WO2019228240A1 - 触控电路、触控检测方法、显示面板及显示装置 - Google Patents

触控电路、触控检测方法、显示面板及显示装置 Download PDF

Info

Publication number
WO2019228240A1
WO2019228240A1 PCT/CN2019/087985 CN2019087985W WO2019228240A1 WO 2019228240 A1 WO2019228240 A1 WO 2019228240A1 CN 2019087985 W CN2019087985 W CN 2019087985W WO 2019228240 A1 WO2019228240 A1 WO 2019228240A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
signal
electrode
terminal
display panel
Prior art date
Application number
PCT/CN2019/087985
Other languages
English (en)
French (fr)
Inventor
白骜骏
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/620,606 priority Critical patent/US11132084B2/en
Publication of WO2019228240A1 publication Critical patent/WO2019228240A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the present invention relates generally to display technology, and in particular, to a touch circuit, a touch detection method, a display panel, and a display device.
  • Touch technologies include self-capacitive touch technology and mutual-capacitive touch technology.
  • self-capacitive touch technology is widely used in various display technology fields with its simple structure, such as OLED, AMOLED and other display technology fields.
  • a self-capacitive touch circuit generally includes a touch signal line and a touch electrode.
  • a touch subject such as a finger
  • the touch electrode changes the voltage on the touch electrode due to capacitive coupling.
  • the touch signal line can determine the touch position of the touch subject by sensing the voltage change on the touch electrodes.
  • the voltage signal on the touch electrode is attenuated during the transmission of the touch signal line.
  • the length of the required touch signal line becomes longer and longer, and a longer touch signal The line will seriously affect the detection of the voltage change of the touch electrode, thereby affecting the accuracy of touch detection.
  • the invention provides a touch circuit, which includes a touch electrode, a touch signal line, and a driving transistor.
  • a control terminal of the driving transistor is connected to the touch electrode, a first terminal of the driving transistor receives a first power signal, and a second terminal of the driving transistor is connected to the touch signal line, and is used for The voltage signal outputs a current signal to the touch signal line.
  • the touch circuit further includes at least one first switching transistor, a control terminal of the first switching transistor receives a first control signal, and the first terminal of the first switching transistor and the touch control The electrodes are connected, the second end of the first switching transistor receives a second power signal, and the first switching transistor is used to charge the touch electrode by using the second power signal in response to the first control signal.
  • the touch circuit further includes a capacitor device, a first terminal of the capacitor device is connected to a control terminal of the driving transistor, and a second terminal of the capacitor device receives a second control signal.
  • the touch circuit further includes: at least one second switching transistor, a control terminal of the second switching transistor receives a third control signal, and a first terminal of the second switching transistor is in contact with the contact.
  • the control electrode is connected, the second end of the second switching transistor receives a second power signal, and the second switching transistor is used to charge the touch electrode by using the second power signal in response to the third control signal.
  • the touch circuit is provided on a display panel including a gate driving circuit; the first control signal, the second control signal, and the third control signal share the gate driving.
  • the scanning signal provided by the circuit; wherein the driving timing of the second control signal is earlier than the third control signal and later than the first control signal.
  • the invention also provides a display panel, which is characterized by comprising the touch circuit described above.
  • the display panel further includes a plurality of driving electrodes extending along the first direction and distributed along the second direction, and each of the driving electrodes includes a plurality of first electrode blocks intersected at intervals and A second electrode block; wherein the first electrode block is used as the touch electrode; the second electrode block is used to provide a power signal to a driving circuit of the display panel and to provide the second power signal .
  • a plurality of touch circuits provided on the same driving electrode are connected to the same touch signal line.
  • a size of each of the touch electrodes in the first direction changes along the second direction.
  • the present invention also provides a touch detection method using the above-mentioned touch circuit, which is characterized in that it includes:
  • the touch position is determined according to the current signal.
  • the present invention also provides a display device including the above display panel.
  • FIG. 1 is a schematic structural diagram of an exemplary embodiment of a touch circuit according to the present disclosure
  • FIG. 2 is a schematic structural diagram of an exemplary embodiment of a display panel of the present disclosure
  • FIG. 3 is a circuit diagram of a touch circuit in an exemplary embodiment of a display panel of the present disclosure
  • FIG. 4 is a timing diagram of a control signal in an exemplary embodiment of a touch circuit of the present disclosure
  • FIG. 5 is a schematic structural diagram of a touch circuit of a display panel in the related art
  • FIG. 6 is a schematic structural diagram of a touch electrode in an exemplary embodiment of a display panel of the present disclosure
  • FIG. 7 is a flowchart of an exemplary embodiment of a touch detection method according to the present disclosure.
  • FIG. 1 is a schematic structural diagram of an exemplary embodiment of a touch circuit of the present disclosure.
  • the touch circuit includes: a touch electrode 1, a touch signal line 2, and a driving transistor 3.
  • a control terminal of the driving transistor 3 is connected to the touch electrode 1, a first terminal of the driving transistor 3 receives a first power signal Vin, and a second terminal of the driving transistor is connected to the touch signal line for The voltage signal of the touch electrode outputs a current signal to the touch signal line.
  • the driving transistor may be a P-channel thin film transistor or an N-channel thin film transistor.
  • the present exemplary embodiment is described using a P-channel thin film transistor as an example.
  • the first terminal of the driving transistor 3 is a source
  • the second terminal is a drain
  • the control terminal is a gate.
  • the source of the driving transistor 3 receives the first power signal Vin
  • the drain of the driving transistor 3 is connected to the touch signal line 2
  • the gate of the driving transistor 3 is connected to the touch electrode.
  • Vg the driving transistor 3
  • the gate voltage Vs is the source voltage of the driving transistor 3
  • k the mobility of the driving transistor 3
  • Vth the threshold voltage of the driving transistor 3.
  • Vg is equal to the voltage of the touch electrode
  • Vs is equal to Vin
  • k and Vth are constant values. Therefore, it can be seen that the drain output current Iout of the driving transistor 3 is only related to the voltage of the touch electrode.
  • the change in the touch electrode voltage can be determined based on the change in the drain output current Iout of the driving transistor 3.
  • the touch main body such as a finger
  • the voltage of the touch electrode is changed. Therefore, the touch condition of the touch electrode can be detected by detecting the drain output current Iout of the driving transistor 3.
  • the touch circuit proposed by the present invention uses a driving transistor to convert the voltage signal of the touch electrode into a current signal.
  • the attenuation of the voltage signal on the touch electrode on the touch line is avoided, thereby improving the accuracy of touch detection.
  • the touch circuit has a simple structure and low cost.
  • FIG. 2 is a schematic structural diagram of an exemplary embodiment of a display panel of the present disclosure
  • FIG. 3 is a circuit diagram of a touch circuit in an exemplary embodiment of a display panel of the present disclosure.
  • the display panel may include a plurality of driving electrodes 5 extending along the first direction and spaced apart along the second direction, and each of the driving electrodes 5 may include a plurality of first electrode blocks 51 and second electrode blocks that are spaced and crossed. 52; wherein the first electrode block 51 can be used as the touch electrode 1; the second electrode block 52 is used to provide a power signal to a driving circuit of the display panel.
  • the driving electrode 5 may be a cathode or an anode. In this exemplary embodiment, the driving electrode 5 is used as an example for description. All the second electrode blocks 52 in the display panel are electrically connected and have an output voltage VSS.
