WO2019228282A1 - 发光控制信号生成装置及显示装置 - Google Patents

发光控制信号生成装置及显示装置 Download PDF

Info

Publication number
WO2019228282A1
WO2019228282A1 PCT/CN2019/088422 CN2019088422W WO2019228282A1 WO 2019228282 A1 WO2019228282 A1 WO 2019228282A1 CN 2019088422 W CN2019088422 W CN 2019088422W WO 2019228282 A1 WO2019228282 A1 WO 2019228282A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
control signal
emission control
switching transistor
signal
Prior art date
Application number
PCT/CN2019/088422
Other languages
English (en)
French (fr)
Inventor
高雪岭
彭宽军
羊振中
徐智强
秦纬
王铁石
李小龙
李胜男
滕万鹏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/623,609 priority Critical patent/US11114061B2/en
Publication of WO2019228282A1 publication Critical patent/WO2019228282A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • G09G2320/103Detection of image changes, e.g. determination of an index representative of the image change

Definitions

  • the present disclosure relates to display technology, and in particular, to a light emission control signal generating device and a display device.
  • the current light-emitting device has a fast response speed, it also has the problem of motion blur. This is due to the combined effect of the holding characteristics of the light-emitting device and the visual persistence characteristics of the human eye. As shown in Figure 1, a square-wave light If a strong signal is input to the human eye, the human visual response will be delayed (the visual dwell time of the normal human eye is 0.05 to 0.1 s).
  • AMOLED Active-matrix organic light emitting diode
  • AMOLED is a hold-type display technology.
  • the perception that the human eye generates in the brain after seeing the image is different from the movement position of the object displayed on the screen, so that the brain will feel the blurring feeling.
  • Figure 3 shows the principle of the generation of fuzzy feelings in the brain. The movement is as shown in A) in FIG. 3, and it should be displayed on the display as shown in B) in FIG. 3, but the actual situation is not the case, but as shown in C) in FIG. 3, from FIG. 3 D) It can be seen that there is a difference between the position of the object determined by eye tracking and the position of the object actually displayed on the display, which leads to a blur.
  • An object of the present disclosure is to provide a light emission control signal generating device and a display device for improving dynamic smear in the display device.
  • a light emission control signal generating device including:
  • a state detection circuit for detecting whether the current frame is a static frame or a dynamic frame and outputting an indication signal indicating a static frame or a dynamic frame respectively;
  • the plurality of light emission control signal generating circuits are divided into a plurality of blocks, and each block respectively inputs a different light emission enable signal based on the instruction signal to generate a light emission control signal.
  • An embodiment of the present disclosure further provides a display panel including a pixel array formed by a plurality of rows of pixel units and a light emission control signal generating circuit corresponding to each row of pixel units;
  • the pixel array includes a plurality of partitions, each partition includes a plurality of pixel unit groups, and each pixel unit group includes a part of pixel units in a row of pixel units;
  • Each pixel unit group includes a third switching transistor and a fourth switching transistor:
  • a gate of the third switching transistor receives a first control signal, a source of the third switching transistor receives a light emission control signal, a drain of the third switching transistor and a pixel unit in each pixel unit group. connection;
  • a gate of the fourth switching transistor is input with a second control signal, a source of the fourth switching transistor is connected to a pixel unit in each pixel unit group, and a drain of the fourth switching transistor is input after modulation.
  • Light control signal
  • the duty ratio of the modulated light emission control signal is smaller than the duty ratio of the light emission control signal.
  • An embodiment of the present disclosure further provides a display device including the light emission control signal generating device as described above.
  • the plurality of light emission control signal generating circuits are divided into different blocks, and each block can input different light emission according to an indication signal output by the state detection circuit indicating whether the current frame is a static frame or a dynamic frame.
  • the enable signal further causes each block to respectively input a different light-emitting enable signal based on the indication signal to generate a light-emitting control signal. In this way, a corresponding light-emitting enable signal can be input in the case of a dynamic frame, thereby changing the light-emitting time of the light-emitting device to improve dynamic smear.
  • Figure 1 shows an example of a human visual response.
  • FIG. 2 shows a blur phenomenon observed by a human eye.
  • FIG. 3 is a schematic diagram showing the reason why the human brain may feel smear blur.
  • FIG. 4 is a schematic structural diagram of a light emission control signal generating device according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a light emission control signal generating device according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a switch circuit in FIG. 5.
  • Figure 7 shows the relationship between luminous time and brain perception.
  • FIG. 8 shows the timing of the instruction signal output by the state detection circuit.
  • FIG. 9 shows a structure diagram of each light emission control signal generating circuit.
  • FIG. 10 shows a timing chart when a static frame is displayed.
  • FIG. 11 shows a timing chart when a dynamic frame is displayed.
  • FIG. 12 is a schematic structural diagram of a light emission control signal generating device according to an embodiment of the present disclosure.
  • FIG. 13 shows a driving sequence of the light emission control signal generating device shown in FIG. 12.
  • FIG. 14 shows another driving sequence of the light emission control signal generating device shown in FIG. 12.
  • FIG. 15 shows an example of dynamic smear improvement using the device shown in FIG. 12.
  • FIG. 16 is a schematic structural diagram of a display panel according to an exemplary embodiment of the present disclosure.
  • each pixel unit group in the display panel of FIG. 16 is shown in FIG. 17.
  • FIG. 18 shows a conventional pixel layout.
  • FIG. 4 is a schematic structural diagram of a light emission control signal generating device according to an exemplary embodiment of the present disclosure.
  • the light emission control signal generating device 1 includes a state detection circuit 101 and a plurality of light emission control signal generation circuits 102 a.
  • the plurality of light emission control signal generation circuits 102a are divided into a plurality of blocks, for example, blocks 102-1 to 102-3, and each block is generated by inputting different light emission enable signals based on an instruction signal output by the state detection circuit 101, respectively.
  • Light control signal is a schematic structural diagram of a light emission control signal generating device according to an exemplary embodiment of the present disclosure.
  • the light emission control signal generating device 1 includes a state detection circuit 101 and a plurality of light emission control signal generation circuits 102 a.
