WO2019230103A1 - アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 - Google Patents

アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 Download PDF

Info

Publication number
WO2019230103A1
WO2019230103A1 PCT/JP2019/008787 JP2019008787W WO2019230103A1 WO 2019230103 A1 WO2019230103 A1 WO 2019230103A1 JP 2019008787 W JP2019008787 W JP 2019008787W WO 2019230103 A1 WO2019230103 A1 WO 2019230103A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
wires
heating
band
wire
Prior art date
Application number
PCT/JP2019/008787
Other languages
English (en)
French (fr)
Inventor
金子 由利子
牧 平岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019024169A external-priority patent/JP2021145392A/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019230103A1 publication Critical patent/WO2019230103A1/ja
Priority to US16/931,036 priority Critical patent/US11181100B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0612Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using polymers
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/38Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/22Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/20Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting articles of particular configuration
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects

Definitions

  • the present invention relates to an actuator device, an actuator band, and a method for manufacturing the actuator band.
  • Patent Document 1 discloses coiled and non-coiled nanofiber twisted yarn, polymer fiber twist and tension actuator.
  • Non-patent Documents 1 and 2 disclose coiled polymer fibers formed from linear low density polyethylene. According to Non-Patent Documents 1 and 2, the coiled polymer fiber is shrunk by heating and restored by heat dissipation.
  • Patent Document 2 discloses an actuator that can contract in the axial direction.
  • Patent Document 1 discloses an example in which a plurality of coiled polymer fibers are arranged to obtain an arbitrary generated force.
  • Maki Hiraoka et al. "High stretchability and polymer chain morphology of coiled polymer actuators", 24th Polymer Materials Forum Lecture Proceedings, Vol. 24, 39 (Released on November 15, 2015) Maki Hiraoka et. Al. "Power-efficient low-temperature Woven coiled fiber actuator for wearable applications", Scientific Reports volume 6, Article number: 16358 (16358)
  • the present invention provides an actuator device, an actuator band, and an actuator band manufacturing method that can stably operate while suppressing an increase in the resistance value of the heating wire in repeated operations.
  • an actuator device includes an actuator band and a control device, and the actuator band includes a plurality of actuator wires and a plurality of heating wires.
  • the actuator band includes a plurality of actuator wires and a plurality of heating wires.
  • Each is formed from a polymer fiber, the fiber is twisted around its long axis, the fiber is folded to have the shape of a cylindrical coil, and a plurality of actuator wires Each of these is shrunk by heating and restored by heat dissipation, and any one of a braid, a woven fabric and a knitted fabric is formed by a plurality of actuator wires and a plurality of heating wires, and the plurality of actuator wires are arranged in a plane.
  • one end of each of the plurality of heating wires has a plurality of actuators.
  • the other end of each of the plurality of heating wires is joined to the other end of each of the plurality of actuator wires at the other end of the actuator band.
  • the actuator band includes a plurality of actuator wires and a plurality of heating wires, and each of the plurality of actuator wires is formed of a polymer fiber, and the fiber has a long axis thereof.
  • the fibers are folded to have the shape of a cylindrical coil, and each of the plurality of actuator wires is shrunk by heating and restored by heat dissipation, and the plurality of actuator wires and One of a braid, a woven fabric, and a knitted fabric is formed by the plurality of heating wires, the plurality of actuator wires are arranged in parallel in a planar shape, and one end of each of the plurality of heating wires is a plurality of actuators. Bonded to one end of each wire, the other end of each of the plurality of heating wires is in contact with the other end of each of the plurality of actuator wires. It is.
  • any one of a braid, a woven fabric, and a knitted fabric is formed by a plurality of actuator wires and a plurality of heating wires that are contracted by heating and restored by heat dissipation.
  • Each of the plurality of actuator wires is formed from a fiber made of a polymer, and the fiber is twisted around its long axis to form a cylindrical coil shape.
  • the plurality of actuator wires are arranged in parallel in a planar shape.
  • an actuator device an actuator band, and an actuator band manufacturing method that can stably operate while suppressing an increase in the resistance value of the heating wire in repeated operations.
  • FIG. 1A is a schematic diagram showing an actuator device 60 according to the embodiment.
  • the actuator device 60 according to the embodiment includes an actuator band 1 and a control device 5.
  • the actuator band 1 includes a plurality of actuator wires 11 and a plurality of heating wires 21.
  • the terms “actuator wire 11” and “heating wire 21” used in the present specification correspond to the terms “fiber” and “temperature control device” used in Patent Document 3, respectively.
  • the actuator wire 11 can be composed of a coiled polymer fiber 111 (see FIG. 2) formed of linear low density polyethylene. The actuator wire 11 is contracted by heating and restored by heat dissipation.
  • the actuator wire 11 when the actuator wire 11 applied with a load of 10 MPa at one end thereof is heated to 90 degrees Celsius, the actuator wire 11 contracts by about 23%. When the actuator wire 11 is cooled to room temperature, the actuator wire 11 is restored to its original length. As disclosed in Patent Document 3, the actuator wire 11 can be heated to a temperature of, for example, 30 degrees Celsius or more and 100 degrees Celsius or less.
  • the material of the coiled polymer fiber 111 is not limited to linear low density polyethylene, and may be a polymer.
  • the material of the coiled polymer fiber 111 include polyethylene (for example, low density polyethylene or high density polyethylene), nylon (for example, nylon 6, nylon 6, 6, nylon 12), polyester, or elastomer (for example, , Silicon rubber).
  • polyethylene for example, low density polyethylene or high density polyethylene
  • nylon for example, nylon 6, nylon 6, 6, nylon 12
  • polyester for example, polyester 6, or elastomer (for example, , Silicon rubber).
  • FIG. 2 is a schematic diagram showing the actuator wire 11 according to the embodiment.
  • the actuator wire 11 can be composed of at least one coiled polymer fiber 111.
  • the actuator wire 11 is composed of two coiled polymer fibers 111 integrated so as to be twisted together.
  • the actuator wire 11 can be composed of two or more coiled polymer fibers 111 that are twisted and twisted around the major axis.
  • the actuator wire 11 twists two or more coiled polymer fibers 111 so that the side surface of another twisted coiled polymer fiber 111b is in contact with the side surface of one twisted coiled polymer fiber 111a. Can be formed.
  • the coiled polymer fibers 111a and 111b are each folded so as to have a cylindrical coil shape.
  • the coiled polymer fiber 111 satisfies the following formula (I).
  • D represents the average diameter of the cylindrical coil of the coiled polymer fiber 111
  • d represents the diameter of the coiled polymer fiber 111. Because of this relationship, the displacement rate of the actuator wire 11 can be increased.
  • the average diameter D is obtained by subtracting the diameter d of the coiled polymer fiber 111 from the outer diameter D1 of the cylindrical coil.
  • FIG. 3 is a cross-sectional view showing the heating wire 21 according to the embodiment.
  • the heating wire 21 includes a non-conductive elastic yarn 51 serving as a core yarn, and a metal wire 52 covered around the elastic yarn 51.
  • the heating wire 21 is manufactured by a known covering processing machine using the elastic yarn 51 as a core yarn and the metal wire 52 as a sheath yarn.
  • the cover ring means that the metal wire 52 is wound around the elastic yarn 51 in the S direction or the Z direction.
  • the heating wire 21 in which the metal wire 52 is wound around the elastic yarn 51 is referred to as a single covering heating wire. Note that the metal wire 52 alone may be used as the heating wire 21.
  • the actuator band 1 includes a plurality of heating wires 21 and a plurality of actuator wires 11.
  • Each heating wire 21 forms a stitch by a flat string.
  • An actuator wire 11 is arranged between the groups. This arrangement is generally referred to as call rubber or rubber strap. See Patent Document 4 for details of the configuration of the rubber cord.
  • the plurality of heating wires 21 form a group by crossing each other, and expand and contract when the group changes.
  • each actuator wire 11 is arranged linearly in a set formed by the heating wire 21.
  • Each actuator wire 11 is arranged in parallel to each other.
  • a braid is formed by the plurality of actuator wires 11 and the plurality of heating wires 21 arranged in parallel in a planar shape. Since the actuator band 1 has such a structure, each actuator wire 11 contracts when heated by the heating wire 21 that is a heat source.
  • FIG. 1A shows a case where eight actuator wires 11 (two-dot chain lines in FIG. 1A) constituting one actuator band 1 are arranged in parallel. In this example, 17 heating wires 21 constituting one actuator band 1 are used.
  • FIG. 1B is a cross-sectional view showing the actuator band 1 according to the embodiment. Specifically, FIG. 1B is a cross-sectional view of the cut surface including the line 1B-1B shown in FIG. 1A. In FIG. 1B, for convenience, one actuator wire 11 is illustrated by one circle.
  • the three heating wires 21 are arranged almost evenly around each actuator wire 11. For this reason, the contacts between the heating wires 21 are less likely to concentrate, and a local increase in resistance can be prevented.
  • the heating wire 21 between the two actuator wires 11 is used in common by these two actuator wires 11. For this reason, the number of heating wires 21 can be reduced and the actuator wires 11 can be heated more efficiently than when three heating wires 21 are provided for each actuator wire 11.