  • the display panel provided in this exemplary embodiment shares the first electrode block as a touch electrode.
  • this arrangement reduces the cross-wire nodes, thereby reducing the parasitic capacitance between the wires and improving the display effect; This setting avoids additional touch layers, reduces the number of wirings, simplifies the process, and saves costs.
  • the touch circuit may further include at least one first switching transistor 4, a control terminal of the first switching transistor 4 receives a first control signal S1, and the first switching transistor The first end of 4 is connected to the first electrode block 51, the second end of the first switching transistor 4 receives a second power signal, and the first switching transistor 4 is used in response to the first control signal S1 to use the second A power signal charges the first electrode block 51.
  • the touch circuit may further include a capacitor device 6, and a first terminal of the capacitor device 6 is connected to a control terminal of the driving transistor 3.
  • the second terminal of the capacitive device 6 receives a second control signal S2.
  • the first switching transistor 4 may be disposed on the second electrode block 52, and the second power source signal may be provided by the second electrode block 52. At this time, the voltage of the second power source signal is VSS, and the first electrode block 51 is at The voltage under the second voltage signal is VSS.
  • the first switching transistor 4 may be selected as a P-channel thin film transistor, the second power signal provided by the second electrode block 52 may be greater than the threshold voltage of the first switching transistor 4, and the second control signal S2 may be a pulse signal.
  • the second control signal S2 When the second control signal S2 is at a high level, the voltage at the control terminal of the driving transistor 3 is equal to VSS. At this time, the driving transistor is not turned on and the touch circuit does not perform touch detection.
  • the second control signal S2 When the second control signal S2 is at a low level, the capacitor A voltage drop occurs at the first terminal of the device 6 due to the voltage drop at the second terminal, so that the voltage of the control terminal of the driving transistor 3 connected to the first terminal of the capacitor device 6 also drops. At this time, the voltage of the control terminal of the driving transistor is smaller than the first switch.
  • the threshold voltage of the transistor 4 turns on the driving transistor 3 and the touch circuit performs touch detection.
  • the present exemplary embodiment realizes the control of the touch detection period by the setting of the capacitive device 6.
  • the driving electrode 5 may also be an anode
  • the driving transistor may be an N-channel thin film transistor
  • the first switching transistor 4 may be selected as an N-channel thin film transistor
  • the second electrode The second power signal provided by the block 52 may be smaller than the threshold voltage of the first switching transistor 4, which all belong to the protection scope of the present disclosure.
  • the first electrode block 51 will release charges, and the voltage on the first electrode block 51 will change. Because the first electrode block 51 and the second electrode block 52 form a capacitor structure, when the voltage on the first electrode block 51 changes, the voltage on the second electrode block 52 will be affected, and eventually the display panel displays abnormally.
  • the touch circuit further includes: at least one second switching transistor 7, a control terminal of the second switching transistor 7 receives a third control signal S3, and a first terminal of the second switching transistor 7 and The first electrode block 51 is connected, and the second terminal of the second switching transistor 7 can receive the second power signal, and the second switching transistor is used to respond to the third control signal to the second power signal using the second power signal.
  • the first electrode block 51 is charged.
  • the third control signal charges the first electrode block 51 with the second power signal after the first electrode block 51 is discharged, so that the voltages of the first electrode block 51 and the second electrode block 52 are the same, and the first electrode Block 51 does not affect normal display.
  • the first control signal S1, the second control signal S2, and the third control signal S3 may share a scan signal provided by a gate driving circuit in a display panel; wherein, the second The driving timing of the control signal S2 is earlier than the third control signal S3 and later than the first control signal S1.
  • the gate driving circuit generates scanning signals to the pixel driving circuit row by row according to the time sequence.
  • the first control signal S1 can share the scanning signals of the pixels in the previous row
  • the second control signal S2 can share the scanning signals of the pixels in the middle row.
  • the third control signal S3 can share the scanning signals of the pixels in the next row.
  • the pixels in the previous row, the pixels in the middle row, and the pixels in the next row refer to three rows of pixels having a relative position relationship in the display panel, and the three rows of pixels may be adjacent or spaced apart.
  • the first control signal S1, the second control signal S2, and the third control signal S3 of the touch circuit share a scanning signal provided by the gate driving circuit to implement touch and
  • the display is performed synchronously, so that it is not necessary to set a touch period separately, thereby increasing the display time. This setting avoids the technical problem of short service life of the display panel caused by the short display time in the related art when the normal display is maintained by increasing the brightness of the light-emitting element.
  • FIG. 4 it is a timing diagram of control signals in an exemplary embodiment of a touch circuit of the present disclosure.
  • S1 is low level
  • S2 is high level
  • S3 is high level.
  • the first switching transistor is turned on
  • the second switching transistor is turned off
  • the first electrode block 51 is at the second power signal.
  • S1 is high level
  • S2 is low level
  • S3 high Level
  • the first terminal of the capacitor device 6 undergoes a voltage drop due to the voltage drop of the second terminal, so that the drive connected to the first terminal of the capacitor device 6 is driven.
  • the voltage Vgate at the control terminal of the transistor 3 drops to VSS + ⁇ V, where ⁇ V is the voltage variable of the second control signal.
  • the voltage at the control terminal of the driving transistor is less than the threshold voltage of the first switching transistor 4, and the driving transistor 3 is turned on without contact.
  • FIG. 5 it is a schematic structural diagram of a touch circuit of a display panel in the related art.
  • Each touch electrode 500 is connected to a detection line 501.
  • multiple touch circuits provided on the same driving electrode 5 may be connected to the same touch signal line 2. This setting can reduce the number of pins of the detection unit connected to the touch signal line, and reduce the cost of the detection unit.
  • FIG. 6 it is a schematic structural diagram of a touch electrode in an exemplary embodiment of a display panel of the present disclosure.
  • the size of each of the touch electrodes (ie, the first electrode block 51) in the first direction changes along the second direction.
  • FIG. 6 there are two touch points A and B on the first electrode block 51.
  • the area around touch point A is larger than the area around touch point B.
  • Specific touch positions can be obtained through different capacitance changes.
  • FIG. 6 there are two touch points C and D on the second electrode block 52.
  • the touch point C is closer to the first electrode block 51, and the touch point D is farther from the first electrode block 51.
  • the size of the first electrode block 51 in the first direction changes stepwise along the second direction. It should be understood that there are more ways to change the size of the first electrode block 51 in the first direction along the second direction.
  • This exemplary embodiment also provides a touch detection method.
  • the touch circuit described above is applied.
  • FIG. 7 it is a flowchart in an exemplary embodiment of the touch detection method of the present disclosure. The method includes:
  • the touch detection method provided in this exemplary embodiment has the same technical features and working principles as the touch circuit described above, and the above content has been described in detail, and is not repeated here.
  • the present invention also provides a display device including the above display panel.
  • the specific type of the display device is not particularly limited, and may be any type of display device commonly used in the art, such as an OLED display.
  • the display device provided in this exemplary embodiment has the same technical features and working principles as the display panel described above, and the above content has been described in detail, and is not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

