十分に防止することができず、ナゲット2から少なくともHAZ軟化部までを含む領域、好ましくはHAZ軟化部を超える領域までの硬度を制御しないと、面内引張応力が負荷された場合のHAZ軟化部からの破断を防止することができないからである。
 また、ナゲット2周辺からの破断をより確実に抑制するためには、図2に示すように、第1の領域32に加えて、第2の領域34の硬度も、第1の領域32の硬度と同様に制御することが望ましい。第2の領域34とは、更にナゲット2の中心Oから板面方向に1.0×D離れた位置と2.5×D離れた位置の間(1.0×D~2.5×Dの範囲)かつ第1の鋼板11の板厚全域である。図2に示す硬度制御領域は、第1の領域及び第2の領域を含んでいる。すなわち、図2に示すように、焼き戻しを行う硬度制御領域33が第1の領域32と第2の領域34とを占めるようにして、第1の領域32および第2の領域34の硬度を制御することが好ましい。
 図1及び図2に示す硬度制御領域33は、第1の領域32、または第1の領域32および第2の領域34に隣接する周辺領域を有していてもよい。周辺領域は、第1の領域32、または第1の領域32および第2の領域34を焼き戻して硬度を制御する際に焼き戻しの熱に影響された領域である。すなわち、周辺領域とは焼き戻しの熱に影響されていない高硬度部(母材部)と、第1の領域32、または第2の領域34との間にある硬度遷移部である。
 また、第1の領域32と第2の領域34とは、断面に垂直な方向(図1または図2の紙面に垂直な方向)の厚さが0.75×D以上であることが望ましい。更に望ましくは、第1の領域32と第2の領域34との断面に垂直な方向の厚さは、D(1.0×D)以上であることがより望ましい。そうすれば、ひずみが集中しうるHAZ軟化部31のすべての位置が軟化するので、HAZ軟化部31での破断がさらに抑制され、破断までの伸び量を増加させることができる。
 本実施形態において、ナゲット2の直径Dは、ナゲット2の中心Oを通る第1の鋼板11の板厚方向の断面の、第1の鋼板11と第2の鋼板12との界面における、ナゲット2の板面方向の長さである。
 ナゲット2は、第1の鋼板11と第2の鋼板12とを重ね合わせて抵抗スポット溶接を行うことによって得られる。
 第1の鋼板11は、硬質マルテンサイト組織を主体とする引張強さが1100MPa以上の鋼板とする。引張強さが1100MPa未満の鋼板ではHAZ軟化部31が明確に現れないので、発明の課題が生じないからである。一方、第2の鋼板12については、限定されない。
 上述したように、引張強さ1100MPa以上の高強度鋼板は、一般的に硬質マルテンサイトのような焼き入れ組織が主体の(少なくとも50面積%以上、例えば80面積%以上である)組織を有している。このような組織は、焼き入れによる組織の変態によって得られる。焼き入れ組織を主体とする鋼板にスポット溶接部を行った場合、抵抗スポット溶接の熱によりナゲットの周囲のHAZにおいて、硬質マルテンサイトが焼き戻される。すなわち、硬質マルテンサイトが焼き戻しマルテンサイトやベイナイト、フェライト等の軟質な組織に変化する。これにより、母材より硬さが低い領域(HAZ軟化部31)が生じる。面内応力が負荷された場合、このHAZ軟化部31が破断の起点となる。
 第1の鋼板11の硬質マルテンサイトの組織分率は、溶接熱影響を受けていない位置の組織を顕微鏡観察することにより確認できる。具体的には、鋼板の板厚方向断面の、第1の鋼板11の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の各5ヶ所から採取したサンプルについて、レペラ腐食液を用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、白色~赤褐色に見えるものがマルテンサイトであるとしてマルテンサイトの面積率を測定する。観察した20視野のマルテンサイトの面積率を平均することで、第1の鋼板11のマルテンサイト面積率が得られる。
 その後、同じサンプルを用いて、ピクラールを用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、マルテンサイトのうちの硬質マルテンサイトの割合を求める。炭化物が含まれているマルテンサイトを硬質マルテンサイト、炭化物が含まれていないマルテンサイトを焼き戻しマルテンサイトであると判断する。
 20視野のマルテンサイトにおける硬質マルテンサイトの割合を求めて平均し、その平均値を上記で求めた第1の鋼板11のマルテンサイト面積率に乗じることによって、第1の鋼板11の硬質マルテンサイトの組織分率(面積率)を求めることができる。
 硬質マルテンサイトの面積率の平均が50%以上であれば、硬質マルテンサイト組織が主体であると判断する。
 本実施形態に係るスポット溶接継手1では、上述したように、第1の領域32の硬度が制御される。具体的には、第1の領域32の硬度の最大値と硬度の最小値との差が80HV以下である。また、第1の領域32における、硬度の最大値が、第1の鋼板11の硬度の最大値よりも低くなっている。