  • a first connector 4 a is provided at one end of the actuator band 1.
  • One end of the actuator band 1 is crimped by the first connector 4a.
  • one end of each of the plurality of heating wires 21 is joined to one end of each of the plurality of actuator wires 11.
  • a second connector 4b is provided on the other end of the actuator band 1.
  • the other end of the actuator band 1 is crimped by a second connector 4b.
  • the other end of each of the plurality of heating wires 21 is joined to the other end of each of the plurality of actuator wires 11.
  • the first connector 4a and the second connector 4b are electrically connected to the control device 5 via electric wires, respectively.
  • the first connector 4a and the second connector 4b are, for example, crimp terminals.
  • the crimp terminal include a fork crimp terminal and a ring crimp terminal.
  • the crimp terminal is preferably made of metal. Thereby, the heat from the heating wire 21 can be radiated by the first connector 4a and the second connector 4b.
  • the control device 5 supplies power to the plurality of heating wires 21 and heats each heating wire 21.
  • the control device 5 can include a power source for supplying power to the plurality of heating wires 21.
  • the electric power supplied to the plurality of heating wires 21 is alternating current or direct current.
  • the control device 5 can further include a switch. While the switch is on, power is supplied to the plurality of heating wires 21. When the switch is off, power is not supplied to the plurality of heating wires 21.
  • the plurality of actuator wires 11 and the plurality of heating wires 21 described above are set on a well-known flat stringing machine.
  • the plurality of heating wires 21 are wound with sufficient tension applied to the plurality of bobbins provided in the flat stringing machine.
  • the actuator band 1 is formed by assembling a plurality of heating wires 21 around the plurality of actuator wires 11 by moving the flat stringing machine.
  • each actuator wire 11 is disposed between the bobbins in a state where a sufficient tension is applied in order to obtain a configuration of a coal rubber. For this reason, each actuator wire 11 and each heating wire 21 are wound up while being assembled by a flat stringing machine to form an actuator band 1.
  • a round punched string assembles a plurality of wires in an even number of bobbins in a cylindrical shape
  • a flat punched string assembles a plurality of wires in an odd number of bobbins in a strip shape
  • the even number of bobbins may include empty bobbins.
  • the odd number of bobbins may include empty bobbins.
  • the number of actuator wires 11 can be selected in accordance with the amount of work required for the actuator device 60. It is also possible to assemble a plurality of wires using a bobbin around which a dummy wire is wound instead of the empty bobbin. In this case, it is possible to form a uniform set, that is, a uniform set.
  • the dummy wire should be as thin as possible. As the dummy wire becomes thinner, the work loss of the actuator band 1 due to the dummy wire can be reduced.
  • the actuator band 1 is cut to a desired length.
  • the actuator band 1 is such that the length along the first direction from one end to the other end of the actuator band 1 is longer than the length (width) in the second direction orthogonal to the first direction. Is disconnected. That is, the first direction is the longitudinal direction of the actuator band 1. The second direction is the short direction of the actuator band 1. The first direction is also the axial direction of each actuator wire 11.
  • a first connector 4a and a second connector 4b are attached to both ends of the actuator band 1 cut to a desired length.
  • the first connector 4a and the second connector 4b are electrically connected to the control device 5 via electric wires, respectively. Thereby, the actuator device 60 is assembled.
  • a weight 6 is connected to the second connector 4 b on one end side of the actuator band 1 via a wire W.
  • a predetermined tension is applied to the actuator band 1 by the weight 6, and the actuator band 1 becomes tight.
  • the actuator band 1 is given a tension along the first direction by the weight 6.
  • FIG. 4A is a schematic diagram showing a state where the heating wire 21 is not heated in the actuator band 1 according to the embodiment.
  • FIG. 4B is a schematic diagram illustrating a state where the heating wire 21 is heated in the actuator band 1 according to the embodiment.
  • the heating wire 21 when the heating wire 21 is heated, the plurality of actuator wires 11 of the actuator band 1 are contracted by heating. Following this contraction, the group formed by the plurality of heating wires 21 is deformed and contracts in the first direction. For this reason, the length L1 of the actuator band 1 in the first direction is shorter than the length L0.
  • the actuator band 1 expands and contracts due to deformation of the assembly formed by the plurality of heating wires 21, contraction due to heating of the actuator wire 11, and restoration due to heat dissipation. For this reason, the expansion / contraction movement of the actuator wire 11 is not hindered at the point where the heating wires 21 intersect each other.
  • the heating wire 21 in order for each heating wire 21 to uniformly deform following the expansion and contraction of the actuator wire 11, it is desirable that the heating wire 21 has low rigidity and elasticity.
  • the initial tension applied to the actuator band 1 is smaller and the contraction rate of the actuator band 1 is better. It is desirable to configure the actuator band 1 so as to stabilize the expansion and contraction operation due to repeated heating and heat dissipation.
  • the present inventors obtained a coiled polymer fiber 111.
  • the present inventors twisted the two coiled polymer fibers 111 to manufacture the actuator wire 11 (see FIG. 2).
  • the actuator wire 11 is composed of two coiled polymer fibers 111 twisted together.
  • the side surface of one twisted coiled polymer fiber 111a was in contact with the side surface of another twisted coiled polymer fiber 111b.
  • heating wire 21 A monofilament made of polyester (manufactured by Toray Industries, Inc., fiber thickness: 10 denier) was used as the elastic yarn 51.
  • a stainless steel wire (Nippon Seisen Co., Ltd., trade name “stainless steel wire”, material “SUS 316L”, diameter “0.030 mm”) was used as the metal wire 52 (sheath thread).
  • a metal wire 52 was assembled in S twist (twist number: 2950 T / m).
  • the present inventors manufactured the heating wire 21.
  • actuator band 1 having a structure of coal rubber (or rubber string) was manufactured. Eight actuator wires 11 and 17 heating wires 21 were used. 8 actuator wires 11 are lined up, and a flat stringing machine is used to draw a loop in which the number “8” is continuously connected vertically using 17 heating wires 21 between them. As a result, an actuator band 1 was obtained. The length of the actuator band 1 in the first direction was about 60 mm. A first connector 4a is attached to one end of the actuator band 1, and a second connector 4b is attached to the other end.
  • FIG. 5 is a schematic diagram of a test apparatus 100 used for the heating test. As shown in FIG. 5, the test apparatus 100 includes a fixed plate 7, a pulley 31, a mirror 32, a radiation thermometer 15, and a laser displacement meter 14.
  • the first connector 4 a was fixed using a fixing plate 7.
  • the pulley 31 is a pulley that guides the wire W attached to the second connector 4 b on the other end side of the actuator band 1.
  • the actuator band 1 is arranged substantially horizontally by the fixing plate 7 and the pulley 31.
  • a 500 g weight 6 is attached to the wire W, for example. Due to the initial tension by the weight 6, the actuator band 1 is in an extended state (see, for example, FIG. 4A).
  • the second connector 4 b of the actuator band 1 is movable along the first direction based on the expansion and contraction of the actuator band 1.
  • the mirror 32 is attached to the second connector 4b of the actuator band 1, and moves in the first direction in conjunction with the movement of the second connector 4b.
  • the mirror surface of the mirror 32 is provided along a direction orthogonal to the first direction, and a laser displacement meter 14 (trade name “LK-080” manufactured by Keyence Corporation) is disposed at a position facing the mirror surface of the mirror 32. It had been.
  • the laser displacement meter 14 measures the displacement of the second connector 4b by irradiating the mirror 32 with laser light and detecting the laser light reflected by the mirror 32. That is, the laser displacement meter 14 measures the displacement of the actuator band 1.
  • the radiation thermometer 15 is disposed at a position where infrared or visible light emitted from the actuator band 1 can be detected, and measures the temperature of the actuator band 1 based on the detected infrared or visible light.
  • a product name “FSV-210” manufactured by Apiste was used as the radiation thermometer 15 .
  • the inventors applied a current of 380 mA and a power of 1.8 W to the heating wire 21 using the control device 5 for 12 seconds. In this way, the actuator band 1 was heated. At this time, the temperature of the side surface of the actuator band 1 reached approximately 70 degrees Celsius. Due to this heating, the actuator band 1 contracted in the first direction.
  • the side surface of the actuator band 1 was naturally cooled to 30 degrees Celsius or less. Due to this heat dissipation, the actuator band 1 was extended and restored in the first direction. As the actuator band 1 contracted and restored, the mirror 32 vibrated in the first direction. The vibration of the actuator band 1 was measured by the laser displacement meter 14 measuring this vibration.
  • FIG. 6 is a graph showing the shrinkage rate and temperature change of the actuator band 1 according to the example.
  • the shrinkage rate C is defined by the following mathematical formula (II).
  • L0 is the length of the actuator band 1 to which the initial tension before heating is applied (see FIG. 4A).
  • L1 is the length of the actuator band 1 during heating (see FIG. 4B).
  • the actuator band 1 was subjected to a durability test in which heating and cooling were repeated.