  • the plurality of light emission control signal generation circuits 102a are divided into a plurality of blocks, for example, blocks 102-1 to 102-3, and each block is generated by inputting different light emission enable signals based on an
  • the state detection circuit 101 may be implemented by various devices capable of realizing the current frame state, for example, may be implemented by a digital device or by an analog device. Specifically, for example, the state detector 101 may be implemented by an integrated circuit (IC).
  • IC integrated circuit
  • the plurality of light emission control signal generating circuits are divided into different blocks, and each block can input different light emission according to an indication signal output by the state detection circuit indicating whether the current frame is a static frame or a dynamic frame.
  • the enable signal further causes each block to respectively input a different light-emitting enable signal based on the indication signal to generate a light-emitting control signal. In this way, a corresponding light-emitting enable signal can be input in the case of a dynamic frame, thereby changing the light-emitting time of the light-emitting device to improve dynamic smear.
  • FIG. 5 is a schematic structural diagram of a light emission control signal generating device according to an embodiment of the present disclosure.
  • 1280 emission control signal generation circuits are shown, that is, EOA_1 to EOA_1280, and these emission control signal generation circuits are divided into a plurality of blocks.
  • EOA_1 to EOA_400 form the first block B1
  • EOA_401 to EOA_800 form the second block B2
  • EOA_801 to EOA_1280 form the third block B3.
  • the block division method given in the figure is only an example, and a plurality of light-emitting control signal generating circuits may be divided into different numbers of blocks according to actual requirements.
  • Two adjacent blocks are connected through a switch circuit, and the switch circuit is used to input a first light-emitting enable signal or a second light-emitting enable signal to a phase based on an instruction signal output by a state detection circuit (not shown in the figure).
  • a state detection circuit not shown in the figure.
  • a switch circuit SW1 is connected between the first block B1 and the second block B2, and the switch circuit SW1 selectively inputs the first light-emission enable signal STV1 or the second light-emission enable signal STV2 to the first Block B2.
  • a switch circuit SW2 is connected between the second block B2 and the third block B3.
  • the switch circuit SW2 selectively inputs the first light-emitting enable signal STV1 or another second light-emitting enable signal STV3 to the third block B3. .
  • the light emission control signal generating circuits EOA_1 to EOA_1280 may be implemented by a transistor.
  • the light emission control signal generating circuits EOA_1 to EOA_1280 may be integrated in a driving circuit of a display device.
  • FIG. 6 is a schematic structural diagram of a switch circuit in FIG. 5.
  • the switching circuit includes a first switching transistor M1 and a second switching transistor M2.
  • An indication signal (indicated by I switch ) output from the gate input state detection circuit of the first switching transistor M1, and its source is connected to one of two adjacent blocks, for example, to the first block B1
  • the drain of the last light emission control signal generating circuit EOA_400 is connected to the other of two adjacent blocks, for example, the first light emission control signal generating circuit EOA_401 in the second block B2.
  • the gate of the second switching transistor M2 is input with the indication signal I switch , and the source thereof is input with the second light-emitting enable signal STV2, and the drain thereof is connected to the other one of the two adjacent blocks, for example, connected The first light emission control signal generating circuit EOA_401 in the second block B2.
  • the first switching transistor M1 is a P-type transistor
  • the second transistor M2 is an N-type transistor.
  • the conductivity types of the first and second switching transistors may also be changed.
  • Figure 7 shows the relationship between luminous time and brain perception. It can be seen from the figure that the light emitting time of the pixel unit (light emitting device) is reduced, and the gap between the position of the object that the human eye sees on the screen and the perception in the brain decreases. Using the relationship shown in FIG. 7, for dynamic frames, the gap in human brain perception is reduced by reducing the light emission time, thereby improving dynamic smear.
  • FIG. 8 shows the timing of the instruction signal output by the state detection circuit. It can be seen that when the current frame is a dynamic frame or a static frame, the levels of the indication signals are different.
  • FIG. 9 shows a structure diagram of each light emission control signal generating circuit.
  • each light emission control signal generating circuit includes 10 transistors and three capacitors.
  • EM output represents an output signal of each light emission control signal generating circuit, and the output signal can be input to the gates of a row of pixel units to cause a row of pixel units to emit light.
  • FIG. 10 shows a timing chart when a static frame is displayed.
  • STV1 Start vertical
  • STV1 is equivalent to a frame start signal of each frame
  • EM (n) is a circuit from each light emission control signal generating circuit
  • the output signal, the EM (n) is a light emission control signal, which can control the gate of a row of pixels (such as the pixel in the nth row).
  • the waveforms of STV1 and EM (n) are basically the same, except that EM (n) is relative to STV1. Delayed for a while.
  • the indication signal I switch is at a low level, the switch M1 is turned on, M2 is turned off, and the EM (n) output by the light emission control signal generating circuit EOA_400 in the first block B1 (that is, in FIG. 8) EM output ) is used as the STV1 input of the light emission control signal generating circuit EOA_401 in the next block B2. That is, in the case of a static frame, it is not necessary to adjust the light-emitting time of the light-emitting device, so that the first transistor M1 is turned on, so that each block uses the normal input signal STV1 to generate a light-emitting control signal.
  • FIG. 11 shows a timing chart when a dynamic frame is displayed.
  • the indication signal I switch is at a high level
  • the switch M1 is turned off
  • M2 is turned on
  • the second light-emission enable signal STV2 is input to the light in the second block B2.
  • Control signal generation circuit EOA_401 It can be seen from FIG. 10 that the high level of STV2 lasts for 5 clock cycles, while the high level of STV1 lasts for 3 clock cycles.
  • the light-emitting enable portion of the light-emitting enable signal STV2 is shorter than the light-emitting enable portion of the first light-emitting enable signal STV1), which can shorten the light-emitting time of the light-emitting device, thereby improving dynamic smear. That is, in the case of a dynamic frame, the light-emitting time of the light-emitting device needs to be adjusted.
  • the light-emitting time of the light-emitting device needs to be shortened, so that the first transistor M1 is turned off and the second transistor M2 is turned on, so that STV2 is input to The second block B2 is used to generate a corresponding lighting control signal.
  • the duty cycle of the high-low voltage of the first light-emitting enable signal STV1 or the second light-emitting enable signal STV2 determines the duty cycle of the light-emitting control signal Emission.