 更に望ましくは、第1の領域32および第2の領域34の硬度の最大値と硬度の最小値との差が80HV以下である。この場合、第1の領域32および第2の領域34の中での最大硬度が第1の鋼板11の最大硬度より低いことが好ましい。
 このような溶接継手であれば、HAZ軟化部31からの破断が抑制され、面内引張応力が負荷された場合にも母材破断となる。一方、第1の領域32における硬度の最大値と硬度の最小値との差(硬度差)が80HVを超えると、第1の鋼板の両側から引張応力(面内引張応力)が負荷された際に、HAZ軟化部31にひずみが集中するので、HAZ軟化部31から破断が生じる。好ましくは、上述した第1の領域32における硬度の最大値と最小値との差(硬度差)が50HV以下である。更に、第2の領域の硬度も同様に制御すれば、HAZ軟化部への応力の集中がより緩和される。
 硬質マルテンサイト組織を主体とする鋼板では、溶接熱影響を受けた部分の硬度は、溶接前の硬度より低くなる。そのため、第1の鋼板11の硬度の最大値は、第1の鋼板11の抵抗スポット溶接による熱影響を受けていない位置の硬度を測定し、その最大値を用いる。抵抗スポット溶接による熱影響を受けていない位置として、例えば、ナゲット2から、他のナゲットのない方向へ15mm以上離れた位置の硬度を測定すればよい。
 具体的には、ビッカース硬度計を用いて、荷重を1.0kgfとして、抵抗スポット溶接による熱影響を受けていない10ヶ所の、第1の鋼板11の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の硬度を測定し、その最大値を用いる。
 第1の領域32の硬度の最大値および最小値は、荷重を100gfとしたビッカース硬度計を用いて測定する。具体的には、第1の鋼板11のナゲットの中心Oを含む板厚方向断面において、第1の鋼板11の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置を、第1の領域32の板厚方向に垂直方向(すなわち、板面方向)の一方の端部からもう一方の端部まで0.1mm間隔で硬度を測定する。そして、測定された硬度のうちの最大値及び最小値を、第1の領域32の硬度の最大値及び硬度の最小値とする。
 Bピラー等の自動車骨格部品の場合、一般に、重ね合わされた鋼板の複数箇所にスポット溶接部が形成される。
 衝突の際には複数のナゲットを結ぶ方向に面内引張応力が生じる。そのため、本実施形態に係るスポット溶接継手1がナゲット2と他のナゲットとを含む場合、図3に示すように、第1の鋼板11のナゲット2の中心Oを通る板厚方向の断面を観察した際に、同じ断面内に他のナゲット2が含まれることが好ましい。言い換えれば、少なくともナゲット2から他のナゲット2’に向かう方向(図3中の矢印102の方向)において、硬度制御領域33を設けることが、HAZ軟化部31での破断を抑制する上で好ましい。
 本実施形態に係るスポット溶接継手1は、Bピラー以外にも適用が可能である。例えば、Aピラーやサイドシルなどである。上述した通り、ナゲット間を結ぶ方向が引張応力の生じる有力な方向である。しかしながら、適用される部品や衝突の状態によっては、引張応力がいずれの方向にも生じる可能性がある。
 ナゲット2の板面方向の全周方向に硬度制御領域33を設ければ面内のいずれの方向に引張応力が負荷されてもHAZ軟化部31での破断を抑制することができるので好ましい。換言すると、ナゲット2の中心Oを含む全ての板厚方向断面において、硬度制御領域33が存在することが好ましい。
 硬度制御領域33に含まれる第1の領域32の硬度の最大値は、250HV~450HVであることが好ましい。さらに第2の領域34の硬度の最大値が250HV~450HVであればより好ましい。硬度の最大値が250HV未満であると、構造部材として、十分な強度が得られなくなることが懸念される。また、450HV超であると、母材の強度を超えることが懸念される。
 第1の鋼板11及び/または第2の鋼板12は、めっき鋼板であってもよい。めっき鋼板とすることで、耐食性を向上させることができる。めっき鋼板としては、例えば溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、アルミめっき鋼板等が例示される。
 次に、本実施形態に係る自動車骨格部品について説明する。
 本実施形態に係る自動車骨格部品は、上述した本実施形態に係るスポット溶接継手1を少なくとも1部に含む自動車骨格部品である。例えば、図4及び図5に示すようなBピラー201である。
 本実施形態に係る自動車骨格部品では、HAZ軟化部での破断を抑制した本実施形態に係るスポット溶接継手1を備えている。このため、高強度鋼板を用いた場合に、高い耐衝突性能が得られる。
 次に、本実施形態に係るスポット溶接継手1の製造方法について説明する。