  • the weight 6 had a weight of 500 g, and a current to the heating wire 21 was applied at 330 mA for 25 seconds.
  • the actuator band 1 was cooled by a cooling fan for 25 seconds. Cooling was accelerated with a fan, and the temperature of the side surface of the actuator band 1 became 30 degrees Celsius or less. This repetition was performed 14500 times.
  • FIG. 7A is a graph showing a relationship between a change in resistance value of the actuator band 1 and the number of repetitions according to the example.
  • the change in resistance value was 120% or less in the actuator band 1 according to the example.
  • FIG. 8A is a schematic diagram illustrating an actuator band 40 according to a comparative example.
  • FIG. 9 is a front view showing an actuator single line 41 provided in the actuator band 40 according to the comparative example.
  • FIG. 8B is a cross-sectional view showing an actuator band 40 according to a comparative example.
  • FIG. 8B is a cross-sectional view of a cut surface including a line 8B-8B shown in FIG. 8A.
  • one actuator wire 11 is illustrated by one circle.
  • the same parts as those in the above embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • the actuator band 40 is formed by assembling a plurality of actuator single wires 41.
  • the actuator single wire 41 is formed by arranging four heating wires 21 assembled in a mesh pattern around the actuator wire 11. Specifically, the actuator single wire 41 is formed by coating the four heating wires 21 in a net shape around the actuator wire 11 by a process called a round string.
  • the actuator band 40 is formed by assembling nine actuator single wires 41 by a process called a flat string. Since the actuator band 40 has nine actuator single wires 41, the entire actuator band 40 is provided with 36 heating wires 21. The length of the actuator band 40 in the first direction is about 70 mm. A first connector 4a is attached to one end of the actuator band 40, and a second connector 4b is attached to the other end.
  • the durability test of repeating heating and cooling was performed on the actuator band 40 in the same manner as in the example.
  • the weight of the weight 6 was set to 500 g, and a current to the heating wire 21 was applied at 470 mA for 30 seconds.
  • the actuator band 40 was cooled by a cooling fan for 25 seconds. Cooling was accelerated with a fan, and the temperature of the side surface of the actuator band 1 became 30 degrees Celsius or less. This repetition was performed 14500 times.
  • FIG. 7B is a graph showing the relationship between the change in the resistance value of the actuator band 40 according to the comparative example and the number of repetitions. As shown in FIG. 7B, in the actuator band 40 according to the comparative example, the resistance value change exceeded 140%.
  • the actuator band 1 according to the example is more suppressed in change in resistance value than the actuator band 40 according to the comparative example.
  • FIG. 10 is a schematic diagram showing an actuator band 1A according to the first modification.
  • each heating wire 21 has a rectangular wave shape, and the plurality of heating wires 21 are knitted so as to have a net shape.
  • a plurality of actuator wires 11a are arranged in parallel in a planar shape with respect to each knitted heating wire 21.
  • each actuator wire 11a is inserted in parallel to each heating wire 21 from the side (upper or lower in FIG. 10).
  • the actuator wires 11a are arranged in a planar shape with respect to a single knitted fabric composed of a plurality of heating wires 21.
  • FIG. 11 is a schematic diagram illustrating an actuator band 1B according to the second modification.
  • each heating wire 21a, 21b has the shape of an elongate plate (namely, strip
  • Each heating wire 21a, 21b is woven in a lattice shape.
  • a plurality of actuator wires 11b are arranged in parallel to each other on the woven heating wires 21a and 21b. Specifically, each actuator wire 11b is inserted in parallel with each heating wire 21a, 21b from the side (upper or lower in FIG. 11). Thereby, each actuator wire 11b is arrange
  • FIG. 12 is a cross-sectional view showing an actuator band 1 ⁇ / b> C according to the third modification.
  • the actuator band 1 ⁇ / b> C according to Modification 3 is formed of a pair of actuator wires 11 and five heating wires 21.
  • the three heating wires 21 are arranged substantially evenly around each actuator wire 11. For this reason, the contacts between the heating wires 21 are less likely to concentrate, and a local increase in resistance can be prevented.
  • the heating wire 21 between the pair of actuator wires 11 is used in common by the pair of actuator wires 11. For this reason, the number of heating wires 21 can be reduced and the actuator wires 11 can be heated more efficiently than when three heating wires 21 are provided for each actuator wire 11.
  • the present invention can be applied to an actuator device used as an artificial muscle.
  • the actuator device 60 includes the actuator band 1 and the control device 5, and the actuator band 1 includes the plurality of actuator wires 11 and the plurality of heating wires 21, and includes the plurality of actuator wires.
  • Each of 11 is formed from a polymer fiber (coiled polymer fiber 111), and the fiber is twisted along its long axis so that the fiber has a shape of a cylindrical coil.
  • Each of the plurality of actuator wires 11 is folded by heating and restored by heat dissipation, and any one of a braid, a woven fabric, and a knitted fabric is formed by the plurality of actuator wires 11 and the plurality of heating wires 21.
  • the plurality of actuator wires 11 are arranged in a plane, and one of the actuator bands 1 Then, one end of each of the plurality of heating wires 21 is joined to one end of each of the plurality of actuator wires 11, and the other end of each of the plurality of heating wires 21 is connected to one end of each of the plurality of actuator wires 11. 11, the controller 5 is used to supply electric power for heating each of the plurality of heating wires 21 to each of the plurality of heating wires 21, and the actuator band 1 is The actuator band 1 is contracted along the first direction by being heated in a state where tension is applied along the first direction from one end to the other end of the actuator band 1.
  • the actuator band 1 includes a plurality of actuator wires 11 and a plurality of heating wires 21, and each of the plurality of actuator wires 11 is formed from a polymer fiber (coiled polymer fiber 111). The fibers are twisted around their long axis, the fibers are folded to have the shape of a cylindrical coil, each of the plurality of actuator wires 11 is shrunk by heating, and One of a braid, a woven fabric, and a knitted fabric is formed by the plurality of actuator wires 11 and the plurality of heating wires 21, and the plurality of actuator wires 11 are arranged in a planar shape. One end of each of the heating wires 21 is joined to one end of each of the plurality of actuator wires 11, and the plurality of heating wires 1 of each of the other end is joined to the other end of each of the plurality of actuators wires 11.
  • the manufacturing method of the actuator band 1 which concerns on embodiment forms any one of a braid, a woven fabric, and a knitted fabric by the several actuator wire 11 and the several heating wire 21 which shrink
  • the actuator band 1 is formed, and each of the plurality of actuator wires 11 is formed of a polymer fiber (coiled polymer fiber 111), and the fiber is twisted along its long axis. It is folded so as to have the shape of a cylindrical coil, and the plurality of actuator wires 11 are arranged in parallel in a planar shape.
  • each actuator wire A plurality of heating wires 21 can be arranged substantially evenly around 11. Thereby, the contacts between the heating wires 21 are less likely to concentrate, and a local increase in resistance can be prevented. Therefore, an increase in the resistance value of the heating wire 21 can be suppressed in repeated operations, and the actuator device 60 can be operated stably.
  • Each of the plurality of heating wires 21 includes a non-conductive elastic thread 51 and a metal wire 52, and the metal wire 52 is wound around the elastic thread 51 in a spiral shape.
  • the heating wire 21 in which the metal wire 52 is wound around the elastic yarn 51 is used, the contact area between the metal wire 52 and the actuator wire 11 can be increased, and the thermal efficiency can be increased.
  • the actuator band 1 includes a first connector 4a and a second connector 4b, and one end of each of the plurality of heating wires 21 is bonded to one end of each of the plurality of actuator wires 11 by the first connector 4a. The other end of each of the plurality of heating wires 21 is joined to the other end of each of the plurality of actuator wires 11 by the second connector 4b.
  • one end of the plurality of heating wires 21 and the plurality of actuator wires 11 is joined by the first joining tool 4a, and the other ends of the plurality of heating wires 21 and the plurality of actuator wires 11 are joined by the second joining tool 4b.
  • the first connector 4a and the second connector 4b are made of metal, the heat from the heating wire 21 can be radiated by the first connector 4a and the second connector 4b.
  • the fiber is made of linear low density polyethylene and satisfies the following formula (I).
  • D represents the average diameter of the cylindrical coil
  • d represents the diameter of the fiber
  • the plurality of heating wires 21 is a braid
  • the plurality of heating wires may be woven or knitted.
  • the actuator band 1 is manufactured by collectively assembling the plurality of actuator wires 11 together with the plurality of heating wires 21 .
  • the actuator band 1 may be formed by inserting a plurality of actuator wires 11 into the assembly after forming the assembly in advance with the plurality of heating wires 21. This is the same even when the plurality of heating wires 21 are woven fabric or knitted fabric.
  • the case where the plurality of actuator wires 11 are arranged in parallel is illustrated.
  • the plurality of actuator wires may be arranged non-parallel to each other or may intersect each other.
  • the width may be greater than or equal to the length in the first direction.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Actuator (AREA)