涉及显示技术,一种触控电路、触控检测方法、显示面板及显示装置。该触控电路包括:触控电极(1)、触控信号线(2)以及驱动晶体管(3)。驱动晶体管(3)的控制端与触控电极(1)连接,驱动晶体管(3)的第一端接收第一电源信号(Vin),驱动晶体管(3)的第二端与触控信号线(2)连接,用于根据所述触控电极(1)的电压信号向所述触控信号线(2)输出电流信号。

Description

触控电路、触控检测方法、显示面板及显示装置
交叉引用
本申请要求于2018年5月31日提交的申请号为201810553991.4、发明创造名称为“触控电路、触控检测方法、显示面板及显示装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本发明总体来说涉及显示技术,具体而言,涉及一种触控电路、触控检测方法、显示面板及显示装置。
背景技术
触控技术包括自容式触控技术和互容式触控技术,其中自容式触控技术以其结构简单广泛应用于各种显示技术领域,例如,OLED、AMOLED等显示技术领域。
相关技术中,自容式触控电路一般包括触控信号线和触控电极,当触控主体(例如手指)接近触控电极时由于电容耦合作用,触控电极会改变触控电极上的电压,触控信号线通过感测触控电极上的电压变化可以确定触控主体触控的位置。
然而,触控电极上的电压信号在触控信号线传输过程中存在衰减,随着显示面板尺寸越做越大,所需触控信号线的长度也越来越长,较长的触控信号线会严重影响触控电极电压变化的检测,从而影响触控检测精度。
需要说明的是,在上述背景技术部分发明的信息仅用于加强对本发明的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明提供一种触控电路,该触控电路包括:触控电极、触控信号线以及驱动晶体管。所述驱动晶体管的控制端与所述触控电极连接,驱动晶体管的第一端接收第一电源信号,驱动晶体管的第二端与所述触控信号线连接,用于根据所述触控电极的电压信号向所述触控信号线输出电流信号。
根据本发明的一实施方式,所述触控电路还包括至少一个第一开关晶体管,所述第一开关晶体管的控制端接收第一控制信号,第一开关晶体管的第一端与所述触控电极连接,第一开关晶体管的第二端接收第二电源信号,第一开关晶体管用于响应所述第一控制信号利用所述第二电源信号对所述触控电极充电。
根据本发明的一实施方式,所述触控电路还包括:电容器件,所述电容器件的第一端与所述驱动晶体管的控制端连接,电容器件的第二端接收一第二控制信号。
根据本发明的一实施方式,所述触控电路还包括:至少一个第二开关晶体管,所述第二开关晶体管的控制端接收第三控制信号,第二开关晶体管的第一端与所述触控电极连接,第二开关晶体管的第二端接收第二电源信号,第二开关晶体管用于响应所述第三控制信号利用所述第二电源信号对所述触控电极充电。
根据本发明的一实施方式,所述触控电路设于包括栅极驱动电路的显示面板;所述第一控制信号、所述第二控制信号以及所述第三控制信号共用所述栅极驱动电路提供的扫描信号;其中,所述第二控制信号的驱动时序先于所述第三控制信号且晚于所述第一控制信号。
本发明还提供一种显示面板,其特征在于,包括上述的触控电路。
根据本发明的一实施方式,所述显示面板还包括多条沿第一方向延伸且沿第二方向分布的驱动电极,每一所述驱动电极均包括多个间隔交叉分布的第一电极块和第二电极块;其中,所述第一电极块用作所述触控电极;所述第二电极块用于向所述显示面板的驱动电路提供电源信号且用于提供所述第二电源信号。
根据本发明的一实施方式,设置于同一所述驱动电极上的多个触控电路连接于同一条所述触控信号线。
根据本发明的一实施方式,每一个所述触控电极在所述第一方向上的尺寸沿所述第二方向变化。
本发明还提供一种触控检测方法,应用上述的触控电路,其特征在于,包括:
向触控电极充电;
利用触控晶体管将所述驱动电极的电压信号转化为电流信号;
根据所述电流信号判断触控位置。
本发明还提供一种显示装置,包括上述的显示面板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开触控电路一种示例性实施例中结构示意图;
图2为本公开显示面板一种示例性实施例的结构示意图;
图3为本公开显示面板一种示例性实施例中触控电路的电路图;
图4为本公开触控电路一种示例性实施例中控制信号的时序图;
图5为相关技术中显示面板触控电路的结构示意图;
图6为本公开显示面板一种示例性实施例中触控电极的结构示意图;
图7为本公开触控检测方法一种示例性实施例中的流程图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本发明将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。其他相对性的用语,例如“高”“低”“顶”“底”“左”“右”等也作具有类似含义。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