 本実施形態に係るスポット溶接継手1は、引張強さが1100MPa以上かつ硬質マルテンサイト組織を主体とする第1の鋼板11と、第2の鋼板12とを重ね合わせて抵抗スポット溶接を行うことによって、第1の鋼板11と第2の鋼板12との間に第1の鋼板11と第2の鋼板12との界面における直径がDのナゲット2を形成し、その後、第1の鋼板11のナゲット2の中心Oを通る板厚方向の断面の第1の鋼板11の板厚方向全て、かつナゲット2の中心Oから板面方向に0.5×D~1.0×Dの領域の全てである第1の領域32を焼き戻すことによって製造することができる。
 第1の領域32を焼き戻すため、第1の領域32を占める硬度制御領域33に対して焼き戻しを行えばよい。
 第1の領域32のみならず、第2の領域34も焼き戻す方が、高い継手強度を得るためには望ましい。そのため、硬度制御領域33が、第1の領域32および第2の領域34の両方を占めるようにすることが好ましい。
 本実施形態に係るスポット溶接継手1の製造方法では、抵抗スポット溶接を行った第1の鋼板11に対し、面内引張応力のかかる少なくとも1つの方向に硬度制御領域33を設ける。すなわち、ナゲット2の中心Oから少なくても1つの方向のHAZ軟化部31とその周辺の領域とを焼き戻す。これにより、HAZ軟化部31を含む第1の領域32における硬度差を小さくできる。このようにしてHAZ軟化部31からの破断が抑制された本実施形態に係るスポット溶接継手1を製造することができる。
 抵抗スポット溶接は、用途に応じた条件で行えばよく、限定されない。
 焼き戻し条件も特に限定されないが、焼き入れ組織である硬質マルテンサイトを焼き戻し組織とするため、500~700℃の温度で焼き戻しを行うことが好ましい。焼き戻し温度が500℃未満であると、硬度差を十分に低減できない場合がある。一方、焼き戻し温度が700℃超であるのも好ましくない。なぜなら、組織の一部がオーステナイトに変態し、そのオーステナイトが焼き戻し後の冷却において、再度焼き入れ組織となるからである。再度焼き入れ組織となると、第1の領域32の硬度を十分に低下させられない場合がある。継手強度の観点では、母材部の強度を低下させずに第1の領域32を占める硬度制御領域33の焼き戻しを行うことが好ましい。その場合、焼き戻しには、レーザーを用いた熱処理、通電による熱処理など、局所的に加熱できる方法を用いることが好ましい。
 確実に発明の効果を得るために、焼き戻しによる硬度の狙いは、ナゲット2から少なくとも1つの方向における硬度制御領域33が占める第1の領域32の硬度が、第1の鋼板11の母材部の硬度の最大値よりも低く、かつ第1の領域32における硬度の最大値と硬度の最小値との差がビッカース硬さで80HV以下とする。より確実にHAZ軟化部31からの破断を抑制するために、これらの硬度の狙いは第1の領域32のみならず、第2の領域34にも適用することが望ましい。
 また、第1の鋼板の面内方向の、ナゲット2の全周方向に硬度制御領域33を設けることが望ましい。すなわち、第1の鋼板のナゲット2の中心Oを通る板厚方向の全ての断面において、第1の領域32が上記の硬さを満足するように焼き戻しを行うことが望ましい。ナゲット2の全周方向に焼き戻しを行うことで、第1の鋼板のどの方向に面内引張応力が生じても効果が得られるからである。更に、第2の領域34も焼き戻すことがより確実にHAZ軟化部31からの破断を抑制するためには望ましい。
 また、硬度制御領域33にある第1の領域32の硬度の最大値が、250HV~450HVとなるように、条件を制御して焼き戻しを行えば、構造部材としても強度を十分に確保した上で、HAZ軟化部31からの破断が抑制される溶接継手を製造することができるので好ましい。より確実にHAZ軟化部31からの破断を抑制するために、第2の領域34においても硬度の最大値が、250HV~450HVであることが望ましい。
 所定の硬度を得るための具体的な焼き戻し条件は、例えば事前に類似の条件で製造されたスポット溶接継手に対し、種々の条件で焼き戻しを行って硬度の変化を調べる等の方法によって決定することができる。
 以下に、本開示を図6及び表1を参照して実施例により具体的に説明する。これらの実施例は、本開示の効果を確認するための一例であり、本開示を限定するものではない。
 焼き入れ処理を経て得られた板厚1.6mmの鋼板から、図6に示すような標点間距離が50mmである引張試験片を採取した。同一の鋼板から、3つの引張試験片を採取し、一つは、そのままJISZ2241:2011に準じて引張試験を行い、鋼板の引張強さを求めた。
 また、鋼板の板厚方向断面の、表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の各5ヶ所から採取したサンプルについて、レペラ腐食液を用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、白色~赤褐色に見えるものがマルテンサイトであるとしてマルテンサイトの面積率を測定した。観察した20視野のマルテンサイトの面積率を平均することで、マルテンサイト面積率を求めた。その後、同じサンプルを用いて、ピクラールを用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、マルテンサイトのうちの硬質マルテンサイトの割合を求めた。そして、20視野のマルテンサイトにおける硬質マルテンサイトの割合を求めて平均し、その平均値をマルテンサイト面積率に乗じることによって、硬質マルテンサイトの面積率を求めた。