Abstract

繰り返し動作において、電熱線の抵抗値の上昇を抑えて、アクチュエータ装置を安定的に動作させるために、本開示によるアクチュエータバンド(1)は、複数のアクチュエータワイヤ(11)及び複数の電熱線(21)を具備し、複数のアクチュエータワイヤ(11)の各々は、高分子からなる繊維(111))から形成され、繊維は、その長軸の周りに沿って捻られており、繊維は、円筒状のコイルの形状を有するように折りたたまれており、複数のアクチュエータワイヤ(11)の各々は、加熱により縮み、かつ放熱により復元し、平面状に配列された複数のアクチュエータワイヤ(11)及び複数の電熱線(21)によって組物が形成されており、複数の電熱線(21)の各々の一端は、複数のアクチュエータワイヤ(11)の各々の一端に接合されており、複数の電熱線(21)の各々の他端は、複数のアクチュエータワイヤ(11)の各々の他端に接合されている。

Description

アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法
 本発明は、アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法に関する。
 特許文献1は、コイル状及び非コイル状ナノファイバー撚糸、ポリマーファイバーのねじり及び引張アクチュエータを開示している。平岡牧らは、非特許文献1及び2において、直鎖状低密度ポリエチレンから形成されているコイル状ポリマー繊維を開示している。非特許文献1及び2によれば、当該コイル状ポリマー繊維は、加熱により縮み、かつ放熱により復元する。特許文献2は、軸方向に収縮可能なアクチュエータを開示している。また、特許文献1は、コイル状ポリマー繊維を複数並べて任意の発生力を得る例を開示している。
国際公開第2014/022667号 米国特許第4733603号明細書 特許第6111438号公報 特開2007-16327号公報
平岡牧ら、「コイル状ポリマーアクチュエータの高伸縮性とポリマー鎖のモルフォロジー」、第24回ポリマー材料フォーラム講演予稿集、第24巻、第39頁(公開日:2015年11月15日) Maki Hiraoka et. al. "Power-efficient low-temperature woven coiled fibre actuator for wearable applications" Scientific Reports volume 6, Article number: 36358 (2016)
 本発明は、繰り返し動作において、電熱線の抵抗値の上昇を抑えて安定的に動作することができるアクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法を提供する。
 上記課題を解決するために、本発明の一態様に係るアクチュエータ装置は、アクチュエータバンド及び制御装置を具備し、アクチュエータバンドは、複数のアクチュエータワイヤ及び複数の電熱線を具備し、複数のアクチュエータワイヤの各々は、高分子からなる繊維から形成され、繊維は、その長軸の周りに沿って捻られており、繊維は、円筒状のコイルの形状を有するように折りたたまれており、複数のアクチュエータワイヤの各々は、加熱により縮み、かつ放熱により復元し、複数のアクチュエータワイヤ及び複数の電熱線によって、組物、織物及び編物のいずれか一つが形成されており、複数のアクチュエータワイヤは平面状に並列に配置されており、アクチュエータバンドの一端では、複数の電熱線の各々の一端が複数のアクチュエータワイヤの各々の一端に接合されており、アクチュエータバンドの他端では、複数の電熱線の各々の他端が前記複数のアクチュエータワイヤの各々の他端に接合されており、制御装置は、複数の電熱線の各々を加熱するための電力を複数の電熱線の各々に供給するために用いられ、アクチュエータバンドは、当該アクチュエータバンドの一端から他端までの第一方向に沿って張力が印加された状態で加熱されることにより、第一方向に沿って収縮する。
 また、本発明の一態様に係るアクチュエータバンドは、複数のアクチュエータワイヤ及び複数の電熱線を具備し、複数のアクチュエータワイヤの各々は、高分子からなる繊維から形成され、繊維は、その長軸の周りに沿って捻られており、繊維は、円筒状のコイルの形状を有するように折りたたまれており、複数のアクチュエータワイヤの各々は、加熱により縮み、かつ放熱により復元し、複数のアクチュエータワイヤ及び複数の電熱線によって、組物、織物及び編物のいずれか一つが形成されており、複数のアクチュエータワイヤは平面状に並列に配置されており、複数の電熱線の各々の一端は、複数のアクチュエータワイヤの各々の一端に接合されており、複数の電熱線の各々の他端は、複数のアクチュエータワイヤの各々の他端に接合されている。
 また、本発明の一態様に係るアクチュエータバンドの製造方法は、加熱により縮み、かつ放熱により復元する複数のアクチュエータワイヤ及び複数の電熱線によって、組物、織物及び編物のいずれか一つを形成することでアクチュエータバンドを形成する工程を含み、複数のアクチュエータワイヤの各々は、高分子からなる繊維から形成され、繊維は、その長軸の周りに沿って捻られており、円筒状のコイルの形状を有するように折りたたまれており、複数のアクチュエータワイヤは平面状に並列に配置されている。
 本発明によれば、繰り返し動作において、電熱線の抵抗値の上昇を抑えて安定的に動作可能なアクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法を提供することができる。
実施の形態に係るアクチュエータ装置を示す模式図である。 実施の形態に係るアクチュエータバンドを示す断面図である。 実施の形態に係るアクチュエータワイヤを示す模式図である。 実施の形態に係る電熱線を示す断面図である。 実施の形態に係るアクチュエータバンドにおいて、電熱線に対する加熱がない状態を示す模式図である。 実施の形態に係るアクチュエータバンドにおいて、電熱線に対する加熱がある状態を示す模式図である。 加熱試験に用いられる試験装置の模式図である。 実施例に係るアクチュエータバンドの収縮率及び温度の時間変化を示すグラフである。 実施例に係るアクチュエータバンドの抵抗値変化と繰り返し回数との関係を示すグラフである。 比較例に係るアクチュエータバンドのそれぞれの抵抗値変化と繰り返し回数との関係を示すグラフである。 比較例に係るアクチュエータバンドを示す模式図である。 比較例に係るアクチュエータバンドを示す断面図である。 比較例に係るアクチュエータバンドを構成するアクチュエータ単線を示す正面図である。 変形例1に係るアクチュエータバンドを示す模式図である。 変形例2に係るアクチュエータバンドを示す模式図である。 変形例3に係るアクチュエータバンドを示す断面図である。
 以下、本発明の実施形態が図面を参照しながら詳細に説明される。
 図1Aは、実施の形態に係るアクチュエータ装置60を示す模式図である。図1Aに示すように、実施の形態に係るアクチュエータ装置60は、アクチュエータバンド1及び制御装置5を具備している。アクチュエータバンド1は、複数のアクチュエータワイヤ11及び複数の電熱線21を具備している。
 [アクチュエータワイヤ]
 アクチュエータワイヤ11の詳細は、本特許出願に先行する特許文献3を参照されたい。特許文献3(すなわち、特許第6111438号)及び特許文献3に対応する米国特許出願公開第2015/245145号明細書は、本願に参照として援用される。また、アクチュエータワイヤ11については、非特許文献1に開示されている。
 本明細書において用いられる用語「アクチュエータワイヤ11」及び「電熱線21」は、それぞれ、特許文献3において用いられる用語「繊維」及び「温度調節装置」に対応する。当該特許文献3に開示されているように、アクチュエータワイヤ11は、直鎖状低密度ポリエチレンから形成されたコイル状ポリマー繊維111(図2参照)から構成され得る。アクチュエータワイヤ11は、加熱により縮み、かつ放熱により復元する。
 一例として、10MPaの加重をその一端に印加されたアクチュエータワイヤ11が摂氏90度に加熱されると、アクチュエータワイヤ11は23%ほど縮む。アクチュエータワイヤ11が室温まで冷却されると、アクチュエータワイヤ11は元の長さになるように復元する。特許文献3にも開示されているように、アクチュエータワイヤ11は、例えば、摂氏30度以上摂氏100度以下の温度に加熱され得る。なお、コイル状ポリマー繊維111の材質は、直鎖状低密度ポリエチレンに限られず、高分子でもよい。
 コイル状ポリマー繊維111の材質のその他の例は、ポリエチレン(例えば、低密度ポリエチレン、または、高密度ポリエチレン)、ナイロン(例えば、ナイロン6、ナイロン6,6、ナイロン12)、ポリエステル、またはエラストマー(例えば、シリコンゴム)でもよい。
 図2は、実施の形態に係るアクチュエータワイヤ11を示す模式図である。アクチュエータワイヤ11は、少なくとも1本のコイル状ポリマー繊維111から構成され得る。例えば、図2では、アクチュエータワイヤ11は、互いに撚り合わされるように一体化された2本のコイル状ポリマー繊維111から構成されている。具体的には、アクチュエータワイヤ11は、互いに長軸の周りに沿って捻じられて撚り合わされた2本以上のコイル状ポリマー繊維111から構成され得る。言い換えれば、アクチュエータワイヤ11は、捻られた1本のコイル状ポリマー繊維111aの側面に捻られた他のコイル状ポリマー繊維111bの側面が接するように、2本以上のコイル状ポリマー繊維111を捻ることで形成され得る。このため、コイル状ポリマー繊維111a、111bは、それぞれ円筒状のコイルの形状を有するように折りたたまれている。
 ここで、特許文献3にも記載されているように、コイル状ポリマー繊維111は、以下の式(I)を満たしている。
 D/d<1   (I)
 ここで、Dは、コイル状ポリマー繊維111の円筒状のコイルの平均直径を表し、dはコイル状ポリマー繊維111の直径を表している。この関係性であるために、アクチュエータワイヤ11の変位率を高くすることができる。平均直径Dは、円筒状のコイルの外径D1からコイル状ポリマー繊維111の直径dを減算することにより得られる。
 [電熱線]
 図3は、実施の形態に係る電熱線21を示す断面図である。図3に示すように、電熱線21は、芯糸となる非導電性の弾性糸51と、弾性糸51の周囲にカバーリングされた金属ワイヤ52とを備えている。具体的には、電熱線21は、弾性糸51を芯糸、金属ワイヤ52を鞘糸として、周知のカバーリング加工機によって製造される。ここで、カバーリングとは、弾性糸51に対して金属ワイヤ52をS方向またはZ方向に巻きつけることを言う。本実施の形態のように、金属ワイヤ52が弾性糸51に対して一重に巻かれている電熱線21は、シングルカバーリング電熱線と称される。なお、金属ワイヤ52単体を電熱線21として用いてもよい。
 [アクチュエータバンド]
 図1Aに示すように、アクチュエータバンド1は、複数の電熱線21及び複数のアクチュエータワイヤ11を具備している。各電熱線21が平打ち製紐により組目を形成している。組目の間にアクチュエータワイヤ11が配置されている。当該配置は、一般的にコールゴムまたはゴム紐と称される。ゴム紐の構成の詳細については特許文献4を参照されたい。複数の電熱線21は互いに交差することで組目を形成し、組目が変化することで伸縮する。一方、各アクチュエータワイヤ11は、電熱線21が形成する組目中に直線状に配置されている。各アクチュエータワイヤ11は、互いに平行に配置されている。このように、アクチュエータバンド1においては、平面状に並列に配列された複数のアクチュエータワイヤ11及び複数の電熱線21によって、組物が形成されている。アクチュエータバンド1はこのような構造を有しているため、各アクチュエータワイヤ11が、発熱源である電熱線21によって加熱されることにより収縮する。
 図1Aは、一つのアクチュエータバンド1を構成する8本のアクチュエータワイヤ11(図1A中、二点鎖線)が平行に配列されている場合を示している。この例では、一つのアクチュエータバンド1を構成する17本の電熱線21が用いられている。
