WO2019230039A1 - 植物の栽培方法及び植物の栽培装置 - Google Patents

植物の栽培方法及び植物の栽培装置 Download PDF

Info

Publication number
WO2019230039A1
WO2019230039A1 PCT/JP2019/002005 JP2019002005W WO2019230039A1 WO 2019230039 A1 WO2019230039 A1 WO 2019230039A1 JP 2019002005 W JP2019002005 W JP 2019002005W WO 2019230039 A1 WO2019230039 A1 WO 2019230039A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid fertilizer
nutrient solution
medium
liquid
tank
Prior art date
Application number
PCT/JP2019/002005
Other languages
English (en)
French (fr)
Inventor
正憲 原
正月 白川
Original Assignee
日洋サービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日洋サービス株式会社 filed Critical 日洋サービス株式会社
Priority to JP2020521678A priority Critical patent/JP7455741B2/ja
Priority to CN201980035751.8A priority patent/CN112203501A/zh
Publication of WO2019230039A1 publication Critical patent/WO2019230039A1/ja
Priority to JP2023010797A priority patent/JP7445031B2/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a plant cultivation method and plant cultivation apparatus for growing plants such as tomatoes.
  • Tomato cultivation methods range from soil cultivation in which seedlings are prepared on a hotbed and planted in open ground to hydroponics that can be produced in a plant factory.
  • hydroponics has been proposed as hydroponics.
  • Patent Document 1 discloses that about 250 ml of a medium (about 250 ml) is formed in each groove of a cultivation tray in which grooves formed in a horizontal direction in a substantially D shape are arranged in two rows in the longitudinal direction.
  • a technique for supplying irrigation nutrient solution to each medium in which soil, coconut shell, rock wool, etc.) are put and planted with tomato seedlings is disclosed.
  • the conventional medium (soil, coconut husk, rock wool, etc.) has relatively good water retention, so irrigate the irrigation nutrient solution 10-20% more than the irrigation amount required by the plant.
  • the surplus liquid is generally disposed of as a waste liquid because bacteria can easily propagate.
  • irrigation nutrient solution was adjusted to weakly acidic pH because weakly acidic soil is better for plant growth.
  • the present invention is to provide a plant cultivation method and plant cultivation apparatus that can reduce the cost of plant cultivation.
  • the plant cultivation method according to the first aspect of the present invention is a method in which a medium mainly composed of coral gravel is spread inside a container, the plant is rooted in the medium, and liquid fertilizer is supplied to the medium.
  • the cultivation method of the plant of Claim 1 uses a tomato as a plant.
  • a medium formed of coral sand gravel is spread on a strip-shaped gutter placed horizontally, the plant is rooted in the medium at regular intervals, and watering is performed on the upper part of the medium.
  • Place the tube supply the liquid fertilizer stored in the nutrient solution circulation tank to the medium through the irrigation tube, and pass the liquid fertilizer surplus by the liquid supply through the filter cloth attached to the gutter
  • the liquid fertilizer flowing in the drainage groove formed in the gutter and returning to the drainage groove is returned from the end of the gutter to the nutrient solution circulation tank.
  • a plant cultivation method is the plant cultivation method according to the second aspect, wherein the nutrient solution circulation is performed by a decrease in the amount of water indicated by a moisture meter installed in the medium or an instruction by a timer.
  • the liquid manure returned to the tank is reused by supplying liquid to the medium through the irrigation tube.
  • the plant cultivation apparatus of the invention lays a medium formed of coral gravel on a horizontally placed belt-like gutter, roots the plant in the medium at regular intervals, and irrigates the upper part of the medium.
  • Place the tube supply the liquid fertilizer stored in the nutrient solution circulation tank to the medium through the irrigation tube, and pass the liquid fertilizer surplus by the liquid supply through the filter cloth attached to the gutter
  • a plant cultivation apparatus for flowing the liquid manure flowing in the drainage groove formed in the gutter and returning the liquid manure flowing in the drainage groove from the end of the gutter to the nutrient solution circulation tank, the nutrient solution circulation tank, and the liquid fertilizer Adjustment tank, first raw material liquid tank for storing first raw material liquid, second raw material liquid tank for storing second raw material liquid, liquid fertilizer mixer, liquid fertilizer pump, liquid fertilizer transfer pump, and irrigation pump And a level for detecting the level of liquid fertilizer in the nutrient solution circulation tank.
  • a nutrient solution device composed of a sensor, an EC sensor, and a solenoid valve.
  • the nutrient solution device when a certain amount of fluid fertilizer in the nutrient solution circulation tank has been consumed, The liquid fertilizer transfer pump supplies an appropriate amount of fertilizer to the nutrient solution circulation tank, and when the water level of the liquid fertilizer adjustment tank decreases, water is supplied to the liquid fertilizer adjustment tank to a predetermined position, and the liquid fertilizer adjustment is performed.
  • the liquid fertilizer stored in the liquid fertilizer adjustment tank is obtained by mixing the first raw material liquid and the second raw material liquid using the liquid fertilizer pump and the liquid fertilizer mixer. Nutrient solution control is performed until an appropriate EC concentration is reached.
  • the plant cultivation apparatus is the plant cultivation apparatus according to the fourth aspect, further comprising a flow rate sensor that detects a flow rate of liquid fertilizer flowing through the irrigation tube, and is installed in the nutrient solution apparatus.
  • the control device performs the nutrient solution control, and displays the amount of liquid fertilizer supplied from the nutrient solution circulation tank to the culture medium based on the detection result of the flow sensor.
  • the plant cultivation method and plant cultivation apparatus according to the present invention can reduce the cost for plant cultivation.
  • FIG. 1 is an explanatory diagram showing an overview of a system according to the first embodiment of the present invention.
  • a medium 3 formed of coral gravel is spread inside a container (gutter 2) constituting the plant cultivation apparatus 1, and the medium 3
  • the plant (tomato 10) is rooted and liquid fertilizer 4 is supplied to the medium 3.