 残り2つの引張試験片については、平行部の1箇所に板厚1.6mm、20mm角のタブ板を重ね、単相交流スポット溶接機を用いて、以下に示す条件で抵抗スポット溶接を行った。抵抗スポット溶接により、引張試験片とタブ板との間には、ナゲット径Dが5×√t(t:引張試験片の板厚(mm))であるナゲットが形成された。
 電極:DR型電極(先端φ6mm R40)
 加圧力:400kgf
 通電時間20cyc
 抵抗スポット溶接後、溶接を行った2つの試験片のうち一方について、第1の鋼板側からレーザーを照射して焼き戻しを行った。継手番号1~5、ナゲット中心から0.5×D~2.5×Dの全ての範囲を含む領域に対して、焼き戻しを行った。継手番号6~10については、ナゲット中心から0.5×D~1.0×Dの全ての範囲を含む領域に対して、焼き戻しを行った。
 継手番号11~19については、ナゲットの試験片の長手方向と平行な方向に幅0.75×Dで、ナゲットの中心から0.5×D~2.5×Dの範囲に対して、焼き戻しを行った。
 継手番号20については、溶接後の硬度制御領域に相当する位置を、溶接前に予めレーザーを用いて焼き戻した後、抵抗スポット溶接を行った。溶接後は焼き戻しを行わなかった。
 全ての試験体は、室温まで冷却した後に引張速度を10mm/minとして引張試験を行い、破断位置及び破断伸びの向上代を評価した。破断伸びは、溶接前後に焼き戻しを行わなかった試験体を基準とし、基準に対して何%破断伸びが向上したのかによって評価した。
 溶接まま材に対し、破断伸びが、100~150%であればPoor、150~250%であればGood、250%以上であればExcellentとし、Good以上であれば十分な効果が得られていると判断した。
 また、鋼板の板厚方向断面の、ナゲットの中心から0.5×D~2.5×Dの範囲(継手番号1~5、11~20)またはナゲットの中心から0.5×D~1.0×Dの範囲(継手番号6~10)の硬度の最小値と硬度の最大値とを測定した。
 具体的には、対象となる領域の、鋼板の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置を、板面方向の一方の端部からもう一方の端部まで0.1mm間隔で硬度を測定し、硬度の最大値および最小値を得た。
 また、鋼板の硬度の最大値を求めるため、一方のナゲットから、もう一方のナゲットとは反対方向へ15mm~20mm離れた10か所について、ビッカース硬度計を用いて、荷重を1.0kgfとして、表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の硬度を測定した。
 結果を表1に示す。
 継手番号1~5、17~19(本発明例)では、焼き戻し部(ナゲットの中心から0.5×D~2.5×Dの範囲のビッカース硬さの最大値と最小値との差が80HV以下であり、この領域でのビッカース硬さの最大値が、母材部のビッカース硬さの最大値よりも低かった。その結果、破断位置がHAZ軟化部ではなく、また破断伸びは焼き戻しを行わない場合に対して、250%以上となった。
 継手番号6~10(本発明例)では、焼き戻し部(ナゲットの中心から0.5×D~1.5×Dの範囲のビッカース硬さの最大値と最小値との差が80HV以下であり、この領域のビッカース硬さの最大値が、母材部のビッカース硬さの最大値よりも低かった。その結果、破断はナゲット周囲の焼き戻し部であったが、破断伸びは焼き戻しを行わない場合に対して、150%以上に向上した。
 一方、継手番号11~16及び20(比較例)では、焼き戻し部のビッカース硬さの最大値と最小値との差が80HV以上、またはこの領域のビッカース硬さの最大値が、母材部のビッカース硬さの最大値よりも高かった。その理由は、焼き戻し時の加熱不足であると考えられる。また、継手番号20については、溶接により発生したHAZ軟化部が割れに影響したものと考えられる。
Figure JPOXMLDOC01-appb-T000001
 本開示のスポット溶接継手によれば、面内引張応力が負荷された場合でも、ナゲット周辺領域のHAZ軟化部からの破断を抑制できるので、自動車車体を構成する構造部材に用いた場合、所定の耐衝突性能を得ることができる。また、本開示の自動車骨格部品では、HAZ軟化部からの破断を抑制できるので、所定の耐衝突性能を得ることができる。また、本開示のスポット溶接継手の製造方法では、自動車車体を構成する構造部材に用いた場合、所定の耐衝突性能を得ることができるスポット溶接継手を製造することができる。
 そのため、産業上の利用可能性が高い。
 1  スポット溶接継手
 2  ナゲット
 2’  ナゲット(他のナゲット)
 O  ナゲットの中心
 11  第1の鋼板
 12  第2の鋼板
 31  HAZ軟化部
 32  第1の領域
 33  硬度制御領域
 34  第2の領域
 102 板面方向
 201  Bピラー

