WO2019225527A1 - 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品 - Google Patents

重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品 Download PDF

Info

Publication number
WO2019225527A1
WO2019225527A1 PCT/JP2019/019837 JP2019019837W WO2019225527A1 WO 2019225527 A1 WO2019225527 A1 WO 2019225527A1 JP 2019019837 W JP2019019837 W JP 2019019837W WO 2019225527 A1 WO2019225527 A1 WO 2019225527A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
unit
laser
weld
crater
Prior art date
Application number
PCT/JP2019/019837
Other languages
English (en)
French (fr)
Inventor
亜怜 原
木谷 靖
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US17/055,739 priority Critical patent/US11648626B2/en
Priority to JP2019543129A priority patent/JP6635235B1/ja
Priority to EP19808427.9A priority patent/EP3797922A4/en
Priority to MX2020012533A priority patent/MX2020012533A/es
Priority to CN201980032610.0A priority patent/CN112135706B/zh
Priority to KR1020207033333A priority patent/KR102398807B1/ko
Publication of WO2019225527A1 publication Critical patent/WO2019225527A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/16Bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a lap laser welded joint, a method for manufacturing a lap laser welded joint, and an automotive framework component having the lap laser welded joint.
  • resistance spot welding is used for welding structural members of automobiles having flange portions.
  • resistance spot welding has a problem that it takes time for welding, a problem that the pitch cannot be narrowed due to a decrease in the amount of heat generated by the diversion, and a spatial restriction due to a gun provided in the welding machine. There's a problem.
  • lap laser welding refers to a welding method in which the surfaces of a plurality of stacked steel plates are irradiated with a laser beam to join the steel plates.
  • the surface of a plurality of stacked steel plates is irradiated with a laser beam in a linear shape, and the irradiated portion of the steel plate irradiated with the laser beam is melted and solidified to form a molten portion (welded portion). Is done. Thereby, the overlapped steel plates can be joined to obtain an overlap laser welded joint.
  • lap laser welding there is a problem that cracks are likely to occur on the end side of the linear melted portion, and when cracks occur, they propagate over the entire length of the melted portion.
  • Patent Document 1 discloses a technique for preventing weld cracking by projecting the lower steel plate of lap welding and making the welding start position away from the flange end.
  • Patent Document 2 discloses a technique for preventing welding cracks by irradiating laser on an end portion of an overlapping surface obliquely.
  • Patent Documents 3 and 4 disclose techniques for preventing weld cracking by reheating or welding a portion once welded and the periphery of the welded portion.
  • Patent Document 5 discloses a technique for preventing the occurrence of weld cracking by welding overlapping surfaces into an elliptical shape.
  • Patent Document 5 welds the overlapped surface to an ellipse, and cannot be applied to weld cracks in a linear weld.
  • the present invention provides a lap laser welded joint with good peel strength of a welded joint capable of suppressing the occurrence of cracks and the propagation of cracks at the end of the melted part, and a method for producing the lap laser welded joint
  • An object of the present invention is to provide an automobile frame part having the lap laser welding joint.
  • the present inventors have studied to solve the above problems, and as a result, obtained the following knowledge.
  • L ⁇ 15.0 (1) 10.0 ⁇ L2 ⁇ 2l c ⁇ ( 2) t1 ⁇ 2d c ⁇ (3) w c > d c (4)
  • L is the total length of the weld (Unit: mm)
  • L2 is the length of the end welds (Unit: mm)
  • l c is the length of the crater end welds (Unit: mm)
  • t1 is superimposed the thickness of the top layer of the steel sheet of the unit (unit: mm)
  • d c is the depth of the crater end welds (unit: mm)
  • the w c crater of the width of the end welds (unit: mm) is .
  • a lap laser welding joint having a welded portion joined by lap laser welding to an overlapped portion in which a plurality of steel plates are overlapped,
  • the welded portion is composed of a main weld that penetrates the steel plate of the overlapped portion, and a final weld having a crater formed at one end of the main weld,
  • the welded portion is a lap laser welded joint that satisfies formulas (1) to (4).
  • L ⁇ 15.0 (1) 10.0 ⁇ L2 ⁇ 2l c ⁇ ( 2) t1 ⁇ 2d c ⁇ (3) w c > d c (4)
  • L is the total length of the weld (Unit: mm)
  • L2 is the length of the end welds (Unit: mm)
  • l c is the length of the crater end welds (Unit: mm)
  • t1 is superimposed the thickness of the top layer of the steel sheet of the unit (unit: mm)
  • d c is the depth of the crater end welds (unit: mm)
  • the w c crater of the width of the end welds (unit: mm) is .
  • [6] A method for producing a lap laser weld joint according to any one of [1] to [5] above, Laminate multiple steel plates in the vertical direction, A method for manufacturing a lap laser welded joint, in which laser welding is performed by irradiating a laser on the surface of the uppermost steel plate among the superposed portions of the superposed steel plates, and a weld is formed on the superposed portion.
  • the laser welding includes a main welding process for forming a main welding part, and an end welding process for forming an end welding part having a crater,
  • a main welding process for forming a main welding part
  • an end welding process for forming an end welding part having a crater
  • L ⁇ 15.0 (1) 10.0 ⁇ L2 ⁇ 2l c ⁇ ( 2) t1 ⁇ 2d c ⁇ (3) w c > d c (4) P i ⁇ P f ⁇ (1/4) P i (5) v i ⁇ v f ⁇ (1/4) v i (6) f i ⁇ f f ⁇ 20.0 (7)
  • L is the total length of the weld (Unit: mm)
  • L2 is the length of the end welds (Unit: mm)
  • l c is the length of the crater end welds (Unit: mm)
  • t1 is superimposed the thickness of the top layer of the steel sheet of the unit (unit: mm)
  • d c is the depth of the crater end welds (unit: mm)
  • w c is crater of the width of the end welds (unit: mm)
  • P i the laser output of
  • the present invention it is possible to suppress the occurrence of cracks and propagation of cracks at the terminal end of the welded portion in the overlap laser welding of a plurality of stacked steel sheets, and thus it is possible to manufacture a lap laser welded joint with good peel strength. Moreover, since the lap laser welded joint of the present invention is excellent in appearance, it is suitable for a structural member of an automobile, and an automobile skeleton part having the lap laser welded joint of the present invention can be manufactured.
  • FIG. 1 is a perspective view showing an example of a lap laser welding joint of the present invention.
  • FIG. 2A is a schematic diagram for explaining a welding end portion of a conventional lap laser welding joint
  • FIG. 2B is a schematic diagram for explaining a welding end portion of the lap laser welding joint of the present invention.
  • 3A is a cross-sectional view taken along line AA of the lap laser welded joint in FIG. 2A
  • FIG. 3B is a cross-sectional view taken along line BB of the lap laser welded joint in FIG. 2B.
  • FIG. 4A is a top view and a cross-sectional view illustrating a welded portion of a conventional lap laser welded joint
  • FIG. 4B is a top view and a cross-sectional view illustrating a welded portion of a lap laser welded joint according to the present invention. It is.
  • FIG. 5 is a perspective view for explaining the welding method of the lap laser welding joint of the present invention.
