WO2019229885A1 - 永久磁石式同期モータおよび換気送風機 - Google Patents

永久磁石式同期モータおよび換気送風機 Download PDF

Info

Publication number
WO2019229885A1
WO2019229885A1 PCT/JP2018/020809 JP2018020809W WO2019229885A1 WO 2019229885 A1 WO2019229885 A1 WO 2019229885A1 JP 2018020809 W JP2018020809 W JP 2018020809W WO 2019229885 A1 WO2019229885 A1 WO 2019229885A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
torque
current value
current
motor
Prior art date
Application number
PCT/JP2018/020809
Other languages
English (en)
French (fr)
Inventor
和彦 堀田
亮太 黒澤
卓也 佐伯
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2018425573A priority Critical patent/AU2018425573B2/en
Priority to JP2020522462A priority patent/JP6929460B2/ja
Priority to EP18920635.2A priority patent/EP3806320A4/en
Priority to CN201880093135.3A priority patent/CN112204875A/zh
Priority to PCT/JP2018/020809 priority patent/WO2019229885A1/ja
Priority to US17/054,203 priority patent/US11271505B2/en
Priority to KR1020207033300A priority patent/KR20210003833A/ko
Priority to TW107131721A priority patent/TWI705654B/zh
Publication of WO2019229885A1 publication Critical patent/WO2019229885A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/27Devices for sensing current, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/26Devices for sensing voltage, or actuated thereby, e.g. overvoltage protection devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/09Motor speed determination based on the current and/or voltage without using a tachogenerator or a physical encoder
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a permanent magnet type synchronous motor and a ventilation fan provided with the same.
  • Ventilation fans or blowers often use induction motors that are directly connected to an AC power source.
  • a permanent magnet synchronous motor having a permanent magnet in a rotor has been used for a wide range of variable speed control, power consumption saving, or low noise driving.
  • Width Modulation A drive system driven by an inverter is adopted.
  • a permanent magnet type synchronous motor employing this driving method is referred to as a PWM inverter driven permanent magnet type synchronous motor.
  • a PWM IC-driven permanent magnet synchronous motor is provided with a Hall IC (Integrated Circuit) that is simple and inexpensive as a position sensor that detects the rotational position of the rotor.
  • the Hall IC detects the magnetic pole position of the rotor of the permanent magnet type synchronous motor, and the PWM inverter applies an AC voltage to the stator winding of the permanent magnet type synchronous motor based on the detected magnetic pole position information.
  • the rotor is driven.
  • Patent Document 1 adopting the sensorless method, since all three-phase motor current values must be detected, there is a problem that the current detection resistor and the circuit portion attached thereto are complicated. there were.
  • the present invention has been made in view of the above, and an object thereof is to obtain a permanent magnet type synchronous motor capable of detecting a motor current value with a simple hardware configuration.
  • the present invention includes an inverter main circuit that converts DC power into three-phase AC power by switching a plurality of switching elements, and a stator and a rotor.
  • the present invention provides a magnetic pole position detection unit that obtains an estimated value from the excitation current value, torque current value, and applied voltage information and outputs the estimated value to the current detection unit, and the torque current value approaches the torque current command value.
  • a voltage calculator that calculates the applied voltage information using the excitation current value and torque current value and the angular velocity obtained from the estimated value, and an inverter controller that controls the inverter main circuit based on the applied voltage information and the estimated value And.
  • the permanent magnet type synchronous motor according to the present invention has an effect that the motor current value can be detected with a simple hardware configuration.
  • 1 is a block diagram showing a configuration of a microcomputer according to first to third embodiments.
  • FIG. 1 is a block diagram showing a configuration of a permanent magnet type synchronous motor 100 according to a first embodiment of the present invention.
  • the permanent magnet type synchronous motor 100 is a PWM inverter driven permanent magnet type synchronous motor.
  • the permanent magnet type synchronous motor 100 includes a rectifying and smoothing circuit 2 connected to the AC power source 1, an inverter main circuit 3 driven by PWM, a permanent magnet type motor main body 20, and a motor torque control unit 51.
  • the motor body 20 includes a stator 21 and a permanent magnet type rotor (not shown).
  • the rectifying / smoothing circuit 2 includes a rectifying circuit 2d and a smoothing capacitor 2c, and supplies DC power obtained by converting AC power supplied from the AC power supply 1 to the inverter main circuit 3.
  • the inverter main circuit 3 includes transistors 31 to 33 that are upper arm switching elements and transistors 34 to 36 that are lower arm switching elements.
  • the DC power supplied from the rectifying / smoothing circuit 2 is converted into three-phase AC power having a variable voltage and a variable frequency by switching the transistors 31 to 36 in the inverter main circuit 3.
  • the motor main body 20 is driven by supplying three-phase AC power output from the inverter main circuit 3 to the motor main body 20. That is, a three-phase alternating current is supplied to the stator 21 to control the rotation of the rotor.
  • bipolar transistors are used as the transistors 31 to 36.