Claims (10)

  1.  引張強さが1100MPa以上、かつ、硬質マルテンサイト組織を主体とする、第1の鋼板と、
     前記第1の鋼板に重ねられた第2の鋼板と、
     前記第1の鋼板と前記第2の鋼板との間に形成された、前記第1の鋼板と前記第2の鋼板との界面における直径がDのナゲットと、
     前記第1の鋼板の、前記ナゲットの中心を通る板厚方向の断面の、前記第1の鋼板の前記板厚方向の全てかつ前記ナゲットの中心から板面方向に0.5×D~1.0×Dの領域を占め、前記領域の硬度の最大値と硬度の最小値との差が80HV以下であり、前記領域の前記硬度の最大値が前記第1の鋼板の硬度の最大値よりも低い、硬度制御領域と、
    を備える、スポット溶接継手。
  2.  前記断面内に他のナゲットを備える、請求項1に記載のスポット溶接継手。
  3.  全ての前記断面に前記硬度制御領域がある、請求項1または2に記載のスポット溶接継手。
  4.  前記領域の前記硬度の最大値が、250HV~450HVである、請求項1~3のいずれか一項に記載のスポット溶接継手。
  5.  前記第1の鋼板及び前記第2の鋼板がめっき鋼板である、請求項1~4のいずれか一項に記載のスポット溶接継手。
  6.  請求項1~5のいずれか一項に記載のスポット溶接継手を備える自動車骨格部品。
  7.  引張強さが1100MPa以上かつ硬質マルテンサイト組織を主体とする第1の鋼板と第2の鋼板とを重ね合わせて抵抗スポット溶接を行うことによって、前記第1の鋼板と前記第2の鋼板との間に、前記第1の鋼板と前記第2の鋼板との界面における直径がDのナゲットを形成し、
     前記第1の鋼板の前記ナゲットの中心を通る板厚方向の断面の、前記第1の鋼板の前記板厚方向の全てかつ前記ナゲットの中心から板面方向に0.5×D~1.0×Dの領域の全てを焼き戻す、
    スポット溶接継手の製造方法。
  8.  前記領域の硬度の最大値と硬度の最小値との差が80HV以下、かつ前記領域の前記硬度の最大値が前記第1の鋼板の硬度の最大値よりも低くなるように焼き戻しを行う、請求項7に記載のスポット溶接継手の製造方法。
  9.  全ての前記断面の前記領域に焼き戻しを行う、請求項7または8に記載のスポット溶接継手の製造方法。
  10.  前記領域の前記硬度の最大値が、250HV~450HVである、請求項8または9に記載のスポット溶接継手の製造方法。
PCT/JP2019/020589 2018-05-31 2019-05-24 スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法 WO2019230580A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19810484.6A EP3804899B1 (en) 2018-05-31 2019-05-24 Spot welded joint, vehicle framework component provided with spot welded joint, and method of manufacturing spot welded joint
CN201980035599.3A CN112203793B (zh) 2018-05-31 2019-05-24 点焊接头、具备点焊接头的车辆骨架部件、点焊接头的制造方法
US17/058,563 US20210205915A1 (en) 2018-05-31 2019-05-24 Spot welded joint, vehicle framework component provided with spot welded joint, and method of manufacturing spot welded joint
MX2020012739A MX2020012739A (es) 2018-05-31 2019-05-24 Junta soldada por puntos, componente de bastidor del vehiculo provisto de junta soldada por puntos y metodo de fabricacion de junta soldada por puntos.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105233 2018-05-31
JP2018105233 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230580A1 true WO2019230580A1 (ja) 2019-12-05

Family

ID=68698856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020589 WO2019230580A1 (ja) 2018-05-31 2019-05-24 スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法