  • 6A is a top view for explaining the position of the welded portion (melted portion) of the lap laser weld joint of the present invention
  • FIG. 6B is a cross-sectional view taken along the line CC in FIG. 6A.
  • FIG. 7 is a view showing an example of a lap laser weld joint in an embodiment of the present invention.
  • FIG. 8 is a graph showing an example of lap laser welding conditions in the method of manufacturing a lap laser weld joint of the present invention, FIG. 8 (A) shows the relationship between laser output and welding time, and FIG. 8 (B) shows welding. The relationship between the speed and the welding time is shown, and FIG. 8C shows the relationship between the focal position and the welding time.
  • the lap laser weld joint of the present invention has a welded portion joined by lap laser welding to an overlapped portion where a plurality of steel plates are overlapped.
  • the welded portion is composed of a main welded portion penetrating the overlapped steel plate and an end welded portion having a crater formed at one end of the main welded portion.
  • the welded portion is expressed by the following formulas (1) to (4) ) Is satisfied.
  • L ⁇ 15.0 (1) 10.0 ⁇ L2 ⁇ 2l c ⁇ ( 2) t1 ⁇ 2d c ⁇ (3) w c > d c (4)
  • L is the total length of the weld (Unit: mm)
  • L2 is the length of the end welds (Unit: mm)
  • l c is the length of the crater end welds (Unit: mm)
  • t1 is superimposed the thickness of the top layer of the steel sheet of the unit (unit: mm)
  • d c is the depth of the crater end welds (unit: mm)
  • the w c crater of the width of the end welds (unit: mm) is .
  • FIG. 1 is a perspective view showing an example of a lap laser welding joint 1 of the present invention.
  • FIG. 2A is a schematic view showing a welding end portion of a conventional lap laser welding joint
  • FIG. 2B is a schematic view showing a welding end portion of the lap laser welding joint of the present invention.
  • 3A is a cross-sectional view taken along line AA shown in FIG. 2A
  • FIG. 3B is a cross-sectional view taken along line BB shown in FIG. 2B.
  • 4A is a top view and a sectional view showing a welded portion of a conventional lap laser welded joint
  • FIG. 4B is a top view and a sectional view showing a welded portion of the lap laser welded joint of the present invention. .
  • the lap laser welding joint 1 of the present invention at least two steel plates are overlapped.
  • the steel plate 2 and the steel plate 3 are overlapped so as to face each other, and a region (flat region) of the flange portion 2b of the steel plate 2 becomes a joining surface.
  • the two superposed steel plates 2 and 3 are joined by overlapping laser welding at the flange portion 2b.
  • lap laser welding at least one steel plate among the steel plates 2 and 3 is penetrated, and a melted portion that joins the steel plates 2 and 3 is formed. This fusion zone and the weld heat affected zone of this fusion zone are the weld zone 4.
  • laser welding is performed by irradiating the laser beam 7 intermittently while moving the flange portion 2b in the longitudinal direction along the vertical wall portion 2a.
  • a plurality of welds 4 having a substantially straight surface shape are formed on the joint surfaces of the steel plates 2 and 3.
  • three or more steel plates may be overlapped.
  • FIGS. 2 (A), 3 (A), and 4 (A) show the welded portion 14 and its periphery in a conventional lap laser welded joint, as shown in FIG. 2 (B), FIG. 3 (B), and FIG. B) shows the welded portion 4 and its periphery in the lap laser weld joint of the present invention.
  • the size of the keyhole which is the governing factor of the melt width becomes the same size until the second half of welding, and generally the welded portion 14 shown in FIG. 4A is formed.
  • the width W of the welded portion 14 is substantially the same from the start end S to the end end E of the welded portion 14.
  • the steel plates 2 and 3 in the overlapping portion are melted through all of the steel plates 2 and 3 by welding.
  • a crater 15 having a large cross-sectional area is formed on the upper steel plate 2.
  • the depth of the crater 15 at the end portion of the welded portion 14 becomes deeper than the thickness of the uppermost steel plate. Specifically, as shown in FIG. 2 (A) and FIG. 3 (A), the depth d c of the crater 15 penetrates the steel plate 2, the more the thickness of the steel plate 2.
  • a tensile stress force in the direction of arrow Fa shown in FIG. 2 (A)
  • the width W of the welded portion 4 is predetermined from the starting end S of the welded portion 4 as shown in FIG. Although it is formed substantially the same up to the position, it is formed so as to narrow in steps from the predetermined position to the end E.
  • the steel plates 2 and 3 in the overlapping portion are melted through all of the steel plates 2 and 3 in the first half of welding up to the predetermined position described above, but the lower steel plate 3 in the second half of welding after the predetermined position described above. The amount of melting of decreases.
  • a small crater 5 is formed on the upper steel plate 2.
  • the size of the crater 5 formed at the end E of the welded portion 4 is smaller than the thickness of the uppermost steel plate as compared to the conventional crater 15. (Shallow). Specifically, as shown in FIG. 2 (B) and FIG. 3 (B), the depth d c of the crater 5 is shallow, not penetrate the steel plate 2.
  • the central portion (the final solidification of the end E) of the tensile stress (force in the direction of arrow Fb shown in FIG. 2B) outward from the outer peripheral portion of the melted portion. Concentration in the center of the part) is reduced. Thereby, generation
  • the surface dimension of the welded portion 4 is adjusted to a predetermined range. In particular, it is important to reduce the size of the crater 5 at the end of welding.
  • the welded portion 4 includes a main welded portion 4a that penetrates the steel plate of the overlapping portion, and a crater 5 that is formed following one end of the main welded portion 4a. And an end-stage weld 4b.
  • the welded portion 4 satisfies the above formulas (1) to (4).
  • Total length L (mm) of welded portion 4 L ⁇ 15.0 mm
  • the total length L of the welded portion 4 is 15.0 mm or more (the above formula (1)).
  • the upper limit of the total length L of the welded portion 4 is not specified, it is preferably set to 40.0 mm or less from the viewpoint of preventing the welding time of parts from becoming long. More preferably, it is 30.0 mm or less.
  • the length L2 of the end welds 4b is at least twice the length l c of the crater 5 telophase welded portion 4b (above (2)). Preferably it is 7.0 mm or more.
  • the upper limit of the length L2 of the final welded portion 4b is set to 10.0 mm or less from the viewpoint of suppressing the occurrence of weld cracks. Preferably it is 9.5 mm or less.
  • the thickness t1 of the uppermost steel plate in the overlapped portion corresponds to the above-described t1 in the example shown in FIG. 4B.
  • the depth d c of the crater 5 telophase weld 4b defines, from the viewpoint of the real construction, the depth d c of the crater 5 telophase weld 4b, of the superposed parts It is preferable to set it to 1/3 or less of the plate thickness t1 (mm) of the uppermost steel plate. That is, the thickness t1 of the top layer of the steel sheet of the overlapping portions is preferably three times or more the depth d c of the crater 5 telophase weld 4b (3d c ⁇ t1). More preferably, the plate thickness t1 of the uppermost steel plate in the overlapped portion is 0.7 mm or more.