  • the medium 3 formed of coral gravel is spread on the strip-shaped gutter 2 placed horizontally, and the tomatoes 10 are rooted at regular intervals on the medium 3.
  • the irrigation tube 5 is arranged on the upper part of the medium 3, and the liquid fertilizer 4 stored in the nutrient solution circulation tank 6 is supplied to the medium 3 through the irrigation tube 5, and the liquid fertilizer 4 that is surplus by the supply liquid To the drainage groove 8 formed in the gutter 2 through the filter cloth 7 attached to the gutter 2, and the liquid fertilizer 4 flowing in the drainage groove 8 passes through the drainage pipe 9 from the end of the gutter 2. And returned to the nutrient solution circulation tank 6.
  • the irrigation pump 11 is reused by supplying the liquid fertilizer 4 returned to the nutrient solution circulation tank 6 to the culture medium 3 through the irrigation tube 5 according to an instruction from the timer 12. Further, the upper side of the culture medium 3 and the irrigation tube 5 is covered with a light-shielding sheet (a light-shielding sheet 76 in FIG. 8) in which a hole passing through the stem of the tomato 10 is formed.
  • a light-shielding sheet a light-shielding sheet 76 in FIG. 8
  • FIG. 2 is a perspective view showing a part of the gutter and filter cloth used in the plant cultivation method according to the first embodiment of the present invention.
  • the gutter 2 is formed by forming foamed polystyrene in the shape of a strip-shaped container whose upper surface is opened by a mold.
  • the filter cloth 7 affixed to the gutter 2 is obtained by superposing a hydroponic black polyplastic sheet 21, a nonwoven fabric 22, a plastic net 23, and a nonwoven fabric 24 in order from the bottom.
  • the hydroponic black polyplastic sheet 21, the nonwoven fabric 22, and the nonwoven fabric 24 are formed so as to cover the entire upper side of the gutter 2.
  • the plastic net 23 is formed in the same size as the inner bottom surface of the gutter 2.
  • rock wool which is generally used as a conventional medium, needs to be replaced every year, which is expensive as industrial waste.
  • the coconut husk medium which has become popular as a medium in recent years, is organic and changes over time. Therefore, it is necessary to replace the medium in one to two years.
  • the culture medium 3 formed of coral sand and gravel used in the first embodiment of the present invention has a characteristic that it is alkaline that does not change over time and is difficult for bacteria to propagate. There is none.
  • medium 3 made of coral gravel can improve productivity because it is difficult for bacteria to propagate and it is not necessary to limit irrigation in high sugar content tomato cultivation.
  • the medium 3 formed of coral gravel used in the first embodiment of the present invention contains a large amount of essential minerals such as calcium and magnesium (70 types), it is a trace element during growth. As a result, it is absorbed into tomatoes to produce tomatoes with a very high sugar content (sugar content of 8-12 degrees).
  • FIGS. 3 to 9 relate to the second embodiment of the present invention
  • FIG. 3 is an explanatory view showing the entire facility using the plant cultivation apparatus
  • FIG. 4 is a block diagram of the plant cultivation apparatus
  • FIG. FIG. 6 is a first side view showing the nutrient solution device
  • FIG. 7 is a second side view showing the nutrient solution device
  • FIG. 8 is a tagger and surroundings of the plant cultivation device.
  • FIG. 9 is a second cross-sectional view showing a tagger and a peripheral portion of a plant cultivation apparatus.
  • the second embodiment differs from the first embodiment in that the moisture meter (detection sensors 71, 72, installed in the culture medium 3) in the plant cultivation devices 34, 35, 37 (see FIG. 3).
  • the liquid fertilizer 4 (see FIG. 4) returned to the nutrient solution circulation tank 6 (see FIG. 4) due to the decrease in the water content shown in FIG. 4) is transferred to the medium 3 (see FIG. 4) through the irrigation tube 5 (see FIG. 4). 8)).
  • the tomato cultivation facility (plant) 30 has first to third cultivation buildings 31, 32, 33 arranged in three rows.
  • the first cultivation building 31 is composed of one plant cultivation device 34.
  • the plant cultivating apparatus 34 includes one nutrient solution apparatus 41 and the plurality of gutters 2, the culture medium 3, the irrigation tube 5, the filter cloth 7 and the drainage pipe 9 shown in FIG. 1.
  • the second cultivation building 32 is composed of one plant cultivation device 35 and a collection / shipment room 36.
  • the plant cultivation apparatus 35 includes a single nutrient solution device 41, and the plurality of gutters 2, medium 3, irrigation tube 5, filter cloth 7 and drainage pipe 9 shown in FIG.
  • the third cultivation building 33 is composed of one plant cultivation device 37.
  • the plant cultivation device 37 is composed of one nutrient solution device 41 and the plurality of gutters 2, the culture medium 3, the irrigation tube 5, the filter cloth 7, and the drainage pipe 9 shown in FIG. 1.
  • the plant cultivation devices 34, 35, and 37 spread a medium 3 (see FIG. 8) formed of coral gravel on a horizontally placed strip-shaped gutter 2, and allow the plants to root at a predetermined interval in the medium 3.
  • the irrigation tube 5 (see FIG. 4) is arranged on the top of the medium 3, and the liquid fertilizer 4 (see FIG. 4) stored in the nutrient solution circulation tank 51 (see FIG. 4) is passed through the irrigation tube 5 to the medium 3.
  • the liquid fertilizer 4 surplus due to the liquid supply is drained through the filter cloth 7 (see FIG. 8) attached to the gutter 2 to the drainage groove 8 (see FIG. 8) formed in the gutter 2.
  • the liquid fertilizer 4 flowing in the drainage groove 8 is returned from the end of the gutter 2 to the nutrient solution circulation tank 51 (see FIG. 4).
  • the cultivation beds 42 and 43 of the plant cultivation apparatus 34 are a combination of the gutter 2 and the filter cloth 7 shown in FIG.
  • the nutrient solution apparatus 41 includes a nutrient solution circulation tank 51, a liquid fertilizer adjustment tank 52, a liquid A tank (first raw material liquid tank) 53 that stores liquid A (first raw material liquid), and liquid B.
  • B liquid tank (second raw material liquid tank) 54 for storing (second raw material liquid), liquid fertilizer mixer 55, liquid fertilizer pump 56, liquid fertilizer transfer pump 57, agitation pump 58, and irrigation pumps 59, 60
  • a drainage pump 61 a level sensor 62 for detecting the level of the liquid fertilizer 4 in the nutrient solution circulation tank 51, a level sensor 63 for detecting the level of the liquid fertilizer 4 in the liquid fertilizer adjustment tank 52, and an EC sensor (fertilizer).
