WO2019229866A1 - 膜洗浄装置及び膜洗浄方法 - Google Patents

膜洗浄装置及び膜洗浄方法 Download PDF

Info

Publication number
WO2019229866A1
WO2019229866A1 PCT/JP2018/020677 JP2018020677W WO2019229866A1 WO 2019229866 A1 WO2019229866 A1 WO 2019229866A1 JP 2018020677 W JP2018020677 W JP 2018020677W WO 2019229866 A1 WO2019229866 A1 WO 2019229866A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ozone
dissolved
concentration
threshold value
Prior art date
Application number
PCT/JP2018/020677
Other languages
English (en)
French (fr)
Inventor
佳史 林
英二 今村
野田 清治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/046,899 priority Critical patent/US20210053014A1/en
Priority to KR1020207033565A priority patent/KR20200137017A/ko
Priority to PCT/JP2018/020677 priority patent/WO2019229866A1/ja
Priority to JP2018546906A priority patent/JP6430091B1/ja
Priority to CN201880093508.7A priority patent/CN112135681B/zh
Priority to SG11202011443TA priority patent/SG11202011443TA/en
Priority to TW108118138A priority patent/TWI717743B/zh
Publication of WO2019229866A1 publication Critical patent/WO2019229866A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/022Membrane sterilisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/12Use of permeate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/40Automatic control of cleaning processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/44Specific cleaning apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present application relates to a membrane cleaning apparatus and a membrane cleaning method for cleaning a separation membrane for filtering water to be treated with ozone water.
  • MBR Membrane-separated activated sludge that decomposes organic matter in treated water with activated sludge containing microorganisms and performs solid-liquid separation by filtration using a separation membrane as a method of treating wastewater containing organic matter (hereinafter, treated water)
  • the method (Membrane Bio Reactor: hereinafter referred to as MBR) is known. Since MBR separation membranes are clogged due to adherence of contaminants to the surface or pores with continuous use, the filtration performance gradually decreases. For this reason, a membrane cleaning apparatus for cleaning the separation membrane with ozone water is attached to the membrane separation tank for performing the filtration treatment.
  • Patent Document 1 discloses a method for generating ozone water by supplying ozone gas to water to be dissolved to which an acid is added as a method for cleaning an MBR separation membrane.
  • Ozone water causes autolysis under alkaline conditions, but is relatively stable under acidic conditions. By setting the water to be dissolved to pH 5 or less in advance, ozone water can be generated with a smaller amount of supplied ozone.
  • an oxidation treatment process Has an alkaline oxidation treatment step for oxidation treatment under alkaline conditions and an acidic oxidation treatment step for oxidation treatment under acidic to neutral conditions.
  • the alkaline oxidation treatment step by first performing the alkaline oxidation treatment step, the oxidation treatment efficiency of the organic matter by ozone is increased, and the organic matter in the water to be dissolved can be decomposed and reduced in molecular weight.
  • the acidic oxidation treatment step ozone water can be generated with a smaller amount of supplied ozone.
  • the present application discloses a technique for solving the above-described problems, and efficiently generates ozone water used for film cleaning, and can reduce the cost required for ozone water generation. It is another object of the present invention to provide a film cleaning method.
  • the membrane cleaning device disclosed in the present application is a membrane cleaning device for cleaning a separation membrane that performs filtration treatment on water to be treated with ozone water, storing treated water that has been filtered by the separation membrane as dissolved water, Ozone water generating unit for generating ozone water by dissolving ozone gas in the water to be dissolved, ozone gas supply means for supplying ozone gas to the ozone water generating unit, and stored in the ozone water generating unit based on the organic substance concentration of the water to be dissolved PH adjusting means for adjusting the pH of the water to be dissolved.
  • the membrane cleaning method disclosed in the present application is a membrane cleaning method in which a separation membrane that performs filtration treatment on water to be treated is washed with ozone water, and the treated water filtered by the separation membrane is used as dissolved water.
  • An ozone water generating step of dissolving ozone gas in dissolved water to generate ozone water comprising: a first step of dissolving ozone gas in water to be dissolved under neutral or alkaline conditions; And a second step of dissolving ozone gas in the water to be dissolved under acidic conditions, and judging the transition from the first step to the second step based on the organic matter concentration of the water to be dissolved,
  • the start of ozone water feeding to the separation membrane is determined based on the dissolved ozone concentration.
  • the pH adjusting means for adjusting the pH of the water to be dissolved is provided based on the organic matter concentration of the water to be dissolved, the organic substance in the water to be dissolved is measured from the measured value of the organic substance concentration. Estimate the processing time required for decomposition, generate ozone water under pH conditions suitable for organic matter decomposition, and adjust pH so that the pH conditions are suitable for increasing the dissolved ozone concentration thereafter. can do. Therefore, it is possible to efficiently generate ozone water regardless of fluctuations in the organic matter concentration of the water to be dissolved, and it is possible to reduce the cost required for generating ozone water.
  • the processing time of the first step is optimized without excess or shortage by judging the transition from the first step to the second step based on the organic matter concentration of the water to be dissolved. If the organic matter concentration of the water to be dissolved is low, the processing time of the first step can be shortened. Further, by determining the start of ozone water feeding to the separation membrane based on the dissolved ozone concentration of the water to be dissolved, the processing time of the second step can be optimized without excess or deficiency. Therefore, it is possible to efficiently generate ozone water regardless of fluctuations in the organic matter concentration of the water to be dissolved, and it is possible to reduce the cost required for generating ozone water.
  • FIG. 1 It is a figure which shows the whole structure of the film
  • FIG. It is a figure which shows the structure of the process transfer judgment means of the film
  • FIG. It is a figure which shows the structure of the pH adjustment means of the film
  • FIG. It is a figure which shows the structure of the water supply start judgment means of the film
  • FIG. It is a figure which shows the example of the connection part of the ozone water supply piping and filtrate water piping in the membrane cleaning apparatus by Embodiment 1.
  • FIG. 6 is a diagram illustrating a film cleaning start procedure in the film cleaning apparatus according to the first embodiment. It is a figure which shows the whole structure of the film
  • FIG. It is a figure which shows the structure of the process transfer judgment means of the film
  • FIG. It is a figure explaining the film
  • FIG. It is a figure which shows the whole structure of the film
  • FIG. 10 is a diagram for explaining a film cleaning start procedure in the film cleaning apparatus according to the third embodiment.
  • FIG. 3 is a hardware configuration diagram that realizes part of the functions of a process transition determination unit, a pH adjustment unit, or a water supply start determination unit of the membrane cleaning apparatus according to the first embodiment.
  • FIG. 1 shows the overall configuration of the film cleaning apparatus according to the first embodiment.
  • FIG. 3 and FIG. 4 show the configurations of the process transition judging means, pH adjusting means, and water supply start judging means of the membrane cleaning apparatus according to Embodiment 1, respectively.
  • the same and corresponding parts are denoted by the same reference numerals.
  • the membrane cleaning apparatus cleans the separation membrane 2 that separates the water to be treated W1 including activated sludge into activated sludge and treated water W2.
  • a membrane cleaning device for cleaning the MBR separation membrane 2 will be described.
  • the membrane to be cleaned by the membrane cleaning device according to the present application is not limited to the MBR separation membrane 2, and is not limited to the treated water W1. May not contain activated sludge.
  • inflow water W flowing from an aeration tank (not shown) that performs biological treatment with activated sludge is stored as treated water W1.
  • the separation membrane 2 is disposed in the membrane separation tank 1 and is immersed in the water to be treated W1.
  • the treated water W1 contains activated sludge and is separated into activated sludge and treated water W2 by the filtration treatment by the separation membrane 2.
  • the separation membrane 2 needs to be cleaned with a membrane cleaning device because contaminants adhere to the surface or pores with continuous use and clogging occurs.
  • the separation membrane 2 is connected to the filtrate pipe 3a and the filtration pump 4, and the treated water W2 filtered by the separation membrane 2 is sucked by the filtration pump 4 and circulates through the filtrate water pipe 3a. It is stored in.
  • the material of the membrane separation tank 1 and the treated water tank 5 is not particularly limited, and for example, concrete, stainless steel, resin, or the like is used.
  • the separation membrane 2 can be of a reverse osmosis membrane (RO membrane), nanofiltration membrane (NF membrane), ultrafiltration membrane (UF membrane), and microfiltration membrane (MF membrane). , Are appropriately selected from them.
  • a fluorine-based resin compound such as polytetrafluoroethylene resin (PTFE) or polyvinylidene fluoride resin (PVDF) is preferable because of its excellent resistance to ozone water.
  • the separation membrane 2 may be either a hollow fiber membrane or a flat membrane.
  • the treated water W2 stored in the treated water tank 5 is discharged out of the system by the treated water discharge pipe 3b, but a part of the treated water W2 flows through the dissolved water pipe 3c and enters the ozone water generation unit 6 as the dissolved water W3.
  • a pump and a valve may be appropriately installed in the treated water discharge pipe 3b and the dissolved water pipe 3c.
  • the ozone water generation unit 6 uses the treated water W2 as the water to be dissolved W3, and performs an ozone water generation step of generating ozone water W4 by dissolving ozone gas in the water to be dissolved W3.
  • the ozone water generation step includes a first step of dissolving ozone gas in the water to be dissolved W3 under neutral or alkaline conditions, a second step of dissolving ozone gas in the water to be dissolved W3 under acidic conditions after the first step, and have.
  • the dissolved water W3 stored in the ozone water generating unit 6 has a dissolved ozone concentration increased by the ozone water generating step, and becomes ozone water W4 having a predetermined dissolved ozone concentration.
  • ozone water W4 the dissolved water W3 that has reached a predetermined dissolved ozone concentration that can be used for film cleaning.
  • the material for the ozone water generating unit 6 for example, stainless steel or a fluorine resin compound is preferable because of its excellent resistance to ozone. Further, the surface of the container of the ozone water generation unit 6 may be coated with a fluorine resin compound.
  • the ozone water generator 6 is connected to an ozonizer 61 that is an ozone gas supply means via an ozone gas pipe 3d.
  • the ozonizer 61 generates ozone gas using oxygen generated by the pressure swing adsorption method (PSA method) or the vacuum pressure swing adsorption method (PVSA method) or liquid oxygen as a raw material, and supplies the ozone gas to the ozone water generation unit 6.
  • the ozone gas generated by the ozonizer 61 flows to the ozone water generation unit 6 through the ozone gas pipe 3d.
  • ozone gas can be dissolved in the water to be dissolved W ⁇ b> 3 by, for example, an ejector method, a diffuser method, and a dissolved film method.
  • the ozone water generation unit 6 is connected to the exhaust ozone gas decomposition unit 62 through the exhaust ozone gas pipe 3e.
  • the exhaust ozone gas decomposition unit 62 is filled with a catalyst such as activated carbon or manganese oxide for decomposing ozone gas into oxygen. Exhaust ozone gas discharged from the ozone water generation unit 6 contacts the catalyst in the exhaust ozone gas decomposition unit 62, is decomposed into oxygen, and is discharged outside the system.
  • Process transition judgment means 7 judges the transition from the first process to the second process based on the organic substance concentration of the water to be dissolved W3.
  • the pH adjusting means 8 adjusts the pH of the water to be dissolved W3 stored in the ozone water generator 6 based on the organic substance concentration of the water to be dissolved W3.
  • the water supply start determination means 10 determines the start of ozone water supply to the separation membrane 2 based on the dissolved ozone concentration of the water to be dissolved W3.
  • the ozone water supply unit 11 includes an electromagnetic or pneumatic automatic valve, a pump, and the like.
  • the ozone water supply unit 11 separates the ozone water W4 generated by the ozone water generation unit 6 based on the determination result by the water supply start determination unit 10. Send water to 2.
  • the ozone water W4 supplied by the ozone water supply unit 11 flows to the separation membrane 2 through the ozone water supply piping 3g and the filtrate water piping 3a, and cleans the separation membrane 2. That is, the membrane cleaning with the ozone water W4 is a back-flow cleaning in which the ozone water W4 flows through the separation membrane 2 in the direction opposite to the direction in which the water to be treated W1 is filtered.
  • the ozone water generating step in the ozone water generating unit 6 includes the first step of dissolving ozone gas in the water to be dissolved W3 under neutral or alkaline conditions, and dissolving ozone gas in the water to be dissolved W3 under acidic conditions. And a second step.
  • the processing time of the first process is determined by the process transition determining means 7, and the processing time of the second process is determined by the water supply start determining means 10.
  • Ozone self-decomposition rate is faster as the pH is higher, and hydroxyl radicals generated in the process of ozone self-decomposition have higher oxidizing power than ozone. For this reason, in the first step of dissolving ozone gas in the water to be dissolved W3 under neutral or alkaline conditions, the oxidation efficiency of the organic substance by dissolved ozone is increased, and the decomposition of the organic substance in the water to be dissolved W3 can be promoted. .
  • the pH set value in the first step is preferably in the range of pH 7 to pH 10.
  • the pH is less than 7, the self-decomposition of ozone is suppressed and the decomposition of organic matter cannot be promoted.
  • the pH is greater than 10
  • both the amount of alkali added to the water to be dissolved W3 and the amount of acid added to the water to be dissolved W3 when moving to the second step are both required.
  • a large amount of ionic components flow into the membrane separation tank 1 when performing membrane cleaning, and this affects the treatment of the water to be treated W1, which is not preferable.
  • the self-decomposition rate of ozone is suppressed as the pH decreases.
  • disassembly of ozone can be suppressed and dissolved ozone concentration can be raised.
  • the pH set value in the second step is preferably in the range of pH 2 to pH 6. At pH 2, the self-decomposition of ozone is substantially suppressed.
  • the organic substance concentration of the treated water W2 varies depending on the operating conditions of the MBR such as the sludge residence time (SRT) of the membrane separator and the dissolved oxygen concentration of the treated water W1. Therefore, in the membrane cleaning apparatus that uses the treated water W2 as the water to be dissolved W3, the amount of ozone gas required to decompose the organic matter in the water to be dissolved W3 varies depending on the operating conditions of the MBR. Further, when a constant amount of ozone gas is supplied to the ozone water generation unit 6 by the ozonizer 61, the processing time of the first step necessary for decomposing the organic matter in the water to be dissolved W3 varies depending on the operating conditions of the MBR. .
  • the process transition judging means 7 estimates the processing time of the first process necessary for decomposing the organic matter in the dissolved water W3 based on the organic substance concentration of the dissolved water W3, and shifts to the second process. By determining the above, it is possible to optimize the processing time of the first process without excess or deficiency.
  • concentration also fluctuate.
  • the predetermined dissolved ozone concentration is a dissolved ozone concentration capable of cleaning contaminants adhering to the separation membrane 2, and is specifically set in a range of 5 mg / L to 80 mg / L.
  • the start time of the ozone water supply to the separation membrane 2 is determined based on the dissolved ozone concentration of the dissolved water W3, thereby optimizing the processing time of the second step without excess or deficiency. be able to.
  • the process transition determination unit 7 includes an organic substance sensor 71, a memory (second memory) 72, and a comparison unit (second comparison unit) 73.
  • the organic substance sensor 71 and the comparison unit 73, the memory 72 and the comparison unit 73, the comparison unit 73, and the pH adjusting unit 8 are connected by a signal line 9c, a signal line 9d, and a signal line 9a, respectively.
  • the organic substance sensor 71 continuously or periodically measures the organic substance concentration of the dissolved water W3 stored in the ozone water generation unit 6 in the ozone water generation process (particularly the first process).
  • the organic substance concentration can be measured using the absorbance of UV 254 nm (UV254), total organic carbon (TOC), fluorescence intensity, etc., which are organic substance indicators.
  • the memory 72 stores a threshold value of the organic substance concentration that shifts from the first process to the second process.
  • the comparison unit 73 acquires the measurement value obtained by the organic sensor 71 through the signal line 9c, and acquires the threshold value stored in the memory 72 through the signal line 9d. Furthermore, the comparison unit 73 compares the measurement value obtained by the organic substance sensor 71 with a threshold value, and the pH value is set so that the ozone water generation unit 6 moves from the first step to the second step when the measurement value is equal to or less than the threshold value.
  • the adjusting means 8 is controlled. Specifically, the comparison unit 73 sends a process transition signal to the pH adjusting unit 8 via the signal line 9a when the measured value by the organic sensor 71 becomes equal to or less than the threshold value.
  • the threshold value of the organic substance concentration is calculated using the following equation 1 that calculates the ozone water generation time including the first step and the second step, using the organic substance concentration and the threshold value of the dissolved ozone concentration at which cleaning is started as parameters. Can do.
  • the organic substance concentration that minimizes the ozone water generation time calculated using Equation 1 can be used as the organic substance concentration threshold value that shifts from the first step to the second step.
  • [Ozone water generation time] f (organic substance concentration, threshold of dissolved ozone concentration at which cleaning is started) (1)
  • the pH adjusting means 8 includes a pH sensor 81, a memory (fifth memory) 82, a pH adjustment control unit 83, and a pH adjustment unit 84, as shown in FIG.
  • the pH sensor 81 and the pH adjustment control unit 83, the memory 82 and the pH adjustment control unit 83, the pH adjustment control unit 83 and the pH adjustment unit 84, and the pH adjustment control unit 83 and the process transition judging means 7 are respectively connected to the signal lines 9e and 9f. , 9g, 9a.
  • the pH adjuster 84 and the ozone water generator 6 are connected via an acid-alkali supply pipe 3f.
  • the pH sensor 81 continuously measures the pH of the to-be-dissolved water W3 stored in the ozone water generation unit 6 during the ozone water generation process.
  • the memory 82 stores the pH set value of the water W3 to be dissolved in the first process and the second process.
  • the pH adjustment control unit 83 controls the pH adjustment unit 84 so that the to-be-dissolved water W3 becomes the pH set value stored in the memory 82 in the first step or the second step.
  • the pH adjusting unit 84 stores acid and alkali, and supplies acid or alkali to the ozone water generating unit 6 based on a signal sent from the pH adjusting control unit 83 via the signal line 9g, thereby dissolving water to be dissolved. Adjust the pH of W3.
  • the pH adjustment control unit 83 acquires the measured value by the pH sensor 81 via the signal line 9e, and the pH setting value in the first step from the memory 82 via the signal line 9f. get.
  • a signal is sent to the pH adjusting unit 84 so that an acid is added, and when the measured value is lower, an alkali is added.
  • the pH adjustment control part 83 acquires the pH setting value in a 2nd process from the memory 82, when the process transition signal is received from the process transition judgment means 7, and the to-be-dissolved water W3 is the pH setting value in a 2nd process.
  • a signal is sent to the pH adjusting unit 84 for control.
  • the pH adjustment means 8 is the dissolved water W3 stored in the ozone water production
  • the pH adjusting unit 84 adds an acid to the dissolved water W3 of the ozone water generating unit 6.
  • the acid-alkali supply pipe 3f may be a plurality of pipes, and either or both of a pump and a valve may be appropriately installed.
  • the acid added to the to-be-dissolved water W3 is, for example, sulfuric acid, nitric acid, hydrochloric acid, an aqueous solution of carbonic acid, carbon dioxide, or the like, and the alkali is, for example, sodium hydroxide or sodium carbonate.
  • the water supply start determination unit 10 includes a dissolved ozone sensor 101, a memory (first memory) 102, and a comparison unit (first comparison unit) 103, and includes the dissolved ozone sensor 101 and the comparison unit 103.
  • the memory 102 and the comparison unit 103, and the comparison unit 103 and the ozone water supply unit 11 are connected by signal lines 9h, 9i, and 9b, respectively.
  • the dissolved ozone sensor 101 measures the dissolved ozone concentration of the to-be-dissolved water W ⁇ b> 3 during the ozone water generation process in the ozone water generation unit 6.
  • the measurement of dissolved ozone concentration is preferable because a measurement method using an ultraviolet absorption method can be easily and continuously measured.
  • the memory 102 stores a threshold value of dissolved ozone concentration at which ozone water feeding to the separation membrane 2 is started.
  • the threshold value of the dissolved ozone concentration is preferably 5 mg / L to 80 mg / L.
  • the comparison unit 103 compares the measurement value obtained by the dissolved ozone sensor 101 with the threshold value acquired from the memory 102 via the signal line 9i, and when the measurement value is equal to or greater than the threshold value, the ozone water is transmitted via the signal line 9b.
  • a water supply start signal is sent to the water supply unit 11.
  • the ozone water supply unit 11 supplies the ozone water W4 generated in the ozone water generation unit 6 to the separation membrane 2 via the ozone water supply pipe 3g. Thereby, the cleaning of the separation membrane 2 by the membrane cleaning apparatus is started.
  • the ozone water supply pipe 3g is connected to the filtrate water pipe 3a.
  • the ozone water supply pipe 3 g, the filtrate water pipe 3 a, and the separation membrane 2 are connected via a three-way valve 12.
  • the on-off valves 13a and 13b are installed in the ozone water supply pipe 3g and the filtrate water pipe 3a, respectively.
  • the functions performed by software are realized by the processing circuit 20 including the processor 21 and the memory 22 shown in FIG.
  • the function of the comparison unit 73 of the process transition determination unit 7, the pH adjustment control unit 83 of the pH adjustment unit 8, or the comparison unit 103 of the water supply start determination unit 10 is realized by a processor 21 such as a CPU.
  • the memory 22 includes a volatile storage device such as a random access memory and a nonvolatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
  • the processor 21 executes the program input from the memory 22. In this case, a program is input from the auxiliary storage device to the processor 21 via the volatile storage device.
  • step S1 the water to be dissolved W3 is supplied to the ozone water generator 6. Specifically, the treated water W2 stored in the treated water tank 5 is sent to the ozone water generating unit 6 via the dissolved water pipe 3c and stored as the dissolved water W3.
  • step S2 the first process is performed in step S2. Specifically, the water to be dissolved W3 stored in the ozone water generating unit 6 is adjusted by the pH adjusting unit 8 so as to become the pH set value in the first step stored in the memory 82 of the pH adjusting unit 8. . Further, the ozone gas generated by the ozonizer 61 is supplied to the ozone water generator 6 to dissolve the ozone gas in the water to be dissolved W3.
  • step S3 it is determined whether or not the organic matter concentration of the water to be dissolved W3 of the ozone water generation unit 6 is equal to or less than a threshold value. Specifically, the measured value of the organic substance concentration by the organic substance sensor 71 is compared with the threshold value of the organic substance concentration stored in the memory 72. In step S3, when the measured value of the organic substance concentration is larger than the threshold value (NO), the process returns to step S2 and the first process is continued. The pH setting value in the first step is maintained as the pH setting value of the water W3 to be dissolved in the ozone water generation unit 6.
  • step S3 when the measured value of the organic substance concentration is equal to or lower than the threshold value (YES), the process proceeds to step S4, and the second step of the ozone water generation step is performed.
  • the process transition determining means 7 sends a process transition signal to the pH adjusting means 8 via the signal line 9a.
  • the pH adjusting means 8 that has received the process transition signal adjusts so that the water to be dissolved W ⁇ b> 3 becomes the pH set value in the second process stored in the memory 82. At this time, the supply of ozone gas is continued.
  • step S5 it is determined whether or not the dissolved ozone concentration of the water to be dissolved W3 is equal to or higher than a threshold value. Specifically, the water supply start determination unit 10 compares the measured value of the dissolved ozone concentration by the dissolved ozone sensor 101 with the threshold value of the dissolved ozone concentration stored in the memory 102. In step S5, when the measured value of the dissolved ozone concentration is smaller than the threshold value (NO), the process returns to step S4 and the second process is continued.
  • step S5 when the measured value of the dissolved ozone concentration of the water W3 to be dissolved is equal to or greater than the threshold (YES), the process proceeds to step S6, and the ozone water supply unit 11 starts supplying ozone water W4.
  • the water supply start determination means 10 sends a water supply start signal to the ozone water supply unit 11 via the signal line 9b.
  • the ozone water supply unit 11 that has received the water supply start signal supplies the ozone water W4 generated in the ozone water generation unit 6 to the separation membrane 2 via the ozone water supply pipe 3g, and starts cleaning the separation membrane 2.
  • the supply of ozone gas may be continued during cleaning, or the supply of ozone gas may be stopped as long as a predetermined dissolved ozone concentration can be maintained.
  • the treated water W2 filtered by the separation membrane 2 is used as the dissolved water W3, and the membrane cleaning is performed by dissolving the ozone gas in the dissolved water W3 to generate the ozone water W4.
  • the pH of the water to be dissolved W3 stored in the ozone water generation unit 6 is adjusted based on the organic substance concentration of the water to be dissolved W3. It is possible to estimate the processing time required for the decomposition of organic matter from the measured concentration value. For this reason, the treatment time required for the decomposition of the organic matter generates ozone water under pH conditions suitable for the decomposition of the organic matter, and thereafter adjusts the pH so that the pH conditions are suitable for increasing the dissolved ozone concentration. It is possible.
  • dissolve ozone gas in to-be-dissolved water on acidic conditions are implemented.
  • the processing time of the first step can be optimized without excess or deficiency.
  • the processing time of the first step can be shortened.
  • the processing time of the second step can be optimized without excess or deficiency.
  • the ozone water W4 can be efficiently generated regardless of fluctuations in the organic matter concentration of the dissolved water W3 due to the operating conditions of the MBR, and the cost required for generating ozone water. Can be reduced.
  • FIG. FIG. 8 shows the overall configuration of the membrane cleaning apparatus according to the second embodiment of the present application
  • FIG. 9 shows the configuration of the process transition determining means of the membrane cleaning apparatus according to the second embodiment.
  • the film cleaning apparatus according to the second embodiment is different from the film cleaning apparatus according to the first embodiment only in the configuration of the process transition judging means, and the other configurations are the same, so the description thereof is omitted here.
  • the film cleaning apparatus includes process transition determination means 7A.
  • the process transition determination means 7A includes an organic substance sensor 74, an ozone gas sensor 75, a memory (third memory) 72A, and a comparison unit (third comparison unit) 73A.
  • the organic substance sensor 74 and the comparison unit 73A, the ozone gas sensor 75 and the comparison unit 73A, and the memory 72A and the comparison unit 73A are connected by signal lines 9k, 9m, and 9n, respectively.
  • the organic substance sensor 74 measures the initial value of the organic substance concentration of the water W3 to be dissolved supplied to the ozone water generation unit 6 before the start of the ozone water generation process.
  • the place to install the organic matter sensor 74 is preferably the dissolved water pipe 3c or the ozone water generation unit 6, but is not particularly limited.
  • the dissolved water W3 may be sampled before the start of the ozone water generation step to measure the organic substance concentration.
  • the organic substance concentration can be measured using UV254, TOC, fluorescence intensity, etc., which are organic substance indicators.
  • the ozone gas sensor 75 is installed in the ozone gas pipe 3d and measures the amount of ozone gas supplied to the ozone water generation unit 6 (hereinafter referred to as supply ozone amount).
  • the supplied ozone amount is obtained from the integrated value of the ozone gas concentration and the flow rate.
  • the amount of supply ozone required before shifting from the first step to the second step varies depending on the initial value of the organic matter concentration of the water to be dissolved W3. That is, if the initial value of the organic substance concentration of the water to be dissolved W3 is high, the amount of supply ozone required to move from the first process to the second process also increases.
  • the memory 72A stores a threshold value of the supply ozone amount necessary for shifting from the first step to the second step, which is set corresponding to the initial value of the organic substance concentration of the water to be dissolved W3.
  • 73 A of comparison parts acquire the threshold value of the supply ozone amount corresponding to the organic substance density
  • the organic substance concentration of the to-be-dissolved water W3 in the ozone water generating step can be estimated using the initial value of the organic substance concentration of the to-be-dissolved water W3 and the supplied ozone amount as parameters.
  • the threshold value of the supply ozone amount can be calculated using the following equation 2 that calculates the organic substance concentration of the dissolved water W3 using the initial value of the organic substance concentration of the dissolved water W3 and the supply ozone amount as parameters.
  • step S11 the water to be dissolved W3 is supplied to the ozone water generation unit 6.
  • step S12 the organic substance sensor 74 measures the initial value of the organic substance concentration of the water W3 to be dissolved.
  • step S13 a threshold value of the supply ozone amount for shifting the process is determined.
  • the comparison unit 73A of the process transition determination unit 7A acquires the threshold value of the supply ozone amount corresponding to the initial value of the organic substance concentration measured by the organic substance sensor 74 from the memory 72A.
  • step S14 it is determined whether or not the supply ozone amount supplied to the dissolved water W3 of the ozone water generating unit 6 is equal to or greater than a threshold value.
  • the comparison unit 73A of the process transition determination unit 7A compares the measured value of the supplied ozone amount by the ozone gas sensor 75 with the threshold value determined in step S13.
  • step S15 when the measured value of the supplied ozone amount is smaller than the threshold value (NO), the process returns to step S14 and the first process is continued.
  • step S15 when the measured value of the supply ozone amount is equal to or greater than the threshold (YES), the process proceeds to step S16, and the second process is performed.
  • Step S16 and subsequent steps are the same as step S4 and subsequent steps in the flowchart of FIG.
  • the threshold value of the supply ozone amount corresponding to the initial value of the organic substance concentration of the water W3 to be dissolved is determined, and the first value when the measured value of the supply ozone amount is equal to or greater than the threshold value.
  • FIG. 11 shows the overall configuration of a film cleaning apparatus according to Embodiment 3 of the present application.
  • the film cleaning apparatus according to the third embodiment is different from the film cleaning apparatus according to the first embodiment only in the configuration of the process transition determining means, and the other configurations are the same, so the description thereof is omitted here.
  • the film cleaning apparatus includes process transition determination means 7B.
  • the process transition determination unit 7B includes a dissolved ozone sensor 76, an ozone gas sensor 75, a memory (fourth memory) 72B, and a comparison unit (fourth comparison unit) 73B.
  • the dissolved ozone sensor 76 and the comparison unit 73B, the ozone gas sensor 75 and the comparison unit 73B, the memory 72B and the comparison unit 73B, and the comparison unit 73B and the pH adjusting unit 8 are connected by signal lines 9p, 9m, 9n, and 9a, respectively. .
  • the dissolved ozone sensor 76 continuously measures the dissolved ozone concentration of the water to be dissolved W3 stored in the ozone water generation unit 6 during the ozone water generation process.
  • the dissolved ozone sensor 101 (see FIG. 4) of the water supply start determining means 10 may also be used as the dissolved ozone sensor 76 of the process transition determining means 7B.
  • the ozone gas sensor 75 is installed in the ozone gas pipe 3d and measures the amount of supplied ozone from the integrated value of the ozone gas concentration and the flow rate.
  • the memory 72B stores a threshold value of the dissolved ozone concentration necessary for shifting from the first process to the second process, which is set corresponding to the amount of ozone supplied to the dissolved water W3.
  • the comparison unit 73B compares the measured value obtained from the dissolved ozone sensor 76 with the threshold value stored in the memory 72B, and when the measured value of the dissolved ozone concentration is equal to or greater than the threshold value, the pH adjustment means 8 is transmitted by the signal line 9a. Send process transition signal to.
  • a part of the ozone supplied to the water to be dissolved W3 is dissolved in the water to be dissolved W3 to be dissolved ozone and is consumed by reacting with organic substances in the water to be dissolved W3. For this reason, the organic substance in the to-be-dissolved water W3, dissolved ozone, and the ozone gas supplied are in an equilibrium state. For example, when the concentration of organic matter that consumes ozone decreases, the concentration of dissolved ozone increases. That is, the organic substance concentration in the water to be dissolved W3 can be estimated using the dissolved ozone concentration and the supplied ozone amount as parameters.
  • the comparison unit 73B of the process transition determination unit 7B estimates the organic substance concentration of the dissolved water W3 using the dissolved ozone concentration and the supplied ozone amount of the dissolved water W3 as parameters, and based on the estimated organic substance concentration of the dissolved water W3. The transition from the first process to the second process is determined.
  • the threshold value of the dissolved ozone concentration can be calculated using the following equation 3 that calculates the organic substance concentration of the water to be dissolved W3 using the dissolved ozone concentration and the supplied ozone amount as parameters.
  • the dissolved ozone concentration at which the organic substance concentration calculated using Equation 3 becomes the organic substance concentration threshold value calculated by the organic substance threshold value calculation method (for example, Equation 1) is obtained, and this is used as the dissolved ozone concentration threshold value.
  • [Organic substance concentration] f (dissolved ozone concentration, supply ozone amount) (3)
  • step S ⁇ b> 21 the dissolved water W ⁇ b> 3 is supplied to the ozone water generation unit 6.
  • step S22 the first process is performed in step S22, and then the supplied ozone amount is measured by the ozone gas sensor 75 in step S23.
  • step S24 a threshold value of the dissolved ozone concentration for transferring the process is determined.
  • the comparison unit 73B of the process transition determination unit 7B acquires the threshold value of the dissolved ozone concentration corresponding to the supplied ozone amount measured by the ozone gas sensor 75 from the memory 72B.
  • step S25 it is determined whether or not the dissolved ozone concentration of the water to be dissolved W3 of the ozone water generator 6 is equal to or higher than a threshold value.
  • the comparison unit 73B of the process transition determination unit 7B compares the measured value of the dissolved ozone concentration by the dissolved ozone sensor 76 with the threshold value determined in step S24.
  • step S25 when the measured value of the dissolved ozone concentration is smaller than the threshold value (NO), the process returns to step S22 and the first process is continued. In step S25, if the measured value of the dissolved ozone concentration is greater than or equal to the threshold value (YES), the process proceeds to step S26 and the second step is performed. Step S26 and subsequent steps are the same as step S4 and subsequent steps in the flowchart of FIG.
  • the threshold value of the dissolved ozone concentration corresponding to the supply ozone amount supplied to the dissolved water W3 is determined, and when the measured value of the dissolved ozone concentration is equal to or greater than the threshold value, the first step is started.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

膜洗浄装置は、MBRの分離膜(2)によってろ過処理された処理水を被溶解水として用い、中性またはアルカリ性条件下で被溶解水にオゾンガスを溶解する第一工程と、酸性条件下で被溶解水にオゾンガスを溶解する第二工程とを実施し、オゾン水を生成する。このとき、被溶解水の有機物濃度に基づいて第一工程から第二工程への移行を判断すると共に、被溶解水の溶存オゾン濃度に基づいて分離膜(2)へのオゾン水送水の開始を判断することにより、MBRの運転条件による被溶解水の有機物濃度の変動があっても、第一工程及び第二工程の処理時間を最適化することができる。これにより、オゾン水を効率的に生成することができ、オゾン水生成に要するコストを低減することが可能である。

Description

膜洗浄装置及び膜洗浄方法
 本願は、被処理水をろ過する分離膜をオゾン水で洗浄する膜洗浄装置及び膜洗浄方法に関するものである。
 有機物を含有する排水(以下、被処理水という)の処理方法として、微生物を含む活性汚泥により被処理水中の有機物を分解し、分離膜を用いたろ過処理により固液分離を行う膜分離活性汚泥法(Membrane Bio Reactor:以下MBRという)が知られている。MBRの分離膜は、継続的な使用に伴って表面または孔に汚濁物質が付着し目詰まりが生じるため、ろ過性能が徐々に低下する。このため、ろ過処理を行う膜分離槽には、オゾン水により分離膜を洗浄する膜洗浄装置が併設されている。
 従来、上記のような膜洗浄装置においては、オゾン水を効率的に生成し、オゾン水生成に要するコストを低減することが課題であり、そのための技術が開発されている。例えば特許文献1には、MBRの分離膜の洗浄方法として、酸を加えた被溶解水にオゾンガスを供給することにより、オゾン水を生成する方法が開示されている。オゾン水はアルカリ性条件下では自己分解を引き起こすが、酸性条件下では比較的安定である。被溶解水を予めpH5以下とすることにより、より少ない供給オゾン量でオゾン水を生成することができる。
 また、特許文献2では、被処理水にオゾンを添加して被処理水を酸化処理する酸化処理工程の後、酸化処理された被処理水を逆浸透膜処理する水処理方法において、酸化処理工程は、アルカリ性条件下で酸化処理するアルカリ酸化処理工程と、酸性から中性条件下で酸化処理する酸性酸化処理工程とを有している。この先行例のように、まずアルカリ酸化処理工程を実施することにより、オゾンによる有機物の酸化処理効率が高まり、被溶解水中の有機物を分解し低分子化することができる。その後、酸性酸化処理工程を実施することによって、より少ない供給オゾン量でオゾン水を生成することができる。
WO2016/031331号公報 特開2005-324118号公報
 オゾンガスを溶解させる被溶解水としてMBR処理水を用いる場合、MBR処理水に含まれる有機物とオゾンが反応し、オゾンが無効消費されるため、被溶解水中の有機物を効率的に分解させる必要がある。オゾンの自己分解により発生するヒドロキシルラジカルは、オゾンよりも酸化力が強く有機物との反応性が高いが、酸性条件下でオゾン水を生成する方法ではヒドロキシルラジカルの発生量は少ない。
 このため、上記特許文献1に開示された方法で被溶解水としてMBR処理水を用いた場合、被溶解水中の有機物の分解に過大な時間を要し、膜洗浄に必要な溶存オゾン濃度に到達するまでの処理時間が長くなるという課題がある。一方、上記特許文献2のようにアルカリ性条件下でオゾン水を生成する方法では、オゾンの自己分解を促進させ、ヒドロキシルラジカルの発生量を増加させることができるため、被溶解水中の有機物を効率的に分解させることができる。
 しかしながら、被溶解水としてMBR処理水を用いた場合、MBRの運転状況によりMBR処理水の有機物濃度が変動するため、有機物を分解するのに必要なオゾン量も変動する。従って、被溶解水に一定の濃度と流量でオゾンガスを供給する場合、有機物を分解するのに必要な処理時間が変動する。上記特許文献2では、被溶解水の有機物濃度によらず処理時間を決定しており、処理時間の最適化がなされていない。すなわち、被溶解水の有機物濃度が低い場合でも、処理時間を短縮することができず、必要以上の処理時間をかけているという課題がある。
 本願は、上記のような課題を解決するための技術を開示するものであり、膜洗浄に用いるオゾン水を効率的に生成し、オゾン水生成に要するコストを低減することが可能な膜洗浄装置及び膜洗浄方法を提供することを目的とする。
 本願に開示される膜洗浄装置は、被処理水にろ過処理を行う分離膜をオゾン水で洗浄する膜洗浄装置であって、分離膜によってろ過処理された処理水を被溶解水として貯留し、被溶解水にオゾンガスを溶解させてオゾン水を生成するオゾン水生成部と、オゾン水生成部にオゾンガスを供給するオゾンガス供給手段と、被溶解水の有機物濃度に基づいてオゾン水生成部に貯留された被溶解水のpHを調整するpH調整手段とを備えたものである。
 本願に開示される膜洗浄方法は、被処理水にろ過処理を行う分離膜をオゾン水で洗浄する膜洗浄方法であって、分離膜によってろ過処理された処理水を被溶解水として用い、被溶解水にオゾンガスを溶解させてオゾン水を生成するオゾン水生成工程を含み、オゾン水生成工程は、中性またはアルカリ性条件下で被溶解水にオゾンガスを溶解する第一工程と、第一工程の後、酸性条件下で被溶解水にオゾンガスを溶解する第二工程とを有し、被溶解水の有機物濃度に基づいて第一工程から第二工程への移行を判断すると共に、被溶解水の溶存オゾン濃度に基づいて分離膜へのオゾン水送水の開始を判断するものである。
 本願に開示される膜洗浄装置によれば、被溶解水の有機物濃度に基づいて被溶解水のpHを調整するpH調整手段を備えているので、有機物濃度の測定値から被溶解水中の有機物の分解に必要な処理時間を推定し、その時間は有機物の分解に適したpH条件下でオゾン水を生成し、それ以降は溶存オゾン濃度を高めるのに適したpH条件となるようにpHを調整することができる。従って、被溶解水の有機物濃度の変動に関わらず、オゾン水を効率的に生成することができ、オゾン水生成に要するコストを低減することが可能である。
 本願に開示される膜洗浄方法によれば、被溶解水の有機物濃度に基づいて第一工程から第二工程への移行を判断することにより、第一工程の処理時間を過不足なく最適化することができ、被溶解水の有機物濃度が低い場合には、第一工程の処理時間を短縮することができる。また、被溶解水の溶存オゾン濃度に基づいて分離膜へのオゾン水送水の開始を判断することにより、第二工程の処理時間を過不足なく最適化することができる。従って、被溶解水の有機物濃度の変動に関わらず、オゾン水を効率的に生成することができ、オゾン水生成に要するコストを低減することが可能である。
 本願の上記以外の目的、特徴、観点及び効果は、図面を参照する以下の詳細な説明から、さらに明らかになるであろう。
実施の形態1による膜洗浄装置の全体構成を示す図である。 実施の形態1による膜洗浄装置の工程移行判断手段の構成を示す図である。 実施の形態1による膜洗浄装置のpH調整手段の構成を示す図である。 実施の形態1による膜洗浄装置の送水開始判断手段の構成を示す図である。 実施の形態1による膜洗浄装置におけるオゾン水送水配管とろ過水配管の接続部の例を示す図である。 実施の形態1による膜洗浄装置におけるオゾン水送水配管とろ過水配管の接続部の別の例を示す図である。 実施の形態1による膜洗浄装置における膜洗浄開始手順を説明する図である。 実施の形態2による膜洗浄装置の全体構成を示す図である。 実施の形態2による膜洗浄装置の工程移行判断手段の構成を示す図である。 実施の形態2による膜洗浄装置における膜洗浄開始手順を説明する図である。 実施の形態3による膜洗浄装置の全体構成を示す図である。 実施の形態3による膜洗浄装置における膜洗浄開始手順を説明する図である。 実施の形態1による膜洗浄装置の工程移行判断手段、pH調整手段、または送水開始判断手段の機能の一部を実現するハードウェア構成図である。
実施の形態1.
 以下に、本願の実施の形態1による膜洗浄装置及び膜洗浄方法について、図面に基づいて説明する。図1は、実施の形態1による膜洗浄装置の全体構成を示している。また、図2、図3、及び図4は、実施の形態1による膜洗浄装置の工程移行判断手段、pH調整手段、及び送水開始判断手段の構成をそれぞれ示している。各図において、同一、相当部分には同一符号を付している。
 実施の形態1による膜洗浄装置の全体構成について、図1を用いて簡単に説明する。膜洗浄装置は、例えばMBRによる水処理システムにおいて、活性汚泥を含む被処理水W1を、活性汚泥と処理水W2とに分離する分離膜2を洗浄するものである。なお、以下の説明では、MBRの分離膜2を洗浄する膜洗浄装置について述べるが、本願による膜洗浄装置が洗浄する膜はMBRの分離膜2に限定されるものではなく、被処理水W1には活性汚泥が含まれていなくてもよい。
 図1に示すように、膜分離槽1には、活性汚泥による生物処理を行う曝気槽(図示せず)から流入した流入水Wが、被処理水W1として貯留される。分離膜2は膜分離槽1に配置され、被処理水W1に浸漬されている。被処理水W1には活性汚泥が含まれており、分離膜2によるろ過処理によって活性汚泥と処理水W2とに分離される。
 分離膜2は、継続的な使用に伴って表面または孔に汚濁物質が付着し、目詰まりが生じるため、膜洗浄装置によって洗浄する必要がある。分離膜2は、ろ過水配管3a及びろ過ポンプ4に接続されており、分離膜2によりろ過処理された処理水W2は、ろ過ポンプ4により吸引されてろ過水配管3aを流通し、処理水槽5に貯留される。
 膜分離槽1及び処理水槽5の材質は、特に限定されるものではなく、例えばコンクリート、ステンレス、または樹脂等が用いられる。分離膜2は、細孔の大きさによって、逆浸透膜(RO膜)、ナノろ過膜(NF膜)、限外ろ過膜(UF膜)、及び精密ろ過膜(MF膜)等の種類があり、それらの中から適宜選択される。分離膜2の材質としては、例えばポリテトラフルオロエチレン樹脂(PTFE)またはポリフッ化ビニリデン樹脂(PVDF)等のフッ素系樹脂化合物は、オゾン水に対する耐性に優れているため好ましい。なお、分離膜2は、中空糸膜及び平膜のいずれであってもよい。
 処理水槽5に貯留された処理水W2は、処理水排出配管3bにより系外に排出されるが、その一部は被溶解水配管3cを流通し、被溶解水W3としてオゾン水生成部6に貯留される。処理水排出配管3b及び被溶解水配管3cには、適宜、ポンプ及び弁のいずれかまたは両方を設置してもよい。
 オゾン水生成部6は、処理水W2を被溶解水W3として用い、被溶解水W3にオゾンガスを溶解させてオゾン水W4を生成するオゾン水生成工程を実施する。オゾン水生成工程は、中性またはアルカリ性条件下で被溶解水W3にオゾンガスを溶解する第一工程と、第一工程の後、酸性条件下で被溶解水W3にオゾンガスを溶解する第二工程とを有している。オゾン水生成部6に貯留された被溶解水W3は、オゾン水生成工程によって溶存オゾン濃度が増加し、所定の溶存オゾン濃度のオゾン水W4となる。なお、以下の説明では、膜洗浄に用いることができる所定の溶存オゾン濃度に到達した被溶解水W3を「オゾン水W4」と呼ぶ。
 オゾン水生成部6の材質としては、例えばステンレスまたはフッ素系樹脂化合物は、オゾンに対する耐性に優れているため好ましい。また、オゾン水生成部6の容器の表面に、フッ素系樹脂化合物をコーティングしてもよい。
 オゾン水生成部6は、オゾンガス配管3dを介してオゾンガス供給手段であるオゾナイザ61と接続されている。オゾナイザ61は、圧力スイング吸着法(PSA法)または真空圧力スイング吸着法(PVSA法)により生成した酸素、または液体酸素等を原料としてオゾンガスを発生し、オゾン水生成部6にオゾンガスを供給する。オゾナイザ61により発生させたオゾンガスは、オゾンガス配管3dを通ってオゾン水生成部6に流通する。オゾン水生成部6では、例えばエジェクタ式、散気式、及び溶解膜式等の方法によって、被溶解水W3にオゾンガスを溶解させることができる。
 また、オゾン水生成部6は、排オゾンガス配管3eを介して排オゾンガス分解部62に接続されている。排オゾンガス分解部62には、オゾンガスを酸素に分解するための活性炭または酸化マンガン等の触媒が充填されている。オゾン水生成部6から排出された排オゾンガスは、排オゾンガス分解部62において触媒と接触して酸素に分解され、系外に排出される。
 工程移行判断手段7は、被溶解水W3の有機物濃度に基づいて、第一工程から第二工程への移行を判断する。pH調整手段8は、被溶解水W3の有機物濃度に基づいて、オゾン水生成部6に貯留された被溶解水W3のpHを調整する。また、送水開始判断手段10は、被溶解水W3の溶存オゾン濃度に基づいて分離膜2へのオゾン水送水の開始を判断する。
 オゾン水送水部11は、電磁式または空気式の自動弁と、ポンプ等から構成され、送水開始判断手段10による判断結果に基づいて、オゾン水生成部6で生成されたオゾン水W4を分離膜2へ送水する。オゾン水送水部11によって送水されたオゾン水W4は、オゾン水送水配管3g及びろ過水配管3aを介して分離膜2に流通し、分離膜2を洗浄する。すなわち、オゾン水W4による膜洗浄は、被処理水W1をろ過する方向とは逆方向にオゾン水W4を分離膜2に流通させる逆流洗浄である。
 次に、工程移行判断手段7及び送水開始判断手段10の機能について説明する。前述のように、オゾン水生成部6におけるオゾン水生成工程は、中性またはアルカリ性条件下で被溶解水W3にオゾンガスを溶解する第一工程と、酸性条件下で被溶解水W3にオゾンガスを溶解する第二工程とを有している。第一工程の処理時間は工程移行判断手段7により決定され、第二工程の処理時間は送水開始判断手段10により決定されている。
 オゾンの自己分解速度はpHが高いほど速く、オゾンの自己分解の過程で生成するヒドロキシルラジカルは、オゾンよりも高い酸化力を有する。このため、中性またはアルカリ性条件下で被溶解水W3にオゾンガスを溶解する第一工程では、溶存オゾンによる有機物の酸化処理効率が高まり、被溶解水W3中の有機物の分解を促進することができる。
 第一工程におけるpH設定値は、pH7からpH10の範囲であることが好ましい。pHが7未満ではオゾンの自己分解は抑制され、有機物の分解を促進させることができない。また、pHが10よりも大きい場合、被溶解水W3に添加されるアルカリの量、及び第二工程に移行する際に被溶解水W3に添加される酸の量が共に多く必要であること、さらに、膜洗浄を行った際に大量のイオン成分が膜分離槽1に流入し、被処理水W1の処理に影響を与えることから、好ましくない。
 一方、オゾンの自己分解速度は、pHが低いほど抑制される。このため、酸性条件下で被溶解水W3にオゾンガスを溶解する第二工程では、第一工程に比べてオゾンの自己分解が抑制され、溶存オゾン濃度を高めることができる。第二工程におけるpH設定値は、pH2からpH6の範囲であることが好ましい。pH2でオゾンの自己分解はほぼ抑制される。pHが2未満の場合、第二工程に移行する際に被溶解水W3に添加される酸の量が多く必要となること、さらに、膜洗浄を行った際に大量のイオン成分が膜分離槽1に流入し、被処理水W1の処理に影響を与えることから、好ましくない。また、pHが6よりも大きい場合、オゾンの自己分解により溶存オゾン濃度が低下するため好ましくない。
 処理水W2の有機物濃度は、膜分離装置の汚泥滞留時間(SRT)及び被処理水W1の溶存酸素濃度等、MBRの運転条件によって変動する。従って、被溶解水W3として処理水W2を用いる膜洗浄装置においては、被溶解水W3中の有機物を分解するのに必要なオゾンガス量が、MBRの運転条件によって変動する。また、オゾナイザ61により一定のオゾンガス量がオゾン水生成部6へ供給される場合、被溶解水W3中の有機物を分解するのに必要な第一工程の処理時間は、MBRの運転条件によって変動する。このため、工程移行判断手段7において、被溶解水W3の有機物濃度に基づいて被溶解水W3中の有機物を分解するのに必要な第一工程の処理時間を推定し、第二工程への移行を判断することにより、第一工程の処理時間を過不足なく最適化することができる。
 また、第二工程に移行時の被溶解水W3の溶存オゾン濃度、溶解成分の組成及び濃度の変動により、所定の溶存オゾン濃度のオゾン水W4を生成するのに必要な第二工程の処理時間も変動する。所定の溶存オゾン濃度とは、分離膜2に付着している汚濁物質を洗浄することが可能な溶存オゾン濃度であり、具体的には5mg/Lから80mg/Lの範囲で設定される。このため、送水開始判断手段10において、被溶解水W3の溶存オゾン濃度に基づいて分離膜2へのオゾン水送水の開始を判断することにより、第二工程の処理時間を過不足なく最適化することができる。
 実施の形態1による工程移行判断手段7、pH調整手段8、及び送水開始判断手段10の具体的な構成について、図2、図3、及び図4を用いて説明する。工程移行判断手段7は、図2に示すように、有機物センサ71、メモリ(第2のメモリ)72、及び比較部(第2の比較部)73を含む。有機物センサ71と比較部73、メモリ72と比較部73、比較部73とpH調整手段8は、それぞれ信号線9c、信号線9d、及び信号線9aで接続されている。有機物センサ71は、オゾン水生成部6に貯留された被溶解水W3の有機物濃度を、オゾン水生成工程(特に第一工程)において連続的または定期的に測定する。有機物濃度の測定は、有機物指標である紫外線254nmの吸光度(UV254)、全有機炭素(TOC)、蛍光強度等を用いて測定することできる。
 メモリ72は、第一工程から第二工程に移行する有機物濃度の閾値を記憶している。比較部73は、有機物センサ71による測定値を信号線9cを介して取得すると共に、メモリ72に記憶された閾値を信号線9dを介して取得する。さらに、比較部73は、有機物センサ71による測定値と閾値とを比較し、測定値が閾値以下となった場合にオゾン水生成部6が第一工程から第二工程に移行するように、pH調整手段8を制御する。具体的には、比較部73は、有機物センサ71よる測定値が閾値以下となった場合、pH調整手段8に信号線9aを介して工程移行信号を送る。
 有機物濃度の閾値の算出方法は、有機物濃度と洗浄を開始する溶存オゾン濃度の閾値をパラメータとして、第一工程と第二工程を含むオゾン水生成時間を算出する下式1を用いて算出することができる。式1を用いて算出されたオゾン水生成時間が最小となる有機物濃度を、第一工程から第二工程に移行する有機物濃度の閾値とすることができる。
[オゾン水生成時間]=f(有機物濃度、洗浄を開始する溶存オゾン濃度の閾値) (1)
 pH調整手段8は、図3に示すように、pHセンサ81、メモリ(第5のメモリ)82、pH調整制御部83、及びpH調整部84を含む。pHセンサ81とpH調整制御部83、メモリ82とpH調整制御部83、pH調整制御部83とpH調整部84、及びpH調整制御部83と工程移行判断手段7は、それぞれ信号線9e、9f、9g、9aで接続されている。pH調整部84とオゾン水生成部6は、酸アルカリ供給配管3fを介して接続されている。
 pHセンサ81は、オゾン水生成部6に貯留された被溶解水W3のpHを、オゾン水生成工程の間、連続的に測定する。メモリ82は、第一工程及び第二工程における被溶解水W3のpH設定値をそれぞれ記憶している。pH調整制御部83は、第一工程または第二工程において、被溶解水W3がメモリ82に記憶されたpH設定値となるようにpH調整部84を制御する。pH調整部84は、酸及びアルカリを貯留しており、pH調整制御部83から信号線9gを介して送られる信号に基づいて、オゾン水生成部6に酸またはアルカリを供給し、被溶解水W3のpHを調整する。
 pH調整制御部83は、第一工程を開始する前に、pHセンサ81による測定値を信号線9eを介して取得すると共に、メモリ82から第一工程におけるpH設定値を信号線9fを介して取得する。pHセンサ81による測定値がpH設定値よりも高い場合には酸を添加し、低い場合にはアルカリを添加するように、pH調整部84に信号を送る。
 また、pH調整制御部83は、工程移行判断手段7から工程移行信号を受信した場合、メモリ82から第二工程におけるpH設定値を取得し、被溶解水W3が第二工程におけるpH設定値となるように、pH調整部84に信号を送り制御する。なお、工程移行判断手段7は、被溶解水W3の有機物濃度に基づいて工程移行信号を発信していることから、pH調整手段8は、オゾン水生成部6に貯留された被溶解水W3の有機物濃度に基づいて被溶解水W3のpHを調整しているといえる。
 第一工程から第二工程に移行する際には、pH調整部84はオゾン水生成部6の被溶解水W3に酸を添加する。なお、酸アルカリ供給配管3fは、複数本の配管であってもよく、ポンプ及び弁のいずれかまたは両方を適宜設置してもよい。被溶解水W3に添加される酸は、例えば硫酸、硝酸、塩酸、炭酸の水溶液、または炭酸ガス等であり、アルカリは、例えば水酸化ナトリウムまたは炭酸ナトリウム等である。
 送水開始判断手段10は、図4に示すように、溶存オゾンセンサ101、メモリ(第1のメモリ)102、及び比較部(第1の比較部)103を含み、溶存オゾンセンサ101と比較部103、メモリ102と比較部103、及び比較部103とオゾン水送水部11は、それぞれ信号線9h、9i、9bで接続されている。
 溶存オゾンセンサ101は、オゾン水生成部6におけるオゾン水生成工程の間、被溶解水W3の溶存オゾン濃度を測定する。溶存オゾン濃度の測定には、紫外線吸収法を用いた測定方法が容易に連続測定できるため好ましい。メモリ102は、分離膜2へのオゾン水送水を開始する溶存オゾン濃度の閾値を記憶している。なお、溶存オゾン濃度の閾値は、5mg/Lから80mg/Lとすることが好ましい。
 比較部103は、溶存オゾンセンサ101よる測定値と、メモリ102から信号線9iを介して取得した閾値とを比較し、測定値が閾値以上になった場合に、信号線9bを介してオゾン水送水部11に送水開始信号を送る。オゾン水送水部11は、オゾン水生成部6において生成されたオゾン水W4を、オゾン水送水配管3gを介して分離膜2に送水する。これにより、膜洗浄装置による分離膜2の洗浄が開始される。
 図5及び図6に示すように、オゾン水送水配管3gは、ろ過水配管3aと接続されている。図5に示す例では、オゾン水送水配管3g、ろ過水配管3a、及び分離膜2が三方弁12を介して接続されている。また、図6に示す例では、オゾン水送水配管3gとろ過水配管3aのそれぞれに、開閉弁13a、13bが設置されている。なお、オゾン水送水配管3gに、適宜ポンプを設置してもよい。
 なお、工程移行判断手段7、またはpH調整手段8、または送水開始判断手段10の機能のうち、ソフトウェアで行っている機能は、図13に示すプロセッサ21とメモリ22を含む処理回路20で実現される。例えば工程移行判断手段7の比較部73、またはpH調整手段8のpH調整制御部83、または送水開始判断手段10の比較部103の機能は、CPU等のプロセッサ21で実現される。メモリ22は、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ21は、メモリ22から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ21にプログラムが入力される。
 実施の形態1による膜洗浄装置における膜洗浄開始手順について、図7のフローチャートを用いて説明する。まず、ステップS1において、オゾン水生成部6に被溶解水W3を供給する。具体的には、処理水槽5に貯留されている処理水W2を、被溶解水配管3cを介してオゾン水生成部6に送水し、被溶解水W3として貯留する。
 次に、ステップS2において第一工程を実施する。具体的には、pH調整手段8により、オゾン水生成部6に貯留された被溶解水W3が、pH調整手段8のメモリ82に記憶された第一工程におけるpH設定値となるように調整する。また、オゾナイザ61により発生させたオゾンガスをオゾン水生成部6へ供給し、被溶解水W3にオゾンガスを溶解させる。
 続いてステップS3において、オゾン水生成部6の被溶解水W3の有機物濃度が閾値以下か否かを判定する。具体的には、有機物センサ71による有機物濃度の測定値と、メモリ72に記憶された有機物濃度の閾値とを比較する。ステップS3において、有機物濃度の測定値が閾値よりも大きい場合(NO)、ステップS2に戻り、第一工程を続ける。オゾン水生成部6の被溶解水W3のpH設定値は、第一工程でのpH設定値が維持される。
 また、ステップS3において、有機物濃度の測定値が閾値以下の場合(YES)、ステップS4に進み、オゾン水生成工程の第二工程を実施する。具体的には、工程移行判断手段7は、pH調整手段8に信号線9aを介して工程移行信号を送る。工程移行信号を受信したpH調整手段8は、被溶解水W3がメモリ82に記憶された第二工程におけるpH設定値となるように調整する。この時、オゾンガスの供給は継続されている。
 次に、ステップS5において、被溶解水W3の溶存オゾン濃度が閾値以上か否かを判定する。具体的には、送水開始判断手段10は、溶存オゾンセンサ101による溶存オゾン濃度の測定値と、メモリ102に記憶された溶存オゾン濃度の閾値とを比較する。ステップS5において、溶存オゾン濃度の測定値が閾値よりも小さい場合(NO)、ステップS4に戻り、第二工程を続ける。
 また、ステップS5において、被溶解水W3の溶存オゾン濃度の測定値が閾値以上の場合(YES)、ステップS6に進み、オゾン水送水部11はオゾン水W4の送水を開始する。具体的には、送水開始判断手段10は、オゾン水送水部11に信号線9bを介して送水開始信号を送る。送水開始信号を受信したオゾン水送水部11は、オゾン水生成部6において生成されたオゾン水W4を、オゾン水送水配管3gを介して分離膜2に送水し、分離膜2の洗浄を開始する。なお、洗浄中はオゾンガスの供給を継続してもよいし、所定の溶存オゾン濃度を維持できるのであれば、オゾンガスの供給を停止してもよい。
 以上のように、実施の形態1によれば、分離膜2によってろ過処理された処理水W2を被溶解水W3として用い、被溶解水W3にオゾンガスを溶解させてオゾン水W4を生成する膜洗浄装置において、被溶解水W3の有機物濃度に基づいてオゾン水生成部6に貯留された被溶解水W3のpHを調整するようにしたので、MBRの運転条件によって有機物濃度が変動しても、有機物濃度の測定値から有機物の分解に必要な処理時間を推定することが可能である。このため、有機物の分解に必要な処理時間は有機物の分解に適したpH条件下でオゾン水を生成し、それ以降は溶存オゾン濃度を高めるのに適したpH条件となるようにpHを調整することが可能である。
 また、オゾン水生成部6において、中性またはアルカリ性条件下で被溶解水にオゾンガスを溶解する第一工程と、酸性条件下で被溶解水にオゾンガスを溶解する第二工程とを実施するものであり、被溶解水W3の有機物濃度に基づいて第一工程から第二工程への移行を判断するようにしたので、第一工程の処理時間を過不足なく最適化することができ、被溶解水W3の有機物濃度が低い場合には、第一工程の処理時間を短縮することができる。
 また、被溶解水W3の溶存オゾン濃度に基づいて分離膜2へのオゾン水送水の開始を判断するようにしたので、第二工程の処理時間を過不足なく最適化することができる。これらのことから、実施の形態1によれば、MBRの運転条件による被溶解水W3の有機物濃度の変動に関わらず、オゾン水W4を効率的に生成することができ、オゾン水生成に要するコストを低減することが可能である。
実施の形態2.
 図8は、本願の実施の形態2による膜洗浄装置の全体構成を示し、図9は、実施の形態2による膜洗浄装置の工程移行判断手段の構成を示している。実施の形態2による膜洗浄装置は、工程移行判断手段の構成のみが上記実施の形態1による膜洗浄装置と異なっており、その他の構成は同様であるのでここでは説明を省略する。
 実施の形態2による膜洗浄装置は、工程移行判断手段7Aを備えている。工程移行判断手段7Aは、図9に示すように、有機物センサ74、オゾンガスセンサ75、メモリ(第3のメモリ)72A、及び比較部(第3の比較部)73Aを備えている。有機物センサ74と比較部73A、オゾンガスセンサ75と比較部73A、及びメモリ72Aと比較部73Aは、それぞれ信号線9k、9m、9nで接続されている。
 有機物センサ74は、オゾン水生成部6へ供給される被溶解水W3の有機物濃度の初期値を、オゾン水生成工程開始前に測定する。有機物センサ74の設置場所は、被溶解水配管3cまたはオゾン水生成部6が好適であるが、特に限定されるものではない。なお、オゾン水生成工程開始前に被溶解水W3をサンプリングして、有機物濃度を測定するようにしてもよい。有機物濃度の測定は、有機物指標であるUV254、TOC、蛍光強度等を用いて測定することできる。
 オゾンガスセンサ75は、オゾンガス配管3dに設置され、オゾン水生成部6へ供給されるオゾンガス量(以下、供給オゾン量という)を測定する。供給オゾン量は、オゾンガス濃度と流量の積算値から求められる。第一工程から第二工程に移行するまでに必要な供給オゾン量は、被溶解水W3の有機物濃度の初期値によって異なる。すなわち、被溶解水W3の有機物濃度の初期値が高ければ、第一工程から第二工程に移行するまでに要する供給オゾン量も多くなる。
 メモリ72Aは、被溶解水W3の有機物濃度の初期値に対応して設定された第一工程から第二工程に移行するまでに必要な供給オゾン量の閾値を記憶している。比較部73Aは、有機物センサ74より得られた有機物濃度に対応する供給オゾン量の閾値をメモリ72Aから取得し、オゾンガスセンサ75より得られた供給オゾン量の測定値と閾値とを比較し、測定値が閾値以上になった場合、信号線9aによりpH調整手段8に工程移行信号を送る。
 被溶解水W3中の有機物はオゾンと反応し減少する。そのため、オゾン水生成工程中の被溶解水W3の有機物濃度は、被溶解水W3の有機物濃度の初期値と供給オゾン量をパラメータとして推定することができる。供給オゾン量の閾値は、被溶解水W3の有機物濃度の初期値と供給オゾン量をパラメータとして被溶解水W3の有機物濃度を算出する下式2を用いて算出することができる。式2を用いて算出された有機物濃度が、有機物濃度の閾値の算出方法(例えば式1)で算出された有機物濃度の閾値となる供給オゾン量を求め、これを供給オゾン量の閾値とする。
[有機物濃度]=f(有機物濃度の初期値、供給オゾン量)   (2)
 実施の形態2による膜洗浄装置における膜洗浄開始手順について、図10のフローチャートを用いて説明する。なお、上記実施の形態1の図7のフローチャートと同様の手順については、説明を省略する。まず、ステップS11において、オゾン水生成部6に被溶解水W3を供給する。次に、ステップS12において、有機物センサ74により被溶解水W3の有機物濃度の初期値を測定する。続いてステップS13において、工程を移行する供給オゾン量の閾値を決定する。具体的には、工程移行判断手段7Aの比較部73Aは、有機物センサ74により測定された有機物濃度の初期値に対応する供給オゾン量の閾値を、メモリ72Aから取得する。
 次に、ステップS14において第一工程を実施する。続いてステップS15において、オゾン水生成部6の被溶解水W3へ供給された供給オゾン量が閾値以上か否かを判定する。具体的には、工程移行判断手段7Aの比較部73Aは、オゾンガスセンサ75による供給オゾン量の測定値と、ステップS13で決定した閾値とを比較する。ステップS15において、供給オゾン量の測定値が閾値よりも小さい場合(NO)、ステップS14に戻り、第一工程を続ける。また、ステップS15において、供給オゾン量の測定値が閾値以上の場合(YES)、ステップS16に進み、第二工程を実施する。ステップS16以降は、図7のフローチャートのステップS4以降と同様である。
 実施の形態2による膜洗浄装置によれば、被溶解水W3の有機物濃度の初期値に対応する供給オゾン量の閾値を決定し、供給オゾン量の測定値が閾値以上となった場合に第一工程から第二工程に移行することにより、上記実施の形態1と同様の効果が得られる。
実施の形態3.
 図11は、本願の実施の形態3による膜洗浄装置の全体構成を示している。実施の形態3による膜洗浄装置は、工程移行判断手段の構成のみが上記実施の形態1による膜洗浄装置と異なっており、その他の構成は同様であるのでここでは説明を省略する。
 実施の形態3による膜洗浄装置は、工程移行判断手段7Bを備えている。工程移行判断手段7Bは、図11に示すように、溶存オゾンセンサ76、オゾンガスセンサ75、メモリ(第4のメモリ)72B、及び比較部(第4の比較部)73Bを備えている。溶存オゾンセンサ76と比較部73B、オゾンガスセンサ75と比較部73B、メモリ72Bと比較部73B、及び比較部73BとpH調整手段8は、それぞれ信号線9p、9m、9n、9aで接続されている。
 溶存オゾンセンサ76は、オゾン水生成部6に貯留された被溶解水W3の溶存オゾン濃度を、オゾン水生成工程の間、連続的に測定する。なお、工程移行判断手段7Bの溶存オゾンセンサ76として、送水開始判断手段10の溶存オゾンセンサ101(図4参照)を兼用してもよい。オゾンガスセンサ75は、上記実施の形態2と同様に、オゾンガス配管3dに設置され、オゾンガス濃度と流量の積算値から供給オゾン量を測定する。
 メモリ72Bは、被溶解水W3へ供給される供給オゾン量に対応して設定された第一工程から第二工程に移行するまでに必要な溶存オゾン濃度の閾値を記憶している。比較部73Bは、溶存オゾンセンサ76より得られた測定値とメモリ72Bに記憶された閾値とを比較し、溶存オゾン濃度の測定値が閾値以上になった場合、信号線9aによりpH調整手段8に工程移行信号を送る。
 被溶解水W3へ供給されたオゾンの一部は、被溶解水W3に溶解し、溶存オゾンとなると共に被溶解水W3中の有機物と反応し消費される。このため、被溶解水W3中の有機物と溶存オゾンと供給されるオゾンガスは平衡状態にある。例えばオゾンを消費する有機物の濃度が減少すると、溶存オゾン濃度は上昇する。すなわち、被溶解水W3中の有機物濃度は、溶存オゾン濃度及び供給オゾン量をパラメータとして推定することができる。工程移行判断手段7Bの比較部73Bは、被溶解水W3の溶存オゾン濃度及び供給オゾン量をパラメータとして被溶解水W3の有機物濃度を推定し、推定された被溶解水W3の有機物濃度に基づいて、第一工程から第二工程への移行を判断している。
 溶存オゾン濃度の閾値は、溶存オゾン濃度と供給オゾン量をパラメータとして被溶解水W3の有機物濃度を算出する下式3を用いて算出することができる。式3を用いて算出された有機物濃度が、有機物濃度の閾値の算出方法(例えば式1)で算出した有機物濃度の閾値となる溶存オゾン濃度を求め、これを溶存オゾン濃度の閾値とする。
[有機物濃度]=f(溶存オゾン濃度、供給オゾン量)   (3)
 実施の形態3による膜洗浄装置における膜洗浄開始手順について、図12のフローチャートを用いて説明する。なお、上記実施の形態1の図7のフローチャートと同様の手順については、説明を省略する。まず、ステップS21において、オゾン水生成部6に被溶解水W3を供給する。次に、ステップS22において第一工程を実施し、続いてステップS23においてオゾンガスセンサ75により供給オゾン量を測定する。
 次に、ステップS24において、工程を移行する溶存オゾン濃度の閾値を決定する。具体的には、工程移行判断手段7Bの比較部73Bは、オゾンガスセンサ75により測定された供給オゾン量に対応する溶存オゾン濃度の閾値を、メモリ72Bから取得する。続いてステップS25において、オゾン水生成部6の被溶解水W3の溶存オゾン濃度が閾値以上か否かを判定する。具体的には、工程移行判断手段7Bの比較部73Bは、溶存オゾンセンサ76による溶存オゾン濃度の測定値と、ステップS24で決定した閾値とを比較する。
 ステップS25において、溶存オゾン濃度の測定値が閾値よりも小さい場合(NO)、ステップS22に戻り、第一工程を続ける。また、ステップS25において、溶存オゾン濃度の測定値が閾値以上の場合(YES)、ステップS26に進み、第二工程を実施する。ステップS26以降は、図7のフローチャートのステップS4以降と同様である。
 実施の形態3によれば、被溶解水W3へ供給される供給オゾン量に対応する溶存オゾン濃度の閾値を決定し、溶存オゾン濃度の測定値が閾値以上となった場合に第一工程から第二工程に移行することにより、上記実施の形態1と同様の効果が得られる。
 本開示は、様々な例示的な実施の形態が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1 膜分離槽、2 分離膜、3a ろ過水配管、3b 処理水排出配管、3c 被溶解水配管、3d オゾンガス配管、3e 排オゾンガス配管、3f 酸アルカリ供給配管、3g オゾン水送水配管、4 ろ過ポンプ、5 処理水槽、6 オゾン水生成部、7、7A、7B 工程移行判断手段、8 pH調整手段、9a、9b、9c、9d、9e、9f、9g、9h、9i、9k、9m、9n、9p 信号線、10 送水開始判断手段、11 オゾン水送水部、12 三方弁、13a、13b 開閉弁、20 処理回路、21 プロセッサ、61 オゾナイザ、62 排オゾンガス分解部、71、74 有機物センサ、22、72、72A、72B、82、102 メモリ、73、73A、73B、103 比較部、75 オゾンガスセンサ、76、101 溶存オゾンセンサ、81 pHセンサ、83 pH調整制御部、84 pH調整部

Claims (11)

  1.  被処理水にろ過処理を行う分離膜をオゾン水で洗浄する膜洗浄装置であって、
    前記分離膜によってろ過処理された処理水を被溶解水として貯留し、被溶解水にオゾンガスを溶解させてオゾン水を生成するオゾン水生成部と、
    前記オゾン水生成部にオゾンガスを供給するオゾンガス供給手段と、
    被溶解水の有機物濃度に基づいて、前記オゾン水生成部に貯留された被溶解水のpHを調整するpH調整手段とを備えたことを特徴とする膜洗浄装置。
  2.  被溶解水の溶存オゾン濃度に基づいて、前記オゾン水生成部から前記分離膜へのオゾン水送水の開始を判断する送水開始判断手段と、
    前記送水開始判断手段による判断結果に基づいて、前記オゾン水生成部で生成されたオゾン水を前記分離膜へ送水するオゾン水送水部とを備えたことを特徴とする請求項1記載の膜洗浄装置。
  3.  前記送水開始判断手段は、
    前記オゾン水生成部の被溶解水の溶存オゾン濃度を測定する溶存オゾンセンサと、
    オゾン水送水を開始する溶存オゾン濃度の閾値を記憶した第1のメモリと、
    前記溶存オゾンセンサによる測定値と前記第1のメモリに記憶された閾値とを比較し、前記測定値が前記閾値以上となった場合に前記オゾン水送水部にオゾン水を送水させる第1の比較部とを含むことを特徴とする請求項2記載の膜洗浄装置。
  4.  前記オゾン水生成部は、中性またはアルカリ性条件下で被溶解水にオゾンガスを溶解する第一工程と、前記第一工程の後、酸性条件下で被溶解水にオゾンガスを溶解する第二工程とを実施することを特徴とする請求項1から請求項3のいずれか一項に記載の膜洗浄装置。
  5.  被溶解水の有機物濃度に基づいて、前記第一工程から前記第二工程への移行を判断する工程移行判断手段を備えたことを特徴とする請求項4記載の膜洗浄装置。
  6.  前記工程移行判断手段は、
    前記オゾン水生成部の被溶解水の有機物濃度を前記第一工程において測定する有機物センサと、
    第一工程から第二工程に移行する有機物濃度の閾値を記憶した第2のメモリと、
    前記有機物センサによる測定値と前記第2のメモリに記憶された閾値とを比較し、前記測定値が前記閾値以下となった場合に前記第一工程から前記第二工程に移行するように、前記pH調整手段を制御する第2の比較部とを含むことを特徴とする請求項5記載の膜洗浄装置。
  7.  前記工程移行判断手段は、
    前記オゾン水生成部の被溶解水の有機物濃度の初期値を測定する有機物センサと、
    前記オゾン水生成部へ供給されるオゾンガス量を測定するオゾンガスセンサと、
    被溶解水の有機物濃度の初期値に対応して設定された第一工程から第二工程に移行するまでに必要なオゾンガス量の閾値を記憶した第3のメモリと、
    前記有機物センサにより測定された有機物濃度の初期値に対応する前記閾値を前記第3のメモリから取得し、前記オゾンガスセンサによる測定値と前記閾値とを比較し、前記測定値が前記閾値以上となった場合に前記第一工程から前記第二工程に移行するように、前記pH調整手段を制御する第3の比較部とを含むことを特徴とする請求項5記載の膜洗浄装置。
  8.  前記工程移行判断手段は、
    前記オゾン水生成部の前記第一工程における被溶解水の溶存オゾン濃度を測定する溶存オゾンセンサと、
    前記オゾン水生成部へ供給されるオゾンガス量を測定するオゾンガスセンサと、
    前記オゾン水生成部へ供給されるオゾンガス量に対応して設定された第一工程から第二工程に移行する溶存オゾン濃度の閾値を記憶した第4のメモリと、
    前記オゾンガスセンサにより測定されたオゾンガス量に対応する前記閾値を前記第4のメモリから取得し、前記溶存オゾンセンサによる測定値と前記閾値とを比較し、前記測定値が前記閾値以上となった場合に前記第一工程から前記第二工程に移行するように、前記pH調整手段を制御する第4の比較部とを含み、
    前記第4の比較部は、被溶解水の溶存オゾン濃度及び前記オゾン水生成部へ供給されるオゾンガス量をパラメータとして被溶解水の有機物濃度を推定し、推定された被溶解水の有機物濃度に基づいて、前記第一工程から前記第二工程への移行を判断することを特徴とする請求項5記載の膜洗浄装置。
  9.  前記pH調整手段は、
    前記オゾン水生成部に貯留された被溶解水のpHを測定するpHセンサと、
    前記オゾン水生成部へ酸またはアルカリを供給し、被溶解水のpHを調整するpH調整部と、
    前記第一工程及び前記第二工程における被溶解水のpH設定値をそれぞれ記憶した第5のメモリと、
    第一工程及び第二工程において被溶解水が前記第5のメモリに記憶されたそれぞれのpH設定値となるように前記pH調整部を制御するpH調整制御部とを含むことを特徴とする請求項4から請求項8のいずれか一項に記載の膜洗浄装置。
  10.  前記分離膜は、活性汚泥と処理水とを分離する分離膜であることを特徴とする請求項1から請求項9のいずれか一項に記載の膜洗浄装置。
  11.  被処理水にろ過処理を行う分離膜をオゾン水で洗浄する膜洗浄方法であって、
    前記分離膜によってろ過処理された処理水を被溶解水として用い、被溶解水にオゾンガスを溶解させてオゾン水を生成するオゾン水生成工程を含み、
    前記オゾン水生成工程は、中性またはアルカリ性条件下で被溶解水にオゾンガスを溶解する第一工程と、前記第一工程の後、酸性条件下で被溶解水にオゾンガスを溶解する第二工程とを有し、
    被溶解水の有機物濃度に基づいて前記第一工程から前記第二工程への移行を判断すると共に、被溶解水の溶存オゾン濃度に基づいて前記分離膜へのオゾン水送水の開始を判断することを特徴とする膜洗浄方法。
PCT/JP2018/020677 2018-05-30 2018-05-30 膜洗浄装置及び膜洗浄方法 WO2019229866A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/046,899 US20210053014A1 (en) 2018-05-30 2018-05-30 Membrane cleaning device and membrane cleaning method
KR1020207033565A KR20200137017A (ko) 2018-05-30 2018-05-30 막 세정 장치 및 막 세정 방법
PCT/JP2018/020677 WO2019229866A1 (ja) 2018-05-30 2018-05-30 膜洗浄装置及び膜洗浄方法
JP2018546906A JP6430091B1 (ja) 2018-05-30 2018-05-30 膜洗浄装置及び膜洗浄方法
CN201880093508.7A CN112135681B (zh) 2018-05-30 2018-05-30 膜清洗装置及膜清洗方法
SG11202011443TA SG11202011443TA (en) 2018-05-30 2018-05-30 Membrane cleaning device and membrane cleaning method
TW108118138A TWI717743B (zh) 2018-05-30 2019-05-24 膜洗淨裝置及膜洗淨方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020677 WO2019229866A1 (ja) 2018-05-30 2018-05-30 膜洗浄装置及び膜洗浄方法

Publications (1)

Publication Number Publication Date
WO2019229866A1 true WO2019229866A1 (ja) 2019-12-05

Family

ID=64480549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020677 WO2019229866A1 (ja) 2018-05-30 2018-05-30 膜洗浄装置及び膜洗浄方法

Country Status (7)

Country Link
US (1) US20210053014A1 (ja)
JP (1) JP6430091B1 (ja)
KR (1) KR20200137017A (ja)
CN (1) CN112135681B (ja)
SG (1) SG11202011443TA (ja)
TW (1) TWI717743B (ja)
WO (1) WO2019229866A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215489A1 (ja) * 2021-04-05 2022-10-13 キヤノン株式会社 オゾン含有ウルトラファインバブル液の生成装置およびオゾン含有ウルトラファインバブル液の生成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191997A1 (ja) * 2020-03-24 2021-09-30 三菱電機株式会社 膜洗浄装置および膜分離活性汚泥システム、並びに膜洗浄方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277572A (ja) * 1997-04-03 1998-10-20 Japan Organo Co Ltd 水中の有機物除去方法
JP2002166139A (ja) * 2000-12-04 2002-06-11 Hitachi Plant Eng & Constr Co Ltd 膜分離装置
JP2004105876A (ja) * 2002-09-19 2004-04-08 Isomura Housui Kiko Kk ろ過膜の洗浄方法
JP2005230731A (ja) * 2004-02-20 2005-09-02 Kurita Water Ind Ltd 水処理方法及び水処理装置
JP2005324118A (ja) * 2004-05-14 2005-11-24 Kurita Water Ind Ltd 水処理方法及び水処理装置
JP2007083155A (ja) * 2005-09-21 2007-04-05 Fuji Electric Systems Co Ltd 水処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187324A (ja) * 1999-12-28 2001-07-10 Nkk Corp 膜ろ過装置の洗浄方法および水処理装置
US6755977B2 (en) * 2002-06-19 2004-06-29 Dennis A. Brunsell Method in treating aqueous waste feedstream for improving the flux rates, cleaning and the useful life of filter media
JP4039662B2 (ja) * 2002-08-13 2008-01-30 株式会社Sumco 半導体基板又は素子の洗浄方法
KR101816319B1 (ko) * 2009-06-03 2018-01-08 구라시키 보세키 가부시키가이샤 하이드록실 라디칼 함유수 공급방법 및 하이드록실 라디칼 함유수 공급장치
CN102711965A (zh) * 2010-03-30 2012-10-03 东丽株式会社 分离膜组件的清洗方法和制水方法
US20150232357A1 (en) * 2013-12-27 2015-08-20 Clean Liquid, Llc Real-time system and processes for controlling ozone gas
JP6734621B2 (ja) * 2014-02-20 2020-08-05 オルガノ株式会社 オゾン水供給方法及びオゾン水供給装置
WO2015156242A1 (ja) * 2014-04-10 2015-10-15 三菱電機株式会社 膜を用いた水処理方法および水処理装置
CN115121124A (zh) * 2014-08-29 2022-09-30 三菱电机株式会社 过滤膜的清洗方法及清洗装置、以及水处理系统
CN104710001A (zh) * 2015-03-11 2015-06-17 天津市联合环保工程设计有限公司 用于污水深度处理的高效臭氧接触反应装置及处理工艺
CN207276417U (zh) * 2017-09-06 2018-04-27 江西博鑫精陶环保科技有限公司 一种陶瓷膜曝气和微正压臭氧膜再生水处理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277572A (ja) * 1997-04-03 1998-10-20 Japan Organo Co Ltd 水中の有機物除去方法
JP2002166139A (ja) * 2000-12-04 2002-06-11 Hitachi Plant Eng & Constr Co Ltd 膜分離装置
JP2004105876A (ja) * 2002-09-19 2004-04-08 Isomura Housui Kiko Kk ろ過膜の洗浄方法
JP2005230731A (ja) * 2004-02-20 2005-09-02 Kurita Water Ind Ltd 水処理方法及び水処理装置
JP2005324118A (ja) * 2004-05-14 2005-11-24 Kurita Water Ind Ltd 水処理方法及び水処理装置
JP2007083155A (ja) * 2005-09-21 2007-04-05 Fuji Electric Systems Co Ltd 水処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215489A1 (ja) * 2021-04-05 2022-10-13 キヤノン株式会社 オゾン含有ウルトラファインバブル液の生成装置およびオゾン含有ウルトラファインバブル液の生成方法

Also Published As

Publication number Publication date
TWI717743B (zh) 2021-02-01
CN112135681A (zh) 2020-12-25
JPWO2019229866A1 (ja) 2020-06-18
KR20200137017A (ko) 2020-12-08
JP6430091B1 (ja) 2018-11-28
SG11202011443TA (en) 2020-12-30
US20210053014A1 (en) 2021-02-25
TW202003098A (zh) 2020-01-16
CN112135681B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN103492054B (zh) 膜组件的洗涤方法
JP6432914B2 (ja) 水処理方法および水処理装置
JP5933854B1 (ja) 被処理水の濾過膜の洗浄方法及び洗浄装置、並びに水処理システム
CN106132518B (zh) 使用膜的水处理方法以及水处理装置
JP6695515B1 (ja) ろ過膜洗浄装置、ろ過膜洗浄方法、および水処理システム
JP6430091B1 (ja) 膜洗浄装置及び膜洗浄方法
WO2019039155A1 (ja) 水処理膜の洗浄装置及び洗浄方法
JP2009006209A (ja) 中空糸膜モジュールの洗浄方法
JP6271109B1 (ja) 水処理膜の洗浄装置及び洗浄方法、並びに水処理システム
JP6591093B1 (ja) オゾン水生成装置、水処理装置、オゾン水生成方法、および、洗浄方法
JP2012086182A (ja) 水処理方法および水処理装置
JP2009101349A (ja) 浸漬型膜モジュールの洗浄方法
JP2012086120A (ja) 浸漬型膜モジュールの薬品洗浄方法
JP2003326258A (ja) 水処理方法
JP6107987B1 (ja) 超純水製造システムの洗浄方法
JP2009160512A (ja) 膜ろ過装置の排水処理方法
JP2009082858A (ja) 濾過膜の洗浄方法
KR102027900B1 (ko) 전오존 처리를 적용한 수처리 장치 및 공법
CN115103820A (zh) 基于过滤特性预测的造水装置的控制方法、造水装置的故障判定方法、造水装置、造水装置的运行程序、造水装置的故障判定程序和记录介质
JP2005218904A (ja) 水処理装置
JP7120496B1 (ja) 濾過膜洗浄装置、水処理装置及び濾過膜洗浄方法
WO2022157926A1 (ja) 濾過膜の洗浄装置、水処理装置及び濾過膜の洗浄方法
JP6952930B1 (ja) 水処理装置および水処理方法
JP3449247B2 (ja) 水処理方法およびその装置
CN115297949A (zh) 水处理系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546906

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207033565

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920732

Country of ref document: EP

Kind code of ref document: A1