  • OLED The length of the light emission time is the Emission output signal.
  • the pixel driving circuit does not need to be partitioned at the physical layer. Instead, a plurality of light emission control signal generating circuits are partitioned by a switching circuit.
  • the normal light emission enable signal STV1 Enter the second block B2; when the frame is displaying a dynamic picture, STV2 is input to the second block B2; through the above driving method and circuit, the partition control for different screen displays can be implemented to improve dynamic smear.
  • FIG. 12 is a schematic structural diagram of a light emission control signal generating device according to an embodiment of the present disclosure.
  • the difference between this embodiment and the embodiment shown in FIG. 5 is that there is no switching circuit in this embodiment, and there is no physical connection between the output end of one block in the plurality of blocks and the input section of the other block. Connection (see FIG. 11, there is no physical connection between the output end of the first block B1 and the input end of the second block B2, that is, no physical line); each block is driven by a different light-emitting signal, respectively.
  • FIG. 13 shows a driving sequence of the light emission control signal generating device shown in FIG. 12. The working principle of this embodiment is described below with reference to FIGS. 12 and 13.
  • the modulated light-emitting enable signal can be used for driving the block.
  • a normal light-emitting enable signal STV1 can be used; for example, if the second frame is a dynamic frame, a modulated light-emitting can be used Energy signal, for example, the high level of STV1 in the second frame in FIG. 13 appears high again after three clock cycles, so that the duty cycle of the signal STV in the second frame is reduced, and the light-emitting device light-emitting time is reduced. To improve smear.
  • the modulated light-emission enable signal may not be used.
  • the level of the data signal Sdata in the charging phase of the second frame may be higher than the level of the data signal Sdata in the charging phase of the first frame.
  • FIG. 14 is a schematic diagram showing another driving timing of the light emission control signal generating device shown in FIG. 12.
  • the difference between this driving timing and the driving timing shown in FIG. 12 is that in FIG. 14, the high level of STV1 does not reappear at three clock cycles as shown in FIG. 13, but causes the high level of STV1 in a dynamic frame.
  • the duration is greater than the sustained level of STV1 in the static frame, that is, the duty cycle of the STV is reduced, and the light emitting time of the light emitting device is reduced, thereby improving dynamic smear.
  • FIG. 15 shows an example of dynamic smear improvement using the device shown in FIG. 12.
  • a modulated light-emission enable signal that is, STV1 with a reduced duty cycle
  • the modulated light-emission enable signal can be used for the second block B2; if the football moves to the pixel unit corresponding to the third block B2, the The third block B3 uses a modulated light-emission enable signal.
  • the AMOLED display screen is divided into a plurality of regions (for example, 3 regions), where the control signal is generated by the driving chip; when it is a static picture, the duty cycle of the light-emitting enable signal is 100%; when it is dynamic When the picture is displayed, the duty cycle of the signal is reduced to improve dynamic smear.
  • FIG. 16 is a schematic structural diagram of a display panel according to an exemplary embodiment of the present disclosure.
  • the display panel includes a pixel array formed by a plurality of rows of pixel units and a light emission control signal generating circuit 301 corresponding to each row of pixel units.
  • the pixel array includes a plurality of partitions, for example, partitions C1 to C4, and each partition includes a plurality of pixel unit groups.
  • the partition C1 includes pixel unit groups G1 to G3, and each pixel unit group includes a part of pixel units in a row of pixel units.
  • FIG. 17 shows the structure of each pixel unit group (the structure of the pixel unit group G1 is shown in FIG. 17).
  • Each pixel unit group includes a third switching transistor M3 and a fourth switching transistor M4.
  • the gate of the third switching transistor M3 inputs the first control signal A1, the source of the third switching transistor M3 is connected to the first light-emitting control signal EM1, and the drain of the third switching transistor M3 is connected to each pixel in each pixel unit group.
  • the units (for example, four pixel units in the pixel unit group) are specifically connected through a line L1.
  • a gate of the fourth switching transistor M4 is connected to the second control signal B1, and a source of the fourth switching transistor is connected to each pixel unit in each pixel unit group (for example, connected through a line L1).
  • the drain inputs a modulated light emission control signal (for example, a high level in FIG. 17).
  • the duty ratio of the modulated light-emission enable signal is smaller than the duty ratio of the light-emission control signal.
  • the third switching transistor and the fourth switching transistor may be connected to the pixel unit through another line (L2 shown in FIG. 17).
  • a plurality of pixel units in one row are connected to one light emission control signal line EM, as shown in FIG. 18, that is, all the pixel units in a row make the light emitting devices emit light for the same time.
  • the pixel units are partitioned, so that the light emission control signals input by the pixel units of one row are different, so that the dynamic smear can be improved in the case of dynamic frames.
  • the first control signal A1 is at a low level
  • the second control signal B1 is at a high level
  • the third transistor M1 is turned on
  • the fourth transistor M4 is turned off, so that the light emission control signal EM1 is input.
  • a conventional light emission control signal is used without adjustment.
  • the first control signal A1 is high level
  • the second control signal B1 is low level
  • the third transistor M1 is turned off
  • the fourth transistor M4 is turned on, so that the modulated light emission control signal is input to the pixel Each pixel unit in the cell group G1.
  • the duty ratio of the modulated light-emitting control signal can be reduced, thereby reducing the light-emitting time of the light-emitting device and improving dynamic smear.
  • the data signal can also be adjusted by algorithm processing to compensate for the brightness attenuation caused by the reduction of the duty cycle of the light emission control signal.
  • the level of the data signal may be higher than the level of the data signal in the light-emitting phase in the light-emitting phase during the light-emitting phase.
  • An embodiment of the present invention further provides a display device, which may include the above-mentioned light emission control signal generating device.
  • modules or units of the device for action execution are mentioned in the detailed description above, this division is not mandatory.
  • the features and functions of two or more modules or units described above may be embodied in one module or unit.
  • the features and functions of a module or unit described above can be further divided into multiple modules or units to be embodied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开涉及一种发光控制信号生成装置以及显示装置。发光控制信号生成装置包括:状态检测电路,用于检测当前帧是静态还是动态并分别输出表示静态或动态的指示信号;多个发光控制信号生成电路;其中,所述多个发光控制信号生成电路被划分成多个区块,每个区块基于所述指示信号分别输入不同的发光使能信号来生成发光控制信号。采用本公开的方案,可以改善动态拖影。