  • Concentration sensor 64 Concentration sensor 64, flow rate sensors 65 and 66 for detecting the flow rate of the liquid fertilizer 4 flowing through the irrigation tube 5, display devices 67 and 68 for displaying the detection results of the flow rate sensors 65 and 66, and an electromagnetic valve 69, respectively. And a control panel 70.
  • the C sensor (fertilizer concentration sensor) 64 measures the concentration in the liquid fertilizer adjustment tank 52. Furthermore, it is preferable to measure the consumption amount by measuring the flow rate from the liquid fertilizer adjustment tank 52 to the liquid fertilizer circulation tank 51. This is because consumption and the like can be measured.
  • the cultivation beds 42 and 43 are provided with detection sensors 71 and 72 for detecting the water content of the culture medium 3, respectively.
  • the nutrient solution circulation tank 51, the liquid fertilizer adjustment tank 52, the A liquid tank 53, and the B liquid tank 54 are divided into one long rectangular frame 50. Is provided. Between the A liquid tank 53 and the B liquid tank 54, a diaphragm pump 73 of the liquid fertilizer mixer 55 is provided.
  • FIG. 6 shows the nutrient solution apparatus viewed from the direction C in FIG. As shown in FIG. 6, the control panel 70 is attached to the upper side of the nutrient solution circulation tank 51.
  • FIG. 7 shows the nutrient solution apparatus viewed from the direction D of FIG.
  • the irrigation tube 5 is provided with a 40-mesh disk filter 74 and a 120-mesh disk filter 75.
  • the nutrient solution device 41 causes the liquid fertilizer transfer pump 57 to move from the liquid fertilizer adjustment tank 52 according to the instruction of the level sensor 62.
  • an appropriate amount of fertilizer is supplied to the nutrient solution circulation tank 51 and the water level of the liquid fertilizer adjustment tank 52 is lowered, water is supplied to the liquid fertilizer adjustment tank 52 to a predetermined position, and the liquid fertilizer 4 of the liquid fertilizer adjustment tank 52 is appropriate.
  • the liquid fertilizer adjustment tank 52 is prepared by mixing the liquid A (first raw material liquid) and the liquid B (second raw material liquid) using the liquid fertilizer pump 56 and the liquid fertilizer mixer 55.
  • the liquid fertilizer 4 stored in is supplied until the EC concentration becomes appropriate.
  • the plant cultivation device 34 performs the nutrient solution control with a control device (control panel 70) installed in the nutrient solution device 41, and the liquid fertilizer 4 supplied from the nutrient solution circulation tank 51 to the medium 3. Is supplied based on the detection results of the flow sensors 65 and 66.
  • the installation base 80 includes a plate-like top plate 81 and a plurality of legs 82 and 83 that support the top plate 81.
  • the leg portions 82 and 83 are extendable. In the state where the legs 82 and 83 shown in FIG. 8 are the shortest (lower bet height), the height and width of the region S surrounded by the top plate 81, the plurality of legs 82 and 83, and the ground 84 are the hot air duct 90. The top plate 81 and the cultivation bed 42 are in the lowest state.
  • the lateral width of the area S surrounded by the top plate 81, the legs 82 and 83 and the ground is larger than the diameter of the hot air duct 90. Maintaining a slightly longer state, the height of the region S is about 1.5 times the diameter of the hot air duct 90, the lateral width of the region S is slightly longer than the diameter of the hot air duct 90, the top plate 81 and the cultivation bed 42 is the highest.
  • the temperature of the cultivation bed 42 can be optimized.
  • the cultivation device 35 of the second cultivation building 32 is different from the cultivation device 34 of the first cultivation building 31 only in the size of the cultivation bed 42 and its peripheral part, and the remaining configuration is the same as that of the cultivation device 34.
  • the cultivation device 37 of the third cultivation building 33 is the same as the cultivation device 34 of the cultivation building 31.
  • the same effect as in the first embodiment can be obtained by using the culture medium 3 formed of coral gravel, and the plant The cost for cultivation of (tomato) can be reduced.
  • the medium is sufficient if coral is mainly used.
  • “mainly” is sufficient if it is the largest ratio among the other components.
  • Other ingredients can include sand, pumice, rubble and the like.
  • the other component is more preferably of an alkaline nature.
  • the other component may be a shell (scallop or the like). In some cases, it may be only a shell. Furthermore, it is considered possible to make the liquid fertilizer 4 chemically alkaline.
  • the liquid fertilizer 4 flowing through the gutter 2 has been described as being pulled out from the end of the gutter 2, it can also be discharged by providing a discharge port that sequentially discharges from the middle. In that case, there is an advantage that the inclination is not given and the inclination may be loose. In particular, it is effective when the gutter 2 becomes long. Further, it is preferable to measure the amount of use by observing the flow rates of the irrigation pumps 59 and 60. Similarly, it is preferable to observe the flow rate of the liquid fertilizer transfer pump 57.
  • the structure, system, program, material, connection of each member, scientific substance, and the like of the present invention can be variously changed without changing the gist of the present invention.
  • As the material, metal, plastic, FRP, wood, concrete and the like can be freely selected.
  • one member can be composed of two or more other members and connected.
  • first and second embodiments are only two of the best at present or close to it.
  • control or the like may be controlled by a higher-order control part, or may be controlled by a more terminal control part. Further, the order of control and the like can be appropriately changed as long as they have a predetermined effect.
  • the plant to be cultivated in the present invention is applicable to various vegetables and fruits such as mango, banana, melon, paprika, eggplant, cucumber, strawberry and the like in addition to tomato. Moreover, as a variety of tomatoes, it can be applied to fruit ruby, Sicilian rouge, Momotaro, etc. in addition to mini tomatoes. In addition to vegetables and fruits, the present invention can be applied to plants having better sugar content such as grains.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydroponics (AREA)