  • the depth d c of the crater 5 telophase welding unit 4b, the thickness of the top layer of the steel sheet of the overlapping portions t1 (mm) 1 / 10 or more is preferable. That is, the thickness t1 of the top layer of the steel sheet of the overlapping portions is preferably set to 10 times the depth d c of the crater 5 telophase weld 4b (10 ⁇ d c ⁇ t1 ).
  • the depth d c of the crater 5 telophase welded portion 4b is smaller than the width w c of the crater 5 telophase weld 4b. That is, the width w c of the crater 5 telophase welded portion 4b is larger than the depth d c of the crater 5 telophase welded portion 4b (equation (4)).
  • the width w c of the crater 5 of the final welded part 4b is 0.15 mm or more.
  • lower limit of the depth d c of the crater 5 telophase weld 4b is not specified, from the viewpoint of the real construction, preferably 0.30mm or more.
  • the size of the crater 5 telophase welded portion 4b increases, the underfill is increased, the width w c of the crater 5 telophase weld 4b is preferably set to 2mm or less.
  • the main welded portion 4a and the final welded portion 4b are formed in the above-described predetermined range, so that the above-described effect by reducing the size of the crater 5 is maximized. I can put it out. As a result, excessive stress concentration on the end E of the welded portion 4 can be prevented, and the occurrence of weld cracks can be prevented. Thereby, even if the minimum value of the total length L of the welded portion 4 is as short as 15.0 mm, it is possible to prevent the occurrence of welding defects at the end of the welded portion.
  • the lap laser welding joint 1 of the present invention can obtain the target characteristics of the present invention by the above configuration, but the following configuration can be added as necessary in addition to the above configuration.
  • total size of gaps (mm) between steel plates relative to the total thickness T (mm) of a plurality of steel plates 0% to 15%
  • the total G of the sizes of the gaps between the steel plates in the overlapping portion where the plurality of steel plates are overlapped is the total thickness T ( mm) to 0% to 15%.
  • the gap (plate gap) between the steel plates is only between the steel plates 2 and 3, so the total plate gap is Gmm, and the total plate thickness T of the plurality of steel plates is (t2 + t3). ) Mm, 0% ⁇ G / (t2 + t3) ⁇ 15%.
  • the total gap G (mm) with respect to the total thickness T (mm) of a plurality of steel plates is 5% or more. More preferably, it is 10% or less.
  • the component composition of the steel plate used for the lap laser welded joint 1 of the present invention is not particularly limited, the component composition of at least one steel plate among the plurality of steel plates to be overlapped is, for example, in mass% and exceeds C: 0.07%. 0.25% or less, P + S: less than 0.03%, Mn: 1.8% or more and 3.0% or less, Si: more than 1.2% and 2.5% or less, the balance being Fe and inevitable impurities It can have a component composition.
  • % in each component composition refers to mass%.
  • the C content is preferably 0.07% to 0.25% or less. More preferably, the C content is 0.10% or more and 0.21% or less.
  • the total amount (P + S: less than 0.03%) of the P content and the S content is less than 0.03%, the ductility is not lowered, and desired high strength and workability can be ensured. Therefore, the total amount (P + S) of the P content and the S content is preferably less than 0.03%.
  • the Mn content is preferably 1.8% or more and 3.0% or less. More preferably, the Mn content is 1.9% or more. The Mn content is more preferably 2.7% or less, and further preferably 2.5% or less.
  • the Si content is preferably more than 1.2% and not more than 2.5%. More preferably, the Si content is 1.3% or more and 1.5% or less.
  • the balance other than the above component composition is Fe and inevitable impurities.
  • Inevitable impurities include Al: 0.015 to 0.050%, N: 0.002 to 0.005%, and the like.
  • one or two selected from the following group A and group B can be further contained as required.
  • Ti and Nb precipitate as carbides or nitrides, and have an action of suppressing austenite coarsening during annealing. Therefore, when Ti and Nb are contained, it is preferable to contain at least one kind. In order to obtain this effect, when Ti and Nb are contained, it is preferable to contain 0.005% or more of Ti and 0.005% or more of Nb, respectively. However, even if these elements are contained excessively, the effect of the above action may be saturated and uneconomical.
  • the recrystallization temperature at the time of annealing rises, the metal structure after annealing becomes non-uniform, and the stretch flangeability may be impaired. Furthermore, the precipitation amount of carbide or nitride increases, the yield ratio increases, and the shape freezing property may deteriorate. Therefore, when Ti and Nb are contained, the Ti content is preferably 0.01% or less and the Nb content is preferably less than 0.050%, respectively. More preferably, the Ti content is less than 0.0080%. More preferably, the Nb content is less than 0.040%.
  • Cr, Mo, and B are elements having an effect of improving the hardenability of steel. Therefore, you may contain 1 or more types of these elements. However, even if these elements are contained excessively, the effects described above may be saturated and uneconomical. Therefore, when Cr, Mo and B are contained, the Cr content is 1.0% or less, the Mo content is 0.50% or less, and the B content is 0.10% or less, respectively. More preferably, the Cr content is 0.50% or less. More preferably, the Mo content is 0.10% or less. More preferably, the B content is 0.03% or less, and still more preferably, the B content is 0.0030% or less. Preferably, the Cr content is 0.01% or more. Preferably, the Mo content is 0.004% or more. Preferably, the B content is 0.0001% or more.
  • At least one steel plate can be a high strength steel plate having a tensile strength TS of 980 MPa or more. Even if at least one steel plate is the above-described high-tensile steel plate, the lap laser welded joint 1 can obtain high joint strength and can prevent the occurrence of welding defects.
  • at least one steel plate among the plurality of steel plates preferably has the above-described component composition and has a tensile strength TS of 980 MPa or more.
  • the plurality of steel plates may be the same type and the same shape, or different types and different shapes.
  • the thickness t of the plurality of steel plates to be subjected to lap laser welding is not particularly limited, but is preferably in the range of 0.5 mm ⁇ t ⁇ 3.2 mm, for example.
  • a steel plate having a thickness within this range can be suitably used as an outer plate for automobiles and a framework member for automobiles.
  • the board thickness of a some steel plate may be the same, and may differ.
  • the plate thickness t2 of the upper steel plate 2 satisfies 0.6 mm ⁇ t2 ⁇ 1.2 mm, and the plate thickness of the lower steel plate 3 It is preferable that t3 is 1.0 mm ⁇ t3 ⁇ 2.5 mm.
  • the plate thickness t2 of the upper steel plate 2 and the plate thickness t3 of the lower steel plate 3 preferably satisfy the ranges of 0.5 mm ⁇ t2 ⁇ 3.2 mm and 0.5 mm ⁇ t3 ⁇ 3.2 mm. .
  • the “weld crack” in the present invention refers to a low temperature crack that occurs at the weld end portion of the weld zone 4 and propagates from the weld end E to the weld start end S.
  • the presence or absence of the occurrence of weld cracks can be determined by cutting the welded portion 4 after welding and confirming the presence or absence of cracks. The presence or absence of cracks can also be confirmed visually. From the viewpoint of more clearly discriminating, for example, the cut surface of the welded portion may be confirmed by enlarging it about 10 times with an optical microscope. When taking a cross-sectional photograph of the welded portion, a portion 5 mm away from the welding end portion is cut out perpendicular to the welding direction with a precision cutting machine. In addition, a weld crack is observed penetrating from the front surface to the back surface of the welded portion 4.