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • the motor torque control unit 51 detects the DC bus voltage Vdc input to the inverter main circuit 3, and detects the motor current value Iu and the motor current value Iv to detect the excitation current value Id and the torque current value Iq. It converted to a current detection unit 5, a voltage calculating portion 8 calculates and outputs the d-axis voltage command value Vd * and q-axis voltage command value Vq *, the magnetic pole position to determine the estimated value theta ⁇ of the magnetic pole position of the rotor a detection unit 9, a speed calculating section 10 for calculating the angular velocity ⁇ r from the estimated value ⁇ of the magnetic pole position detection unit 9 is determined, the command value of three-phase voltages Vu *, Vv *, and calculates and outputs Vw * three Phase voltage calculation unit 11, PWM modulation circuit 12 that generates and outputs a PWM modulation signal based on command values Vu * , Vv * , Vw * , and a drive circuit that drives transistors 31 to 36 based on the
  • the current detector 5 detects motor current values Iu and Iv flowing in the windings corresponding to the two phases of the stator 21. Specifically, the voltage value generated by the current flowing through the shunt resistors 341 and 351 which are current detection resistors connected to the emitter sides of the transistors 34 and 35 of the lower arm of the inverter main circuit 3 is detected, and this is detected. The motor current value Iu and the motor current value Iv are detected by converting into current values. The current detection unit 5 converts the detected motor current value Iu and motor current value Iv into an excitation current value Id and a torque current value Iq as follows.
  • the motor current value detected by the current detection unit 5 may be a motor current value of two phases out of the three-phase motor current values, and is therefore the motor current value Iu, Iw or the motor current value Iv, Iw. The following discussion is valid as well.
  • the d-axis current value is the excitation current value Id when the axial direction of the magnet in the rotor coordinates of the rotor at the magnetic pole position ⁇ is the d-axis and the axial direction that is 90 ° away from the d-axis is the q-axis.
  • the q-axis current value is the torque current value Iq.
  • the torque current value Iq is a current value proportional to the torque generated in the motor.
  • motor current values Iu, Iv, and Iw have the following relationship (2).
  • the excitation current value Id and the torque current value Iq can be expressed only by the motor current value Iu and the motor current value Iv that are two-phase current values. Therefore, when the estimated value theta ⁇ pole position magnetic pole position detection unit 9 is determined in the magnetic pole position theta equation (4), a current detector 5, the motor current values Iu and the motor current value Iv of the exciting current value Id And the torque current value Iq.
  • control is performed assuming a voltage equation on the dq axes fixed to the rotor coordinates.
  • the value Id and the torque current value Iq can be calculated using only the motor current values Iu and Iv. Therefore, it is not necessary to detect all three-phase motor current values, and information necessary for control can be obtained from only any two-phase motor current values. Further, since the excitation current value Id and the torque current value Iq are calculated from the motor current values Iu and Iv flowing in the windings of the respective phases of the stator 21 without using the direct current flowing in the inverter main circuit 3, etc., current detection The unit 5 can accurately detect the exciting current value Id and the torque current value Iq.
  • the voltage calculation unit 8 includes a d-axis voltage command value Vd * and a q-axis such that the torque current value Iq output from the current detection unit 5 approaches the torque current command value Iq * given from the outside of the permanent magnet synchronous motor 100.
  • the voltage command value Vq * is obtained by calculation. Specifically, the voltage calculation unit 8 calculates d from the DC bus voltage Vdc, the excitation current value Id and the torque current value Iq, the angular velocity ⁇ r, and the difference value between the torque current command value Iq * and the torque current value Iq.
  • the shaft voltage command value Vd * and the q-axis voltage command value Vq * are calculated and output as applied voltage information.
  • the magnetic pole position detection unit 9 can use the excitation current value Id and the torque current value Iq obtained by the current detection unit 5 as motor current information necessary for sensorless control without using the rotor magnetic pole position detection sensor. That is, the magnetic pole position detection unit 9 includes the excitation current value Id and the torque current value Iq, the d-axis voltage command value Vd * and the q-axis voltage command value Vq * that are applied voltage information obtained by the voltage calculation unit 8, and the motor using a constant, it is possible to obtain the ⁇ estimate ⁇ of the magnetic pole position of the rotor.
  • the estimated values ⁇ 1 to 4 obtained by the magnetic pole position detector 9 are output to the current detector 5 and are used as the magnetic pole positions ⁇ in Equation (4) to obtain the excitation current value Id and the torque current value Iq as described above.
  • the three-phase voltage calculation unit 11 includes the d-axis voltage command value Vd * and the q-axis voltage command value Vq * , which are applied voltage information obtained by the voltage calculation unit 8, and the estimated values ⁇ 1 to 4 obtained by the magnetic pole position detection unit 9.
  • the three-phase voltage command values Vu * , Vv * , and Vw * are calculated and output.
  • the three-phase voltage calculation unit 11 and the PWM modulation circuit 12 constitute an inverter control unit that controls the inverter main circuit 3. By controlling the inverter main circuit 3, command values Vu * , Vv * , Vw * are supplied to the motor body 20 . A three-phase voltage based on the above is applied.