Abstract

【課題】植物の栽培にかかる費用を低減することができる植物の栽培方法及び植物の栽培装置を提供する。 【解決手段】植物の栽培方法は、容器の内側にサンゴ砂礫で形成された培地を敷き詰め、前記培地に植物を根付かせ、前記培地に液肥を給液する。

Description

植物の栽培方法及び植物の栽培装置
 本発明は、トマト等の植物の栽培する植物の栽培方法及び植物の栽培装置に関するものである。
 トマトの栽培方法には、温床に苗を仕立ててこれを露地に植え付ける土耕から、植物工場的な生産が可能な水耕まであり、例えば水耕として養液栽培方法が提案されている。
 この養液栽培方法として、特許文献1には、水平断面形状が略D字形に形成される溝を長手方向に2列に配列してなる栽培用トレイの前記各溝に、250ml前後の培地(土、ヤシガラ、ロックウール他)を入れ、トマトの苗を植付けた各培地に潅水養液を供給する技術が開示されている。
 特許文献1に記載の技術において、従来の培地(土、ヤシガラ、ロックウール他)は、比較的保水性がよいため、潅水養液を植物が必要な潅水量より10~20%多めに潅水して、余剰液は雑菌が繁殖しやすいので廃液として処分するのが一般的であった。また弱酸性土壌の方が植物の生育にはよいとされているため潅水養液は弱酸性のPH調整を行っていた
特開2007-306849号公報
 しかしながら、特許文献1に記載の技術では、潅水養液の余剰液は雑菌が繁殖しやすいので廃液として処分することになり、植物の栽培にかかる費用を低減することが困難であった。
 本発明は、植物の栽培にかかる費用を低減することができる植物の栽培方法及び植物の栽培装置を提供することである。
 本発明の第1の観点における植物の栽培方法は、容器の内側に主としてサンゴ砂礫で形成された培地を敷き詰め、前記培地に植物を根付かせ、前記培地に液肥を給液するものである。
 好適には、請求項1に記載の植物の栽培方法は、植物としてトマトを用いる。
 請求項2に記載の発明の植物の栽培方法は、水平に置かれた帯状のガターにサンゴ砂礫で形成された培地を敷き詰め、前記培地に植物を一定間隔で根付かせ、前記培地の上部に潅水チューブを配置し、養液循環槽に蓄えられた液肥を、前記潅水チューブを介して前記培地に給液し、当該給液により余剰となった液肥を、前記ガターに内貼りされた濾過布を通して前記ガターに形成された排液溝に流し、当該排液溝に流れる液肥を前記ガターの端部から前記養液循環槽に返送する。
 請求項3に記載の発明の植物の栽培方法は、請求項2に記載の植物の栽培方法において、前記培地に設置した水分計が示す水分量の低下、もしくはタイマによる指示で、前記養液循環槽に返送された液肥を、前記潅水チューブを介して前記培地に給液することで再利用する。
 請求項4に記載の発明の植物の栽培装置は、水平に置かれた帯状のガターにサンゴ砂礫で形成された培地を敷き詰め、前記培地に植物を一定間隔で根付かせ、前記培地の上部に潅水チューブを配置し、養液循環槽に蓄えられた液肥を、前記潅水チューブを介して前記培地に給液し、当該給液により余剰となった液肥を、前記ガターに内貼りされた濾過布を通して前記ガターに形成された排液溝に流し、当該排液溝に流れる液肥を前記ガターの端部から前記養液循環槽に返送する植物の栽培装置であって、前記養液循環槽と、液肥調整槽と、第1の原料液を蓄える第1の原料液槽と、第2の原料液を蓄える第2の原料液槽と、液肥混合器と、液肥ポンプと、液肥移送ポンプと、潅水ポンプと、前記養液循環槽内の液肥のレベルを検出するレベルセンサと、ECセンサと、電磁弁とで構成された養液装置を備え、前記養液装置は、前記養液循環槽内の液肥が一定量消費されたら、前記レベルセンサの指示により、前記液肥調整槽から前記液肥移送ポンプにて、前記養液循環槽に肥液を適正量供給し、前記液肥調整槽の水位が低下したら、前記液肥調整槽に水を所定位置まで供給し、前記液肥調整槽の液肥を適正EC濃度にするため、前記液肥ポンプ及び前記液肥混合器を用いて前記第1の原料液と前記第2の原料液を混合して、前記液肥調整槽に蓄えられた液肥が適正EC濃度になるまで供給する養液制御を行う。
 請求項5に記載の発明の植物の栽培装置は、請求項4に記載の植物の栽培装置において、前記潅水チューブに流れる液肥の流量を検出する流量センサを更に備え、前記養液装置に設置された制御装置にて、前記養液制御を行い、前記養液循環槽から前記培地に給液される液肥の供給量を前記流量センサの検出結果に基づいて表示する。
 本発明における植物の栽培方法及び植物の栽培装置によって植物の栽培にかかる費用を低減することが可能となった。
本発明の第1の実施形態に係る植物の栽培方法の概要を示す説明図である。 本発明の第1の実施形態に係る植物の栽培方法に用いられるガター及び濾過布を示す斜視図である。 本発明の第2の実施形態に係る植物の栽培装置を用いた施設全体を示す説明図である。 本発明の第2の実施形態に係る植物の栽培装置のブロック図である。 本発明の第2の実施形態に係る植物の栽培装置の養液装置を示す平面図である。 本発明の第2の実施形態に係る植物の栽培装置の養液装置を示す第1の側面図である。 本発明の第2の実施形態に係る植物の栽培装置の養液装置を示す第2の側面図である。 本発明の第2の実施形態に係る植物の栽培装置の栽培ベッド及び設置台を示す第1の断面図である。 本発明の第2の実施形態に係る植物の栽培装置の栽培ベッド及び設置台を示す第2の断面図である。
 <第1の実施形態>
 図1は、本発明の第1の実施形態に係るシステムの概要を示す説明図である。
 図1において、本発明の第1の実施形態に係る植物の栽培方法では、植物の栽培装置1を構成する容器(ガター2)の内側にサンゴ砂礫で形成された培地3を敷き詰め、前記培地3に植物(トマト10)を根付かせ、前記培地3に液肥4を給液するものである。
 さらに詳しく説明すると、図1に示す植物の栽培方法は、水平に置かれた帯状のガター2にサンゴ砂礫で形成された培地3を敷き詰め、前記培地3にトマト10を一定間隔で根付かせ、前記培地3の上部に潅水チューブ5を配置し、養液循環槽6に蓄えられた液肥4を、前記潅水チューブ5を介して前記培地3に給液し、当該給液により余剰となった液肥4を、前記ガター2に内貼りされた濾過布7を通して前記ガター2に形成された排液溝8に流し、当該排液溝8に流れる液肥4を前記ガター2の端部から排液パイプ9を介して前記養液循環槽6に返送する。
 潅水ポンプ11は、タイマ12による指示で、前記養液循環槽6に返送された液肥4を、前記潅水チューブ5を介して前記培地3に給液することで再利用する。
 また、前記培地3及び潅水チューブ5の上側は、トマト10の茎を通過する孔が形成された遮光シート(図8の遮光シート76)によって覆われている。
 図2は、本発明の第1の実施形態に係る植物の栽培方法に用いられるガター及び濾過布の一部を切欠いて示す斜視図である。
 図2において、ガター2は、発泡スチロールを金型によって上面が開放した帯状の容器の形状に形成したものである。
 ガター2に内貼りされた濾過布7は、下から順に、水耕用黒ポリプラスチックシート21、不織布22、プラスチックネット23及び不織布24を重ね合わせたものである。水耕用黒ポリプラスチックシート21、不織布22及び不織布24は、ガター2の上側全体を覆うように形成されている。プラスチックネット23は、ガター2の内側底面と同じサイズに形成されている。
 ここで、従来の培地として一般的に用いられるロックウールでは、毎年培地の交換が必要になり、産業廃棄物として費用を要します。
 近年の培地として普及してきたヤシガラ培地では、有機質で経年変化を生じるため、1~2年で培地の交換が必要になります。
 従来の高糖度トマト栽培では、液肥(水)を極力少なくして、果実が吸収する水分を少なくして糖度を上げるため、果実の生産量が少なくなります。
 これらの問題に対して、本発明の第1の実施形態で用いられるサンゴ砂礫で形成された培地3では、経年変化しないアルカリ性で雑菌が繁殖しづらい特性を有しているので、交換の必要がありません。
 また、サンゴ砂礫で形成された培地3では、雑菌が繁殖しづらい特性により、高糖度トマト栽培において、極端な潅水制限を行う必要がないため、生産性を向上することができます。
 また、第1の実施形態に係る植物の栽培方法では、液肥4の排液をリサイクル利用するクローズシステムであるとともに、培地3の雑菌が繁殖しづらい特性により、排液用の殺菌を行う設備を必要としません。
 また、本発明の第1の実施形態で用いられるサンゴ砂礫で形成された培地3では、カルシウムやマグネシウム等の多種類(70種類)の必須ミネラルを豊富に含有しているため、生育時に微量要素としてトマトに吸収されて、非常に糖度が高いトマト(糖度8~12度)が生産されるため、市場でニーズの高い高糖度トマトを高能率で生産できます。
 従って、本発明の第1の実施形態に係る植物の栽培方法によれば、植物(トマト)の栽培にかかる費用を低減することが可能になります。
 <第2の実施形態>
 図3乃至図9は本発明の第2の実施形態に係り、図3は植物の栽培装置を用いた施設全体を示す説明図、図4は植物の栽培装置のブロック図、図5は植物の栽培装置の養液装置を示す平面図、図6は養液装置を示す第1の側面図、図7は養液装置を示す第2の側面図、図8は植物の栽培装置のタガー及び周辺部を示す第1の断面図、図9は植物の栽培装置のタガー及び周辺部を示す第2の断面図である。
 ここで、第2の実施形態が第1の実施形態と異なるのは、植物の栽培装置34、35、37(図3参照)において、前記培地3に設置した水分計(検出センサ71、72、図4参照)が示す水分量の低下で、養液循環槽6(図4参照)に返送された液肥4(図4参照)を、潅水チューブ5(図4参照)を介して培地3(図8参照)に給液することである。
 図3において、トマトの栽培施設(プラント)30では、三列に並べられた第1乃至第3の栽培棟31、32、33を有している。
 第1の栽培棟31は、一つの植物の栽培装置34から構成されている。植物の栽培装置34は、一つの養液装置41と、図1に示した複数のガター2、培地3、潅水チューブ5、濾過布7及び排液パイプ9とから構成されている。
 図3において、第2の栽培棟32は、一つの植物の栽培装置35と、集出荷室36とから構成されている。植物の栽培装置35は、一つの養液装置41と、図1に示した複数のガター2、培地3、潅水チューブ5、濾過布7及び排液パイプ9とから構成されている。
 図3において、第3の栽培棟33は、一つの植物の栽培装置37から構成されている。植物の栽培装置37は、一つの養液装置41と、図1に示した複数のガター2、培地3、潅水チューブ5、濾過布7及び排液パイプ9とから構成されている。
 植物の栽培装置34、35、37は、水平に置かれた帯状のガター2にサンゴ砂礫で形成された培地3(図8参照)を敷き詰め、前記培地3に植物を一定間隔で根付かせ、前記培地3の上部に潅水チューブ5(図4参照)を配置し、養液循環槽51(図4参照)に蓄えられた液肥4(図4参照)を、前記潅水チューブ5を介して前記培地3に給液し、当該給液により余剰となった液肥4を、前記ガター2に内貼りされた濾過布7(図8参照)を通して前記ガター2に形成された排液溝8(図8参照)に流し、当該排液溝8に流れる液肥4を前記ガター2の端部から前記養液循環槽51(図4参照)に返送する。
 以下、植物の栽培装置34について詳細に説明する。
 図4において、植物の栽培装置34の栽培ベッド42、43は、図1に示したガター2及び濾過布7を組み合わせたものである。
 図4において、養液装置41は、養液循環槽51と、液肥調整槽52と、A液(第1の原料液)を蓄えるA液槽(第1の原料液槽)53と、B液(第2の原料液)を蓄えるB液槽(第2の原料液槽)54と、液肥混合器55と、液肥ポンプ56と、液肥移送ポンプ57と、撹拌ポンプ58と、潅水ポンプ59、60と、排液ポンプ61と、前記養液循環槽51内の液肥4のレベルを検出するレベルセンサ62と、液肥調整槽52内の液肥4のレベルを検出するレベルセンサ63と、ECセンサ(肥料濃度センサ)64と、前記潅水チューブ5に流れる液肥4の流量を検出する流量センサ65、66と、前記流量センサ65、66の検出結果をそれぞれ表示する表示装置67、68と、電磁弁69と、制御盤70とで構成されている。
 このCセンサ(肥料濃度センサ)64は液肥調整槽52内の濃度を測定している。
 さらに、液肥調整槽52から、液肥循環槽51への流量を測定して、その消費量を測定することが好ましい。これによって、消費量などを測定することが可能になるからである。
 栽培ベッド42、43には、培地3の水分量を検出する検出センサ71、72がそれぞれ設けられている。
 図5に示すように、養液装置41において、養液循環槽51と、液肥調整槽52と、A液槽53と、B液槽54は、一つの長四角形の枠50内に区分されて設けられている。A液槽53と、B液槽54の間には、液肥混合器55のダイヤフラムポンプ73が設けられている。
 図6は図5のC方向から見た養液装置を示している。
 図6に示すように、制御盤70は、養液循環槽51の上側に取り付けられている。
 図7は図5のD方向から見た養液装置を示している。
 図7に示すように、潅水チューブ5には、40メッシュによるディスクフィルタ74と、120メッシュによるディスクフィルタ75が設けられている。
 図4において、前記養液装置41は、前記養液循環槽51内の液肥4が一定量消費されたら、前記レベルセンサ62の指示により、前記液肥調整槽52から前記液肥移送ポンプ57にて、前記養液循環槽51に肥液を適正量供給し、前記液肥調整槽52の水位が低下したら、前記液肥調整槽52に水を所定位置まで供給し、前記液肥調整槽52の液肥4を適正EC濃度にするため、前記液肥ポンプ56及び前記液肥混合器55を用いて前記A液(第1の原料液)と前記B液(第2の原料液)を混合して、前記液肥調整槽52に蓄えられた液肥4が適正EC濃度になるまで供給する。
 植物の栽培装置34は、前記養液装置41に設置された制御装置(制御盤70)にて、前記養液制御を行い、前記養液循環槽51から前記培地3に給液される液肥4の供給量を前記流量センサ65、66の検出結果に基づいて表示する。
 図8に示すように、植物の栽培装置34の栽培ベッド42は、設置台80に載置されている。
 設置台80は、板状の天板81と、天板81を支える複数の脚部82、83から構成されている。
 脚部82、83は伸縮可能になっている。図8に示す脚部82、83を最も短くした状態(下限ベット高)では、天板81、複数の脚部82、83及び地面84で囲まれる領域Sの高さ及び横幅が温風ダクト90の直径より少し長い状態になり、天板81及び栽培ベッド42が最も低い状態になる。
 図9に示すように、脚部82、83を最も長くした状態(上限ベット高)では、天板81、脚部82、83及び地面で囲まれる領域Sの横幅が温風ダクト90の直径より少し長い状態を保ち、領域Sの高さが温風ダクト90の直径の約1.5倍となり、領域Sの横幅が温風ダクト90の直径より少し長い状態を保ち、天板81及び栽培ベッド42が最も高い状態になる。
 このような領域Sの調整を行うことで、栽培ベッド42の温度の最適化を図ることができる。
 第2の栽培棟32の栽培装置35は、栽培ベッド42及びその周辺部のサイズが第1の栽培棟31の栽培装置34と異なるだけで、残り構成は栽培装置34と同様になっている。
 第3の栽培棟33の栽培装置37は、栽培棟31の栽培装置34と同様になっている。
 本発明の第2の実施形態に係る植物の栽培装置34、35、37によれば、サンゴ砂礫で形成された培地3を用いることで、第1の実施形態と同様の効果が得られ、植物(トマト)の栽培にかかる費用を低減することが可能になる。
 培地は、主としてサンゴが用いられていれば足りる。主としてとは、本発明においては、他の構成成分において、もっとも多い割合であれば足りる。もっとも、サンゴが多い方が好適ではあると現在のところ考えている。
 他の成分としては、砂、軽石、れき等があり得る。
 この他の成分は、アルカリ性質のものがより好適である。
 その他の成分としては、貝殻(ホタテ等)であってもよい。場合によっては、貝殻のみであってもよい。さらにいうと、液肥4を化学的にアルカリ性にすることも可能であると考えている。
 ガター2を流れる液肥4はガター2の端部から抜く実施形態を記載していたが、途中から順次排出する排出口を設けて排出することも可能である。その場合、傾斜をつけない、傾斜が緩くてもいいという利点がある。特に、ガター2が長くなる場合には、効果的である。
 また、潅水ポンプ59、60の流量を観測して、どの程度使用量があるか計測すると好適である。
 同様に、液肥移送ポンプ57の流量を観測すると好適である。
 本発明の、構造、システム、プログラム、材料、各部材の連結、科学物質、などは、本発明の要旨を変更しない範囲で、様々に変更可能である。
 材質も、金属、プラスチック、FRP、木材、コンクリート等を自由に選択することが可能である。
 例えば、2つ以上の部材を1つにすることも可能であるし、逆に、1つの部材を2つ以上の別の部材から構成して接続することも可能である。
 また、上記第1及び第2の実施形態は、あくまでも、現在のところの最良またはそれに近い形態の2つにすぎない。
 また、制御などは、より上位の制御部分によって制御されても良いし、より末端の制御部分によって制御されても良い。
 また、制御の順序なども、所定の効果を有するのであれば、適宜変更可能である。
<定義等>
 本発明における栽培する植物としては、トマト以外にも、マンゴー、バナナ、メロン、パプリカ、ナス、キュウリ、イチゴ等、各種の野菜・果物に適用可能である。また、トマトの品種として、ミニトマト以外にも、フルーツルビー、シシリアンルージュ、桃太郎等に適用可能である。また、野菜、果物以外にも、穀物等の糖度が高い方がよい植物に適用可能である。
 1…植物の栽培装置
 2…ガター
 3…培地
 4…液肥
 5…潅水チューブ
 6…養液循環槽
 7…濾過布
 10…トマト

 

Claims (5)

  1.  容器の内側に主としてサンゴ砂礫で形成された培地を敷き詰め、前記培地に植物を根付かせ、前記培地に液肥を給液する植物の栽培方法。
  2.  水平に置かれた帯状のガターにサンゴ砂礫で形成された培地を敷き詰め、前記培地に植物を一定間隔で根付かせ、前記培地の上部に潅水チューブを配置し、養液循環槽に蓄えられた液肥を、前記潅水チューブを介して前記培地に給液し、当該給液により余剰となった液肥を、前記ガターに内貼りされた濾過布を通して前記ガターに形成された排液溝に流し、当該排液溝に流れる液肥を前記ガターから前記養液循環槽に返送する植物の栽培方法。
  3.  前記培地に設置した水分計が示す水分量の低下、もしくはタイマによる指示で、前記養液循環槽に返送された液肥を、前記潅水チューブを介して前記培地に給液することで再利用する
     請求項2に記載の植物の栽培方法。
  4.  水平に置かれた帯状のガターにサンゴ砂礫で形成された培地を敷き詰め、前記培地に植物を一定間隔で根付かせ、前記培地の上部に潅水チューブを配置し、養液循環槽に蓄えられた液肥を、前記潅水チューブを介して前記培地に給液し、当該給液により余剰となった液肥を、前記ガターに内貼りされた濾過布を通して前記ガターに形成された排液溝に流し、当該排液溝に流れる液肥を前記ガターの端部から前記養液循環槽に返送する植物の栽培装置であって、
     前記養液循環槽と、液肥調整槽と、第1の原料液を蓄える第1の原料液槽と、第2の原料液を蓄える第2の原料液槽と、液肥混合器と、液肥ポンプと、液肥移送ポンプと、潅水ポンプと、前記養液循環槽内の液肥のレベルを検出するレベルセンサと、電磁弁とで構成された養液装置を備え、
     前記養液装置は、前記養液循環槽内の液肥が一定量消費されたら、前記レベルセンサの指示により、前記液肥調整槽から前記液肥移送ポンプにて、前記養液循環槽に肥液を適正量供給し、前記液肥調整槽の水位が低下したら、前記液肥調整槽に水を所定位置まで供給し、前記液肥調整槽の液肥を適正EC濃度にするため、前記液肥ポンプ及び前記液肥混合器を用いて前記第1の原料液と前記第2の原料液を混合して、前記液肥調整槽に蓄えられた液肥が適正EC濃度になるまで供給する養液制御を行う植物の栽培装置。
  5.  前記潅水チューブに流れる液肥の流量を検出する流量センサを更に備え、前記養液装置に設置された制御装置にて、前記養液制御を行い、前記養液循環槽から前記培地に給液される液肥の供給量を前記流量センサの検出結果に基づいて表示する
     請求項4に記載の植物の栽培装置。
PCT/JP2019/002005 2018-06-01 2019-01-23 植物の栽培方法及び植物の栽培装置 WO2019230039A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020521678A JP7455741B2 (ja) 2018-06-01 2019-01-23 植物の栽培方法及び植物の栽培装置
CN201980035751.8A CN112203501A (zh) 2018-06-01 2019-01-23 植物的栽培方法和植物的栽培装置
JP2023010797A JP7445031B2 (ja) 2018-06-01 2023-01-27 植物の栽培方法及び植物の栽培装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018106036 2018-06-01
JP2018-106036 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019230039A1 true WO2019230039A1 (ja) 2019-12-05

Family

ID=68698008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002005 WO2019230039A1 (ja) 2018-06-01 2019-01-23 植物の栽培方法及び植物の栽培装置

Country Status (3)

Country Link
JP (2) JP7455741B2 (ja)
CN (1) CN112203501A (ja)
WO (1) WO2019230039A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021024375A1 (ja) * 2019-08-06 2021-02-11
WO2022024206A1 (ja) * 2020-07-28 2022-02-03 プランテク株式会社 植物の栽培方法及び植物の栽培装置
KR102358668B1 (ko) * 2021-08-13 2022-02-09 농업회사법인 주식회사 에이아이박스 저질산염 농산물 재배기술을 이용한 토경재배 전문 스마트팜 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068821A (ja) * 1973-10-20 1975-06-09
JPH031937B2 (ja) * 1985-02-23 1991-01-11 Seiwa Co Ltd
JP2926207B2 (ja) * 1994-04-19 1999-07-28 株式会社ハラダサービス 無土壌栽培装置及びその培地再生方法
JP5470501B1 (ja) * 2013-12-05 2014-04-16 大内わら工品株式会社 礫耕栽培用ベッド

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA95978C2 (ru) 2006-10-02 2011-09-26 Оцука Фармас'Ютікел Ко., Лтд. Ингибитор активации stat3/5
JP6657884B2 (ja) 2015-12-07 2020-03-04 三菱ケミカルアグリドリーム株式会社 養液栽培用部材および養液栽培方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068821A (ja) * 1973-10-20 1975-06-09
JPH031937B2 (ja) * 1985-02-23 1991-01-11 Seiwa Co Ltd
JP2926207B2 (ja) * 1994-04-19 1999-07-28 株式会社ハラダサービス 無土壌栽培装置及びその培地再生方法
JP5470501B1 (ja) * 2013-12-05 2014-04-16 大内わら工品株式会社 礫耕栽培用ベッド

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021024375A1 (ja) * 2019-08-06 2021-02-11
JP7268164B2 (ja) 2019-08-06 2023-05-02 正月 白川 植物の栽培方法及び植物の栽培装置
WO2022024206A1 (ja) * 2020-07-28 2022-02-03 プランテク株式会社 植物の栽培方法及び植物の栽培装置
KR102358668B1 (ko) * 2021-08-13 2022-02-09 농업회사법인 주식회사 에이아이박스 저질산염 농산물 재배기술을 이용한 토경재배 전문 스마트팜 시스템

Also Published As

Publication number Publication date
JP2023038365A (ja) 2023-03-16
JPWO2019230039A1 (ja) 2021-07-01
JP7455741B2 (ja) 2024-03-26
JP7445031B2 (ja) 2024-03-06
CN112203501A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
JP7445031B2 (ja) 植物の栽培方法及び植物の栽培装置
JP2011177130A (ja) 水耕栽培システム及び水耕栽培方法
JP2023038365A5 (ja)
JP7268164B2 (ja) 植物の栽培方法及び植物の栽培装置
KR20120109044A (ko) 토마토 재배장치 및 그 방법
JP2007082414A (ja) 水耕栽培方法及び水耕栽培装置
JP4948034B2 (ja) トマトの栽培方法とその装置
KR100598013B1 (ko) 식물 재배기
CN201967407U (zh) 无土自浇水可视水位花盆
KR100788273B1 (ko) 자동 저면 관수가 이루어지는 육묘 재배장치
WO2022024206A1 (ja) 植物の栽培方法及び植物の栽培装置
KR200376100Y1 (ko) 투명용기를 이용한 엽채류의 가정용 양액 재배장치
KR20120117113A (ko) 수경재배기
JP7366937B2 (ja) 植物の栽培方法及び植物の栽培装置
CN207653205U (zh) 一种茶树种植育苗用浇水装置
CN201967393U (zh) 蔬菜育苗装置
JP5981494B2 (ja) 植物栽培万能ポットと収納トレー
JP2014045761A (ja) 根菜類の栽培装置、根菜類の栽培方法
JP3001784U (ja) 養液栽培装置
CN102057843A (zh) 蔬菜育苗装置
KR20190007621A (ko) 개량형 수경 재배기
JP2023026781A (ja) 植物の栽培装置
TW201119570A (en) Hydroponics for bulb plants and apparatus therefor
KR20100065962A (ko) 원예용 저면관수 베드장치
JPH10178927A (ja) ベンチ栽培システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811714

Country of ref document: EP

Kind code of ref document: A1