  • FIG. 5 is a view for explaining an example of a welding method for the lap laser welding joint 1 of the present invention.
  • the method for manufacturing a lap laser welded joint 1 according to the present invention is a method for manufacturing the lap laser welded joint 1 described above. Of these, overlap laser welding is performed to irradiate the surface of the uppermost steel sheet with laser, and a weld 4 is formed and joined to the overlap.
  • one-side welding is performed on a plurality of laminated steel plates.
  • one-side welding it is possible to save space in the automobile body parts assembly line.
  • laser welding may be performed in order from either side.
  • the lap laser welding joint 1 of the present invention has a straight line on the surface of the outermost steel plate 2 such that a plurality of steel plates 2 and 3 are overlapped to form a welded portion 4 on the steel plates 2 and 3. It can be obtained by performing overlap laser welding in which the laser beam 7 is irradiated in a shape.
  • the laser beam 7 is continuously irradiated while scanning linearly.
  • the main welded portion 4 a and the final welded portion 4 b are continuously formed to form the welded portion 4.
  • the effect of reducing the size of the crater 5 can be maximized by continuously performing the main welding process for forming the main welding part 4a and the final welding process for forming the final welding part 4b. Therefore, it is preferable because excessive stress concentration on the end E (see FIGS. 2B and 3B) of the welded portion 4 can be prevented and cracking can be prevented.
  • the lap laser welding of the present invention has a main welding process for forming the main welding part 4 a and a final welding process for forming the final welding part 4 b having the crater 5.
  • the main welding process is main welding that penetrates all the steel plates in the overlapped portion in the first half of the welding.
  • the final welding process is intended to reduce the size of the crater 5 formed at the end E of the welded part 4 while adjusting the welding conditions described later up to the end E of the welded part 4 following the main welding process. This is the final welding.
  • the laser output, the welding speed, the focal position, and the final welding process so that the final weld 4b having the main weld 4a and the crater 5 forms the weld 4 satisfying the above equations (1) to (4). It is preferable to control at least one of the beam diameters. In this welding process, welding is performed under certain conditions.
  • a fiber laser, a disk laser or the like can be used as the laser beam.
  • beam diameter 0.3 to 0.8 mm
  • laser output 2.0 to 5.0 kW
  • focal position range from the surface of the outermost layer of the steel plate to 0 to 20 mm above the surface of the outermost layer of the steel plate
  • welding speed It is preferably 2.0 to 5.0 m / min.
  • the beam diameter is 0.5 to 0.8 mm
  • the laser output is 2.5 to 4.5 kW
  • the focal position is 20 mm from the surface of the steel sheet outermost layer and the surface of the steel sheet outermost layer. It is preferable to control in the range up to the upper part and the welding speed: 2.5 to 4.5 m / min.
  • the beam diameter is 0.2 to 0.6 mm
  • the laser output is 0.5 to 3.0 kW
  • the focal position is from the surface of the outermost layer of the steel plate to 30 mm above the surface of the outermost layer of the steel plate.
  • the welding speed is preferably controlled in the range of 2.0 to 4.0 m / min.
  • the relationship between the laser output Pi, the welding speed vi, and the focal position fi in the main welding process, and the laser output Pf, the welding speed vf, and the focal position ff in the final welding process are shown in FIGS. It is preferable to control the laser output, the welding speed, and the focal position so that the relationship shown in each graph of C) is obtained. Specifically, at least one of the laser output, the welding speed, the focal position, and the beam diameter in the final welding process can be controlled under the conditions satisfying the expressions (5) to (7).
  • laser output P i is the welding process (unit: kW)
  • laser output P f is the final stage welding process (unit: kW)
  • v i is the welding speed of the welding process (unit: m / min)
  • v f is the welding speed (unit: m / min) in the final welding process
  • f i is the focal position (unit: mm) in the final welding process
  • f f is the focal position (unit: mm) in the final welding process.
  • the laser output P f (kW) in the final welding process exceeds the laser output P i (kW) in the main welding process, there is a possibility that underfill will increase and melting will occur. More preferably, the laser output P f in the final welding process is set to (Pi ⁇ 0.5) or less.
  • the laser output P f of the final welding process of less than 1/4 of the laser power P i of the welding process, the laser power can not dissolve the steel sheet insufficient. For this reason, sufficient weld line length cannot be ensured, and there is a possibility that the peel strength may be insufficient. More preferably, the laser output P f in the final welding process is set to (Pi ⁇ 1/3) or more.
  • Welding speed telophase welding process v f (m / min) is, if more than welding speed v i of the welding process (m / min), the depth d c of the crater 5 telophase welded portion 4b may become deeper . Even more preferably, the welding speed v f of the final welding process is less (v i ⁇ 0.8).
  • the welding speed v f of the final welding process of less than 1/4 of the welding speed v i of the welding process, the size of the crater 5 telophase welded portion 4b is increased, there is a possibility that burn-occurs .
  • the welding speed v f in the final welding process is set to (v i ⁇ 1/2) or more.
  • Focus position f f telophase welding process (mm) is, if less than the focal position f i of the welding process (mm), there is a possibility that the depth d c of the crater 5 telophase welded portion 4b becomes deep. More preferably, the focal position f f in the final welding process is set to (f i ⁇ 1.2) or more.
  • the focal position f f telophase welding process if it exceeds 20.0 mm, power density of the laser is unable to dissolve the steel sheet insufficient. For this reason, sufficient weld line length cannot be ensured, and there is a possibility that the peel strength may be insufficient. Even more preferably, the focal position f f telophase welding process is not more than 15.0 mm.
  • steel plates 2 and 3 for example, steel plates having the above-described component composition and having a tensile strength TS of 980 MPa or more can be used.
  • the plate thicknesses t2 and t3 of the plurality of steel plates 2 and 3 are 0.5 mm ⁇ t2 ⁇ 3.2 mm and 0.5 mm ⁇ t3 ⁇ 3.2 mm, respectively. 3 to a total thickness of 0 to 15%. The reason for applying these steel plates is the same as described above.
  • FIG. 6 is a view for explaining an example of the position of a suitable welded portion (melted portion) 4 in the lap laser welded joint 1 of the present invention.
  • 6A is a top view showing the periphery of the welded portion 4 of the two steel plates 2 and 3
  • FIG. 6B is a cross-sectional view taken along the line CC in FIG. 6A.
  • the steel plate 2 is also referred to as a flange portion 2b and the steel plate 3 is also referred to as a frame component.
  • the position coordinate of the end portion of the contact position between the flange portion 2b of the upper steel plate 2 and the frame part of the lower steel plate 3 is set to zero.
  • a coordinate system in which the outer end side of the flange portion 2b is ( ⁇ ) and the vertical wall portion 2a side in the substantially hat shape (FIG. 6 shows only a part of the substantially hat shape) is (+).
  • the steel plate thickness at the thickest portion is t (mm).
  • it is preferable to perform welding by applying the one-side welding method at a welding position X (mm) represented by the following formula (8).