  • the detection is performed only by detecting the motor current value for two phases in the current detection unit 5 that detects the motor current value necessary for realizing the sensorless control. . Therefore, it is possible to reduce the number of components such as the current detection resistor and the accompanying amplifier. That is, the motor current value can be detected with a simple hardware configuration, and the cost can be reduced.
  • the permanent magnet type synchronous motor 100 it is possible to detect the instantaneous value of the motor torque by performing the coordinate conversion from the motor current values Iu and Iv to obtain the torque current value Iq. It becomes. Therefore, a process of smoothing and averaging the pulsed DC bus current flowing in the inverter circuit with a filter in order to obtain the motor torque becomes unnecessary. That is, since the instantaneous value of the motor torque can be detected, it is possible to avoid the occurrence of a calculation error at the stage of averaging processing and the like, so that the accuracy of detecting the motor torque can be greatly improved.
  • FIG. 2 is a diagram illustrating a configuration of the ventilation blower 200 according to the first embodiment.
  • the ventilation blower 200 includes an AC power supply 1, a permanent magnet type synchronous motor 100, blades 60 connected to a rotor, and a casing 61.
  • the motor current can be controlled by directly detecting the motor current flowing in the motor winding to obtain the torque current value Iq which is a current component proportional to the torque. Therefore, in the ventilation blower 200, the effect that the control of the air volume derived from the relationship between the rotational speed of the rotor and the torque can be accurately performed without time delay is obtained.
  • FIG. FIG. 3 is a block diagram showing a configuration of the permanent magnet type synchronous motor 100 according to the second embodiment of the present invention.
  • the motor torque control unit 51 in FIG. 1 is replaced with a motor torque control unit 52.
  • a torque current command generation unit 15 is added to the motor torque control unit 51.
  • a motor torque command T * is input to the motor torque control unit 52.
  • the torque current command generator 15 outputs a value obtained by dividing the torque command T * by the torque coefficient kt as the torque current command value Iq * .
  • the permanent magnet synchronous motor 100 is controlled using the torque current command value Iq * output from the torque current command generator 15 as in the first embodiment.
  • the permanent magnet synchronous motor 100 according to the second embodiment can be controlled by the torque command T * .
  • FIG. FIG. 4 is a block diagram showing a configuration of the permanent magnet type synchronous motor 100 according to the third embodiment of the present invention.
  • the motor torque control unit 51 in FIG. 1 is replaced with a motor torque control unit 53.
  • a torque current command generation unit 16 is added to the motor torque control unit 51.
  • the motor torque control unit 53 receives the command Q * of the operating air volume that is the target air volume. Is done.
  • the torque current command generation unit 16 holds in advance the relationship between the torque current command value Iq * at the given operating air volume and the motor rotation speed.
  • the rotational speed of the motor is proportional to the angular velocity ⁇ r. Therefore, the torque current command generation unit 16 can calculate the torque current command value Iq * from the operation air volume command Q * and the angular velocity ⁇ r obtained by the speed calculation unit 10.
  • the permanent magnet synchronous motor 100 is controlled using the torque current command value Iq * output from the torque current command generator 16 as in the first embodiment.
  • the permanent magnet synchronous motor 100 according to the third embodiment can be controlled by the command Q * of the operating air volume. And since the air volume is controlled to be constant using the characteristics of the torque and the rotational speed, the effect of improving the air volume accuracy can be obtained.
  • the permanent magnet synchronous motor 100 includes the rectifying / smoothing circuit 2, the rectifying circuit 2d or the entire rectifying / smoothing circuit 2 may be omitted.
  • the permanent magnet synchronous motor 100 may be configured to be directly supplied with DC power from a DC power source.
  • the ventilation fan 200 of FIG. 2 may be configured using the permanent magnet type synchronous motor 100 according to the second embodiment.
  • FIG. 5 is a block diagram showing a configuration of the microcomputer 40 according to the first to third embodiments.
  • the microcomputer 40 includes a CPU (Central Processing Unit) 41 that performs calculation and control, a RAM (Random Access Memory) 42 that the CPU 41 uses as a work area, a ROM (Read Only Memory) 43 that stores programs and data, It includes an I / O (Input / Output) 44 that is hardware for exchanging signals with the outside, and a peripheral device 45 including an oscillator that generates a clock.
  • Functions other than the function of detecting the motor current of the current detection unit 5 and the function of the voltage detection unit 6 from the motor torque control units 51 to 53 according to the first to third embodiments can be realized by the microcomputer 40.
  • Control executed by the microcomputer 40 is realized by the CPU 41 executing a program that is software stored in the ROM 43.
  • the ROM 43 may be a non-volatile memory such as a rewritable flash memory.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Synchronous Machinery (AREA)