 図1Bは、実施の形態に係るアクチュエータバンド1を示す断面図である。具体的には、図1Bは、図1Aに示す1B-1B線を含む切断面を見た断面図である。図1Bでは、便宜上、一つのアクチュエータワイヤ11を一つの円で図示している。
 図1Bに示すように、各アクチュエータワイヤ11の周囲にはほぼ均等に3本の電熱線21が配置されている。このため、電熱線21同士の接点が集中しにくくなり、局所的な抵抗増加を防止できる。
 また、2本のアクチュエータワイヤ11の間の電熱線21は、これら2本のアクチュエータワイヤ11で共通化して用いられる。このため、各アクチュエータワイヤ11に対して電熱線21を3本ずつ設ける場合よりも、電熱線21の本数を低減することができ、効率よくアクチュエータワイヤ11を加熱できる。
 図1Aに示すように、アクチュエータバンド1の一端には、第一接合具4aが設けられている。アクチュエータバンド1の一端は、第一接合具4aによって加締められている。この加締めによって、複数の電熱線21の各々の一端が複数のアクチュエータワイヤ11の各々の一端に接合されている。アクチュエータバンド1の他端には、第二接合具4bが設けられている。アクチュエータバンド1の他端は、第二接合具4bによって加締められている。この加締めによって、複数の電熱線21の各々の他端が複数のアクチュエータワイヤ11の各々の他端に接合されている。第一接合具4a及び第二接合具4bは、それぞれ電線を介して制御装置5に電気的に接続されている。第一接合具4a及び第二接合具4bは、例えば圧着端子である。圧着端子としては、例えばフォーク圧着端子またはリング圧着端子が挙げられる。圧着端子は、金属製であることが望ましい。これにより、電熱線21からの熱を第一接合具4a及び第二接合具4bで放熱することができる。
 [制御装置]
 制御装置5は、複数の電熱線21に電力を供給し、各電熱線21を加熱する。制御装置5は、複数の電熱線21に電力を供給するための電源を具備し得る。複数の電熱線21に供給される電力は、交流または直流である。制御装置5は、さらにスイッチを具備し得る。スイッチがオンである間には、複数の電熱線21に電力が供給される。スイッチがオフである場合には、複数の電熱線21に電力は供給されない。
 [アクチュエータバンドの製造方法]
 次にアクチュエータバンド1の製造方法について説明する。
 まず、上述した複数のアクチュエータワイヤ11及び、複数の電熱線21が周知の平打ち製紐機に対してセットされる。この際、複数の電熱線21は、平打ち製紐機に備わる複数のボビンに十分な張力を与えて巻き付けられている。形成工程においては、平打ち製紐機が可動することにより、複数のアクチュエータワイヤ11の周りに複数の電熱線21を組むことで、アクチュエータバンド1を形成する。
 この際、コールゴムの構成にするためにアクチュエータワイヤ11は十分な張力が印加された状態で、各ボビンの間に配置されている。このため、各アクチュエータワイヤ11と各電熱線21とは、平打ち製紐機によって組まれながら巻き上げられ、アクチュエータバンド1となる。
 一般に丸打ち製紐では、偶数個のボビンで円筒状に複数の線材を組み、平打ち製紐では、奇数個のボビンで帯状に複数の線材を組む。丸打ち製紐において、偶数個のボビンは、空ボビンを含んでいてもよい。平打ち製紐において、奇数個のボビンは、空ボビンを含んでいてもよい。空ボビンを加えることで、アクチュエータ装置60として必要な仕事量に合わせてアクチュエータワイヤ11の本数を選択することができる。空ボビンの代わりに、ダミーとなる線材が巻きつけられたボビンを用いて、複数の線材を組むことも可能である。この場合、偏りがない組目、すなわち、均一な組目の形成が可能となる。ダミーとなる線材はなるだけ細い方がよい。ダミーとなる線材が細いほど、ダミーとなる線材による、アクチュエータバンド1の仕事量のロスを小さくすることができる。
 その後、アクチュエータバンド1は、所望の長さに切断される。本実施の形態では、アクチュエータバンド1の一端から他端までの第一方向に沿う長さが、第一方向に直交する第二方向の長さ(幅)よりも長くなるように、アクチュエータバンド1が切断されている。つまり、第一方向はアクチュエータバンド1の長手方向である。第二方向はアクチュエータバンド1の短手方向である。また、第一方向は、各アクチュエータワイヤ11の軸方向でもある。
 所望の長さに切断されたアクチュエータバンド1の両端には、第一接合具4a及び第二接合具4bが取り付けられる。第一接合具4a及び第二接合具4bは、それぞれ電線を介して制御装置5に電気的に接続される。これにより、アクチュエータ装置60が組み立てられる。
 [アクチュエータ装置の動作]
 次にアクチュエータ装置60の動作について説明する。図1Aに示すようにアクチュエータバンド1における一端側の第二接合具4bに対しては、ワイヤWを介しておもり6が連結されている。このおもり6によってアクチュエータバンド1には、所定の張力が付与され、アクチュエータバンド1がピンと張った状態となる。言い換えれば、アクチュエータバンド1には、おもり6によって第一方向に沿う張力が付与されている。
 図4Aは、実施の形態に係るアクチュエータバンド1において、電熱線21に対する加熱がない状態を示す模式図である。図4Bは、実施の形態に係るアクチュエータバンド1において、電熱線21に対する加熱がある状態を示す模式図である。
 図4Aに示すように、電熱線21が加熱されていない状態では、アクチュエータバンド1に対しては初期張力が付与されている。このため、複数の電熱線21がなす組目が第一方向に沿って広がっている。このときのアクチュエータバンド1の第一方向の長さをL0とする。
 図4Bに示すように、電熱線21が加熱された状態では、アクチュエータバンド1の複数のアクチュエータワイヤ11が加熱によって収縮する。この収縮に追従して複数の電熱線21がなす組目が変形し第一方向に収縮する。このため、アクチュエータバンド1の第一方向の長さL1は、長さL0よりも短くなる。
 このように、アクチュエータバンド1は、複数の電熱線21がなす組目の変形とアクチュエータワイヤ11の加熱による収縮及びその放熱による復元により伸縮する。このため、各電熱線21が互いに交差する点においてアクチュエータワイヤ11の伸縮の動きは阻害されない。ここで、各電熱線21がアクチュエータワイヤ11の伸縮に追従して均一に変形するためには、電熱線21は剛性が小さく弾性があることが望ましい。
 また、アクチュエータバンド1に付与される初期張力は小さくかつ、アクチュエータバンド1の収縮率が大きいほどよい。加熱及び放熱の繰り返しによる伸縮動作を安定させることができるようにアクチュエータバンド1を構成することが望ましい。
 [実施例]
 以下、本発明に係る実施例について説明する。
 (アクチュエータワイヤ11の製造)
 特許文献3の開示内容に従って、本発明者らはコイル状ポリマー繊維111を得た。次に、本発明者らは、2本のコイル状ポリマー繊維111を捻り、アクチュエータワイヤ11を製造した(図2参照)。このように、アクチュエータワイヤ11は、互いに撚り合わされた2本のコイル状ポリマー繊維111から構成されていた。言い換えれば、捻られた1本のコイル状ポリマー繊維111aの側面は、捻られた他のコイル状ポリマー繊維111bの側面に接していた。
 (電熱線21の製造)
 ポリエステルからなるモノフィラメント(東レ株式会社製、繊維の太さ:10デニール)が弾性糸51として用いられた。ステンレス線(日本精線株式会社 商品名「ステンレス鋼線」 材質「SUS 316L」 直径寸法「0.030mm」)が金属ワイヤ52(鞘糸)として用いられた。弾性糸51の周りには、金属ワイヤ52がS撚り(撚り数:2950T/m)に組まれた。このようにして、本発明者らは電熱線21を製造した。
 (アクチュエータバンド1の製造)
 コールゴム(または、ゴム紐)の構造を有するアクチュエータバンド1を製造した。8本のアクチュエータワイヤ11及び17本の電熱線21を用いた。8本のアクチュエータワイヤ11を並べて、その間を17本の電熱線21を用いて数字の「8」の字が縦に連続して繋がった形のループを描くように平打ち製紐機を用いて組み上げ、アクチュエータバンド1を得た。アクチュエータバンド1の第一方向における長さはおよそ60mmとした。また、アクチュエータバンド1の一端には第一接合具4aが取り付けられ、他端には第二接合具4bが取り付けられている。
 (加熱試験)
 次に、アクチュエータバンド1に対する加熱試験について説明する。図5は、加熱試験に用いられる試験装置100の模式図である。図5に示すように、試験装置100は、固定板7、滑車31、鏡32、放射温度計15及びレーザ変位計14を備えている。
 第一接合具4aは、固定板7を用いて固定された。滑車31は、アクチュエータバンド1の他端側の第二接合具4bに取り付けられたワイヤWをガイドする滑車である。固定板7及び滑車31によって、アクチュエータバンド1は、略水平に配置されている。ワイヤWには、例えば500gのおもり6が取り付けられている。このおもり6による初期張力により、アクチュエータバンド1は伸長した状態となる(例えば図4A参照)。アクチュエータバンド1の第二接合具4bは、当該アクチュエータバンド1の伸縮に基づいて第一方向に沿って移動自在となっている。
 鏡32は、アクチュエータバンド1の第二接合具4bに取り付けられており、当該第二接合具4bの移動に連動して第一方向に移動するようになっている。鏡32の鏡面は、第一方向に直交する方向に沿って設けられており、この鏡32の鏡面に対向する位置にレーザ変位計14(キーエンス社製、商品名「LK-080」)が配置されていた。レーザ変位計14は、鏡32に対してレーザ光を照射し、鏡32を反射したレーザ光を検出することで、第二接合具4bの変位を計測する。つまり、レーザ変位計14は、アクチュエータバンド1の変位を計測する。
 放射温度計15は、アクチュエータバンド1が放出する赤外線または可視光を検出可能な位置に配置されており、検出した赤外線または可視光に基づいてアクチュエータバンド1の温度を測定する。放射温度計15としては、Apiste製、商品名「FSV-210」を用いた。
 本発明者らは、制御装置5を用いて、電熱線21に380mAの電流、1.8Wの電力を12秒間印加した。このようにして、アクチュエータバンド1を加熱した。このとき、アクチュエータバンド1の側面の温度がおよそ摂氏70度に到達した。この加熱により、アクチュエータバンド1は第一方向に収縮した。
 その後、120秒間の冷却時間では、電流を電熱線21に流さなかった。このようにして、アクチュエータバンド1の側面を自然に摂氏30度以下まで冷却した。この放熱により、アクチュエータバンド1は、第一方向に伸び、復元した。アクチュエータバンド1の収縮及び復元に伴って鏡32が第一方向に振動した。この振動をレーザ変位計14が計測することで、アクチュエータバンド1の伸縮を計測した。
 図6は、実施例に係るアクチュエータバンド1の収縮率及び温度の時間変化を示すグラフである。ここで、収縮率Cは、以下の数式(II)で定義される。
 C=(L1-L0)/L0×100   (II)
 L0は、加熱前における初期張力が付与されたアクチュエータバンド1の長さである(図4A参照)。L1は、加熱時のアクチュエータバンド1の長さである(図4B参照)。図6に示すように、アクチュエータバンド1の温度が高くなるとアクチュエータバンド1の収縮率は小さくなり、アクチュエータバンド1の温度が低くなるとアクチュエータバンド1の収縮率は大きくなることが分かる。
 次に、アクチュエータバンド1に対して、加熱及び冷却を繰り返す耐久性試験を行った。耐久性試験では、おもり6の重量を500gとし、電熱線21に対する電流を330mAで25秒印加した。アクチュエータバンド1の側面の温度がおよそ摂氏70度に到達すると、冷却ファンによってアクチュエータバンド1を25秒間冷却した。ファンで冷却を加速し、アクチュエータバンド1の側面の温度は摂氏30度以下になった。この繰り返しを14500回行った。
 図7Aは、実施例に係るアクチュエータバンド1の抵抗値変化と繰り返し回数との関係を示すグラフである。