  • the peel strength of the L-shaped tensile test piece having a total sheet thickness T of 2 to 5 mm and a length of the flange portion 2b of 50 mm as shown in FIG. 7 is set to 1.2 kN or more.
  • the reason why X is set as in the above equation (8) will be described.
  • the welding position X When the welding position X is closer to the contact end of the flange portion 2b than -2t, the weld metal portion is more likely to break during the tensile test, and the peel strength may be lowered. On the other hand, if the welding position X is further away from the contact end portion of the flange portion 2b than ⁇ 4t, the moment applied to the welded portion 4 tends to increase and the peel strength may be lowered. Therefore, it is preferable to set the welding position X as in the above equation (8).
  • ⁇ Automobile framework parts> As an example of a part that can suitably use the lap laser welded joint 1 of the present invention, there is a car frame part.
  • the steel plate 2 that is a frame component having a substantially hat-shaped cross section and the steel plate 3 that is a panel component are used.
  • the frame part for automobiles has a flange part 2b of a frame part (steel plate 2 shown in FIG. 1) and a panel part (steel plate 3 shown in FIG. 1) arranged opposite to the flange part 2b by the above-described welding method.
  • a closed section is formed by forming the welded portion 4 by welding.
  • the automobile frame part of the present invention is preferably applied to, for example, a center pillar and a roof rail. In these parts, it is important to ensure peel strength from the viewpoint of collision safety.
  • the center pillar to which the automobile frame part of the present invention is applied has sufficient peel strength as described above.
  • a plurality of steel plates including at least one high-strength steel plate are overlapped, welded portions 4 are formed, and welding defects are generated on the front and back surfaces of the steel plate.
  • the lap laser welding joint 1 which does not do can be obtained.
  • the welded portion 4 of the present invention can reduce the size of the crater at the end of the melted portion, the concentration of tensile stress at the center of the final solidified portion is reduced. Thereby, since generation
  • the lap laser welding joint 1 of the present invention is excellent in appearance, it can be suitably used for automobile structural members. For example, by using a high-strength steel plate as a steel plate to be joined, it is possible to obtain a car frame part. By using such a lap laser welded joint 1, it is possible to obtain an automotive skeleton component having high peel strength.
  • steel plates having the composition shown in Table 1 were used as test materials.
  • the plate thickness of the steel plate is any of 1.2 mm, 1.6 mm and 2.0 mm, and the plate width is 50 mm.
  • the L-shaped cross-sectional shape was bent.
  • the L-shaped steel plate 8 has a long side 8a and a short side 8b.
  • the long side 8a corresponds to the vertical wall portion 2a of the steel plate 2 of the lap laser weld joint 1 shown in FIG. 1, and the short side 8b corresponds to the flange portion 2b.
  • test piece size was 120 mm for the long side 8a (vertical wall length), 50 mm for the short side 8b (test piece width), and 30 mm for the overlapped portion (flange width).
  • a gap (plate gap) G between the upper and lower L-shaped steel plates 8 was appropriately adjusted within a range of 0 to 20% in accordance with the plate thickness.
  • Tables 2-1 and 2-2 show the conditions of the welded portion 4 formed by lap laser welding. As shown in FIG. 7, the coordinates indicating the welding position are set such that the contact position closer to the vertical wall at the portion where the two L-shaped steel plates 8 are overlapped is 0, and the outside of the portion where the test pieces are overlapped ( ⁇ ), Expressed in a coordinate system in which the vertical wall side of the test piece is (+).
  • the welding position is X
  • the total length of the melted portion (welded portion) 4 is L
  • the end of the welded portion 4 (the final welded portion 4b) is L2
  • the length of the crater 5 of the final welded portion 4b is l c
  • the depth of the crater 5 telophase weld 4b d c the width of the crater 5 telophase welded portion 4b and w c
  • a fiber laser having a beam diameter of 0.6 mm ⁇ at the focal position was used.
  • the size of the crater 5 of the final weld 4b is such that the laser output, the welding speed, and the focal position have the relationship shown in the graphs of FIGS. 8 (A) to 8 (C). Adjusted in the process.
  • the processing point distance was on the outermost surface of the steel sheet.
  • the focal position of the overlap laser welding is 0 on the uppermost steel plate surface (the surface of the upper L-shaped steel plate 8 in the example shown in FIG. 7) and is perpendicular to the L-shaped steel plate 8.
  • the upward direction was positive. Welding was performed in air.
  • the peel strength was measured by an L-shaped tensile test in which the steel plates 8 bent in an L shape were overlapped as shown in FIG. 7 and laser welding was performed, and a tensile load was applied from both sides of the welded steel plate.
  • the tensile test was performed at a speed of 10 mm / min based on JIS Z3136. Evaluation of peel strength evaluated as "pass" as having high joint strength, when peel strength is 1.2 kN or more.
  • the determination of the occurrence of cracks can be made by visual inspection and penetration testing.
  • the occurrence of cracks was visually determined. Specifically, from the obtained test piece, a position 5 mm away from the center of the crater 5 of the final welded part 4b toward the welding start side was cut in a direction perpendicular to the welding direction. The cut surface was confirmed by enlarging 10 times with an optical microscope. Observation was performed one by one under each condition. When it penetrated from the surface of the welding part 4 to the back surface, it was determined that there was a weld crack.
  • test pieces of the present invention had a peel strength of 1.2 kN or more, and no welding defects occurred.