Description

发光控制信号生成装置及显示装置 技术领域
本公开涉及显示技术,尤其涉及一种发光控制信号生成装置及显示装置。
背景技术
虽然目前的发光器件的响应速度很快,但是同样存在运动模糊的问题,这是由于发光器件的保持特性和人眼视觉暂留特性联合作用的结果,如图1所示,一个方波形的光强信号输入人眼,人的视觉响应会有延迟(正常人眼的视觉暂留时间0.05~0.1s)。
假设屏幕显示一个画面从左侧到右侧快速移动,人眼观察到的是一个模糊的画面,如图2所示。
以AMOLED(Active-matrix organic light emitting diode)为例,AMOLED为一种保持型(Hold-Type)显示器技术。当一物体在屏幕中移动时,人眼看到影像后在大脑中产生的感知,和屏幕显示的物体运动位置不同,从而使大脑会感受到拖影模糊的感受。图3示出了大脑的模糊感受产生的原理。运动是如图3中的A)所示,在显示器上显示的应该如图3中的B)所示,但是实际情况并非如此,而是如图3中的C)所示,从图3中的D)可以看出通过眼睛跟踪确定的对象位置与显示器实际显示的对象位置之间存在差异,进而导致出现了模糊(blur)。
因此,如何有效解决现有显示装置中的动态拖影是亟待解决的问题。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种发光控制信号生成装置及显示装置,用于改善显示装置中的动态拖影。
根据本公开的一个方面,提供了一种发光控制信号生成装置,包括:
状态检测电路,用于检测当前帧是静态帧还是动态帧并分别输出表示静态帧或动态帧的指示信号;
多个发光控制信号生成电路;
其中,所述多个发光控制信号生成电路被划分成多个区块,每个区块基于所述指示信号分别输入不同的发光使能信号来生成发光控制信号。
本公开一实施例还提供一种显示面板,包括多行像素单元形成的像素阵列以及与各行像素单元对应的发光控制信号生成电路;
其中,所述像素阵列包括多个分区,每个分区包括多个像素单元组,每个像素单元组包括一行像素单元中的一部分像素单元;
每个像素单元组包括第三开关晶体管和第四开关晶体管:
所述第三开关晶体管的栅极输入第一控制信号,所述第三开关晶体管的源极输入发光控制信号,所述第三开关晶体管的漏极与所述每个像素单元组中的像素单元连接;
所述第四开关晶体管的栅极输入第二控制信号,所述第四开关晶体管的源极与所述每个像素单元组中的像素单元连接,所述第四开关晶体管的漏极输入调制后的发光控制信号;
其中所述调制后的所述发光控制信号的占空比小于所述发光控制信号的占空比。
本公开一实施例还提供一种显示装置,包括如上所述的发光控制信号生成装置。
在本公开的实施例中,将多个发光控制信号生成电路分成不同的区块,每个区块可以根据状态检测电路输出的表明当前帧是静态帧还是动态帧的指示信号来输入不同的发光使能信号,进而使得每个区块基于所述指示信号分别输入不同的发光使能信号来生成发光控制信号。通过这种方式,可以在动态帧的情况下输入相应的发光使能信号,进而使得发光器件的发光时间改变,以改善动态拖影。
附图说明
图1示出人的视觉响应的例子。
图2示出人眼观察到的模糊现象。
图3示出人脑会感受到拖影模糊的原因示意图。
图4示出了本公开一示例性实施例的发光控制信号生成装置的结构示意图。
图5示出了本公开一示例性实施例的发光控制信号生成装置的结构示意图。
图6示出了图5中开关电路的结构示意图。
图7示出了发光时间与大脑感知之间的关系。
图8示出了状态检测电路输出的指示信号的时序。
图9示出了每个发光控制信号生成电路的结构示意图。
图10示出了显示静态帧时的时序图。
图11示出了显示动态帧时的时序图。
图12示出了本公开一实施例的发光控制信号生成装置的结构示意图。
图13示出了图12所示发光控制信号生成装置的一种驱动时序。
图14示出了图12所示发光控制信号生成装置的另一种驱动时序。
图15示出了采用图12所示的装置进行动态拖影改善的例子。
图16示出了根据本公开一示例性实施例的显示面板的结构示意图。
图17中示出了图16的显示面板中每个像素单元组的结构。
图18示出了常规的像素布局。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本公开将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免模糊本公开的各方面。
此外,附图仅为本公开的示意性图解,并非一定是按照比例绘制。图中相同的附图标记标识相同或相似的部分,因而将省略对它们的重复描述。
图4示出了本公开一示例性实施例的发光控制信号生成装置的结构示意图,该发光控制信号生成装置1包括状态检测电路101以及多个发光控制信号生成电路102a。多个发光控制信号生成电路102a被划分成多个区块,例如区块102-1至102-3,每个区块基于状态检测电路101输出的指示信号分别输入不同的发光使能信号来生成发光控制信号。
根据一个实施例,状态检测电路101可以通过各种能够实现当前帧状态的器件来实现,例如可以通过数字器件或通过模拟器件来实现。具体而言,例如,状态检测器101可以通过集成电路(IC)实现。
在本公开的实施例中,将多个发光控制信号生成电路分成不同的区块,每个区块可以根据状态检测电路输出的表明当前帧是静态帧还是动态帧的指示信号来输入不同的发光使能信号,进而使得每个区块基于所述指示信号分别输入不同的发光使能信号来生成发光控制信号。通过这种方式,可以在动态帧的情况下输入相应的发光使能信号,进而使得发光器件的发光时间改变,以改善动态拖影。
实施例一
图5示出了本公开一实施例的发光控制信号生成装置的结构示意图。在该实施例中,示出了1280个发光控制信号生成电路,即EOA_1至EOA_1280,这些发光控制信号生成电路被分成多个区块。例如,EOA_1至EOA_400组成第一区块B1,EOA_401至EOA_800组成第二区块B2,EOA_801至EOA_1280组成第三区块B3。当然,图中给出的区块划分方式仅是示例,也可以根据实际的需求,将多个发光控制信号生成电路划分成不同数量的区块。
相邻的两个区块之间通过开关电路连接,该开关电路用于基于状态检测电路(图中未 示出)输出的指示信号将第一发光使能信号或第二发光使能信号输入相邻的两个区块之一。
如图5所示,第一区块B1和第二区块B2之间连接有开关电路SW1,开关电路SW1选择性地将第一发光使能信号STV1或第二发光使能信号STV2输入到第二区块B2。
第二区块B2和第三区块B3之间连接有开关电路SW2,开关电路SW2选择性地将第一发光使能信号STV1或另一第二发光使能信号STV3输入到第三区块B3。
根据一个示例性实施例,发光控制信号生成电路EOA_1至EOA_1280可以通过晶体管实现。发光控制信号生成电路EOA_1至EOA_1280可以集成在显示器件的驱动电路中。
图6示出了图5中开关电路的结构示意图。该开关电路包括第一开关晶体管M1和第二开关晶体管M2。
第一开关晶体管M1的栅极输入状态检测电路输出的指示信号(图中以I switch表示),其源极连接相邻的两个区块中的一个区块,例如连接第一区块B1中的最后一个发光控制信号生成电路EOA_400,其漏极连接相邻的两个区块中的另一个区块,例如连接第二区块B2中的第一个发光控制信号生成电路EOA_401。
第二开关晶体管M2的栅极输入所述指示信号I switch,其源极输入第二发光使能信号STV2,其漏极连接所述相邻的两个区块中的另一个区块,例如连接第二区块B2中的第一个发光控制信号生成电路EOA_401。
在该实施例中,所述第一开关晶体管M1是P型晶体管,所述第二晶体管M2是N型晶体管。当然,根据具体的应用场景或设计需求,第一和第二开关晶体管的导电类型也可以变化。
下面详细描述该实施例的工作原理。
图7示出了发光时间与大脑感知之间的关系。从图中可以看出,像素单元(发光器件)的发光时间减小,则人眼在屏幕上看到的物体位置与大脑中感知的差距缩小。利用图7所示的关系,对于动态帧,通过减小发光时间来减少人脑感知的差距,进而改善动态拖影。
图8示出了状态检测电路输出的指示信号的时序。可以看出,当前帧是动态帧或静态帧时,指示信号的电平不同。
图9示出了每个发光控制信号生成电路的结构示意图。如图所示,每个发光控制信号生成电路包括10个晶体管和三个电容。EM output表示每个发光控制信号生成电路的输出信号,该输出信号可以输入到一行像素单元的栅极,使得一行像素单元发光。
图10示出了显示静态帧时的时序图。结合图6到图10,STV1(Start vertical)是输入到每个发光控制信号生成电路的输入信号,STV1相当于每一帧的帧开始信号;EM(n)是从每个发光控制信号生成电路输出的信号,该EM(n)是发光控制信号,可以控制一行像素(例如第n行像素)的栅极,STV1和EM(n)的波形基本上相同,只不过EM(n)相对于STV1延时了一段时间。在当前帧是静态帧时,指示信号I switch为低电平,开关管M1导通,M2关闭,第一区块B1中的发光控制信号生成电路EOA_400输出的EM(n)(即图 8中的EM output)作为下一个区块B2中的发光控制信号生成电路EOA_401的STV1输入。也就是说,在静态帧的情况下,不需要对发光器件的发光时间进行调整,因而使得第一晶体管M1导通,使得各个区块使用正常的输入信号STV1来生成发光控制信号。
图11示出了显示动态帧时的时序图。结合图6到图11,在当前帧是动态帧时,指示信号I switch为高电平,开关管M1关闭,M2导通,第二发光使能信号STV2输入至第二区块B2中的发光控制信号生成电路EOA_401。从图10中可以看出,STV2的高电平持续了5个时钟周期,而STV1的高电平持续了3个时钟周期,通过延长STV2的高电平持续时间(相当于,所述第二发光使能信号STV2的发光使能部分短于所述第一发光使能信号STV1的发光使能部分),可以缩短发光器件的发光时间,进而改善动态拖影。也就是说,在动态帧的情况下,需要对发光器件的发光时间进行调整,具体而言需要缩短发光器件的发光时间,因而使得第一晶体管M1关闭、第二晶体管M2打开,使得STV2输入到第二区块B2来生成相应的发光控制信号。
需要说明的是,在本实施例中,第一发光使能信号STV1或第二发光使能信号STV2高低电压的占空比决定了发光控制信号Emission的占空比,实际最终控制发光器件(例如OLED)发光时间长短的是Emission输出信号。
在该实施例中,像素驱动电路在物理层不需要进行分区,而是通过开关电路来将多个发光控制信号生成电路进行分区控制,当本帧显示静态画面时,正常的发光使能信号STV1输入第二区块B2;当本帧显示动态画面时,STV2输入至第二区块B2;通过上述驱动方式和电路,可实现针对不同画面显示时的分区控制,来改善动态拖影。
实施例二
图12示出了本公开一实施例的发光控制信号生成装置的结构示意图。该实施例与如图5所示实施例的区别之处在于,该实施例中没有开关电路,所述多个区块中一个区块的输出端与另一个区块的输入段之间无物理连接(参见图11,第一区块B1的输出端与第二区块B2的输入端之间无物理连接,即无物理线路);各个区块分别通过不同的发光信号来驱动。
图13示出了图12所示发光控制信号生成装置的一种驱动时序。下面结合图12和图13来描述该实施例的工作原理。
对于区块B2而言,由于该区块对应于运动物体(例如一个篮球的运动点),则可以针对该区块使用调制后的发光使能信号来驱动。参见图12中上部的时序,对于区块B2而言,例如第一帧是静态帧,则可以使用正常的发光使能信号STV1;例如第二帧是动态帧,则可以使用调制后的发光使能信号,例如图13中第二帧的STV1的高电平在经过3个时钟周期后再次出现高电平,使得第二帧中的信号STV的占空比降低,减小发光器件的发光时间,从而改善拖影。
参见图13中下部的时序,对于区块B1和区块B3而言,可以不采用调制后的发光使能信号。
另外,参见图13上部的时序图,在第二帧的充电阶段的数据信号Sdata的电平可以高于第一帧的充电阶段的数据信号Sdata的电平。
图14示出了图12所示发光控制信号生成装置的另一种驱动时序的示意图。该驱动时序与图12所示的驱动时序的区别在于:在图14中,不是如图13那样间隔3个时钟周期再次出现STV1的高电平,而是使得在动态帧中STV1的高电平持续的时间大于静态帧中STV1持续的电平,即使得STV的占空比降低,发光器件的发光时间减小,进而改善动态拖影。
图15示出了采用图12所示的装置进行动态拖影改善的例子。例如,当一个足球在空中运动时,如果足球运动到第一区块B1对应的像素单元,则可以针对第一区块B1采用调制后的发光使能信号(即占空比减小后的STV1),如果足球运动到第二区块B2对应的像素单元,则可以对第二区块B2采用调制后的发光使能信号;如果足球运动到第三区块B2对应的像素单元,则可以对第三区块B3采用调制后的发光使能信号。
在该实施例中,AMOLED显示屏分为多个区域(如,3区),其中控制信号由驱动芯片产生;当为静态画面时,发光使能信号的占空比为100%;当为动态画面时,发光是鞥呢信号的占空比降低,来改善动态拖影。
实施例三
图16示出了根据本公开一示例性实施例的显示面板的结构示意图。该显示面板包括多行像素单元形成的像素阵列以及与各行像素单元对应的发光控制信号生成电路301,所述像素阵列包括多个分区,例如分区C1至C4,每个分区包括多个像素单元组,例如分区C1包括像素单元组G1至G3,每个像素单元组包括一行像素单元中的一部分像素单元。图17示出了每个像素单元组的结构(图17中示出了像素单元组G1的结构)。每个像素单元组包括第三开关晶体管M3和第四开关晶体管M4。
第三开关晶体管M3的栅极输入第一控制信号A1,第三开关晶体管M3的源极连接第一发光控制信号EM1,第三开关晶体管的漏极连接所述每个像素单元组中的各个像素单元(例如像素单元组中的四个像素单元),具体而言通过线路L1连接。
第四开关晶体管M4的栅极连接第二控制信号B1,第四开关晶体管的源极连接所述每个像素单元组中的各个像素单元(例如通过线路L1连接),所述第四开关晶体管的漏极输入调制后的发光控制信号(例如图17中的高电平)。其中所述调制后的所述发光使能信号的占空比小于所述发光控制信号的占空比。
在另外的像素单元组中,第三开关晶体管和第四开关晶体管可以他通过另外的线路(如图17所示的L2)与像素单元连接。
在常规的像素电路中,一行的多个像素单元与一个发光控制信号线EM连接,如图18所示,即一行中的所有像素单元都使得发光器件的发光时间相同。
在本实施例的方案中,将像素单元进行分区,使得一行的像素单元输入的发光控制信号不同,进而使得动态帧的情况下能够改善动态拖影。
参见图17,如果当前帧是静态画面,则第一控制信号A1为低电平、第二控制信号B1为高电平,第三晶体管M1打开,第四晶体管M4关闭,使得发光控制信号EM1输入到像素单元组G1中,即采用常规的发光控制信号,不进行调整。如果当前帧是动态画面,则第一控制信号A1为高电平、第二控制信号B1为低电平,第三晶体管M1关闭,第四晶体管M4打开,使得调制后的发光控制信号输入到像素单元组G1中的各个像素单元。调制后的发光控制信号的占空比可以减小,进而使得发光器件的发光时间减小,改善动态拖影。
在如图16和17所示的实施例中,还可以通过算法处理调整数据信号补偿由于发光控制信号占空比降低导致的亮度衰减。例如,对于动态帧的情况,可以在发光阶段,使得数据信号的电平高于静态帧时发光阶段的数据信号电平,例如参见图12和图13所示的数据信号Sdata在发光阶段的波形。
采用本实施例的方案,实现了对于显示屏的分区控制,有效地改善了动态拖影。
本发明的一实施例还提供一种显示装置,可以包括上述发光控制信号生成装置。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (10)

  1. 一种发光控制信号生成装置,包括:
    状态检测电路,用于检测当前帧是静态帧还是动态帧并分别输出表示静态帧或动态帧的指示信号;
    多个发光控制信号生成电路;
    其中,所述多个发光控制信号生成电路被划分成多个区块,每个区块基于所述指示信号分别输入不同的发光使能信号来生成发光控制信号。
  2. 根据权利要求1所述的装置,其中,相邻的两个区块之间通过开关电路连接,所述开关电路用于基于所述指示信号将第一发光使能信号或第二发光使能信号输入所述两个区块之一;
    其中所述第二发光使能信号的发光使能部分短于所述第一发光使能信号的发光使能部分。
  3. 根据权利要求2所述的装置,其中,所述开关电路包括:
    第一开关晶体管,其栅极输入所述指示信号,其源极连接相邻的两个区块中的一个区块,其漏极连接相邻的两个区块中的另一个区块;
    第二开关晶体管,其栅极输入所述指示信号,其源极输入所述第二发光信号,其漏极连接所述相邻的两个区块中的另一个区块。
  4. 根据权利要求3所述的装置,其中,如果所述指示信号表明所述当前帧是动态帧,则所述第一开关晶体管关闭,所述第二开关晶体管打开;
    如果所述指示信号表明所述当前帧是静态帧,则所述第一开关晶体管打开,所述第二开关晶体管关闭。
  5. 根据权利要求3或4所述的装置,其中,所述第一开关晶体管是P型晶体管,所述第二开关晶体管是N型晶体管。
  6. 权利要求1所述的装置,其中,所述多个区块中一个区块的输出端与另一个区块的输入端之间无物理连接。
  7. 根据权利要求6所述的装置,其中,如果所述指示信号表明所述多个区块中的一个区块对应的帧为动态帧,则所述多个区块中的一个区块输入调制驱动信号;
    如果所述指示信号表明多个区块中的一个区块对应的帧为静态帧,则所述多个区块中的一个区块输入正常驱动信号;
    其中,所述调制驱动信号的发光使能部分短于所述正常驱动信号的发光使能部分。
  8. 根据权利要求7所述的装置,其中,所述动态帧对应的充电阶段的数据信号电平高于静态帧对应的充电阶段的数据信号电平。
  9. 一种显示面板,包括多行像素单元形成的像素阵列以及与各行像素单元对应的发光控制信号生成电路;
    其中,所述像素阵列包括多个分区,每个分区包括多个像素单元组,每个像素单元 组包括一行像素单元中的一部分像素单元;
    每个像素单元组包括第三开关晶体管和第四开关晶体管:
    所述第三开关晶体管的栅极输入第一控制信号,所述第三开关晶体管的源极输入发光控制信号,所述第三开关晶体管的漏极与所述每个像素单元组中的像素单元连接;
    所述第四开关晶体管的栅极输入第二控制信号,所述第四开关晶体管的源极与所述每个像素单元组中的像素单元连接,所述第四开关晶体管的漏极输入调制后的发光控制信号;
    其中所述调制后的所述发光控制信号的占空比小于所述发光控制信号的占空比。
  10. 一种显示装置,包括如权利要求1至8中任一项所述的发光控制信号生成装置。
PCT/CN2019/088422 2018-05-31 2019-05-24 发光控制信号生成装置及显示装置 WO2019228282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/623,609 US11114061B2 (en) 2018-05-31 2019-05-24 Light-emission control signal generating device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810553993.3A CN108550347B (zh) 2018-05-31 2018-05-31 发光控制信号生成装置及显示装置
CN201810553993.3 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019228282A1 true WO2019228282A1 (zh) 2019-12-05

Family

ID=63511629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088422 WO2019228282A1 (zh) 2018-05-31 2019-05-24 发光控制信号生成装置及显示装置

Country Status (3)

Country Link
US (1) US11114061B2 (zh)
CN (1) CN108550347B (zh)
WO (1) WO2019228282A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550347B (zh) * 2018-05-31 2020-11-10 京东方科技集团股份有限公司 发光控制信号生成装置及显示装置
WO2020124604A1 (zh) * 2018-12-21 2020-06-25 深圳市柔宇科技有限公司 一种显示面板及其驱动方法、显示装置、终端
US11984073B2 (en) 2020-09-29 2024-05-14 Tcl China Star Optoelectronics Technology Co., Ltd. Partitioned display structure, display panel, and organic light-emitting diode display panel
CN112086069B (zh) * 2020-09-29 2021-11-23 Tcl华星光电技术有限公司 分区显示结构、显示面板、有机发光二极管显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083926A (ja) * 1999-09-09 2001-03-30 Sharp Corp 動画偽輪郭補償方法およびその方法を用いた画像表示装置
CN101034532A (zh) * 2007-04-04 2007-09-12 友达光电股份有限公司 驱动电路、显示装置及用以调整画面更新率的方法
CN101727815A (zh) * 2009-12-23 2010-06-09 华映光电股份有限公司 动态影像的局部插黑方法以及显示装置
CN104123906A (zh) * 2014-07-29 2014-10-29 厦门天马微电子有限公司 显示面板及其驱动方法
CN108470540A (zh) * 2018-06-21 2018-08-31 京东方科技集团股份有限公司 一种显示面板及其驱动方法、显示装置
CN108550347A (zh) * 2018-05-31 2018-09-18 京东方科技集团股份有限公司 发光控制信号生成装置及显示装置
CN108564919A (zh) * 2018-04-26 2018-09-21 京东方科技集团股份有限公司 显示方法、显示控制装置和显示设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4397097B2 (ja) * 2000-04-18 2010-01-13 パナソニック株式会社 プラズマディスプレイ装置
JP5049445B2 (ja) * 2002-03-15 2012-10-17 株式会社日立製作所 表示装置およびその駆動方法
JP4449334B2 (ja) * 2003-05-01 2010-04-14 ソニー株式会社 ディスプレイ装置、ディスプレイ装置の駆動方法
JP4612406B2 (ja) * 2004-02-09 2011-01-12 株式会社日立製作所 液晶表示装置
TWI402812B (zh) * 2008-10-02 2013-07-21 Chunghwa Picture Tubes Ltd 驅動電路及液晶顯示器的插灰方法
CN103295549B (zh) * 2010-04-02 2015-09-02 宏碁股份有限公司 显示器及其显示方法
KR20120028426A (ko) * 2010-09-14 2012-03-23 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그것의 구동 방법
CN102402939A (zh) * 2011-12-31 2012-04-04 四川虹欧显示器件有限公司 等离子显示器及其控制方法和装置
US9653026B2 (en) * 2012-03-07 2017-05-16 Canon Kabushiki Kaisha Backlight controlling apparatus, backlight controlling method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083926A (ja) * 1999-09-09 2001-03-30 Sharp Corp 動画偽輪郭補償方法およびその方法を用いた画像表示装置
CN101034532A (zh) * 2007-04-04 2007-09-12 友达光电股份有限公司 驱动电路、显示装置及用以调整画面更新率的方法
CN101727815A (zh) * 2009-12-23 2010-06-09 华映光电股份有限公司 动态影像的局部插黑方法以及显示装置
CN104123906A (zh) * 2014-07-29 2014-10-29 厦门天马微电子有限公司 显示面板及其驱动方法
CN108564919A (zh) * 2018-04-26 2018-09-21 京东方科技集团股份有限公司 显示方法、显示控制装置和显示设备
CN108550347A (zh) * 2018-05-31 2018-09-18 京东方科技集团股份有限公司 发光控制信号生成装置及显示装置
CN108470540A (zh) * 2018-06-21 2018-08-31 京东方科技集团股份有限公司 一种显示面板及其驱动方法、显示装置

Also Published As

Publication number Publication date
US11114061B2 (en) 2021-09-07
CN108550347A (zh) 2018-09-18
CN108550347B (zh) 2020-11-10
US20210142764A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
WO2019228282A1 (zh) 发光控制信号生成装置及显示装置
US11462175B2 (en) Array substrate, display panel and method for driving pixel-driving circuit
CN106328056B (zh) 有机发光显示器及其驱动方法
US10083656B2 (en) Organic light-emitting diode (OLED) display panel, OLED display device and method for driving the same
US9601049B2 (en) Organic light emitting display device for generating a porch data during a porch period and method for driving the same
KR102632710B1 (ko) 화소 구동 회로를 포함한 전계발광 표시장치
KR20180128123A (ko) 게이트 쉬프트 레지스터와 이를 포함한 유기발광 표시장치
JP6570629B2 (ja) Amoled駆動装置及び駆動方法
WO2019218954A1 (zh) 像素电路及其驱动方法、装置、阵列基板及显示装置
JP5834321B2 (ja) 表示装置およびその駆動方法
JP6648089B2 (ja) 有機発光表示装置およびその駆動装置
WO2016138756A1 (zh) Oled像素单元及其驱动方法、oled显示装置
JP2006285210A (ja) アクティブマトリクス型表示装置
JP7466511B2 (ja) 有機発光表示装置
CN112216244B (zh) 显示面板及其驱动方法和显示模组
KR101469027B1 (ko) 표시 장치 및 그 구동 방법
CN111354298A (zh) 一种像素电路、显示装置和驱动方法
CN109308865A (zh) 显示面板、控制装置、显示装置以及显示面板的驱动方法
US10621917B2 (en) Display device, driver circuit, and driving method
KR102316100B1 (ko) 전계발광표시장치 및 이의 구동방법
CN109036264A (zh) 显示面板的控制装置、显示装置及显示面板的驱动方法
KR102657137B1 (ko) 표시 장치
US20230110329A1 (en) Control device, display apparatus, and control method
US11600224B2 (en) Gate driving circuit and driving method thereof, display panel
KR20210035370A (ko) 표시 장치 및 이를 이용한 표시 패널의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811111

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19811111

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19811111

Country of ref document: EP

Kind code of ref document: A1