 図7Aに示すように、実施例に係るアクチュエータバンド1においては抵抗値変化が120%以下であったことが分かる。
 [比較例]
 次に、比較例に係るアクチュエータバンド40について説明する。図8Aは、比較例に係るアクチュエータバンド40を示す模式図である。図9は、比較例に係るアクチュエータバンド40に備わるアクチュエータ単線41を示す正面図である。図8Bは、比較例に係るアクチュエータバンド40を示す断面図である。具体的には、図8Bは、図8Aに示す8B-8B線を含む切断面を見た断面図である。図8Bでは、便宜上、一つのアクチュエータワイヤ11を一つの円で図示している。なお、以下の説明において、上記実施の形態と同一の部分については同一の符号を付してその説明を省略する場合がある。
 図8Aに示すように、アクチュエータバンド40は、複数のアクチュエータ単線41を組むことで形成されている。図9に示すように、アクチュエータ単線41は、アクチュエータワイヤ11の周囲に対して、網目状に組まれた4本の電熱線21を配置することで形成されている。具体的には、アクチュエータ単線41は、丸打ち製紐と称されるプロセスにより、アクチュエータワイヤ11の周囲に4本の電熱線21を網状に被覆することで、形成されている。
 アクチュエータバンド40は、平打ち製紐と称されるプロセスにより、9本のアクチュエータ単線41を組むことで形成されている。アクチュエータバンド40には、9本のアクチュエータ単線41があるため、アクチュエータバンド40の全体としては、36本の電熱線21が備えられている。また、アクチュエータバンド40の第一方向における長さは、約70mmとしている。また、アクチュエータバンド40の一端には第一接合具4aが取り付けられ、他端には第二接合具4bが取り付けられている。
 図8Bに示すように、アクチュエータバンド40では、各アクチュエータワイヤ11の周囲にはほぼ均等に4本の電熱線21が配置されている。このため、電熱線21の配置密度が実施例よりも大きい箇所(図8B中、破線箇所)が存在することとなっている。
 このアクチュエータバンド40に対して、加熱及び冷却を繰り返す耐久性試験を実施例と同様に行った。耐久性試験では、おもり6の重量を500gとし、電熱線21に対する電流を470mAで30秒印加した。アクチュエータバンド40の側面の温度がおよそ摂氏70度に到達すると、冷却ファンによってアクチュエータバンド40を25秒間冷却した。ファンで冷却を加速し、アクチュエータバンド1の側面の温度は摂氏30度以下になった。この繰り返しを14500回行った。
 図7Bは、比較例に係るアクチュエータバンド40の抵抗値変化と繰り返し回数との関係を示すグラフである。図7Bに示すように、比較例に係るアクチュエータバンド40においては抵抗値変化が140%を超えることになった。
 このように、実施例に係るアクチュエータバンド1は、比較例に係るアクチュエータバンド40よりも、抵抗値変化が抑制されていることが分かる。
 次に、本発明に係るアクチュエータバンド1の変形例について説明する。なお、以降の説明において、上記実施の形態と同一の部分については同一の符号を付してその説明を省略する場合がある。
 [変形例1]
 図10は、変形例1に係るアクチュエータバンド1Aを示す模式図である。図10に示すように、各電熱線21は矩形波状の形状を有し、複数の電熱線21が、網状となるように編まれている。この編まれた各電熱線21に対して、複数のアクチュエータワイヤ11aが平面状に並列に配置されている。具体的には、各アクチュエータワイヤ11aは、各電熱線21に対して側方(図10においては上方または下方)から並列に差し込まれる。これにより、複数の電熱線21からなる一枚の編み物に対して、各アクチュエータワイヤ11aが平面状に配置されることになる。
 [変形例2]
 図11は、変形例2に係るアクチュエータバンド1Bを示す模式図である。図11に示すように、各電熱線21a、21bは、細長い板(すなわち、帯状)の形状を有している。各電熱線21a、21bは、格子状に織られている。この織られた各電熱線21a、21bに対して、複数のアクチュエータワイヤ11bが平面状に並列に配置されている。具体的には、各アクチュエータワイヤ11bは、各電熱線21a、21bに対して側方(図11においては上方または下方)から並列に差し込まれる。これにより、複数の電熱線21a、21bからなる一枚の織物に対して、各アクチュエータワイヤ11bが平面状に配置されることになる。
 [変形例3]
 図12は、変形例3に係るアクチュエータバンド1Cを示す断面図である。図12に示すように、変形例3に係るアクチュエータバンド1Cは、一対のアクチュエータワイヤ11と、5本の電熱線21とから形成されている。具体的には、各アクチュエータワイヤ11の周囲にはほぼ均等に3本の電熱線21が配置されている。このため、電熱線21同士の接点が集中しにくくなり、局所的な抵抗増加を防止できる。また、一対のアクチュエータワイヤ11の間の電熱線21は、これら一対のアクチュエータワイヤ11で共通化して用いられる。このため、各アクチュエータワイヤ11に対して電熱線21を3本ずつ設ける場合よりも、電熱線21の本数を低減することができ、効率よくアクチュエータワイヤ11を加熱できる。
 本発明は、人工筋肉として用いられるアクチュエータ装置に適用可能である。
 [本発明の構成および効果]
 以上のように、実施の形態に係るアクチュエータ装置60は、アクチュエータバンド1及び制御装置5を具備し、アクチュエータバンド1は、複数のアクチュエータワイヤ11及び複数の電熱線21を具備し、複数のアクチュエータワイヤ11の各々は、高分子からなる繊維(コイル状ポリマー繊維111)から形成され、繊維は、その長軸の周りに沿って捻られており、繊維は、円筒状のコイルの形状を有するように折りたたまれており、複数のアクチュエータワイヤ11の各々は、加熱により縮み、かつ放熱により復元し、複数のアクチュエータワイヤ11及び複数の電熱線21によって、組物、織物及び編物のいずれか一つが形成されており、複数のアクチュエータワイヤ11は平面状に配置されており、アクチュエータバンド1の一端では、複数の電熱線21の各々の一端が複数のアクチュエータワイヤ11の各々の一端に接合されており、アクチュエータバンド1の他端では、複数の電熱線21の各々の他端が複数のアクチュエータワイヤ11の各々の他端に接合されており、制御装置5は、複数の電熱線21の各々を加熱するための電力を複数の電熱線21の各々に供給するために用いられ、アクチュエータバンド1は、当該アクチュエータバンド1の一端から他端までの第一方向に沿って張力が印加された状態で加熱されることにより、第一方向に沿って収縮する。
 また、実施の形態に係るアクチュエータバンド1は、複数のアクチュエータワイヤ11及び複数の電熱線21を具備し、複数のアクチュエータワイヤ11の各々は、高分子からなる繊維(コイル状ポリマー繊維111)から形成され、繊維は、その長軸の周りに沿って捻られており、繊維は、円筒状のコイルの形状を有するように折りたたまれており、複数のアクチュエータワイヤ11の各々は、加熱により縮み、かつ放熱により復元し、複数のアクチュエータワイヤ11及び複数の電熱線21によって、組物、織物及び編物のいずれか一つが形成されており、複数のアクチュエータワイヤ11は平面状に配置されており、複数の電熱線21の各々の一端は、複数のアクチュエータワイヤ11の各々の一端に接合されており、複数の電熱線21の各々の他端は、複数のアクチュエータワイヤ11の各々の他端に接合されている。
 また、実施の形態に係るアクチュエータバンド1の製造方法は、加熱により縮み、かつ放熱により復元する複数のアクチュエータワイヤ11及び複数の電熱線21によって、組物、織物及び編物のいずれか一つを形成することでアクチュエータバンド1を形成する工程を含み、複数のアクチュエータワイヤ11の各々は、高分子からなる繊維(コイル状ポリマー繊維111)から形成され、繊維は、その長軸の周りに沿って捻られており、円筒状のコイルの形状を有するように折りたたまれており、複数のアクチュエータワイヤ11は平面状に並列に配置されている。
 これによれば、複数の電熱線21と、平面状に配列された複数のアクチュエータワイヤ11とで形成された組物、織物及び織物の少なくとも一つがアクチュエータバンド1をなしているので、各アクチュエータワイヤ11の周囲に複数の電熱線21をほぼ均等に配置することができる。これにより、電熱線21同士の接点が集中しにくくなり、局所的な抵抗増加を防止できる。したがって、繰り返し動作において、電熱線21の抵抗値の上昇を抑えることができ、アクチュエータ装置60を安定的に動作させることができる。
 また、複数の電熱線21の各々は非導電性の弾性糸51及び金属ワイヤ52を具備し、金属ワイヤ52は、弾性糸51に螺旋状に巻きついている。
 これによれば、金属ワイヤ52が弾性糸51に対して巻き付いた電熱線21が用いられているので、金属ワイヤ52とアクチュエータワイヤ11との密着面積を高めることができ、熱効率を高めることができる。
 また、アクチュエータバンド1は、第一接合具4a及び第二接合具4bを具備し、複数の電熱線21の各々の一端は、第一接合具4aによって複数のアクチュエータワイヤ11の各々の一端に接合されており、複数の電熱線21の各々の他端は、第二接合具4bによって複数のアクチュエータワイヤ11の各々の他端に接合されている。
 これによれば、第一接合具4aによって複数の電熱線21と複数のアクチュエータワイヤ11の一端同士が接合され、第二接合具4bによって複数の電熱線21と複数のアクチュエータワイヤ11の他端同士が接合されているので、簡単な構成でこれらを接合することができる。特に、第一接合具4a及び第二接合具4bが金属製である場合には、電熱線21からの熱を第一接合具4a及び第二接合具4bで放熱することができる。
 また、繊維は、直鎖状低密度ポリエチレンからなり、以下の式(I)が充足される。
 D/d<1   (I)
 ここで、Dは前記円筒状のコイルの平均直径を表し、dは前記繊維の直径を表す。
 この関係性であるために、アクチュエータワイヤ11の変位率を高くすることができる。
 [その他]
 以上、本発明に係るアクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法について、上記実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
 例えば、上記実施の形態では、複数の電熱線21が組物である場合を例示した。しかしながら、複数の電熱線は織物または編物であってもよい。
 また、上記実施の形態では、複数の電熱線21とともに複数のアクチュエータワイヤ11が一括して組まれることで、アクチュエータバンド1が製造される場合を例示した。しかしながら、複数の電熱線21で予め組物を形成した後に、当該組物に対して複数のアクチュエータワイヤ11を差し込むことでアクチュエータバンド1を形成してもよい。これは、複数の電熱線21が織物または編物である場合でも同様である。
 また、上記実施の形態では、複数のアクチュエータワイヤ11が平行に配置されている場合を例示した。しかし、複数のアクチュエータワイヤは、平面状に配列されているのであれば、互いに非平行に配置されていてもよいし、交差していてもよい。
 また、上記実施の形態では、アクチュエータバンド1の一端から他端までの第一方向に沿う長さが、第一方向に直交する第二方向の長さ(幅)よりも長い場合を例示した。しかしながら、アクチュエータバンドにおいては、幅が第一方向の長さ以上であってもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
1 アクチュエータバンド
4a 第一接合具
4b 第二接合具
5 制御装置
6 おもり
7 固定板
11 アクチュエータワイヤ
14 レーザ変位計
15 放射温度計
21 電熱線
31 滑車
32 鏡
40 アクチュエータバンド
41 アクチュエータ単線
51 弾性糸
52 金属ワイヤ
60 アクチュエータ装置
100 試験装置
111、111a、111b コイル状ポリマー繊維
W ワイヤ