  • No. 4 no. 12, no. 20, no. 28, no. 36, no. No. 44 has a weld crack because the total length L of the welded portion 4 is shorter than 15.0 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法およびその重ねレーザ溶接継手を有する自動車用骨格部品を提供することを目的とする。本発明は、複数の鋼板を重ね合わせた重ね合わせ部に、重ねレーザ溶接により接合された溶接部を有する重ねレーザ溶接継手であって、溶接部は、重ね合わせ部の鋼板を貫通する本溶接部と、本溶接部の一端に形成されたクレータを有する終期溶接部とからなり、溶接部は、(1)式~(4)式を満たす。 L≧15.0 ・・・(1) 10.0≧L2≧2l  ・・・(2) t1≧2d  ・・・(3) w>d ・・・(4)

Description

重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
 本発明は、重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法およびその重ねレーザ溶接継手を有する自動車用骨格部品に関する。
 従来より、フランジ部分を有する自動車の構造部材の溶接には、抵抗スポット溶接が用いられている。しかし、抵抗スポット溶接には、溶接に時間がかかるという問題、分流により発熱量が低下するためピッチを狭くすることができないという問題、さらには溶接機に設けたガンによる空間的な制約があるという問題がある。これらの問題を解決するため、近年では、従来の抵抗スポット溶接に加えて、重ねレーザ溶接を用いることが検討されている。ここで、重ねレーザ溶接とは、重ね合わせた複数枚の鋼板の表面にレーザビームを照射して、鋼板を接合する溶接方法をさす。
 重ねレーザ溶接では、重ね合わせた複数枚の鋼板の表面に直線形状にレーザビームを照射し、レーザビームが照射された鋼板の照射部位を溶融および凝固させることにより、溶融部(溶接部)が形成される。これにより、重ね合わせた鋼板が接合されて重ねレーザ溶接継手を得ることができる。しかし、重ねレーザ溶接の場合には、直線形状の溶融部の終端側で割れが発生し易く、割れが発生すると溶融部の全長に亘って伝播するという問題がある。溶接金属に割れが発生し伝播すると、重ねレーザ溶接継手部のせん断および剥離強さといった静的強度が低下することに加え、割れからのき裂の進展により疲労強度が著しく低下することが懸念される。自動車車体部品、特に骨格部品では、近年、車体強度および剛性の向上のために、より高強度の高張力鋼板が使用されるようになっており、溶接部の割れによる継手の静的強度および疲労強度の低下は重大な問題となる。
 そこで、重ね合わせた鋼板をレーザ溶接した場合に生じる、重ねレーザ溶接割れの発生および伝播を抑制する方法として、種々の技術が開示されている。
 例えば、特許文献1には、重ね溶接の下側の鋼板を突出させ、かつ溶接開始位置をフランジ端部から離れた位置にすることで、溶接割れを防止する技術が開示されている。特許文献2には、重ね面の端部に斜めからレーザを照射して、溶接割れを防止する技術が開示されている。特許文献3、4には、一度溶接した部分やその溶接した部分の周囲を、再加熱あるいは溶接することで、溶接割れを防止する技術が開示されている。特許文献5には、重ね面を楕円形に溶接して溶接割れの発生を防止する技術が開示されている。
特開2007-229740号公報 特開2008-296236号公報 特開2012-240083号公報 特開2012-240086号公報 特開2017-113781号公報
 しかしながら、特許文献1に記載の方法では、重ね溶接の下側の鋼板を突出させるため、突出させる部分が余分となり、部品設計が制約される問題がある。
 特許文献2に記載の方法では、斜めからレーザを照射するため、重ね合わせた板に隙間が空いている場合には、重ね面で溶融部がうまく形成されない溶込み不足の状態となり、強度を確保することが難しい問題がある。
 特許文献3、4に記載の方法では、一度溶接した部分もしくはその溶接した部分の周囲を、再加熱もしくは溶接するため、再加熱もしくは溶接をすることによりさらに溶接時間が必要となる問題がある。
 特許文献5に記載の方法は、重ね面を楕円形に溶接するものであり、直線形状の溶接部の溶接割れには適用することができない。
 本発明は係る問題を鑑み、溶融部の終端部で割れが発生することおよび割れが伝播することを抑制できる、溶接継手の剥離強度が良好な重ねレーザ溶接継手、この重ねレーザ溶接継手の製造方法、およびこの重ねレーザ溶接継手を有する自動車用骨格部品を提供することを目的とする。
 本発明者らは、上記課題を解決するために検討した結果、以下の知見を得た。
 本発明では、(a)溶融部の全長、(b)終期溶接部の長さ、(c)重ねレーザ溶接の終端部におけるクレータの長さ、深さおよび幅、(d)重ね合わせた複数枚の鋼板のうち最上層の鋼板の板厚について、それぞれ注目した。そして、上記した(a)~(d)の全ての関係について制御すること、すなわち下記の(1)式~(4)式を満たす溶接部を重ねレーザ溶接で形成することにより、溶接部の終端側での割れの発生および割れの伝播が抑制できることを知見した。なお、本発明では、溶融部と溶接熱影響部をあわせて、溶接部と称する。
L≧15.0   ・・・(1)
10.0≧L2≧2l    ・・・(2)
t1≧2d    ・・・(3)
>d     ・・・(4)
 ここで、Lは溶接部の全長(単位:mm)、L2は終期溶接部の長さ(単位:mm)、lは終期溶接部のクレータの長さ(単位:mm)、t1は重ね合わせ部のうち最上層の鋼板の板厚(単位:mm)、dは終期溶接部のクレータの深さ(単位:mm)、wは終期溶接部のクレータの幅(単位:mm)である。
 さらに、重ねた複数枚の鋼板の板厚の合計および重ねた複数枚の鋼板の間の隙間の大きさの合計を制御することで、重ね面における溶融部への応力集中を抑えることとなり、剥離強度をより向上できることが分かった。
 本発明は、上述の知見に基づいて完成されたものであり、以下を要旨とするものである。
[1] 複数の鋼板を重ね合わせた重ね合わせ部に、重ねレーザ溶接により接合された溶接部を有する重ねレーザ溶接継手であって、
 前記溶接部は、前記重ね合わせ部の鋼板を貫通する本溶接部と、該本溶接部の一端に形成されたクレータを有する終期溶接部とからなり、
 前記溶接部は、(1)式~(4)式を満たす重ねレーザ溶接継手。
L≧15.0   ・・・(1)
10.0≧L2≧2l    ・・・(2)
t1≧2d    ・・・(3)
>d     ・・・(4)
 ここで、Lは溶接部の全長(単位:mm)、L2は終期溶接部の長さ(単位:mm)、lは終期溶接部のクレータの長さ(単位:mm)、t1は重ね合わせ部のうち最上層の鋼板の板厚(単位:mm)、dは終期溶接部のクレータの深さ(単位:mm)、wは終期溶接部のクレータの幅(単位:mm)である。
[2] 前記重ね合わせ部における、鋼板間の隙間の大きさの合計が、前記複数の鋼板の合計板厚に対して0%以上15%以下である上記[1]に記載の重ねレーザ溶接継手。
[3] 前記複数の鋼板のうち少なくとも1つの鋼板は、質量%で、
C:0.07%超え0.25%以下、