本示例性实施例首先提供一种触控电路,如图1所示,为本公开触控电路一种示例性实施例中结构示意图。该触控电路包括:触控电极1、触控信号线2以及驱动晶体管3。所述驱动晶体管3的控制端与所述触控电极1连接,驱动晶体管3的第一端接收第一电源信号Vin,驱动晶体管的第二端与所述触控信号线连接,用于根据所述触控电极的电压信号向所述触控信号线输出电流信号。
本示例性实施例中,驱动晶体管可以为P沟道型薄膜晶体管也可以为N沟道型薄膜晶体管。本示例性实施例以P沟道型薄膜晶体管为例进行说明。驱动晶体管3的第一端为源极,第二端为漏极,控制端为栅极。驱动晶体管3的源极接收第一电源信号Vin,驱动晶体管3的漏极与触控信号线2连接,驱动晶体管3的栅极与触控电极连接。触控电路工作时,驱动晶体管3工作于饱和区,驱动晶体管3的漏极输出电流Iout=k(Vgs-Vth) 2=k(Vg-Vs-Vth) 2,其中,Vg为驱动晶体管3的栅极电压,Vs为驱动晶体管3源极电压,k为驱动晶体管3的迁移率,Vth为驱动晶体管3的阈值电压。本示例性实施例中,Vg等于触控电极的电压,Vs等于Vin,k、Vth为定值,因此,可以看出,驱动晶体管3的漏极输出电流Iout只与触控电极的电压有关,根据驱动晶体管3的漏极输出电流Iout的变化可以判断触控电极电压的变化。而触控主体(如手指)接近触控电极时会改变触控电极的电压,因此通过检测驱动晶体管3的漏极输出电流Iout可以检测触控电极的触控情况。
本发明提出的触控电路利用驱动晶体管将触控电极的电压信号转化为电流信号,一方面,避免了触控电极上的电压信号在触控线上的衰减,从而提高了触控检测的精度;另一方面,该触控电路结构简单,成本较低。
本示例性实施例还公开一种显示面板,该显示面板包括上述的触控电路。具体的,如图2、3所示,图2为本公开显示面板一种示例性实施例的结构示意图,图3为本公开显示面板一种示例性实施例中触控电路的电路图。所述显示面板可以包括多条沿第一方向延伸且沿第二方向间隔分布的驱动电极5,每一所述驱动电极5均包括多个间隔交叉分布的第一电极块51和第二电极块52;其中,所述第一电极块51可以用作所述触控电极1;所述第二电极块52用于向所述显示面板的驱动电路提供电源信号。其中,驱动电极5可以为阴极也可以为阳极,本示例性实施例以驱动电极5为阴极为例进行说明,显示面板中所有的第二电极块52电连接,且具有输出电压VSS。
本示例性实施例提供的显示面板将第一电极块共用为触控电极,一方面,该设置减少了导线交叉节点,从而减少了导线之间的寄生电容,提高了显示效果;另一方面,该设置避免了额外设置触控层,减少了布线数量、简化了工艺,从而节约了成本。
本示例性实施例中,如图3所示,所述触控电路还可以包括至少一个第一开关晶体管4,所述第一开关晶体管4的控制端接收第一控制信号S1,第一开关晶体管4的第一端与所述第一电极块51连接,第一开关晶体管4的第二端接收第二电源信号,第一开关晶体管4用于响应所述第一控制信号S1利用所述第二电源信号对所述第一电极块51充电。
为了实现触控检测在预设的时段进行,如图3所示,所述触控电路还可以包括:电容器件6,所述电容器件6的第一端与所述驱动晶体管3的控制端连接,电容器件6的第二端接收一第二控制信号S2。其中,第一开关晶体管4可以设置于第二电极块52上,且第二电源信号可以由所述第二电极块52提供,此时第二电源信号的电压为VSS,第一电极块51在第二电压信号充电下电压为VSS。第一开关晶体管4可以选择为P沟道型薄膜晶体管,第二电极块52提供的第二电源信号可以大于第一开关晶体管4的阈值电压,第二控制信号S2可以为脉冲信号。
当第二控制信号S2为高电平时,驱动晶体管3控制端的电压等于VSS,此时驱动晶体管不导通,触控电路不进行触控检测;当第二控制信号S2变为低电平,电容器件6第一端在第二端的压降作用下发生压降,从而使得与电容器件6第一端连接的驱动晶体管3控制端的电压也发生下降,此时驱动晶体管的控制端电压小于第一开关晶体管4的阈值电压,驱动晶体管3导通,触控电路进行触控检测。本示例性实施例通过电容器件6的设置实现了触控检测时段的控制。应该理解的是,在其他示例性实施例中,驱动电极5还可以为阳极,驱动晶体管可以为N沟道型薄膜晶体管,第一开关晶体管4可以选择为N沟道型薄膜晶体管,第二电极块52提供的第二电源信号可以小于第一开关晶体管4的阈值电压,这些都属于本公开的保护范围。