Abstract

永久磁石式同期モータ(100)は、複数のトランジスタ(31~36)がスイッチングされることにより直流電力を三相の交流電力に変換するインバータ主回路(3)と、固定子(21)および回転子からなり、三相の交流電力により駆動されるモータ本体(20)と、固定子(21)を流れる二相のモータ電流値および回転子の磁極位置の推定値から励磁電流値およびトルク電流値を求める電流検出部(5)と、励磁電流値およびトルク電流値と、印加電圧情報とから推定値を求めて電流検出部(5)に出力する磁極位置検出部(9)と、トルク電流値がトルク電流指令値に近づくように、励磁電流値およびトルク電流値と、推定値から求めた角速度とを用いて印加電圧情報を演算して求める電圧演算部(8)と、印加電圧情報および推定値に基づいてインバータ主回路(3)を制御するインバータ制御部と、を備える。

Description

永久磁石式同期モータおよび換気送風機
 本発明は、永久磁石式同期モータおよびこれを備えた換気送風機に関する。
 換気扇または送風機においては、交流電源に直接接続される誘導モータが使用される場合が多い。近年、広範囲の可変速制御、電力消費量の節約、または低騒音駆動を目的として、回転子に永久磁石を有する永久磁石式同期モータが使用されてきており、永久磁石式同期モータをPWM(Pulse Width Modulation)インバータによって駆動する駆動方式が採用されている。この駆動方式を採用した永久磁石式同期モータを、PWMインバータ駆動永久磁石式同期モータと称している。
 PWMインバータ駆動永久磁石式同期モータの内部には、一般に、回転子の回転位置を検出する位置センサとして構成が簡単で安価なホールIC(Integrated Circuit)が配置されている。このホールICによって、永久磁石式同期モータの回転子の磁極位置を検出し、検出された磁極位置の情報に基づいてPWMインバータが永久磁石式同期モータの固定子の巻線に交流電圧を印加することにより回転子を駆動している。
 しかしながら近年では、ホールICを用いた位置検知回路を用いずに、モータの回転起電力または電流の情報から回転子の位置を推定するセンサレス方式が増えてきている。センサレス方式を用いることにより、ホールICのコストを節約できるとともに、ホールICを回転子に近い位置に配置しなくてはならないという構造上の制約から開放されることによりモータおよび制御回路の設計自由度があがるという利点がある。センサレス方式を採用した換気装置として、特許文献1に開示されたものが知られている。
特許第6225326号公報
 しかしながら、センサレス方式を採用した特許文献1の技術によれば、三相のモータ電流値をすべて検出しなくてはならないので、電流検出用の抵抗およびそれに付帯する回路部分が複雑になるという問題があった。
 本発明は、上記に鑑みてなされたものであって、簡易なハードウェア構成でモータ電流値の検出が可能な永久磁石式同期モータを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、複数のスイッチング素子がスイッチングされることにより直流電力を三相の交流電力に変換するインバータ主回路と、固定子および回転子からなり、三相の交流電力により駆動されるモータ本体と、固定子を流れる二相のモータ電流値および回転子の磁極位置の推定値から励磁電流値およびトルク電流値を求める電流検出部と、を備えることを特徴とする。さらに、本発明は、励磁電流値およびトルク電流値と、印加電圧情報とから推定値を求めて電流検出部に出力する磁極位置検出部と、トルク電流値がトルク電流指令値に近づくように、励磁電流値およびトルク電流値と、推定値から求めた角速度とを用いて印加電圧情報を演算して求める電圧演算部と、印加電圧情報および推定値に基づいてインバータ主回路を制御するインバータ制御部と、を備えることを特徴とする。
 本発明にかかる永久磁石式同期モータは、簡易なハードウェア構成でモータ電流値の検出ができるという効果を奏する。
本発明の実施の形態1にかかる永久磁石式同期モータの構成を示すブロック図 実施の形態1にかかる換気送風機の構成を示す図 本発明の実施の形態2にかかる永久磁石式同期モータの構成を示すブロック図 本発明の実施の形態3にかかる永久磁石式同期モータの構成を示すブロック図 実施の形態1から3にかかるマイクロコンピュータの構成を示すブロック図
 以下に、本発明の実施の形態にかかる永久磁石式同期モータおよび換気送風機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる永久磁石式同期モータ100の構成を示すブロック図である。永久磁石式同期モータ100は、PWMインバータ駆動永久磁石式同期モータである。
 永久磁石式同期モータ100は、交流電源1に接続された整流平滑回路2と、PWM駆動されるインバータ主回路3と、永久磁石式のモータ本体20と、モータトルク制御部51と、を備える。モータ本体20は、固定子21と、図示していない永久磁石式の回転子とから構成される。
 整流平滑回路2は、整流回路2dおよび平滑コンデンサ2cにより構成され、交流電源1から供給された交流電力を変換した直流電力をインバータ主回路3に供給する。インバータ主回路3は、上アームのスイッチング素子であるトランジスタ31~33および下アームのスイッチング素子であるトランジスタ34~36により構成される。整流平滑回路2から供給された直流電力は、インバータ主回路3においてトランジスタ31~36がスイッチングされることにより可変電圧かつ可変周波数の三相の交流電力に変換される。インバータ主回路3が出力する三相の交流電力がモータ本体20に供給されることにより、モータ本体20は駆動される。すなわち、三相の交流電流が固定子21に供給されて、回転子の回転が制御される。なお、図1では、トランジスタ31~36としてバイポーラトランジスタを用いて示してあるが、スイッチング素子であれば素子は限定されないので、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いてもかまわない。