P+S:0.03%未満、
Mn:1.8%以上3.0%以下、
Si:1.2%超え2.5%以下
を含有し、残部Feおよび不可避的不純物からなる成分組成を有する上記[1]または[2]に記載の重ねレーザ溶接継手。
[4] 前記成分組成に加えて、さらに、以下のA群およびB群から選択される1つまたは2つを含有する上記[1]~[3]のいずれか1つに記載の重ねレーザ溶接継手。
A群:質量%で、Ti:0.005%以上0.01%以下、およびNb:0.005%以上0.050%未満のうちから選択される1種または2種
B群:質量%で、Cr:1.0%以下、Mo:0.50%以下、およびB:0.10%以下のうちから選択される1種または2種以上
[5] 前記複数の鋼板のうち少なくとも1つの鋼板が、引張強さ980MPa以上の高張力鋼板である上記[1]~[4]のいずれか1つに記載の重ねレーザ溶接継手。
[6] 上記[1]~[5]のいずれか1つに記載の重ねレーザ溶接継手の製造方法であって、
 複数の鋼板を上下方向に重ね合わせ、
 重ね合わせた前記複数の鋼板の重ね合わせ部のうち、最上層の鋼板表面にレーザを照射するレーザ溶接を行い、前記重ね合わせ部に溶接部を形成し、接合する重ねレーザ溶接継手の製造方法。
[7] 前記レーザ溶接は、本溶接部を形成する本溶接工程と、クレータを有する終期溶接部を形成する終期溶接工程とを有し、
(1)式~(4)式を満たす前記溶接部を形成するように、
(5)式~(7)式を満たす条件で、前記終期溶接工程のレーザ出力、溶接速度、焦点位置およびビーム径のうち少なくとも1つを制御する[6]に記載の重ねレーザ溶接継手の製造方法。
L≧15.0     ・・・(1)
10.0≧L2≧2l   ・・・(2)
t1≧2d     ・・・(3)
>d      ・・・(4)
≧P≧(1/4)P ・・・(5)
≧v≧(1/4)v ・・・(6)
≦f≦20.0  ・・(7)
 ここで、Lは溶接部の全長(単位:mm)、L2は終期溶接部の長さ(単位:mm)、lは終期溶接部のクレータの長さ(単位:mm)、t1は重ね合わせ部のうち最上層の鋼板の板厚(単位:mm)、dは終期溶接部のクレータの深さ(単位:mm)、wは終期溶接部のクレータの幅(単位:mm)、Pは本溶接工程のレーザ出力(単位:kW)、Pは終期溶接工程のレーザ出力(単位:kW)、vは本溶接工程の溶接速度(単位:m/min)、vは終期溶接工程の溶接速度(単位:m/min)、fは本溶接工程の焦点位置(単位:mm)、fは終期溶接工程の焦点位置(単位:mm)である。
[8] 上記[1]~[5]のいずれか1つに記載の重ねレーザ溶接継手を有する自動車用骨格部品。
 本発明によれば、重ね合わせた複数枚の鋼板の重ねレーザ溶接における、溶接部の終端部での割れの発生および割れの伝播を抑制できるため、剥離強度の良好な重ねレーザ溶接継手を製造できる。また、本発明の重ねレーザ溶接継手は外観にも優れるため、自動車の構造部材に好適であり、本発明の重ねレーザ溶接継手を有する自動車用骨格部品を製造できる。
図1は、本発明の重ねレーザ溶接継手の一例を示す斜視図である。 図2(A)は従来の重ねレーザ溶接継手の溶接終端部を説明する概略図であり、図2(B)は本発明の重ねレーザ溶接継手の溶接終端部を説明する概略図である。 図3(A)は、図2(A)における重ねレーザ溶接継手のA-A線断面図であり、図3(B)は、図2(B)における重ねレーザ溶接継手のB-B線断面図である。 図4(A)は従来の重ねレーザ溶接継手の溶接部を説明する上面図および断面図であり、図4(B)は本発明の重ねレーザ溶接継手の溶接部を説明する上面図および断面図である。 図5は、本発明の重ねレーザ溶接継手の溶接方法を説明する斜視図である。 図6(A)は本発明の重ねレーザ溶接継手の溶接部(溶融部)の位置を説明する上面図であり、図6(B)は図6(A)におけるC-C線断面図である。 図7は、本発明の実施例における重ねレーザ溶接継手の一例を示す図である。 図8は、本発明の重ねレーザ溶接継手の製造方法における重ねレーザ溶接条件の一例を示すグラフであり、図8(A)はレーザ出力と溶接時間の関係を示し、図8(B)は溶接速度と溶接時間の関係を示し、図8(C)は焦点位置と溶接時間との関係を示す。
 以下、各図を参照して、本発明の重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法、および自動車用骨格部品について説明する。なお、本発明はこの実施形態に限定されない。
 <重ねレーザ溶接継手>
 本発明の重ねレーザ溶接継手は、複数の鋼板を重ね合わせた重ね合わせ部に、重ねレーザ溶接により接合された溶接部を有する。溶接部は、重ね合わせ部の鋼板を貫通する本溶接部と、該本溶接部の一端に形成されたクレータを有する終期溶接部とからなり、溶接部は、下記の(1)式~(4)式を満たす。
L≧15.0      ・・・(1)
10.0≧L2≧2l    ・・・(2)
t1≧2d       ・・・(3)
>d        ・・・(4)
 ここで、Lは溶接部の全長(単位:mm)、L2は終期溶接部の長さ(単位:mm)、lは終期溶接部のクレータの長さ(単位:mm)、t1は重ね合わせ部のうち最上層の鋼板の板厚(単位:mm)、dは終期溶接部のクレータの深さ(単位:mm)、wは終期溶接部のクレータの幅(単位:mm)である。
 このような本発明の重ねレーザ溶接継手1の一実施形態について、図1~図4を用いて説明する。図1は、本発明の重ねレーザ溶接継手1の一例を示す斜視図である。図2(A)は従来の重ねレーザ溶接継手の溶接終端部を示す概略図であり、図2(B)は本発明の重ねレーザ溶接継手の溶接終端部を示す概略図である。図3(A)は図2(A)に示したA-A線の断面図であり、図3(B)は図2(B)に示したB-B線の断面図である。図4(A)は従来の重ねレーザ溶接継手の溶接部を示す上面図および断面図であり、図4(B)は本発明の重ねレーザ溶接継手の溶接部を示す上面図および断面図である。
 まず、図1を参照して、本発明の重ねレーザ溶接継手1について説明する。
 本発明の重ねレーザ溶接継手1では、少なくとも二つの鋼板を重ね合わせる。図1に示した例では、縦壁部2aおよび縦壁部2aの先端から外側へ延びるフランジ部2bを有する断面形状が略ハット形状の鋼板2と、平らなパネル形状の鋼板3との2枚の鋼板を用いる。鋼板2と鋼板3は対向するように重ね合わせられ、鋼板2のフランジ部2bの領域(平坦な領域)が接合面となる。重ね合わせた2枚の鋼板2、3は、フランジ部2bで重ねレーザ溶接することにより接合される。重ねレーザ溶接では、鋼板2、3のうち少なくとも1枚の鋼板を貫通し、鋼板2、3を接合する溶融部が形成される。この溶融部およびこの溶融部の溶接熱影響部が、溶接部4となる。
 なお、レーザ溶接は、縦壁部2aに沿って、フランジ部2bを長手方向に移動しながら、断続的にレーザビーム7を照射して行なわれる。これにより、鋼板2、3の接合面には、図1に示すように、表面の形状が略直線の複数の溶接部4が形成される。ここでは、本発明の重ねレーザ溶接継手1として、2枚の鋼板2、3が重ね合される場合を例に説明するが、3枚以上の鋼板が重ね合されていてもよい。
 次に、図2~図4を参照して、本発明の技術思想および溶接部4の構成について説明する。図2(A)、図3(A)および図4(A)には、従来の重ねレーザ溶接継手における溶接部14とその周辺を、図2(B)、図3(B)および図4(B)には、本発明の重ねレーザ溶接継手における溶接部4とその周辺を、それぞれ示す。