Claims (8)

  1.  アクチュエータ装置であって、
     アクチュエータバンド及び制御装置を具備し、
     前記アクチュエータバンドは、複数のアクチュエータワイヤ及び複数の電熱線を具備し、
     前記複数のアクチュエータワイヤの各々は、高分子からなる繊維から形成され、
     前記繊維は、その長軸の周りに沿って捻られており、
     前記繊維は、円筒状のコイルの形状を有するように折りたたまれており、
     前記複数のアクチュエータワイヤの各々は、加熱により縮み、かつ放熱により復元し、
     前記複数のアクチュエータワイヤ及び前記複数の電熱線によって、組物、織物及び編物のいずれか一つが形成されており、
     前記複数のアクチュエータワイヤは平面状に並列に配置されており、
     前記アクチュエータバンドの一端では、前記複数の電熱線の各々の一端が前記複数のアクチュエータワイヤの各々の一端に接合されており、
     前記アクチュエータバンドの他端では、前記複数の電熱線の各々の他端が前記複数のアクチュエータワイヤの各々の他端に接合されており、
     前記制御装置は、前記複数の電熱線の各々を加熱するための電力を前記複数の電熱線の各々に供給するために用いられ、
     前記アクチュエータバンドは、当該アクチュエータバンドの前記一端から前記他端までの第一方向に沿って張力が印加された状態で加熱されることにより、前記第一方向に沿って収縮する、
     アクチュエータ装置。
  2.  前記複数の電熱線の各々は非導電性の弾性糸及び金属ワイヤを具備し、
     前記金属ワイヤは、前記弾性糸に螺旋状に巻きついている、
     請求項1に記載のアクチュエータ装置。
  3.  前記繊維は、直鎖状低密度ポリエチレンからなり、以下の式(I)が充足される:
     D/d<1   (I)
     ここで、
     Dは前記円筒状のコイルの平均直径を表し、dは前記繊維の直径を表す、
     請求項1または2に記載のアクチュエータ装置。
  4.  複数のアクチュエータワイヤ及び複数の電熱線を具備し、
     前記複数のアクチュエータワイヤの各々は、高分子からなる繊維から形成され、
     前記繊維は、その長軸の周りに沿って捻られており、
     前記繊維は、円筒状のコイルの形状を有するように折りたたまれており、
     前記複数のアクチュエータワイヤの各々は、加熱により縮み、かつ放熱により復元し、
     前記複数のアクチュエータワイヤ及び前記複数の電熱線によって、組物、織物及び編物のいずれか一つが形成されており、
     前記複数のアクチュエータワイヤは平面状に並列に配置されており、
     前記複数の電熱線の各々の一端は、前記複数のアクチュエータワイヤの各々の一端に接合されており、
     前記複数の電熱線の各々の他端は、前記複数のアクチュエータワイヤの各々の他端に接合されている、
     アクチュエータバンド。
  5.  前記複数の電熱線の各々は非導電性の弾性糸及び金属ワイヤを具備し、
     前記金属ワイヤは、前記弾性糸に螺旋状に巻きついている、
     請求項4に記載のアクチュエータバンド。
  6.  第一接合具及び第二接合具を具備し、
     前記複数の電熱線の各々の一端は、前記第一接合具によって前記複数のアクチュエータワイヤの各々の一端に接合されており、
     前記複数の電熱線の各々の他端は、前記第二接合具によって前記複数のアクチュエータワイヤの各々の他端に接合されている、
     請求項4または5に記載のアクチュエータバンド。
  7.  前記繊維は、直鎖状低密度ポリエチレンからなり、以下の式(I)が充足される:
     D/d<1   (I)
     ここで、
     Dは、前記円筒状のコイルの平均直径を表し、かつ
     dは、前記繊維の直径を表す、
     請求項4~6のいずれか一項に記載のアクチュエータバンド。
  8.  加熱により縮み、かつ放熱により復元する複数のアクチュエータワイヤ、及び複数の電熱線によって、組物、織物及び編物のいずれか一つを形成することでアクチュエータバンドを形成する工程を含み、
     前記複数のアクチュエータワイヤの各々は、高分子からなる繊維から形成され、
     前記繊維は、その長軸の周りに沿って捻られており、円筒状のコイルの形状を有するように折りたたまれており、
     前記複数のアクチュエータワイヤは平面状に並列に配置されている、
     アクチュエータバンドの製造方法。
PCT/JP2019/008787 2018-05-31 2019-03-06 アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法 WO2019230103A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/931,036 US11181100B2 (en) 2018-05-31 2020-07-16 Actuator device, actuator band, and method for manufacturing actuator band