 モータトルク制御部51は、インバータ主回路3に入力される直流母線電圧Vdcを検知する電圧検知部6と、モータ電流値Iuおよびモータ電流値Ivを検出して励磁電流値Idおよびトルク電流値Iqに変換する電流検出部5と、d軸電圧指令値Vdおよびq軸電圧指令値Vqを演算して出力する電圧演算部8と、回転子の磁極位置の推定値θを求める磁極位置検出部9と、磁極位置検出部9が求めた推定値θから角速度ωrを計算する速度演算部10と、三相電圧の指令値Vu,Vv,Vwを演算して出力する三相電圧演算部11と、指令値Vu,Vv,Vwに基づいたPWM変調信号を生成して出力するPWM変調回路12と、PWM変調信号に基づいてトランジスタ31~36を駆動する駆動回路13とを備える。
 電流検出部5は、固定子21の二相に対応する巻線に流れるモータ電流値Iu,Ivを検出する。具体的には、インバータ主回路3の下アームのトランジスタ34,35それぞれのエミッタ側に接続された電流検出用抵抗であるシャント抵抗341,351を流れる電流によって生ずる電圧値を検出して、これを電流値に変換することによりモータ電流値Iuおよびモータ電流値Ivを検出する。電流検出部5は、検出したモータ電流値Iuおよびモータ電流値Ivを以下のようにして励磁電流値Idおよびトルク電流値Iqに変換する。なお、電流検出部5が検出するモータ電流値は、三相のモータ電流値の内の二相のモータ電流値であればよいので、モータ電流値Iu,Iwまたはモータ電流値Iv,Iwであってもよく、以下の議論は同様に成立する。
 ここで、磁極位置θの回転子の回転子座標における磁石の軸方向をd軸、d軸と90°ずれた軸方向をq軸としたときの、d軸電流値が励磁電流値Idであり、q軸電流値がトルク電流値Iqである。トルク電流値Iqは、モータに発生するトルクに比例する電流値である。磁極位置θおよびモータ電流値Iu,Iv,Iwを用いると、励磁電流値Idおよびトルク電流値Iqは、以下の数式(1)で表現される。
Figure JPOXMLDOC01-appb-M000001
 さらに、モータ電流値Iu,Iv,Iwには、以下の数式(2)の関係がある。
Figure JPOXMLDOC01-appb-M000002
 したがって、数式(1)および数式(2)より、以下の数式(3)、さらに数式(4)の関係が得られる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 すなわち、励磁電流値Idおよびトルク電流値Iqは、磁極位置θを用いれば、二相の電流値であるモータ電流値Iuおよびモータ電流値Ivのみで表現することができる。したがって、磁極位置検出部9が求めた磁極位置の推定値θを数式(4)の磁極位置θに用いれば、電流検出部5は、モータ電流値Iuおよびモータ電流値Ivを励磁電流値Idおよびトルク電流値Iqに変換することができる。
 すなわち、実施の形態1にかかる永久磁石式同期モータ100においては、回転子座標に固定されたd-q軸上での電圧方程式を想定した制御が行われるが、この制御に必要となる励磁電流値Idおよびトルク電流値Iqをモータ電流値Iu,Ivのみを用いて計算することが可能である。したがって、三相のモータ電流値すべてを検出する必要がなく任意の二相のモータ電流値のみから、制御に必要な情報を得ることができる。また、インバータ主回路3に流れる直流電流などを用いずに、固定子21の各相の巻線に流れるモータ電流値Iu,Ivから励磁電流値Idおよびトルク電流値Iqを演算するので、電流検出部5は、励磁電流値Idおよびトルク電流値Iqを精度よく検出することができる。
 電圧演算部8は、電流検出部5が出力するトルク電流値Iqが、永久磁石式同期モータ100の外部から与えられるトルク電流指令値Iqに近づくようなd軸電圧指令値Vdおよびq軸電圧指令値Vqを演算により求める。具体的には、電圧演算部8は、直流母線電圧Vdcと、励磁電流値Idおよびトルク電流値Iqと、角速度ωrと、トルク電流指令値Iqとトルク電流値Iqとの差分値とからd軸電圧指令値Vdおよびq軸電圧指令値Vqを演算して印加電圧情報として出力する。
 磁極位置検出部9は、回転子磁極位置検出センサを用いずに、電流検出部5が求めた励磁電流値Idおよびトルク電流値Iqをセンサレス制御に必要なモータ電流情報とすることができる。すなわち、磁極位置検出部9は、励磁電流値Idおよびトルク電流値Iqと、電圧演算部8が求めた印加電圧情報であるd軸電圧指令値Vdおよびq軸電圧指令値Vqと、モータ定数とを用いて、回転子の磁極位置の推定値θを求めることができる。磁極位置検出部9が求めた推定値θは電流検出部5に出力され、上述したように励磁電流値Idおよびトルク電流値Iqを求めるために数式(4)の磁極位置θとして用いられる。
 三相電圧演算部11は、電圧演算部8が求めた印加電圧情報であるd軸電圧指令値Vdおよびq軸電圧指令値Vqと、磁極位置検出部9が求めた推定値θとから三相電圧の指令値Vu,Vv,Vwを演算して出力する。三相電圧演算部11およびPWM変調回路12は、インバータ主回路3を制御するインバータ制御部を構成し、インバータ主回路3を制御することによりモータ本体20に指令値Vu,Vv,Vwに基づいた三相の電圧を印加させる。
 実施の形態1にかかる永久磁石式同期モータ100によれば、センサレス制御を実現するために必要となるモータ電流値を検出する電流検出部5において、二相分のモータ電流値の検出のみで行う。したがって、電流検出抵抗とそれに付随する増幅器といった部品を削減することができる効果がある。すなわち、簡易なハードウェア構成でモータ電流値の検出が可能になり、コストダウンを図ることができる。
 また、実施の形態1にかかる永久磁石式同期モータ100によれば、モータ電流値Iu,Ivからの座標変換を行ってトルク電流値Iqを得ることによりモータトルクの瞬時値を検知することが可能となる。したがって、モータトルクを求めるためにインバータ回路に流れるパルス状の直流母線電流をフィルタで平滑して平均化するといった処理が不要となる。すなわち、モータトルクの瞬時値を検知することができるので、平均化処理などの段階での演算誤差の発生などを回避できるので、モータトルクの検知精度も大きく改善できることになる。
 図2は、実施の形態1にかかる換気送風機200の構成を示す図である。換気送風機200は、交流電源1と、永久磁石式同期モータ100と、回転子に接続された羽根60と、ケーシング61と、を備える。
 永久磁石式同期モータ100においては、モータの巻線に流れるモータ電流を直接検出してトルクに比例した電流成分であるトルク電流値Iqを求めて、モータトルクを制御することができる。したがって、換気送風機200において、回転子の回転数とトルクとの関係から導き出される風量の制御を時間遅れなく精度よく行うことができるという効果が得られる。
実施の形態2.
 図3は、本発明の実施の形態2にかかる永久磁石式同期モータ100の構成を示すブロック図である。実施の形態2にかかる永久磁石式同期モータ100においては、図1のモータトルク制御部51がモータトルク制御部52に置き換わっている。モータトルク制御部52は、モータトルク制御部51にトルク電流指令生成部15が追加されている。
 モータトルク制御部52には、モータのトルク指令Tが入力される。トルク電流指令生成部15は、トルク指令Tをトルク係数ktで除した値をトルク電流指令値Iqとして出力する。
 トルク電流指令生成部15が出力したトルク電流指令値Iqを用いて実施の形態1と同様に永久磁石式同期モータ100は制御される。これにより、実施の形態2にかかる永久磁石式同期モータ100はトルク指令Tによる制御が可能となる。
実施の形態3.
 図4は、本発明の実施の形態3にかかる永久磁石式同期モータ100の構成を示すブロック図である。実施の形態3にかかる永久磁石式同期モータ100においては、図1のモータトルク制御部51がモータトルク制御部53に置き換わっている。モータトルク制御部53は、モータトルク制御部51にトルク電流指令生成部16が追加されている。
 実施の形態3にかかる永久磁石式同期モータ100を用いて図2の換気送風機200を構成したときに、モータトルク制御部53には、目標とされる風量である運転風量の指令Qが入力される。トルク電流指令生成部16は、与えられた運転風量におけるトルク電流指令値Iqとモータの回転数との関係を予め保持している。そして、モータの回転数は角速度ωrに比例する。したがって、トルク電流指令生成部16は、運転風量の指令Qと速度演算部10が求めた角速度ωrとからトルク電流指令値Iqを計算することができる。
 トルク電流指令生成部16が出力したトルク電流指令値Iqを用いて実施の形態1と同様に永久磁石式同期モータ100は制御される。これにより、実施の形態3にかかる永久磁石式同期モータ100は運転風量の指令Qによる制御が可能となる。そして、トルクと回転数との特性を利用して風量を一定に制御しているので、風量精度を向上させるという効果が得られる。
 なお、実施の形態1から3にかかる永久磁石式同期モータ100は、整流平滑回路2を備えているとしたが、整流回路2dまたは整流平滑回路2全体を省いた構成であってもかまわない。すなわち、永久磁石式同期モータ100に直流電源による直流電力が直接供給される構成であってもかまわない。また、実施の形態2にかかる永久磁石式同期モータ100を用いて図2の換気送風機200を構成してもよいことは言うまでもない。
 図5は、実施の形態1から3にかかるマイクロコンピュータ40の構成を示すブロック図である。マイクロコンピュータ40は、演算および制御を実行するCPU(Central Processing Unit)41と、CPU41がワークエリアに用いるRAM(Random Access Memory)42と、プログラムおよびデータを記憶するROM(Read Only Memory)43と、外部と信号をやりとりするハードウェアであるI/O(Input/Output)44と、クロックを生成する発振子を含む周辺装置45と、を備える。実施の形態1から3にかかるモータトルク制御部51~53から電流検出部5のモータ電流を検出する機能および電圧検知部6の機能を除いた機能は、マイクロコンピュータ40により実現することができる。マイクロコンピュータ40により実行される制御は、ROM43に記憶されるソフトウェアであるプログラムをCPU41が実行することにより実現される。ROM43は、書き換え可能なフラッシュメモリといった不揮発性のメモリであってもよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 交流電源、2 整流平滑回路、2c 平滑コンデンサ、2d 整流回路、3 インバータ主回路、5 電流検出部、6 電圧検知部、8 電圧演算部、9 磁極位置検出部、10 速度演算部、11 三相電圧演算部、12 PWM変調回路、13 駆動回路、15,16 トルク電流指令生成部、20 モータ本体、21 固定子、31~36 トランジスタ、40 マイクロコンピュータ、41 CPU、42 RAM、43 ROM、44 I/O、45 周辺装置、51~53 モータトルク制御部、60 羽根、61 ケーシング、100 永久磁石式同期モータ、200 換気送風機、341,351 シャント抵抗。

Claims (5)

  1.  複数のスイッチング素子がスイッチングされることにより直流電力を三相の交流電力に変換するインバータ主回路と、
     固定子および回転子からなり、前記三相の交流電力により駆動されるモータ本体と、
     前記固定子を流れる二相のモータ電流値および前記回転子の磁極位置の推定値から励磁電流値およびトルク電流値を求める電流検出部と、
     前記励磁電流値および前記トルク電流値と、印加電圧情報とから前記推定値を求めて前記電流検出部に出力する磁極位置検出部と、
     前記トルク電流値がトルク電流指令値に近づくように、前記励磁電流値および前記トルク電流値と、前記推定値から求めた角速度とを用いて前記印加電圧情報を演算して求める電圧演算部と、
     前記印加電圧情報および前記推定値に基づいて前記インバータ主回路を制御するインバータ制御部と、を備える
     ことを特徴とする永久磁石式同期モータ。
  2.  トルク指令をトルク係数で除した値を前記トルク電流指令値として求めるトルク電流指令生成部をさらに備える
     ことを特徴とする請求項1に記載の永久磁石式同期モータ。
  3.  運転風量の指令と前記角速度とから前記トルク電流指令値を求めるトルク電流指令生成部をさらに備える
     ことを特徴とする請求項1に記載の永久磁石式同期モータ。
  4.  交流電源から供給された交流電力を前記直流電力へ変換する整流平滑回路をさらに備える
     ことを特徴とする請求項1から3のいずれか1つに記載の永久磁石式同期モータ。
  5.  請求項1から4のいずれか1つに記載の永久磁石式同期モータを備える
     ことを特徴とする換気送風機。
PCT/JP2018/020809 2018-05-30 2018-05-30 永久磁石式同期モータおよび換気送風機 WO2019229885A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2018425573A AU2018425573B2 (en) 2018-05-30 2018-05-30 Permanent-magnet synchronous motor and ventilation blower
JP2020522462A JP6929460B2 (ja) 2018-05-30 2018-05-30 永久磁石式同期モータおよび換気送風機
EP18920635.2A EP3806320A4 (en) 2018-05-30 2018-05-30 SYNCHRONOUS MOTOR WITH PERMANENT MAGNETS AND VENTILATION BLOWER
CN201880093135.3A CN112204875A (zh) 2018-05-30 2018-05-30 永磁式同步电动机及换气鼓风机
PCT/JP2018/020809 WO2019229885A1 (ja) 2018-05-30 2018-05-30 永久磁石式同期モータおよび換気送風機
US17/054,203 US11271505B2 (en) 2018-05-30 2018-05-30 Permanent-magnet synchronous motor and ventilation blower
KR1020207033300A KR20210003833A (ko) 2018-05-30 2018-05-30 영구자석식 동기 모터 및 환기 송풍기
TW107131721A TWI705654B (zh) 2018-05-30 2018-09-10 永久磁石式同步馬達以及換氣送風機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020809 WO2019229885A1 (ja) 2018-05-30 2018-05-30 永久磁石式同期モータおよび換気送風機

Publications (1)

Publication Number Publication Date
WO2019229885A1 true WO2019229885A1 (ja) 2019-12-05

Family

ID=68696876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020809 WO2019229885A1 (ja) 2018-05-30 2018-05-30 永久磁石式同期モータおよび換気送風機

Country Status (8)

Country Link
US (1) US11271505B2 (ja)
EP (1) EP3806320A4 (ja)
JP (1) JP6929460B2 (ja)
KR (1) KR20210003833A (ja)
CN (1) CN112204875A (ja)
AU (1) AU2018425573B2 (ja)
TW (1) TWI705654B (ja)
WO (1) WO2019229885A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020793A1 (en) * 2020-12-23 2022-06-29 Schneider Toshiba Inverter Europe SAS A variable speed drive for the sensorless pwm control of an ac motor with current noise rejection
JP7473409B2 (ja) 2020-06-29 2024-04-23 ミネベアミツミ株式会社 モータ駆動制御装置およびファンユニット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2029491B1 (en) * 2021-10-22 2023-05-19 Univ Twente Motor system, stepper motor and rotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225326B2 (ja) 1984-12-24 1987-06-02 Katsuji Nagai
JP2006230200A (ja) * 2006-06-05 2006-08-31 Hitachi Ltd 交流電動機の制御装置
JP2010268629A (ja) * 2009-05-15 2010-11-25 Toyota Industries Corp インバータ装置
WO2012144456A1 (ja) * 2011-04-21 2012-10-26 日産自動車株式会社 電動機の制御装置及び電動機の制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463299A (en) * 1989-06-07 1995-10-31 Hitachi, Ltd. Current controller for controlling a current flowing in a load using a PWM inverter and method used thereby
JP4083203B1 (ja) * 2007-03-14 2008-04-30 山洋電気株式会社 同期電動機の制御装置
JP5226276B2 (ja) 2007-11-07 2013-07-03 株式会社東芝 洗濯機のインバータ装置
JP5155344B2 (ja) * 2010-01-15 2013-03-06 本田技研工業株式会社 電動機の磁極位置推定装置
JP5527025B2 (ja) * 2010-06-04 2014-06-18 株式会社明電舎 同期機の位置センサレス制御装置
JP5626592B2 (ja) * 2011-08-08 2014-11-19 アイシン・エィ・ダブリュ株式会社 制御装置
JP5870591B2 (ja) * 2011-09-30 2016-03-01 サンケン電気株式会社 同期電動機の制御装置及び制御方法
CN104885356B (zh) * 2013-01-25 2017-03-08 日产自动车株式会社 感应电动机控制装置以及感应电动机控制方法
JP6225326B2 (ja) 2013-06-28 2017-11-08 パナソニックIpマネジメント株式会社 換気装置
JP6462241B2 (ja) * 2014-06-24 2019-01-30 日本電産サーボ株式会社 ファンモータ駆動装置及びブロア
TWI519056B (zh) 2014-11-18 2016-01-21 Prodrives & Motions Co Ltd Motor control circuit and control method of electric hand tool
KR101691793B1 (ko) 2015-07-10 2017-01-09 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 홈 어플라이언스
CN106533284B (zh) * 2016-12-05 2019-01-22 广东美的制冷设备有限公司 永磁同步电机的控制装置和空调器
CN106533283B (zh) * 2016-12-05 2019-01-22 广东美的制冷设备有限公司 永磁同步电机的控制装置和空调器
CN106712655B (zh) * 2016-12-05 2019-01-22 广东美的制冷设备有限公司 永磁同步电机的控制装置和空调器
CN107634689A (zh) * 2017-09-08 2018-01-26 广东威灵电机制造有限公司 吸尘器、电机及其恒功率控制方法、装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225326B2 (ja) 1984-12-24 1987-06-02 Katsuji Nagai
JP2006230200A (ja) * 2006-06-05 2006-08-31 Hitachi Ltd 交流電動機の制御装置
JP2010268629A (ja) * 2009-05-15 2010-11-25 Toyota Industries Corp インバータ装置
WO2012144456A1 (ja) * 2011-04-21 2012-10-26 日産自動車株式会社 電動機の制御装置及び電動機の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806320A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473409B2 (ja) 2020-06-29 2024-04-23 ミネベアミツミ株式会社 モータ駆動制御装置およびファンユニット
EP4020793A1 (en) * 2020-12-23 2022-06-29 Schneider Toshiba Inverter Europe SAS A variable speed drive for the sensorless pwm control of an ac motor with current noise rejection
US11791759B2 (en) 2020-12-23 2023-10-17 Schneider Toshiba Inverter Europe Sas Towards an industrially implementable PWM-injection scheme

Also Published As

Publication number Publication date
TWI705654B (zh) 2020-09-21
AU2018425573A1 (en) 2020-11-19
CN112204875A (zh) 2021-01-08
JPWO2019229885A1 (ja) 2020-12-10
AU2018425573B2 (en) 2021-12-02
EP3806320A1 (en) 2021-04-14
JP6929460B2 (ja) 2021-09-01
US20210218355A1 (en) 2021-07-15
US11271505B2 (en) 2022-03-08
EP3806320A4 (en) 2021-06-09
TW202005255A (zh) 2020-01-16
KR20210003833A (ko) 2021-01-12

Similar Documents

Publication Publication Date Title
US9444377B2 (en) Motor drive control device
JP6462241B2 (ja) ファンモータ駆動装置及びブロア
JP6929460B2 (ja) 永久磁石式同期モータおよび換気送風機
US9797406B2 (en) Motor device
JP5635032B2 (ja) 同期モータの駆動装置、および、これを用いた送風装置
JP6463966B2 (ja) モータ駆動装置およびモータ駆動用モジュール並びに冷凍機器
JP2009290962A (ja) 永久磁石形同期電動機の制御装置
JP5422435B2 (ja) ブラシレスモータの駆動装置および駆動方法
JP6102516B2 (ja) 永久磁石形同期電動機の制御方法及び制御装置
JP6490540B2 (ja) 回転位置検出装置,空気調和機及び回転位置検出方法
JP5332301B2 (ja) 永久磁石形同期電動機の制御装置
JP2003111480A (ja) 電動機駆動装置
JP5136568B2 (ja) 電動機の制御回路、及びその制御回路を用いた空気調和機
US20230142956A1 (en) Motor controller, motor system and method for controlling motor
JP2010028981A (ja) 同期モータの回転子位置推定方法および同期モータの制御装置
JP5078925B2 (ja) 電動機の駆動装置並びに機器
US20230370010A1 (en) Ventilation blower
JP5333716B2 (ja) 永久磁石形同期電動機の制御装置
JP2022101783A (ja) 制御装置、モータシステム及び同定方法
JP2006033976A (ja) 同期モータの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522462

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018425573

Country of ref document: AU

Date of ref document: 20180530

Kind code of ref document: A

Ref document number: 20207033300

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018920635

Country of ref document: EP

Effective date: 20210111