Country Status (5)

Country Link
US (1) US20210205915A1 (ja)
EP (1) EP3804899B1 (ja)
CN (1) CN112203793B (ja)
MX (1) MX2020012739A (ja)
WO (1) WO2019230580A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181680A1 (ja) * 2022-03-25 2023-09-28 Jfeスチール株式会社 抵抗スポット溶接継手およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020004379A (es) * 2017-10-31 2020-08-20 Nippon Steel Corp Miembro estructural.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142905A (ja) 2004-11-17 2006-06-08 Nissan Motor Co Ltd エネルギー吸収部材及びその製造方法
JP2010059451A (ja) 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd 溶接継手およびその製造方法
JP5459750B2 (ja) 2007-11-28 2014-04-02 日産自動車株式会社 溶接方法
JP2014223669A (ja) * 2013-04-22 2014-12-04 新日鐵住金株式会社 高強度鋼板の重ね溶接部材およびその製造方法
JP2015000422A (ja) * 2013-06-17 2015-01-05 新日鐵住金株式会社 重ね溶接部材およびその製造方法
JP2015093282A (ja) 2013-11-08 2015-05-18 新日鐵住金株式会社 高強度鋼板のスポット溶接方法
JP5894081B2 (ja) 2009-12-13 2016-03-23 イェスタムプ・ハードテック・アクチエボラーグ 車両用bピラー
JP2018105233A (ja) 2016-12-27 2018-07-05 トヨタ自動車株式会社 内燃機関の排気浄化装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229720A (ja) * 2007-02-22 2008-10-02 Kobe Steel Ltd 引張強度に優れた高張力鋼板スポット溶接継手、それを有する自動車部品、および高張力鋼板のスポット溶接方法
JP5376391B2 (ja) * 2007-03-30 2013-12-25 日産自動車株式会社 異種金属の接合方法及び接合構造
JP5210552B2 (ja) * 2007-06-19 2013-06-12 株式会社神戸製鋼所 高強度スポット溶接継手
CN101241001A (zh) * 2008-02-28 2008-08-13 河北工业大学 一种铝合金电阻点焊熔核直径实时检测的方法
JP5895430B2 (ja) * 2011-10-04 2016-03-30 Jfeスチール株式会社 高強度薄鋼板の抵抗スポット溶接継手および抵抗スポット溶接方法
CA2876821C (en) * 2012-08-08 2017-09-05 Nippon Steel & Sumitomo Metal Corporation Method of welding overlapped portion, method of manufacturing overlap-welded member, overlap-welded member, and automotive part
WO2014025063A1 (ja) * 2012-08-10 2014-02-13 新日鐵住金株式会社 重ね合せ溶接部材、自動車用部品、重ね合せ部の溶接方法、及び、重ね合せ溶接部材の製造方法
JP6079466B2 (ja) * 2013-06-19 2017-02-15 新日鐵住金株式会社 高強度鋼板の重ね溶接部材およびその製造方法
CN105891210B (zh) * 2016-05-04 2019-01-15 中车株洲电力机车有限公司 电阻焊点疲劳寿命的检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142905A (ja) 2004-11-17 2006-06-08 Nissan Motor Co Ltd エネルギー吸収部材及びその製造方法
JP5459750B2 (ja) 2007-11-28 2014-04-02 日産自動車株式会社 溶接方法
JP2010059451A (ja) 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd 溶接継手およびその製造方法