本示例性实施例中,如图3所示,触控电路在触控检测阶段第一电极块51会释放电荷,第一电极块51上的电压会发生变化。由于第一电极块51与第二电极块52形成电容结构,当第一电极块51上的电压发生变化时会影响第二电极块52上的电压,最终导致显示面板显示异常。本示例性实施例中,所述触控电路还包括:至少一个第二开关晶体管7,所述第二开关晶体管7的控制端接收第三控制信号S3,第二开关晶体管7的第一端与所述第一电极块51连接,第二开关晶体管7的第二端可以接收所述第二电源信号,第二开关晶体管用于响应所述第三控制信号利用所述第二电源信号对所述第一电极块51充电。第三控制信号在第一电极块51完成放电后利用所述第二电源信号对所述第一电极块51充电,从而使得第一电极块51与第二电极块52的电压相同,第一电极块51不会影响正常的显示。
本示例性实施例中,所述第一控制信号S1、所述第二控制信号S2以及所述第三控制信号S3可以共用显示面板中栅极驱动电路提供的扫描信号;其中,所述第二控制信号S2的驱动时序先于所述第三控制信号S3且晚于所述第一控制信号S1。显示面板中,栅极驱动电路按照时间顺序逐排向像素驱动电路发生扫描信号,第一控制信号S1可以共用上一排像素的扫描信号,第二控制信号S2可以共用中间一排像素的扫描信号,第三控制信号S3可以共用下一排像素的扫描信号。其中,上一排像素、中间一排像素以及下一排像素是指显示面板中具有相对位置关系的三排像素,该三排像素可以相邻也可以相间隔。本示例性实施例中,触控电路的所述第一控制信号S1、所述第二控制信号S2以及所述第三控制信号S3共用所述栅极驱动电路提供的扫描信号可以实现触控与显示同步进行,从而不必单独设置触控时段,进而增加了显示的时间。该设置避免了相关技术中由于显示时间较短,通过增加发光件的亮度维持正常显示时,造成的显示面板使用寿命短的技术问题。
如图4所示,为本公开触控电路一种示例性实施例中控制信号的时序图。其中,在t1时段,S1为低电平,S2为高电平、S3为高电平,该时段,第一开关晶体管导通,第二开关晶体管关闭,第一电极块51在第二电源信号作用下充电至VSS,由于VSS大于第一开关晶体管4的阈值电压,驱动晶体管关断,驱动晶体管输出电流Iout=0;在t2时段,S1为高电平,S2为低电平、S3为高电平,该时段,第一开关晶体管关断,第二开关晶体管关断,电容器件6第一端在第二端的压降作用下发生压降,从而使得与电容器件6第一端连接的驱动晶体管3控制端的电压Vgate下降到VSS+△V,其中,△V为第二控制信号的压变量,此时驱动晶体管控制端的电压小于第一开关晶体管4的阈值电压,驱动晶体管3导通,没有触控发生时,驱动晶体管3输出电流I=I1,有触控发生时,驱动晶体管3输出电流I=I2;在t3时段,S1为高电平,S2为高电平、S3为低电平,第一开关晶体管4关闭,第二开关晶体管7导通,触控电极1在第二电源信号作用下充电至VSS。
如图5所示,为相关技术中显示面板触控电路的结构示意图。其中,每一个触控 电极500均连接有一根检测线501。本示例性实施例中,如图2所示,设置于同一所述驱动电极5上的多个触控电路可以连接于同一条所述触控信号线2。该设置可以减少与触控信号线连接的检测单元的引脚个数,降低检测单元的成本。
本示例性实施例中,如果显示面板驱动电极在第二方向上的尺寸较大,触控区域小于驱动电极在第二方向上的尺寸,则难以判断触控区域在驱动电极沿第二方向的具体位置。本示例性实施例中,如图6所示,为本公开显示面板一种示例性实施例中触控电极的结构示意图。每一个所述触控电极(即第一电极块51)在所述第一方向上的尺寸沿所述第二方向变化。图6中第一电极块51上有两个触控点A和B,触控点A周边的面积大于触控点B周边的面积,当对A、B两点进行触控时,第一电极块51上会发生不同的电容变化。通过不同的电容变化可以得到具体的触控位置。图6中第二电极块52上有两个触控点C、D,触控点C距离第一电极块51较近,触控点D距离第一电极块51较远,对C、D点进行触控时,第一电极块51会发生不同的电容变化,通过不同的电容变化可以得到具体的触控位置。因此,该设置可以提高触控的精度。图6中第一电极块51在第一方向的尺寸沿第二方向阶梯变化,应该理解的是,第一电极块51在第一方向的尺寸沿第二方向还有更多的变化方式,这些都属于本公开的保护范围。
本示例性实施例还提供一种触控检测方法,应用上述的触控电路,如图7所示,为本公开触控检测方法一种示例性实施例中的流程图。该方法包括:
S1:向触控电极充电;
S2:利用驱动晶体管将所述触控电极的电压信号转化为电流信号;
S3:根据所述电流信号判断触控位置。
本示例性实施例提供的触控检测方法与上述触控电路具有相同的技术特征和工作原理,上述内容已经做出详细说明,此处不再赘述。
本发明还提供一种显示装置,包括上述的显示面板。
本示例性实施例中,显示装置的具体类型不受特别的限制,本领域常用类型的显示装置均可,具体例如OLED显示器等。本示例性实施例提供的显示装置与上述显示面板具有相同的技术特征和工作原理,上述内容已经做出详细说明,此处不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限。