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018104491 2018-05-31
JP2018-104491 2018-05-31
JP2019024169A JP2021145392A (ja) 2018-05-31 2019-02-14 アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法
JP2019-024169 2019-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/931,036 Continuation US11181100B2 (en) 2018-05-31 2020-07-16 Actuator device, actuator band, and method for manufacturing actuator band

Publications (1)

Publication Number Publication Date
WO2019230103A1 true WO2019230103A1 (ja) 2019-12-05

Family

ID=68696940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008787 WO2019230103A1 (ja) 2018-05-31 2019-03-06 アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法

Country Status (2)

Country Link
US (1) US11181100B2 (ja)
WO (1) WO2019230103A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092303A1 (ja) * 2020-10-30 2022-05-05 三菱ケミカル株式会社 可逆的熱伸縮性を有する成形体、繊維製品、アクチュエータ及びアシストスーツ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020231741A2 (en) * 2019-05-10 2020-11-19 Board Of Regents, The University Of Texas System Sheath-run artificial muscles and methods of use thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272407A (ja) * 1986-05-20 1987-11-26 東洋紡績株式会社 伸縮性導電線及びその製造法
JPH01111183U (ja) * 1988-01-18 1989-07-26
JPH03113258A (ja) * 1989-09-27 1991-05-14 Matsushita Refrig Co Ltd ダンパー開閉装置
JPH11286849A (ja) * 1998-04-06 1999-10-19 Mitsubishi Cable Ind Ltd 形状記憶合金織物
JP2007212436A (ja) * 2006-01-13 2007-08-23 Nissan Motor Co Ltd 導電性高分子からなる布帛を用いたセンサ、アクチュエータ
JP2009301880A (ja) * 2008-06-13 2009-12-24 Asahi Kasei Fibers Corp 伸縮電線
JP2012087434A (ja) * 2010-10-20 2012-05-10 Toyota Boshoku Corp 発熱糸及びそれを用いた織編物
JP2015204430A (ja) * 2014-04-16 2015-11-16 帝人株式会社 繊維を用いた電気信号を入力とするトランスデューサー
JP6111438B1 (ja) * 2015-08-04 2017-04-12 パナソニックIpマネジメント株式会社 アクチュエータ
JP2017118811A (ja) * 2015-12-18 2017-06-29 パナソニックIpマネジメント株式会社 アクチュエータ、アクチュエータセットおよび収縮ベルト
WO2017213108A1 (ja) * 2016-06-06 2017-12-14 三井化学株式会社 圧電基材、圧電織物、圧電編物、圧電デバイス、力センサー、及びアクチュエータ
JP2018019500A (ja) * 2016-07-27 2018-02-01 株式会社デンソー アクチュエータ及びセンサ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733603A (en) 1983-11-21 1988-03-29 Mirko Kukolj Axially contractable actuator
JP4771759B2 (ja) 2005-07-05 2011-09-14 株式会社ミノウラ ゴム紐及びこれを用いた衣料品
JP2008079462A (ja) 2006-09-22 2008-04-03 Toyota Motor Corp アクチュエータとアクチュエータの製造方法
CN105003405B (zh) 2012-08-01 2019-07-23 德克萨斯州大学系统董事会 卷曲和非卷曲加捻纳米纤维纱线及聚合物纤维扭转和拉伸驱动器
US10161390B2 (en) * 2013-03-14 2018-12-25 Lawrence Livermore National Security, Llc Bidirectional shape memory device
KR20160148530A (ko) * 2014-04-16 2016-12-26 데이진 가부시키가이샤 섬유를 사용한 전기 신호를 출력 또는 입력으로 하는 트랜스듀서
EP3333419A3 (en) * 2016-12-08 2018-09-12 Panasonic Intellectual Property Management Co., Ltd. Actuator device
WO2019102714A1 (ja) * 2017-11-27 2019-05-31 パナソニックIpマネジメント株式会社 アクチュエータ装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272407A (ja) * 1986-05-20 1987-11-26 東洋紡績株式会社 伸縮性導電線及びその製造法
JPH01111183U (ja) * 1988-01-18 1989-07-26
JPH03113258A (ja) * 1989-09-27 1991-05-14 Matsushita Refrig Co Ltd ダンパー開閉装置
JPH11286849A (ja) * 1998-04-06 1999-10-19 Mitsubishi Cable Ind Ltd 形状記憶合金織物
JP2007212436A (ja) * 2006-01-13 2007-08-23 Nissan Motor Co Ltd 導電性高分子からなる布帛を用いたセンサ、アクチュエータ
JP2009301880A (ja) * 2008-06-13 2009-12-24 Asahi Kasei Fibers Corp 伸縮電線
JP2012087434A (ja) * 2010-10-20 2012-05-10 Toyota Boshoku Corp 発熱糸及びそれを用いた織編物
JP2015204430A (ja) * 2014-04-16 2015-11-16 帝人株式会社 繊維を用いた電気信号を入力とするトランスデューサー
JP6111438B1 (ja) * 2015-08-04 2017-04-12 パナソニックIpマネジメント株式会社 アクチュエータ
JP2017118811A (ja) * 2015-12-18 2017-06-29 パナソニックIpマネジメント株式会社 アクチュエータ、アクチュエータセットおよび収縮ベルト
WO2017213108A1 (ja) * 2016-06-06 2017-12-14 三井化学株式会社 圧電基材、圧電織物、圧電編物、圧電デバイス、力センサー、及びアクチュエータ
JP2018019500A (ja) * 2016-07-27 2018-02-01 株式会社デンソー アクチュエータ及びセンサ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092303A1 (ja) * 2020-10-30 2022-05-05 三菱ケミカル株式会社 可逆的熱伸縮性を有する成形体、繊維製品、アクチュエータ及びアシストスーツ

Also Published As

Publication number Publication date
US20200347835A1 (en) 2020-11-05
US11181100B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
JP6837246B2 (ja) アクチュエータ装置
WO2019230103A1 (ja) アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法
TW200845051A (en) A flat cable
US10174745B2 (en) Braided shape memory actuator
US8723087B2 (en) Method for manufacturing pipe-type woven carbon fibers and carbon fiber heating lamp using the pipe-type woven carbon fibers
US11952683B2 (en) Actuator device, actuator band, and method for manufacturing actuator band
US10480492B2 (en) Actuator device
JP2020061386A (ja) 電線
JP4634636B2 (ja) 電熱糸及び該電熱糸を用いたヒーター
WO2019106944A1 (ja) アクチュエータ、アクチュエータ装置、およびマッサージ機器
JP2021132415A (ja) アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法
JP2021145392A (ja) アクチュエータ装置、アクチュエータバンド及びアクチュエータバンドの製造方法
JPWO2018168755A1 (ja) 光ファイバケーブル及び光ファイバケーブルの製造方法
JP6887625B2 (ja) 伸縮性導電体
CN109563818B (zh) 驱动致动器的方法、致动器及制造致动器的方法
WO2019244421A1 (ja) アクチュエータ装置およびアクチュエータ器具
JP2017115856A (ja) アクチュエータ
RU2556086C2 (ru) Способ и устройство для изготовления токовой обмотки и электрический проводник
CA3047685C (en) High temperature smart susceptor heating blanket and method
KR101664488B1 (ko) 직물지용 도전선
JP2017212819A (ja) 保護部材及び保護部材付電線
JP2017212818A (ja) 電線保護部材、電線保護部材付電線及び電線保護部材付電線の製造方法
KR100944051B1 (ko) 신축 공간부를 구비한 신축성 선재
KR101089998B1 (ko) 신축성 선재결합체의 제조방법 및 그 방법에 의해 제조된 신축성 선재결합체
KR20160011082A (ko) 다방향 도전성 구조물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP