WO2019229934A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2019229934A1
WO2019229934A1 PCT/JP2018/020972 JP2018020972W WO2019229934A1 WO 2019229934 A1 WO2019229934 A1 WO 2019229934A1 JP 2018020972 W JP2018020972 W JP 2018020972W WO 2019229934 A1 WO2019229934 A1 WO 2019229934A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
cross
heat exchanger
flow fan
dust
Prior art date
Application number
PCT/JP2018/020972
Other languages
English (en)
French (fr)
Inventor
政志 吉川
浩之 豊田
恒 台坂
啓輔 福原
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2018/020972 priority Critical patent/WO2019229934A1/ja
Priority to JP2018552089A priority patent/JP6531229B1/ja
Publication of WO2019229934A1 publication Critical patent/WO2019229934A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate

Definitions

  • the present invention relates to an air conditioner.
  • An indoor unit of an air conditioner is configured by storing an indoor heat exchanger, a cross-flow fan, an air filter, and the like inside an indoor unit in which a suction grille and a main flow outlet are formed.
  • a stabilizer and a fan casing are arranged around the cross-flow fan.
  • JP 2002-267249 A (FIGS. 1 and 3) Japanese Utility Model Publication No. 60-90590 (FIG. 1)
  • the indoor unit housing may be disassembled and the cross-flow fan may be periodically cleaned.
  • the cross-flow fan etc. will come into contact with other components at the time of disassembly and breakage, and the rotation balance of the cross-flow fan will deteriorate and noise will increase. End up.
  • Patent Document 1 as a means for providing a fluid feeder that can easily clean the fan without disassembling the indoor unit housing, a cleaning device that removes dust attached to the fan with a brush is provided. is suggesting.
  • Patent Document 1 by installing a brush around the cross-flow fan, it is possible to remove dust accumulated in the fan, resulting in deterioration of the rotation balance of the fan caused by accumulation of dust and changes in blade shape. The problem that energy saving performance deteriorates due to a reduction in the amount of air blown and a torque increase due to the weight of dust is solved.
  • Patent Document 2 separation on the blade surface is suppressed by installing a blade having a short chord length on the outer peripheral side between the blades of the cross-flow fan.
  • Patent Document 2 does not describe the treatment of dust, and by installing a blade with a short chord length on the outer peripheral side between the blades, the blade area increases on the inlet side of the cross-flow fan, and the space between the blades Garbage that is about to flow into the wing becomes attached to the outer peripheral side of the wing.
  • the present invention is an invention for solving the above-described problems, and it is difficult for dust to adhere to the inner peripheral side of the cross-flow fan blade surface, and it is easy to remove dust with a brush installed in the vicinity of the cross-flow fan.
  • the purpose is to provide a high air conditioner.
  • an air conditioner according to the present invention includes a cross-flow fan and a fan cleaning mechanism that cleans the cross-flow fan with a brush, and a small winglet having a short chord length is provided between the blades of the cross-flow fan. It is characterized by. Other aspects of the present invention will be described in the embodiments described later.
  • the present invention by attaching dust to the blade surface on the outer peripheral side of the cross-flow fan, it is difficult for dust to adhere to the inner peripheral side, and the dust attached to the outer peripheral side is removed by a brush installed near the cross-flow fan. It is possible to provide a clean air conditioner that is easy to clean.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG. 1 at an axial end of a cross-flow fan of an indoor unit.
  • 6 is a cross-sectional view taken along the line II in the vicinity of the cross-flow fan of the indoor unit according to Comparative Example 1.
  • FIG. 10 is a cross-sectional view taken along the line II in the vicinity of the cross-flow fan of the indoor unit according to Comparative Example 2.
  • FIG. It is the graph which arranged the relationship between a particle adhesion position and the number of blades by particle analysis by particle analysis. It is II sectional drawing of the vicinity of the cross-flow fan of the indoor unit which concerns on this embodiment.
  • FIG. 1 is a front view showing the air conditioner C with a part of the front panel 1 cut away.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG. 1 at the axial end of the cross-flow fan 12 of the indoor unit 100.
  • the indoor unit 100 of the air conditioner C shown in FIG. 1 is installed in a room that performs air conditioning.
  • a cross-flow fan 12 for sucking room air and discharging it after air conditioning is provided at the substantially central portion of the indoor unit 100 shown in FIG.
  • Cross-flow fan 12 is composed of a plurality of blades 13 (see FIG. 2).
  • the front panel 1 is provided on the front side of the indoor unit 100. As shown in FIG. 2, the front panel 1 is pivotally supported by the lower part of the indoor unit 100 so that the upper part is opened. The front panel 1 rotates about the lower part and the upper part opens, and a first suction port s1 (see FIG. 2) is formed.
  • an upper surface grill 2 that forms a second suction port s2 is provided.
  • the upper surface grill 2 is configured to allow ventilation in a lattice shape.
  • the indoor unit 100 moves the air from the first suction port s1 where the front panel 1 on the front side is opened and the second suction port s2 of the top grill 2 as shown in FIG. Inhale like F1 and F2. Then, the indoor unit 100 sends air after air conditioning (hereinafter referred to as conditioned air) by the heat exchanger 10 (the front side heat exchanger 10a and the back side heat exchanger 10b) from the outlet 3 in the direction of arrow F3. Spit out.
  • conditioned air air after air conditioning
  • a horizontal wind direction plate 4 (up and down wind direction plate) is provided on the lower surface side of the indoor unit 100.
  • the transverse wind direction plate 4 rotates around the axis 4j (arrow ⁇ 1 in FIG. 2), and the air outlet 3 is opened and closed.
  • the horizontal wind direction plate 4 is a member that changes the wind direction of the conditioned air discharged from the air outlet 3.
  • a pre-filter 5 is provided immediately inside the front panel 1 and the top grill 2.
  • the prefilter 5 is attached to a filter frame 6 (see FIG. 1).
  • the pre-filter 5 removes dust contained in the indoor air that is air-conditioned.
  • a filter cleaning mechanism 7 is provided outside the pre-filter 5.
  • the filter cleaning mechanism 7 removes dust and the like by moving horizontally on the pre-filter 5 while sweeping in the longitudinal direction (left-right direction) of the indoor unit 100.
  • a heat exchanger 10a arranged on the front side and a heat exchanger 10b arranged on the back side are arranged inside the pre-filter 5.
  • the heat exchangers 10a and 10b are each composed of a heat exchange fin 8 and a refrigerant pipe 9.
  • the refrigerant of the heat medium of the refrigeration cycle flows.
  • a large number of heat exchange fins 8 that expand the surface area are formed around the refrigerant tube 9 in order to promote heat exchange between the refrigerant and the outside air.
  • the heat exchanger 10 (heat exchangers 10a and 10b) is arranged so as to surround the cross-flow fan 12 from the front side to the back side. As cross-flow fan 12 rotates in the direction of arrow ⁇ 2 in FIG. 2, the air sucked into indoor unit 100 is heat-exchanged in the order of heat exchanger 10a and heat exchanger 10b, and is air-conditioned by heat exchange. Air is discharged from the outlet 3 as indicated by an arrow F3.
  • FIG. 3 is a cross-sectional view taken along the line II in the vicinity of the cross-flow fan of the indoor unit according to Comparative Example 1.
  • FIG. 3 is a schematic diagram of the dust 29 and fluid flow in the vicinity of the cross-flow fan 12 of the first comparative example.
  • the fan cleaning mechanism section 37 includes a fan cleaning motor (not shown) in addition to the shaft section 37a and the brush 37b shown in FIG.
  • the shaft portion 37a is a rod-like member parallel to the axial direction of the cross-flow fan 12, and both ends thereof are pivotally supported.
  • the brush 37b removes dust adhering to the wing 13 (fan blade), and is installed on the shaft portion 37a.
  • the fan cleaning motor is, for example, a stepping motor, and has a function of rotating the shaft portion 37a by a predetermined angle.
  • the brush 37b is in a state where the brush 37b is separated from the cross-flow fan 12 (see the solid line of the brush 37b).
  • the fan cleaning motor When the cross-flow fan 12 is cleaned by the fan cleaning mechanism portion 37, the fan cleaning motor is driven so that the brush 37b is inserted between the blades 13 in the cross-flow fan 12 (see the broken line portion of the brush 37b).
  • the cross-flow fan 12 is rotated in the reverse direction (counterclockwise in FIG. 3).
  • the fan cleaning motor is driven again to rotate the brush 37b, and the brush 37b is separated from the cross-flow fan 12 (see the solid line of the brush 37b). ).
  • the brush 37b setting angle of the fan cleaning mechanism unit 37 may be, for example, an angle ⁇ .
  • the brush reference line BL that connects the center 37c of the rotation axis of the fan cleaning mechanism 37 and the center 12c of the rotation axis of the once-through fan 12 is defined, here, the brush reference line BL and the brush 37b
  • the angle formed by ⁇ is ⁇ .
  • the fluid is air.
  • the solid line shows the dust streamline 30, the broken line shows the fluid streamline 31, and the circle shows the dust 32 adhering to the blade surface.
  • the fluid flow line 31 the fluid flowing into the flow path formed by the blades 13 on the blade outer peripheral side 33 flows along the blade 13 and is discharged to the blade inner peripheral side 34.
  • the dust streamline 30 does not coincide with the fluid streamline 31, and the dust 29 that has flowed in from the blade outer peripheral side 33 linearly enters between the blades, and the blade surface 35 (blade negative pressure surface 35 a, It flows so as to collide with the blade pressure surface 35b). Mainly, the dust 29 collides with the blade pressure surface 36.
  • the fan cleaning mechanism 37 installed around the cross-flow fan 12 is inserted into the flow path formed by the blades 13 by inserting the inter-blade insertion length Lb and attached to the blade surface.
  • the fan cleaning mechanism 37 cannot reach the blade inner peripheral side 34 and the dust 32 attached to the blade surface on the blade inner peripheral side 34 cannot be removed.
  • the inter-blade insertion length Lb is increased, when the cross-flow fan 12 rotates, the fan cleaning mechanism 37 is repelled by the rotation and cannot reach the blade surface 35 on the blade inner circumferential side 34. .
  • FIG. 4 is a cross-sectional view taken along the line II in the vicinity of the cross-flow fan of the indoor unit according to Comparative Example 2.
  • FIG. 4 is a schematic diagram when the number of blades 13 of the cross-flow fan 12 shown in FIG. 3 is increased to narrow the interval between the blades 13. In this way, by reducing the interval between the blades 13, dust 29 that linearly flows into the flow path formed by the blades 13 comes to adhere to the blade surface 35 on the blade outer peripheral side 33, It is possible to reduce the amount of dust 32 adhering to the blade surface on the circumferential side 34. The dust 32 adhering to the blade surface on the blade outer peripheral side 33 may be removed by the fan cleaning mechanism 37.
  • FIG. 5 is a graph in which the relationship between the particle adhesion position and the number of blades is arranged by the particle adhesion amount by particle analysis.
  • FIG. 5 shows the relationship between the number of blades 13 and the attachment position of the dust 32 attached to the blade surface. The result is that the dust 32 attached to the blade surface is simulated with particles and evaluated by particle analysis.
  • FIG. 5 shows the relationship between the number of blades 13 and the particle adhesion position, with the particle adhesion amount as a parameter.
  • the definition of the particle adhesion position on the vertical axis is a value obtained by making the distance from the position on the blade outer peripheral side 33 shown in FIG. 3 toward the rotation center dimensionless with the fan outer diameter Do.
  • the number of the wings 13 on the horizontal axis is a value made dimensionless by the number of current fans.
  • the particle adhesion amount shown as a parameter in FIG. 5 will be described as an example when the particle adhesion amount is 50%.
  • the particle adhesion amount is 50%
  • the amount of particles adhering to the blade surface 35 from the position of the blade outer peripheral side 33 toward the rotation center is It shows the case where the total number of particles attached to the surface 35 is 50%.
  • the particle adhesion amount is 20% to 40%.
  • the particle adhesion position becomes smaller as the number of blades 13 increases. This indicates that the same amount of particles can be attached on the blade outer peripheral side 33.
  • the particle attachment position becomes larger than the result of the particle attachment amount of 30%. The same applies to 50%.
  • the relationship between the inter-blade insertion length Lb of the fan cleaning mechanism 37 and the fan outer diameter Do to the flow path formed by the blades 13 is expressed as follows: Lb / Do> 0.005 By doing so, it is possible to remove particles adhering to the blade outer peripheral side 33 regardless of the number of blades 13. If it is necessary to remove dust 32 adhering to more blade surfaces, the number of blades 13 may be increased, or the inter-blade insertion length Lb of the fan cleaning mechanism 37 may be increased.
  • FIG. 6 is a cross-sectional view taken along the line II in the vicinity of the cross-flow fan 12 of the indoor unit according to the present embodiment.
  • FIG. 6 shows a shape in which the small blade 38 having a chord length shorter than that of the blade 13 is installed between the blades 13 in the cross-flow fan 12 shown in FIG. 3. The conditions are the same as those described with reference to FIG. 3 except that a small winglet with a short chord length is installed.
  • FIG. 4 by increasing the number of blades 13, dust 29 adheres to the blade surface 35 on the blade outer peripheral side 33, and the amount of dust 29 attached to the blade surface 35 on the blade inner peripheral side 34 can be reduced. It has become possible.
  • the flow path formed by the blades 13 becomes narrower, so that friction loss in the flow path formed by the blades 13 increases and the power consumption of the fan increases. Therefore, as shown in FIG. 6, by installing a small wing 38 with a short chord length between the wings 13, the reduction in the width of the flow path formed between the wings 13 is minimized, and the wing outer circumferential side 33 is arranged. Since the area of the blade 13 positioned can be increased, it is possible to achieve both a suppression of an increase in power consumption of the fan and a reduction in the amount of dust 29 attached to the blade surface 35 on the blade inner peripheral side 34. The dust 32 adhering to the blade surface on the blade outer peripheral side 33 is removed by the fan cleaning mechanism 37. Moreover, material can be reduced by shortening the chord length of the wing
  • the blade surface 35 on the blade outer circumferential side 33 is set such that the relationship between the interblade insertion length Lb of the fan cleaning mechanism 37 and the radial length Ls of the small blade 38 having a short chord length is Lb> Ls.
  • the fan cleaning mechanism 37 comes into contact with the blade surface 39 of the small blade with a short chord length, and a portion where the amount of dust 29 is attached can be effectively cleaned.
  • the brush 37b of the fan cleaning mechanism 37 When removing dust adhering to the blade surface, the brush 37b of the fan cleaning mechanism 37 is inserted between the blades, and the fan is rotated counterclockwise. At this time, since the brush 37b of the fan cleaning mechanism portion 37 comes into contact with the convex surface portion of the blade, dust attached to the concave surface side of the blade may not be removed. In such a case, by changing the material of the brush 37b to a soft material, the brush 37b can easily enter between the blades, and dust attached to the concave surface portion can be removed. It is difficult to get the brush to reach.
  • the small wing 38 by installing the small wing 38 with a short chord length, most of the dust adheres to the vicinity of the wing outer peripheral side 33 and the amount of dust attached to the vicinity of the wing inner peripheral side 34 is reduced. Thus, most of the dust adhering to the concave surface portion can be effectively removed using the fan cleaning mechanism portion 37.
  • FIG. 7 is an explanatory diagram showing a vertical cross-sectional configuration of the indoor unit according to the present embodiment. The same elements as those in the indoor unit 100 shown in FIG.
  • the cross-flow fan 12 is, for example, a cylindrical cross flow fan, and is disposed in the vicinity of the heat exchanger 10.
  • the cross-flow fan 12 has a plurality of fan blades (wings 13a, small wings 38 with a short chord length), and a partition plate 11 on which these fan blades are installed.
  • the cross-flow fan 12 is preferably coated with a hydrophilic coating agent.
  • a coating material for example, a material obtained by adding a binder (silicon compound having a hydrolyzable group), butanol, tetrahydrofuran, and an antibacterial agent to isopropyl alcohol-dispersed silica sol which is a hydrophilic material may be used.
  • the coating agent described above also functions as an antistatic agent for the cross-flow fan 12.
  • the indoor unit 100 includes a dew tray 18, filters 5 a and 5 b, a front panel 1, a vertical wind direction plate 22 (left and right wind direction plate), and a horizontal wind direction plate. 4 (vertical wind direction plate), a fan cleaning mechanism 37, and the like.
  • FIG. 7 illustrates a state where the cross-flow fan 12 is not cleaned by the fan cleaning mechanism unit 37.
  • the heat exchanger 10 is washed away with water.
  • the fan cleaning mechanism 37 shown in FIG. 7 is for cleaning the cross-flow fan 12, and is disposed between the heat exchanger 10a and the cross-flow fan 12.
  • the fan cleaning mechanism 37 shown in FIG. 7 is a case where the drawing of FIG. 6 is rotated 90 degrees counterclockwise. More specifically, the fan cleaning mechanism 37 is disposed in the concave portion r of the heat exchanger 10a having a ⁇ -shape in a longitudinal sectional view. In the example shown in FIG. 7, the lower part of the heat exchanger 10 a exists below the fan cleaning mechanism 37 and the dew tray 18 exists.
  • FIG. 8 is a flowchart showing a control process executed by the control unit of the air conditioner according to the present embodiment.
  • the air conditioning operation is not performed at the time of “START” in FIG. 8 and that the tip of the brush 37b faces the heat exchanger 10a (the state shown in FIG. 7).
  • step S101 of FIG. 8 the control unit (not shown) rotates the cross-flow fan 12 in the reverse direction (counterclockwise in FIG. 7), and when the predetermined number of rotations is reached, the brush 37b of the fan cleaning mechanism unit 37.
  • the fan cleaning motor is driven so that the brush 37b is inserted between the blades 13 in the once-through fan 12 (see the broken line portion of the brush 37b in FIG. 6).
  • the control unit cleans the cross-flow fan 12 by the fan cleaning mechanism unit 37.
  • the trigger for starting the cleaning of the once-through fan 12 includes, for example, a condition that the accumulated time of the air-conditioning operation from the previous cleaning reaches a predetermined time, but is not limited to a specific one. A state in which the once-through fan 12 is being cleaned will be described with reference to FIG.
  • FIG. 9 is an explanatory diagram showing a state in which the cross-flow fan 12 is being cleaned in the indoor unit 100 according to the embodiment.
  • the heat exchanger 10 heat exchanger 10a, 10b
  • the cross-flow fan 12 and the dew tray 18 are shown in figure, and illustration is abbreviate
  • the controller rotates the cross-flow fan 12 in the opposite direction to that during normal air-conditioning operation (reverse rotation).
  • the brush 37b of the fan cleaning mechanism unit 37 is preset.
  • the cross-flow fan 12 is brought into contact with an angle (for example, an angle ⁇ from the brush reference line BL in FIG. 6).
  • the heat exchanger 10 a exists below the contact position K when the fan cleaning mechanism 37 is in contact with the cross-flow fan 12, and the dew pan 18 Also exist.
  • the tip of the brush 37b bends with the movement of the fan blade (wing 13a, small wing 38 with a short chord length) and strokes the back of the fan blade.
  • the brush 37b is pressed. Then, dust collected near the tip of the fan blade 16a (the end in the radial direction) is removed by the brush 37b.
  • the fan cleaning mechanism 37 is attached to the fan blade at a preset angle with the brush 37b of the fan cleaning mechanism 37.
  • the brush 37b is brought into contact.
  • the brush 37b comes into contact with the vicinity of the front end of the rear surface of the fan blade, and dust accumulated near the front end of the convex / concave surface of the fan blade is removed.
  • most of the dust accumulated in the once-through fan 12 can be removed.
  • the dust j removed from the cross-flow fan 12 by the brush 37b is lightly pressed against the heat exchanger 10a by wind pressure. Further, the dust j described above falls on the dew tray 18 along the inclined surface (edge of the fin f) of the heat exchanger 10a (see the arrow in FIG. 9). Therefore, the dust j hardly adheres to the back surface of the horizontal wind direction plate 4 (vertical wind direction plate) (see FIG. 7) through a minute gap between the once-through fan 12 and the dew tray 18. This can prevent the dust j from being blown into the room during the next air conditioning operation.
  • a part of the dust j removed from the once-through fan 12 may adhere to the heat exchanger 10a without falling to the dew tray 18.
  • the dust j adhering to the heat exchanger 10a is washed away by the process of step S104 mentioned later.
  • control unit may drive the cross-flow fan 12 at a medium / high speed rotation speed or drive the cross-flow fan 12 at a low speed rotation speed.
  • the range of the rotational speed in the middle / high speed region of the cross-flow fan 12 is, for example, 300 min ⁇ 1 (300 rpm) or more and less than 1700 min ⁇ 1 (1700 rpm).
  • the range of the rotational speed in the low speed region of the cross-flow fan 12 is, for example, not less than 100 min ⁇ 1 (100 rpm) and less than 300 min ⁇ 1 (300 rpm).
  • the cross-flow fan 12 can be cleaned with low noise.
  • step S103 the control unit rotates the brush 37b of the fan cleaning mechanism unit 37. That is, the control unit rotates the brush 37b around the shaft portion 37a from the state where the tip of the brush 37b faces the cross-flow fan 12 (see FIG. 9), so that the tip of the brush 37b faces the heat exchanger 10a. (See FIG. 10). This can prevent the fan cleaning mechanism 37 from obstructing the air flow during the subsequent air-conditioning operation.
  • step S104 the control unit sequentially freezes and thaws the heat exchanger 10.
  • a control part makes the heat exchanger 10 function as an evaporator, makes the heat exchanger 10 frost the moisture contained in the air taken in the indoor unit 100, and freezes it.
  • the process of freezing the heat exchanger 10 is included in the matter of “attaching condensed water” to the heat exchanger 10.
  • the control unit After freezing the heat exchanger 10 in this way, the control unit thaws the heat exchanger 10. For example, the control unit causes the heat exchanger 10 to naturally thaw at room temperature by maintaining the stopped state of each device. In addition, you may make it melt
  • FIG. 10 is an explanatory diagram illustrating a state in which the heat exchanger 10 is being thawed in the indoor unit 100 according to the embodiment.
  • frost and ice adhering to the heat exchanger 10 are melted, and a large amount of water w flows to the dew tray 18 through the heat exchange fins 8. Thereby, the dust j adhering to the heat exchanger 10 during the air conditioning operation can be washed away.
  • the dust j adhering to the heat exchanger 10a is also washed away and flows down to the dew tray 18 (see the arrow in FIG. 10).
  • the water w that has flowed down to the dew tray 18 in this way, together with dust j (see FIG. 9) that has fallen directly onto the dew tray 18 during cleaning of the once-through fan 12, is externally supplied via a drain hose (not shown). To be discharged.
  • a drain hose not shown
  • control unit may perform a blowing operation to dry the interior of the indoor unit 100. Thereby, it is possible to suppress the propagation of fungi and mold on the heat exchanger 10 and the like.
  • FIG. 11 is a longitudinal sectional view of an indoor unit 100 of an air conditioner according to a modification.
  • a groove member M having a concave shape in a longitudinal sectional view is installed below the heat exchanger 10a.
  • a rib 28 extending upward from the bottom surface of the groove member M is provided in the groove member M. The other points are the same as in FIG.
  • the front portion of the rib 28 functions as a dew receiving portion 18A that receives the condensed water of the heat exchanger 10a.
  • the rear portion of the rib 28 functions as a dust receiving portion 27 that receives dust that has dropped from the heat exchanger 10 a or the cross-flow fan 12.
  • the dust receiver 27 is disposed below the heat exchanger 10a.
  • the heat exchanger 10 (lower part of the heat exchanger 10a) exists, and the dust receiving part 27 also exists. More specifically, although not shown, the heat exchanger 10 is present below the contact position when the fan cleaning mechanism 37 is in contact with the cross-flow fan 12, and the dust receiver 27 is also present. ing. Even if it is such a structure, the effect similar to above-described embodiment is show
  • the heat exchanger 10 is thawed, water flows down to the dew receiving unit 18A and water also flows to the dust receiving unit 27. Therefore, there is no possibility that the dust collected in the dust receiving portion 27 may be hindered.
  • the upper end of the rib 28 is not contacting the heat exchanger 10a, it is not restricted to this. That is, the upper end of the rib 28 may be in contact with the heat exchanger 10a.

Abstract

空気調和機は、貫流ファン(12)と、貫流ファン(12)をブラシ(37b)で清掃するファン清掃機構部(37)と、備え、貫流ファン(12)の翼間に、弦長の短い小翼(38)が設けられている。ファン清掃機構部(37)のブラシの翼間挿入長さをLb、弦長の短い小翼(38)の径方向長さをLsとすると、Lb>Lsの関係を有する。ファン清掃機構部(37)は、熱交換器と貫流ファン(12)との間に配置され、ファン清掃機構部(37)の下方には、熱交換器及び露受皿のうち少なくとも一方が存在している。

Description

空気調和機
 本発明は、空気調和機に関する。
 従来の空気調和機の室内機の構造例として、例えば特許文献1の図1に示すものがある。空気調和機の室内機は、吸込みグリル及び主流吹き出し口が形成された室内機の内部に、室内熱交換器、貫流ファン、エアフィルタ等を収納して構成されている。また、貫流ファンの周囲には、スタビライザとファンケーシングが配置される。
 貫流ファンが回転すると、貫流ファンの内部に循環渦が発生し、循環渦の負圧により吸込みグリルから室内空気を吸引する。そして、吸引した室内空気と室内熱交換器を流れる冷媒との間で熱交換させて調和空気を生成し、その調和空気を主流吹き出し口から吹き出して室内を空調している。
特開2002-267249号公報(図1、図3) 実開昭60-90590号公報(図1)
 特許文献1の従来の空気調和機の室内機においては、エアフィルタを通過した室内空気の微小なゴミは、貫流ファンに付着し、蓄積する場合がある。この場合、付着したゴミの重さにより貫流ファンの回転バランスが悪化し、騒音増加の原因になる。ゴミの影響で翼形状が変化し設計値よりも風量が低下する。さらに、ゴミの付着によりファンの質量が増加し、トルクが増加するため、空気調和機の省エネルギー性が著しく損なわれるという問題が発生する。また、貫流ファンに付着したゴミにカビが発生する場合があり、衛生面が悪化し人体に悪影響を及ぼす可能性もある。そこで、翼面に付着したゴミを除去し、カビなどの発生を防ぐには、室内機筐体を分解し、貫流ファンを定期的に清掃すればよい。しかし、清掃には多大な労力がかかるだけでなく、分解時に貫流ファンなどが他の構成部品と接触し破損する可能性や、貫流ファンの回転バランスが悪化し、騒音が上昇するという問題が生じてしまう。
 そこで、特許文献1では、室内機筐体を分解することなく、簡単にファンの清掃を行うことのできる流体送り装置を提供する手段として、前記ファンに付着したゴミをブラシにより除去する清掃装置を提案している。
 特許文献1において、貫流ファンの周辺にブラシを設置することにより、ファンに蓄積したゴミを除去することが可能となり、ゴミが蓄積することにより生じるファンの回転バランスの悪化や、翼形状の変化に伴う送風量の低減や、ゴミの重量によるトルク増大による省エネ性能が悪化するという問題を解消している。
 しかしながら、ゴミは翼の内周側から外周側にかけて蓄積するが、ブラシが翼の内周側まで届かずに、内周側の翼面に蓄積したゴミを除去できないという課題があった。内側に届くようにブラシ長さを長くした場合でも、貫流ファンの回転にはじかれ、翼の内周側までブラシを進入させることは困難である。
 特許文献2において、貫流ファンの羽根と羽根との間の外周側に弦長の短い羽根を設置することにより、翼面でのはく離を抑制している。しかしながら、特許文献2には、ゴミの処理についての記載はなく、羽根間の外周側に弦長の短い羽根を設置することにより、貫流ファンの入口側において、翼の面積が増加し、翼間に流入しようとするゴミが翼の外周側に付着するようになる。
 本発明は、前記の課題を解決するための発明であって、貫流ファン翼面の内周側にゴミが付着しにくく、貫流ファン近傍に設置されたブラシにより、ゴミを除去しやすい清潔性の高い空気調和機の提供を目的とする。
 前記目的を達成するため、本発明の空気調和機は、貫流ファンと、貫流ファンをブラシで清掃するファン清掃機構部と、備え、貫流ファンの翼間に、弦長の短い小翼が設けられていることを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
 本発明によれば、貫流ファンの外周側の翼面にゴミを付着させることで、内周側にゴミが付着しにくく、貫流ファン近傍に設置されたブラシにより、外周側に付着したゴミを除去しやすい清潔性の高い空気調和機を提供できる。
空気調和機を、フロントパネルの一部切り欠いて示す前面図である。 室内機の貫流ファンの軸方向の端部の図1のI-I断面図である。 比較例1に係る室内機の貫流ファンの近傍のI-I断面図である。 比較例2に係る室内機の貫流ファンの近傍のI-I断面図である。 粒子解析により、粒子付着位置と翼枚数の関係を粒子付着量で整理したグラフである。 本実施形態に係る室内機の貫流ファンの近傍のI-I断面図である。 本実施形態に係る室内機の縦断面構成を示す説明図である。 本実施形態に係る空気調和機の制御部が実行する制御処理を示すフローチャートである。 本実施形態に係る室内機において、貫流ファンの清掃中の状態を示す説明図である。 本実施形態に係る室内機において、熱交換器の解凍中の状態を示す説明図である。 本発明の変形例に係る空気調和機の室内機の縦断面図である。
 以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
 図1は、空気調和機Cを、フロントパネル1の一部切り欠いて示す前面図である。図2は、室内機100の貫流ファン12の軸方向の端部の図1のI-I断面図である。図1に示す空気調和機Cの室内機100は、空気調和を行う室内に設置される。図1に示す室内機100のほぼ中央部には、室内空気を吸い込み、空気調和後に吐き出すための貫流ファン12が設けられている。貫流ファン12は複数枚の翼13(図2参照)で構成されている。
 室内機100の前面側には、前板のフロントパネル1が設けられている。フロントパネル1は、図2に示すように、上部が開口すべく、室内機100の下部に枢支されている。フロントパネル1が下部を支点に回動して上部が開口し、第1吸込口s1(図2参照)が形成される。
 室内機100の上面側には、第2吸込口s2を形成する上面グリル2が設けられている。上面グリル2は、格子状に通風可能に構成されている。
 空気調和機Cの運転中、室内機100は、図2に示すように、前面のフロントパネル1が開口した第1吸込口s1と、上面グリル2の第2吸込口s2とから空気をそれぞれ矢印F1、F2のように吸い込む。そして、室内機100は、熱交換器10(前面側の熱交換器10a、背面側の熱交換器10b)による空気調和後の空気(以下、調和空気と称す)を吹出口3から矢印F3方向に吐き出す。
 室内機100の下面側には横風向板4(上下風向板)が設けられている。横風向板4が軸4j周りに回転し(図2の矢印α1)、吹出口3が開閉される。横風向板4は、吹出口3から吐き出す調和空気の風向きを変える部材である。
 フロントパネル1と上面グリル2の直ぐ内側にはプレフィルタ5が設けられている。プレフィルタ5はフィルタフレーム6(図1参照)に取付けられている。プレフィルタ5は空気調和する室内の空気に含まれるゴミを除去する。
 図1に示すように、プレフィルタ5の外側にはフィルタ清掃機構7が設けられている。フィルタ清掃機構7はプレフィルタ5上を室内機100の長手方向(左右方向)にスウィープしながら水平移動することでゴミ等を除去する。
 プレフィルタ5の内側には、前面側に配置される熱交換器10aと、背面側に配置される熱交換器10bとが配設されている。熱交換器10a,10bとは、それぞれ熱交換フィン8と冷媒管9で構成される。冷媒管9には、冷凍サイクルの熱媒体の冷媒が流れる。冷媒管9の周りには、冷媒と外部の空気との熱交換を促進するため、表面積を拡張する熱交換フィン8が多数形成されている。
 熱交換器10(熱交換器10a,10b)は、貫流ファン12を前面側から背面側にかけて囲んで配置されている。貫流ファン12が図2の矢印α2方向に回転することで、室内機100の内部に吸込まれた空気は、熱交換器10a、熱交換器10bの順に熱交換され、熱交換で空気調和された空気が吹出口3から矢印F3に示すように吐き出される。
 図3は、比較例1に係る室内機の貫流ファンの近傍のI-I断面図である。図3は、比較例1の貫流ファン12付近のゴミ29と流体の流れの模式図を示す。
 最初に図3を参照して、ファン清掃機構部37を説明する。ファン清掃機構部37は、図3に示す軸部37a及びブラシ37bの他に、ファン清掃用モータ(図示せず)を備えている。軸部37aは、貫流ファン12の軸方向に平行な棒状の部材であり、その両端が軸支されている。
 ブラシ37bは、翼13(ファンブレード)に付着した塵埃を除去するものであり、軸部37aに設置されている。ファン清掃用モータは、例えば、ステッピングモータであり、軸部37aを所定角度だけ回転させる機能を有している。空調運転時には、ブラシ37bは、貫流ファン12からブラシ37bが離間した状態になっている(ブラシ37bの実線参照)。
 ファン清掃機構部37によって貫流ファン12を清掃する際には、貫流ファン12にブラシ37bが翼13間に挿入されるように、ファン清掃用モータが駆動される(ブラシ37bの破線部参照)とともに、貫流ファン12が逆回転(図3においては、反時計回りに)される。そして、ファン清掃機構部37による貫流ファン12の清掃が終了すると、ファン清掃用モータ再び駆動されてブラシ37bが回動し、貫流ファン12からブラシ37bが離間した状態になる(ブラシ37bの実線参照)。
 ファン清掃機構部37のブラシ37b設定角度は、例えば、角度βとするとよい。ファン清掃機構部37の回転軸の中心37cと貫流ファン12の回転軸の中心12cとを結ぶブラシ基準線BLが規定されると、ここでは、中心37cを頂点としてブラシ基準線BLとブラシ37bとのなす角度をβとしている。
 空調運転時のゴミについて説明する。ルームエアコンの場合、流体は空気である。実線でゴミの流線30を、破線で流体の流線31を示し、円で翼面に付着したゴミ32を示す。流体の流線31を見ると、翼外周側33で翼13同士が形成する流路に流入した流体は、翼13に沿い流れ、翼内周側34に吐き出される。ゴミの流線30を見ると、流体の流線31とは一致しておらず、翼外周側33から流入したゴミ29は直線的に翼間に進入し、翼面35(翼負圧面35a、翼圧力面35b)に衝突するように流れる。主に、ゴミ29は翼圧力面36に衝突する。これは、ゴミ29の質量が大きい場合、流体が形成する圧力勾配に沿って曲がりきれないためである。翼13の位相によって、翼13同士が形成する流路への流体の流入角度は変化するため、これに伴いゴミ29の翼13同士が形成する流路への流入角度も変化する。したがって、翼面35には全体的にゴミ29が付着し、翼面に付着したゴミ32が形成される。また、翼13の入口においては、流体は翼圧力面36に向かって流入するため、直線的に翼13同士が形成する流路に進入するゴミ29は、翼圧力面36に付着することとなる。
 空調運転終了後、ファン清掃モード時に、貫流ファン12の周辺に設置されたファン清掃機構部37を、翼13同士が形成する流路へ、翼間挿入長さLb挿入し、翼面に付着したゴミ32を除去しようとすると、ファン清掃機構部37が翼内周側34まで到達できず、翼内周側34の翼面に付着したゴミ32を除去できない。翼間挿入長さLbを長くした場合でも、貫流ファン12が回転すると、ファン清掃機構部37は回転により弾かれてしまい、翼内周側34の翼面35に到達することができない課題がある。
 図4は、比較例2に係る室内機の貫流ファンの近傍のI-I断面図である。図4は、図3に示す貫流ファン12の翼13の枚数を増加して、翼13同士の間隔を狭くした場合の模式図を示す。このように、翼13同士の間隔を狭くすることで、翼13同士が形成する流路に直線的に流入するゴミ29が、翼外周側33の翼面35に付着するようになり、翼内周側34の翼面に付着するゴミ32の量を減らすことが可能となる。翼外周側33の翼面に付着したゴミ32は、ファン清掃機構部37により除去される可能性がある。
 図5は、粒子解析により、粒子付着位置と翼枚数の関係を粒子付着量で整理したグラフである。図5に、翼13の枚数と翼面に付着したゴミ32の付着位置の関係を、翼面に付着したゴミ32を粒子で模擬し、粒子解析により評価した結果を示す。図5には、翼13の枚数と粒子付着位置の関係を、粒子付着量をパラメータにして示す。縦軸の粒子付着位置の定義は、図3に示す翼外周側33の位置から回転中心に向かう距離をファン外径Doで無次元化した値である。横軸の翼13の枚数は、現行ファンの枚数で無次元化した値である。
 図5にパラメータとして示す粒子付着量は、1例として、粒子付着量50%の場合で説明すると、翼外周側33の位置から回転中心方向にかけて、翼面35に付着する粒子の量が、翼面35に付着した粒子の総数に対して、50%となる場合について示している。粒子付着量20%~40%までの場合も同様である。図5中の粒子付着量30%の結果を見ると、翼13の枚数が増加するにつれて、粒子付着位置が小さくなっている。これは同じ量の粒子をより翼外周側33で付着できるようになることを示している。粒子付着量40%の結果を見ると、粒子付着量30%の結果に対して、粒子付着位置が大きくなる。これは、50%においても同様である。
 図5中の粒子付着量20%の結果を見ると、他の粒子付着量の場合と比較して、翼13の枚数を変化しても粒子付着位置に変化が見られない。以上から、翼13の枚数を増加した場合、同じ量の粒子が付着するための、粒子付着位置が小さくなり、翼外周側33により多くの粒子が付着することになる。言い換えると、翼13の枚数を増加した場合、翼内周側34に付着する粒子量を低減することが可能になる。しかしながら、粒子付着量が20%の場合は大きな変化がないため、翼13同士が形成する流路への、ファン清掃機構部37の翼間挿入長さLbとファン外径Doの関係を、
       Lb/Do>0.005
とすることにより、翼13の枚数によらず翼外周側33に付着する粒子を除去することが可能になる。より多くの翼面に付着したゴミ32を除去する必要がある場合は、翼13の枚数を増加する、もしくはファン清掃機構部37の翼間挿入長さLbを増加すればよい。
 図6は、本実施形態に係る室内機の貫流ファン12の近傍のI-I断面図である。図6は、図3で示した貫流ファン12において、翼13の間に、翼13よりも弦長の短い小翼38を設置した形状を示す。弦長の短い小翼を設置した以外は、図3で説明した条件と同様である。図4では、翼13の枚数が増加することにより、翼外周側33の翼面35にゴミ29が付着し、翼内周側34の翼面35に付着するゴミ29の量を低減することが可能となった。
 しかしながら、翼13の枚数の増加に伴い、翼13同士が形成する流路が狭くなるため、翼13同士が形成する流路における摩擦損失が増大し、ファンの消費電力が増大してしまう。そこで、図6に示すように、翼13の間に弦長の短い小翼38を設置することにより、翼13同士が形成する流路幅の減少を最小限に抑えつつ、翼外周側33に位置する翼13の面積を増加することができるため、ファンの消費電力増加の抑制と、翼内周側34の翼面35へのゴミ29の付着量低減を両立する構成とすることができる。翼外周側33の翼面に付着したゴミ32は、ファン清掃機構部37により除去される。また、翼13の弦長を短くすることにより材料を低減することができ、製作コストが低減する。
 また、ファン清掃機構部37の翼間挿入長さLbと弦長の短い小翼38の径方向長さLsの関係がLb>Lsとなるようにすることで、翼外周側33の翼面35及び弦長の短い小翼の翼面39にファン清掃機構部37が接触し、ゴミ29の付着量が多い箇所を効果的に清掃することができる。
 翼面に付着したゴミを除去する場合には、ファン清掃機構部37のブラシ37bを翼間に挿入し、ファンを反時計回りに回転させる。この際、ファン清掃機構部37のブラシ37bと翼の凸面部が接触することになるため、翼の凹面側に付着したゴミを除去できない場合がある。このような場合、ブラシ37bの材質を柔らかい物に変更することで、ブラシ37bが翼間に進入しやすくなり、凹面部に付着したゴミを除去することが可能となるが、翼内周側34までブラシを到達させることは困難である。本実施形態によれば、弦長の短い小翼38を設置することにより、ゴミの大部分が翼外周側33付近に付着し、翼内周側34付近に付着するゴミの量が低減するため、ファン清掃機構部37を用いて凹面部に付着した大部分のゴミを効果的に除去することが可能となる。
 以下、図6に示した貫流ファン12を用いた空気調和機の1例について説明する。
 図7は、本実施形態に係る室内機の縦断面構成を示す説明図である。図2に示した室内機100と同一要素には同一符号を付し重複する説明は省略する。
 貫流ファン12は、例えば、円筒状のクロスフローファンであり、熱交換器10の付近に配置されている。貫流ファン12は、複数のファンブレード(翼13a、弦長の短い小翼38)、これらのファンブレードが設置される仕切板11と、を有している。
 なお、貫流ファン12は、親水性のコーティング剤でコーティングされていることが好ましい。このようなコーティング材として、例えば、親水性材料であるイソプロピルアルコール分散シリカゾルに、バインダー(加水分解性基を有するケイ素化合物)、ブタノール、テトラヒドロフラン、及び抗菌剤を添加したものを用いてもよい。
 これによって、貫流ファン12の表面に親水性膜が形成されるため、貫流ファン12の表面の電気抵抗値が小さくなり、貫流ファン12に塵埃が付着しにくくなる。つまり、貫流ファン16の駆動中、空気との摩擦に伴う静電気が貫流ファン12の表面に生じにくくなるため、貫流ファン12への塵埃の付着を抑制できる。このように、前記したコーティング剤は、貫流ファン12の帯電防止剤としても機能する。
 図2と同様に、室内機100は、前記した貫流ファン12の他に、露受皿18と、フィルタ5a,5bと、フロントパネル1と、縦風向板22(左右風向板)と、横風向板4(上下風向板)と、ファン清掃機構部37等を備えている。なお、図7では、ファン清掃機構部37による貫流ファン12の清掃が行われていない状態を図示している。
 本実施形態では、ファン清掃機構部37を用いて貫流ファン12を清掃した後、熱交換器10を水で洗い流すようにしている。
 図7に示すファン清掃機構部37は、貫流ファン12を清掃するものであり、熱交換器10aと貫流ファン12との間に配置されている。図7に示すファン清掃機構部37は、図6の図面を反時計回りに90度回転した場合である。より詳しく説明すると、縦断面視で<字状を呈する熱交換器10aの凹部rに、ファン清掃機構部37が配置されている。図7に示す例では、ファン清掃機構部37の下方に、熱交換器10aの下部が存在するとともに、露受皿18が存在している。
 図8は、本実施形態に係る空気調和機の制御部が実行する制御処理を示すフローチャートである。ここでは、図8の「START」時には空調運転が行われておらず、また、ブラシ37bの先端が熱交換器10aに臨んだ状態(図7に示す状態)であるものとする。
 図8のステップS101において、制御部(図示せず)は、貫流ファン12を逆回転(図7において反時計回りに)し、所定回転数に達した場合に、ファン清掃機構部37のブラシ37bを回動し、貫流ファン12にブラシ37bが翼13間に挿入されるように、ファン清掃用モータが駆動される(図6のブラシ37bの破線部参照)。
 図8のステップS102において制御部は、ファン清掃機構部37によって、貫流ファン12を清掃する。なお、貫流ファン12の清掃を開始するトリガとして、例えば、前回清掃時からの空調運転の積算時間が所定時間に達するという条件が挙げられるが特定のものに限定されない。貫流ファン12の清掃中の状態を、図9を参照して説明する。
 図9は、実施形態に係る室内機100において、貫流ファン12の清掃中の状態を示す説明図である。なお、図9では、熱交換器10(熱交換器10a,10b)、貫流ファン12、及び露受皿18を図示し、他の部材については図示を省略している。
 制御部は、通常の空調運転時とは逆向きに貫流ファン12を回転(逆回転)させ、貫流ファン12が設定回転速度Rcに達したら、ファン清掃機構部37のブラシ37bを予め設定された角度(例えば、図6でブラシ基準線BLから角度β)で、貫流ファン12に接触させる。
 なお、図9の例では、一点鎖線Lで示すように、ファン清掃機構部37が貫流ファン12に接触した状態での接触位置Kの下方に、熱交換器10aが存在するとともに、露受皿18も存在している。
 前記したように、貫流ファン12は逆回転しているため、ファンブレード(翼13a、弦長の短い小翼38)の移動に伴ってブラシ37bの先端がたわみ、ファンブレードの背面をなでるようにブラシ37bが押し付けられる。そして、ファンブレード16aの先端付近(径方向の端部)に溜まった塵埃が、ブラシ37bによって除去される。
 本実施形態では、貫流ファン12を逆回転させて、貫流ファン12が設定回転速度Rcに達したら、ファン清掃機構部37のブラシ37bを予め設定された角度で、ファンブレードにファン清掃機構部37のブラシ37bを接触させる。これによって、ファンブレードの背面の先端付近にブラシ37bが接触し、ファンブレードの凸面・凹面の先端付近に溜まった塵埃が除去される。その結果、貫流ファン12に溜まった塵埃の大部分を除去できる。
 また、貫流ファン12を逆回転させることによって、室内機100(図9参照)の内部で、正回転時とは逆向きの緩やかな空気の流れが生じる。したがって、貫流ファン12から除去された塵埃jが吹出口3(図7参照)には向かわず、図9に示すように、熱交換器10aと貫流ファン12との間の隙間を介して、露受皿18に導かれる。
 より詳しく説明すると、ブラシ37bによって貫流ファン12から除去された塵埃jが、風圧で熱交換器10aに軽く押し付けられる。さらに、前記した塵埃jは、熱交換器10aの傾斜面(フィンfの縁)に沿って、露受皿18に落下する(図9の矢印を参照)。したがって、貫流ファン12と露受皿18との間の微少な隙間を介して、横風向板4(上下風向板)(図7参照)の裏面に塵埃jが付着することは、ほとんどない。これによって、次回の空調運転中に塵埃jが室内に吹き出されることを防止できる。
 なお、貫流ファン12から除去された塵埃jの一部が、露受皿18に落下せずに、熱交換器10aに付着する可能性もある。このように熱交換器10aに付着した塵埃jは、後記するステップS104の処理で洗い流される。
 また、貫流ファン12の清掃中、制御部は、貫流ファン12を中・高速域の回転速度で駆動してもよいし、また、貫流ファン12を低速域の回転速度で駆動してもよい。
 貫流ファン12の中・高速域の回転速度の範囲は、例えば300min-1(300rpm)以上かつ1700min-1(1700rpm)未満である。このように中・高速域で貫流ファン12を回転させることによって、熱交換器10aの方に塵埃jが向かいやすくなるため、前記したように、横風向板4(上下風向板)の裏面に塵埃jが付着しにくくなる。したがって、次回の空調運転中に塵埃jが室内に吹き出されることを防止できる。
 また、貫流ファン12の低速域の回転速度の範囲は、例えば、100min-1(100rpm)以上かつ300min-1(300rpm)未満である。このように低速域で貫流ファン12を回転させることによって、貫流ファン12の清掃を低騒音で行うことができる。
 図8のステップS102の処理が終わった後、ステップS103において制御部は、ファン清掃機構部37のブラシ37bを回動させる。すなわち、制御部は、ブラシ37bの先端が貫流ファン12に臨んだ状態(図9参照)から、軸部37aを中心にブラシ37bを回動させ、ブラシ37bの先端が熱交換器10aに臨むようにする(図10参照)。これによって、その後の空調運転中、ファン清掃機構部37が空気の流れの妨げになることを防止できる。
 次に、ステップS104において制御部は、熱交換器10の凍結・解凍を順次に行う。まず、制御部は、熱交換器10を蒸発器として機能させ、室内機100に取り込まれた空気に含まれる水分を熱交換器10に着霜させて凍結させる。なお、熱交換器10を凍結させる処理は、熱交換器10に「凝縮水を付着させる」という事項に含まれる。
 このようにして熱交換器10を凍結させた後、制御部は、熱交換器10を解凍する。例えば、制御部は、各機器の停止状態を維持することで、熱交換器10を室温で自然解凍させる。なお、制御部が送風運転を行うことによって、熱交換器10に付着した霜や氷を溶かすようにしてもよい。熱交換器10の解凍中の状態を、図10を参照して説明する。
 図10は、実施形態に係る室内機100において、熱交換器10の解凍中の状態を示す説明図である。熱交換器10が解凍されることで、熱交換器10に付着した霜や氷が溶け、熱交換フィン8を伝って露受皿18に多量の水wが流れ落ちる。これによって、空調運転中に熱交換器10に付着した塵埃jを洗い流すことができる。
 また、ブラシ37bによる貫流ファン12の清掃に伴って、熱交換器10aに付着した塵埃jも一緒に洗い流され、露受皿18に流れ落ちる(図10の矢印を参照)。このようにして露受皿18に流れ落ちた水wは、貫流ファン12の清掃中に露受皿18に直接的に落下した塵埃j(図9参照)とともに、ドレンホース(図示せず)を介して外部に排出される。前記したように、解凍中に熱交換器10から多量の水が流れ落ちる、ドレンホース等(図示せず)が塵埃jで詰まるおそれはほとんどない。
 なお、図8では省略しているが、熱交換器10の凍結・解凍(ステップS104)を行った後、制御部が送風運転を行うことで、室内機100の内部を乾燥させてもよい。これによって、熱交換器10等に菌やカビが繁殖することを抑制できる。
 図11は、変形例に係る空気調和機の室内機100の縦断面図である。図11に示す変形例では、縦断面視で凹状を呈する溝部材Mが、熱交換器10aの下方に設置されている。また、溝部材Mの底面から上側に延びるリブ28が、溝部材Mに設置されている。なお、その他の点については図7と同様である。
 図11に示す溝部材Mにおいて、リブ28の前側の部分は、熱交換器10aの凝縮水を受ける露受部18Aとして機能する。また、溝部材Mにおいて、リブ28の後側の部分は、熱交換器10aや貫流ファン12から落下した塵埃を受ける塵埃受け部27として機能する。この塵埃受け部27は、熱交換器10aの下方に配置されている。
 さらに、ファン清掃機構部37の下方には、熱交換器10(熱交換器10aの下部)が存在しているとともに、塵埃受け部27も存在している。より詳しく説明すると、図示は省略するが、ファン清掃機構部37が貫流ファン12に接触した状態での接触位置の下方に、熱交換器10が存在しているとともに、塵埃受け部27も存在している。このような構成であっても、前記した実施形態と同様の効果が奏される。なお、熱交換器10の解凍時には、露受部18Aに水が流れ落ちるとともに、塵埃受け部27にも水が流れ落ちる。したがって、塵埃受け部27に溜まった塵埃の排出に支障が生じるおそれはない。また、図11に示す例では、リブ28の上端が熱交換器10aに接触していないが、これに限らない。すなわち、リブ28の上端が熱交換器10aに接触していてもよい。
 1  フロントパネル
 2  上面グリル
 3  吹出口
 4  横風向板(上下風向板)
 4j  軸
 5  プレフィルタ
 6  フィルタフレーム
 7  フィルタ清掃機構部
 8  熱交換フィン
 9  冷媒管
 10  熱交換器
 11  仕切板
 12  貫流ファン
 13  翼
 22  縦風向板(左右風向板)
 27  塵埃受け部
 28  リブ
 29  ゴミ
 30  ゴミの流線
 31  流体の流線
 32  翼面に付着したゴミ
 33  翼外周側
 34  翼内周側
 35  翼面
 35a  翼負圧面
 35b  翼圧力面
 37  ファン清掃機構部
 37a 軸部
 37b ブラシ
 38  弦長の短い小翼
 39  弦長の短い小翼の翼面
 100  室内機
 BL  ブラシ基準線
 C  空気調和機
 Do  ファン外径
 Lb  翼間挿入長さ
 Ls  弦長の短い小翼の径方向長さ
 s1  第1吸込口
 s2  第2吸込口

Claims (5)

  1.  貫流ファンと、
     前記貫流ファンをブラシで清掃するファン清掃機構部と、備え、
     前記貫流ファンの翼間に、弦長の短い小翼が設けられている空気調和機。
  2.  請求項1に記載の空気調和機において、
     前記ファン清掃機構部の前記ブラシの翼間挿入長さをLb、
     前記貫流ファンのファン外径をDoとすると、
     Lb/Do>0.005 の関係を有することを特徴とする空気調和機。
  3.  請求項1に記載の空気調和機において、
     前記ファン清掃機構部の前記ブラシの翼間挿入長さをLb、
     前記弦長の短い小翼の径方向長さをLsとすると、
     Lb>Ls の関係を有することを特徴とする空気調和機。
  4.  請求項1から請求項3のいずれか1項に記載の空気調和機において、
     熱交換器と、
     前記熱交換器の下方に配置される露受皿と、を備え、
     前記ファン清掃機構部は、前記熱交換器と前記貫流ファンとの間に配置され、
     前記ファン清掃機構部の下方には、前記熱交換器及び前記露受皿のうち少なくとも一方が存在している空気調和機。
  5.  請求項1から請求項3のいずれか1項に記載の空気調和機において、
     熱交換器と、
     前記熱交換器の下方に配置される塵埃受け部と、を備え、
     前記ファン清掃機構部は、前記熱交換器と前記貫流ファンとの間に配置され、
     前記ファン清掃機構部の下方には、前記熱交換器及び前記塵埃受け部のうち少なくとも一方が存在している空気調和機。
PCT/JP2018/020972 2018-05-31 2018-05-31 空気調和機 WO2019229934A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/020972 WO2019229934A1 (ja) 2018-05-31 2018-05-31 空気調和機
JP2018552089A JP6531229B1 (ja) 2018-05-31 2018-05-31 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020972 WO2019229934A1 (ja) 2018-05-31 2018-05-31 空気調和機

Publications (1)

Publication Number Publication Date
WO2019229934A1 true WO2019229934A1 (ja) 2019-12-05

Family

ID=66821568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020972 WO2019229934A1 (ja) 2018-05-31 2018-05-31 空気調和機

Country Status (2)

Country Link
JP (1) JP6531229B1 (ja)
WO (1) WO2019229934A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111921840A (zh) * 2020-07-07 2020-11-13 湖南康易达绿茵科技有限公司 一种制药用震荡筛选设备
CN112432353A (zh) * 2020-11-13 2021-03-02 武汉兴力塑胶有限公司 一种环形空调风向调节扫风叶片

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112303711B (zh) * 2019-07-30 2022-02-25 广东美的制冷设备有限公司 壁挂式空调室内机
CN113108366B (zh) * 2021-05-12 2022-08-02 珠海格力电器股份有限公司 空调室内机及空调室内机的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090590U (ja) * 1983-11-29 1985-06-21 三菱重工業株式会社 貫流送風機
JPH0539800A (ja) * 1991-08-05 1993-02-19 Seidensha:Kk 送風機の清掃方法
JPH05231728A (ja) * 1992-02-24 1993-09-07 Toshiba Corp 空気調和機
JP2008002767A (ja) * 2006-06-23 2008-01-10 Toshiba Kyaria Kk 空気調和機の室内機
JP2008045858A (ja) * 2006-08-21 2008-02-28 Kowa Co Ltd 空気調和機の清掃体及び空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090590U (ja) * 1983-11-29 1985-06-21 三菱重工業株式会社 貫流送風機
JPH0539800A (ja) * 1991-08-05 1993-02-19 Seidensha:Kk 送風機の清掃方法
JPH05231728A (ja) * 1992-02-24 1993-09-07 Toshiba Corp 空気調和機
JP2008002767A (ja) * 2006-06-23 2008-01-10 Toshiba Kyaria Kk 空気調和機の室内機
JP2008045858A (ja) * 2006-08-21 2008-02-28 Kowa Co Ltd 空気調和機の清掃体及び空気調和機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111921840A (zh) * 2020-07-07 2020-11-13 湖南康易达绿茵科技有限公司 一种制药用震荡筛选设备
CN112432353A (zh) * 2020-11-13 2021-03-02 武汉兴力塑胶有限公司 一种环形空调风向调节扫风叶片

Also Published As

Publication number Publication date
JP6531229B1 (ja) 2019-06-12
JPWO2019229934A1 (ja) 2020-06-11

Similar Documents

Publication Publication Date Title
WO2019229934A1 (ja) 空気調和機
JP6387200B1 (ja) 空気調和機
TWI655399B (zh) 空調機
TWI706089B (zh) 空調機
JP6354004B1 (ja) 空気調和機
JP6563156B1 (ja) 空気調和機
JP5031729B2 (ja) 空気調和機の室内機
JP2019143961A (ja) 空気調和機
JP4995855B2 (ja) 空気調和機
JP7402754B2 (ja) 空気調和機
JP2008116143A (ja) 空気調和機
WO2019220489A1 (ja) 空気調和機
TWI706088B (zh) 空調機
JP4709039B2 (ja) 空気調和機の室内機
JP4623098B2 (ja) 空気調和装置の室内機
JP6896003B2 (ja) 空気調和機
JP2019200041A (ja) 空気調和機
JP2008157507A (ja) 空気調和機の室内機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552089

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920670

Country of ref document: EP

Kind code of ref document: A1