Claims (11)

  1. 一种触控电路,包括:
    触控电极;
    触控信号线;
    驱动晶体管,所述驱动晶体管的控制端与所述触控电极连接,第一端接收第一电源信号,第二端与所述触控信号线连接,用于根据所述触控电极的电压信号向所述触控信号线输出电流信号。
  2. 根据权利要求1所述的触控电路,还包括:
    至少一个第一开关晶体管,所述第一开关晶体管的控制端接收第一控制信号,第一端与所述触控电极连接,第二端接收第二电源信号,用于响应所述第一控制信号利用所述第二电源信号对所述触控电极充电。
  3. 根据权利要求2所述的触控电路,还包括:
    电容器件,所述电容器件的第一端与所述驱动晶体管的控制端连接,第二端接收一第二控制信号。
  4. 根据权利要求3所述的触控电路,还包括:
    至少一个第二开关晶体管,所述第二开关晶体管的控制端接收第三控制信号,第一端与所述触控电极连接,第二端接收所述第二电源信号,用于响应所述第三控制信号利用所述第二电源信号对所述触控电极充电。
  5. 根据权利要求4所述的触控电路,其中,所述触控电路设于包括栅极驱动电路的显示面板;
    所述第一控制信号、所述第二控制信号以及所述第三控制信号共用所述栅极驱动电路提供的扫描信号;
    其中,所述第二控制信号的驱动时序先于所述第三控制信号且晚于所述第一控制信号。
  6. 一种显示面板,包括权利要求1-5任一项所述的触控电路。
  7. 根据权利要求6所述的显示面板,还包括多条沿第一方向延伸且沿第二方向间隔分布的驱动电极,每一所述驱动电极均包括多个间隔交叉分布的第一电极块和第二电极块;其中,所述第一电极块用作所述触控电极;所述第二电极块用于向所述显示面板的驱动电路提供电源信号。
  8. 根据权利要求7所述的显示面板,其中,连接于同一所述驱动电极的多个触控电路共用于同一条所述触控信号线。
  9. 根据权利要求7或8所述的显示面板,其中,每一个所述触控电极在所述第一方向上的尺寸沿所述第二方向变化。
  10. 一种触控检测方法,应用权利要求1-5任一项所述的触控电路,包括:
    向触控电极充电;
    利用驱动晶体管将所述触控电极的电压信号转化为电流信号;
    根据所述电流信号判断触控位置。
  11. 一种显示装置,包括权利要求6-9任一项所述的显示面板。
PCT/CN2019/087985 2018-05-31 2019-05-22 触控电路、触控检测方法、显示面板及显示装置 WO2019228240A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/620,606 US11132084B2 (en) 2018-05-31 2019-05-22 Touch circuit, touch detection method, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810553991.4 2018-05-31
CN201810553991.4A CN108415624B (zh) 2018-05-31 2018-05-31 触控电路、触控检测方法、显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2019228240A1 true WO2019228240A1 (zh) 2019-12-05