JP5894081B2 (ja) 2009-12-13 2016-03-23 イェスタムプ・ハードテック・アクチエボラーグ 車両用bピラー
JP2014223669A (ja) * 2013-04-22 2014-12-04 新日鐵住金株式会社 高強度鋼板の重ね溶接部材およびその製造方法
JP2015000422A (ja) * 2013-06-17 2015-01-05 新日鐵住金株式会社 重ね溶接部材およびその製造方法
JP2015093282A (ja) 2013-11-08 2015-05-18 新日鐵住金株式会社 高強度鋼板のスポット溶接方法
JP2018105233A (ja) 2016-12-27 2018-07-05 トヨタ自動車株式会社 内燃機関の排気浄化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181680A1 (ja) * 2022-03-25 2023-09-28 Jfeスチール株式会社 抵抗スポット溶接継手およびその製造方法
JP7355280B1 (ja) 2022-03-25 2023-10-03 Jfeスチール株式会社 抵抗スポット溶接継手およびその製造方法

Also Published As

Publication number Publication date
EP3804899B1 (en) 2023-08-30
CN112203793B (zh) 2022-02-11
MX2020012739A (es) 2021-02-22
EP3804899A1 (en) 2021-04-14
EP3804899A4 (en) 2022-03-16
US20210205915A1 (en) 2021-07-08
CN112203793A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
JP7299956B2 (ja) プレス焼入れのための鋼板を製造する方法及びプレス焼入れのためのレーザ溶接ブランクを製造する方法
US10589380B2 (en) Lap welding method, lap joint, production method of lap joint, and an automobile part
US10549388B2 (en) Method of welding overlapped portion, method of manufacturing overlap-welded member, overlap-welded member, and automotive part
BR112020010105B1 (pt) Método para a produção de um molde de aço soldado, método para a produção de uma peça de aço soldada, molde de aço soldado, peça de aço soldada, formada por prensagem a quente e resfriada e uso de uma peça de aço soldada, formada por prensagem a quente e resfriada
JP5151615B2 (ja) 高強度鋼板のスポット溶接方法
JP2010059451A (ja) 溶接継手およびその製造方法
JP6379819B2 (ja) 重ね溶接部材、重ね溶接部材の重ね抵抗シーム溶接方法及び重ね溶接部を備える自動車用重ね溶接部材
Russo Spena et al. Effects of process parameters on spot welding of TRIP and quenching and partitioning steels
WO2019230580A1 (ja) スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法
CN114007796B (zh) 点焊接头以及点焊接头的制造方法
US20210404496A1 (en) Joined structure and method for manufacturing joined structure
JP7151762B2 (ja) スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法
JP2009291797A (ja) 溶接継手およびその製造方法
KR20240063932A (ko) 고강도 프레스 경화 강 부품 및 그 제조 방법
KR20240026245A (ko) 저항 스폿 용접 이음 및 그 저항 스폿 용접 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019810484

Country of ref document: EP

Effective date: 20210111

NENP Non-entry into the national phase

Ref country code: JP