Family

ID=63141152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087985 WO2019228240A1 (zh) 2018-05-31 2019-05-22 触控电路、触控检测方法、显示面板及显示装置

Country Status (3)

Country Link
US (1) US11132084B2 (zh)
CN (1) CN108415624B (zh)
WO (1) WO2019228240A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415624B (zh) * 2018-05-31 2020-07-28 京东方科技集团股份有限公司 触控电路、触控检测方法、显示面板及显示装置
CN111078054B (zh) * 2019-12-20 2023-07-07 京东方科技集团股份有限公司 触控检测装置及其控制方法、显示模组

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091563A (zh) * 2014-06-27 2014-10-08 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104699318A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板、触控显示面板和触控显示装置
CN104835449A (zh) * 2015-05-04 2015-08-12 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板以及显示装置
CN106409218A (zh) * 2015-07-31 2017-02-15 乐金显示有限公司 集成有触摸传感器的显示装置及其驱动方法
CN106448558A (zh) * 2015-08-07 2017-02-22 乐金显示有限公司 集成有触摸传感器的显示装置及其驱动方法
CN106468981A (zh) * 2015-08-14 2017-03-01 乐金显示有限公司 集成有触摸传感器的显示装置及其驱动方法
CN106980410A (zh) * 2017-04-01 2017-07-25 京东方科技集团股份有限公司 触控检测电路、其驱动方法、内嵌式触摸屏及显示装置
CN108415624A (zh) * 2018-05-31 2018-08-17 京东方科技集团股份有限公司 触控电路、触控检测方法、显示面板及显示装置
CN108628501A (zh) * 2017-03-24 2018-10-09 辛纳普蒂克斯公司 适配于触摸感测的电流驱动的显示面板以及面板显示装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225777B2 (ja) * 2002-02-08 2009-02-18 シャープ株式会社 表示装置ならびにその駆動回路および駆動方法
JP2004170774A (ja) * 2002-11-21 2004-06-17 Canon Inc 表示装置及びその駆動制御方法
CN101726890B (zh) * 2008-10-28 2012-05-02 瀚宇彩晶股份有限公司 内嵌电容式感应输入显示装置
KR101634791B1 (ko) * 2008-11-28 2016-06-30 삼성디스플레이 주식회사 접촉 감지 기능이 있는 유기 발광 표시 장치
CN101930136B (zh) * 2009-06-19 2012-04-18 瀚宇彩晶股份有限公司 触控式液晶显示器及其运作方法
KR20120014808A (ko) * 2010-08-10 2012-02-20 엘지디스플레이 주식회사 터치 센서가 내장된 액정 표시 장치 및 그 구동 방법과 그 제조 방법
US9478590B2 (en) 2012-05-22 2016-10-25 Superc-Touch Corporation In-cell OLED touch display panel structure with metal layer for sensing
KR20140089078A (ko) * 2013-01-04 2014-07-14 삼성디스플레이 주식회사 터치 감지 회로와 이를 구비한 터치스크린 및 터치 감지 방법
JP2014149816A (ja) * 2013-01-10 2014-08-21 Japan Display Inc タッチ検出機能付き表示装置及び電子機器
CN103207720B (zh) * 2013-03-29 2015-09-16 北京京东方光电科技有限公司 一种触控显示面板的控制方法及装置和显示装置
TWM471626U (zh) 2013-08-16 2014-02-01 Superc Touch Corp 窄邊框之內嵌式有機發光二極體顯示觸控結構
CN103488362B (zh) * 2013-08-29 2016-08-17 北京大学深圳研究生院 触控单元电路、触控面板阵列和显示面板
CN103500040B (zh) * 2013-10-14 2016-08-10 合肥京东方光电科技有限公司 触摸感应电路及其方法、触摸屏及显示装置
CN103914184B (zh) * 2014-03-31 2017-02-15 京东方科技集团股份有限公司 一种触摸屏触摸检测方法及系统、触摸显示装置
CN104166489B (zh) * 2014-08-05 2018-07-10 京东方科技集团股份有限公司 显示面板、显示装置及显示驱动方法
CN104834427B (zh) * 2015-05-27 2017-11-14 京东方科技集团股份有限公司 触控驱动电路及其驱动方法、阵列基板及触控显示装置
CN104934008A (zh) * 2015-07-09 2015-09-23 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示面板、显示装置
CN106406591B (zh) 2015-07-31 2019-11-26 昆山国显光电有限公司 Oled触控基板、其制造方法及控制方法
CN106547384A (zh) 2015-09-23 2017-03-29 上海善星实业有限公司 一种In-cell触摸屏制作方法
CN105070268B (zh) * 2015-09-23 2017-10-24 深圳市华星光电技术有限公司 降低内嵌式触摸液晶面板的漏电流的方法及设备
KR102414705B1 (ko) * 2015-10-16 2022-06-30 삼성디스플레이 주식회사 터치 스크린 패널
CN105446544B (zh) * 2016-01-04 2018-05-18 京东方科技集团股份有限公司 触控驱动单元及其驱动方法、触控驱动电路及显示装置
CN106023875B (zh) * 2016-07-29 2022-08-16 厦门天马微电子有限公司 驱动单元、驱动方法、驱动电路及显示面板
CN107861651B (zh) * 2016-09-22 2021-01-22 京东方科技集团股份有限公司 触控方法、主动笔、触摸屏和触控显示系统
KR102568925B1 (ko) * 2016-10-25 2023-08-22 엘지디스플레이 주식회사 터치센서를 구비하는 표시장치 및 그에 대한 터치감지방법
US10490154B2 (en) * 2016-12-01 2019-11-26 Seiko Epson Corporation Electro-optical device and electronic device
CN106708342B (zh) 2016-12-21 2020-05-19 上海天马有机发光显示技术有限公司 Oled触控显示面板及制作方法、oled触控显示装置
JP6836415B2 (ja) * 2017-02-13 2021-03-03 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置、及び制御装置
US10656751B2 (en) * 2017-05-10 2020-05-19 Novatek Microelectronics Corp. Audible noise suppression in touch display panel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091563A (zh) * 2014-06-27 2014-10-08 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104699318A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板、触控显示面板和触控显示装置
CN104835449A (zh) * 2015-05-04 2015-08-12 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板以及显示装置
CN106409218A (zh) * 2015-07-31 2017-02-15 乐金显示有限公司 集成有触摸传感器的显示装置及其驱动方法
CN106448558A (zh) * 2015-08-07 2017-02-22 乐金显示有限公司 集成有触摸传感器的显示装置及其驱动方法
CN106468981A (zh) * 2015-08-14 2017-03-01 乐金显示有限公司 集成有触摸传感器的显示装置及其驱动方法
CN108628501A (zh) * 2017-03-24 2018-10-09 辛纳普蒂克斯公司 适配于触摸感测的电流驱动的显示面板以及面板显示装置
CN106980410A (zh) * 2017-04-01 2017-07-25 京东方科技集团股份有限公司 触控检测电路、其驱动方法、内嵌式触摸屏及显示装置
CN108415624A (zh) * 2018-05-31 2018-08-17 京东方科技集团股份有限公司 触控电路、触控检测方法、显示面板及显示装置

Also Published As

Publication number Publication date
CN108415624B (zh) 2020-07-28
US20200142564A1 (en) 2020-05-07
CN108415624A (zh) 2018-08-17
US11132084B2 (en) 2021-09-28

Similar Documents

Publication Publication Date Title
US10698521B2 (en) In-cell touch display panel, driving method thereof, and display device
US7579624B2 (en) Image display having a capacitance varying unit and method of driving same
CN104021756B (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
JP4782103B2 (ja) 画像表示装置
US10755636B2 (en) Pixel circuit and driving method for the same, display substrate and display device
JP4984715B2 (ja) 表示装置の駆動方法、及び、表示素子の駆動方法
US9947267B2 (en) Light emitting diode pixel unit circuit and display panel for light emitting diode display
US20150053947A1 (en) Light emitting diode pixel unit circuit and display panel
US20040239596A1 (en) Image display apparatus using current-controlled light emitting element
EP2960943A1 (en) Thin film transistor of display apparatus
US9666122B2 (en) Method for driving AMOLED-based touch display panel
US20140333682A1 (en) Pixel circuit and driving method thereof
CN101859542B (zh) 有机发光二极管显示装置及其有机发光二极管像素电路
US11263973B2 (en) Shift register unit, gate drive circuit, display device and driving method
US11107391B2 (en) Light emitting display device
US11205383B2 (en) Scan signal adjusting method, device and display panel
CN102708789A (zh) 像素单元驱动电路和方法、像素单元以及显示装置
WO2019228240A1 (zh) 触控电路、触控检测方法、显示面板及显示装置
US20190096334A1 (en) Oled pixel driving circuit and oled display device
CN105047118A (zh) 反转电路及其驱动方法、触控显示面板和触控显示装置
KR102481060B1 (ko) 인-셀 터치 타입의 유기발광표시장치 및 디스플레이드라이버
CN102214436B (zh) 反相器电路和显示装置
CN100517445C (zh) 有源矩阵器件
CN110060630B (zh) 像素驱动电路及显示面板
CN109144316B (zh) 一种嵌入式触控显示面板及其驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810042

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19810042

Country of ref document: EP

Kind code of ref document: A1