 従来の重ねレーザ溶接方法では、一定の出力と速度で溶接して溶接部を形成する。そのため、溶融幅の支配因子であるキーホールの大きさは溶接後半まで同様の大きさとなり、一般的に図4(A)に示した溶接部14が形成される。具体的には、溶接部14の幅Wは、溶接部14の始端Sから終端Eまで略同じである。重ね合わせ部における鋼板2、3は、溶接により鋼板2、3の全てを貫通して溶融される。溶接部14の終端Eでは、上側の鋼板2に断面積の大きなクレータ15が形成される。
 上記した従来の重ねレーザ溶接方法により溶接を行った重ねレーザ溶接継手では、溶接部14の終端部分のクレータ15の深さが最上層の鋼板の板厚よりも深くなる。具体的には、図2(A)および図3(A)に示すように、クレータ15の深さdは、鋼板2を貫通しており、鋼板2の板厚以上となる。このような形状の場合、溶接部14の終端Eにおいて最終凝固部となる中心部には、溶融部外周部分から外側に向かう引張応力(図2(A)に示した矢印Fa方向の力)が集中してかかる。これにより、溶接部14の終端部分では凝固割れ16が発生し、伝播する場合があることが分かった。
 これに対し、後述する本発明の溶接部4の形状を形成する重ねレーザ溶接方法では、図4(B)に示すように、溶接部4の幅Wは、溶接部4の始端Sから所定の位置まで略同じに形成されるが、該所定の位置から終端Eにかけて段階的に狭くなるように形成される。重ね合わせ部における鋼板2、3は、上記した所定の位置までの溶接前半では鋼板2、3の全てを貫通して溶融されるが、上記した所定の位置以降の溶接後半では下側の鋼板3の溶融量は減少する。溶接部4の終端Eでは、上側の鋼板2に小さなクレータ5が形成される。
 図4(A)および図4(B)に示したように、従来のクレータ15に比べて、溶接部4の終端Eに形成されるクレータ5のサイズは最上層の鋼板の板厚よりも小さく(浅く)なる。具体的には、図2(B)および図3(B)に示すように、クレータ5の深さdは浅く、鋼板2を貫通しない。このような形状の場合、溶接部4の終端Eでは、溶融部の外周部分から外側に向かう引張応力(図2(B)に示した矢印Fb方向の力)の中心部(終端Eの最終凝固部の中心部)への集中が小さくなる。これにより、溶接部4の終端部分における凝固割れの発生を防止することができる。
 上記した技術思想に基づき、本発明の重ねレーザ溶接継手1では、溶接部4の表面の寸法を、所定の範囲に調整する。特に、溶接終端部のクレータ5のサイズを小さくすることが重要である。
 具体的には、図4(B)に示すように、溶接部4は、重ね合わせ部の鋼板を貫通する本溶接部4aと、該本溶接部4aの一端に続けて形成されたクレータ5を有する終期溶接部4bとから構成される。溶接部4は、上記した(1)式~(4)式を満たす。
 (溶接部4の全長L(mm):L≧15.0mm)
 溶接部4の全長Lが、15.0mmより短い場合、後述する終期溶接部4bの長さL2(mm)が十分に確保できず、溶接割れが発生する。そのため、溶接部4の全長Lは15.0mm以上(上記(1)式)とする。好ましくは20.0mm以上とする。なお、特に溶接部4の全長Lの上限は規定しないが、部品の溶接時間が長くなるのを防ぐ観点より、40.0mm以下とすることが好ましい。より好ましくは30.0mm以下である。
 (終期溶接部4bの長さL2(mm):10.0≧L2≧2l
 終期溶接部4bのクレータ5の長さlが、終期溶接部4bの長さL2の1/2より大きい場合、溶接部4の終端部分(終期溶接部4b)に対するクレータ5の割合が大きいため、溶接割れの発生を抑えることができない。そのため、終期溶接部4bのクレータ5の長さlは終期溶接部4bの長さL2(mm)の1/2以下とする。すなわち、終期溶接部4bの長さL2は、終期溶接部4bのクレータ5の長さlの2倍以上(上記(2)式)とする。好ましくは7.0mm以上とする。なお、終期溶接部4bの長さL2の上限は、溶接割れの発生を抑える観点より、終期溶接部4bの長さL2は10.0mm以下とする。好ましくは9.5mm以下とする。
 (重ね合わせ部のうち最上層の鋼板の板厚t1(mm):t1≧2d
 終期溶接部4bのクレータ5の深さdが、重ね合わせ部のうち最上層(複数枚の鋼板を重ね合わせた部分のうち一番上部)の鋼板の板厚t1の1/2より大きい場合、鋼板表面でのアンダーフィルが著しくなる。その結果、溶接部4の終端Eに引張応力がより集中し、溶接割れが発生しやすくなる。また、溶接割れが発生した場合、後述する本発明の実施例にも示すように、はく離強度を評価する試験において溶接割れ部分から破壊が起こりやすく、本発明で目的とするはく離強度が得られないことがある。そのため、終期溶接部4bのクレータ5の深さdは重ね合わせ部のうち最上層の鋼板の板厚t1(mm)の1/2以下とする。すなわち、重ね合わせ部のうち最上層の鋼板の板厚t1は、終期溶接部4bのクレータ5の深さdの2倍以上(上記(3)式)とする。
なお、以降の説明において、「重ね合わせ部のうち最上層の鋼板の板厚t1」とは、図4(B)に示す例の場合には図中の「t2」が上記t1に相当する。
 本発明では、特に終期溶接部4bのクレータ5の深さdの下限は規定しないが、実施工上の観点より、終期溶接部4bのクレータ5の深さdは、重ね合わせ部のうち最上層の鋼板の板厚t1(mm)の1/3以下とすることが好ましい。すなわち、重ね合わせ部のうち最上層の鋼板の板厚t1は、終期溶接部4bのクレータ5の深さdの3倍以上(3d≦t1)とすることが好ましい。より好ましくは、重ね合わせ部のうち最上層の鋼板の板厚t1は0.7mm以上とする。
 なお、レーザ出力をなるべく下げずに溶接を効率的に行う観点から、終期溶接部4bのクレータ5の深さdは、重ね合わせ部のうち最上層の鋼板の板厚t1(mm)の1/10以上とすることが好ましい。すなわち、重ね合わせ部のうち最上層の鋼板の板厚t1は、終期溶接部4bのクレータ5の深さdの10倍以下(10×d≧t1)とすることが好ましい。
 (終期溶接部4bのクレータ5の幅w(mm):w>d
 終期溶接部4bのクレータ5の深さdが上記した重ね合わせ部のうち最上層の鋼板の板厚t1の1/2以下であっても、終期溶接部4bのクレータ5の深さdが終期溶接部4bのクレータ5の幅w以上の場合には、鋼板表面でのアンダーフィルが著しくなるため、溶接部4の終端Eに引張応力がより集中し、溶接割れが発生しやすくなる。また、溶接割れが発生した場合、後述する実施例にも示すように、はく離強度を評価する試験において溶接割れ部分から破壊が起こりやすく、本発明で目的とするはく離強度が得られないことがある。そのため、終期溶接部4bのクレータ5の深さdは終期溶接部4bのクレータ5の幅w未満とする。すなわち、終期溶接部4bのクレータ5の幅wは、終期溶接部4bのクレータ5の深さdより大きい(上記(4)式)とする。好ましくは、終期溶接部4bのクレータ5の幅wは、0.15mm以上とする。
なお、特に終期溶接部4bのクレータ5の深さdの下限は規定しないが、実施工上の観点より、好ましくは0.30mm以上である。
 なお、終期溶接部4bのクレータ5のサイズが大きくなると、アンダーフィルが大きくなるため、終期溶接部4bのクレータ5の幅wは、2mm以下とすることが好ましい。
 以上のように、本発明の溶接部4は、本溶接部4aおよび終期溶接部4bを上記した所定の範囲に形成するため、クレータ5のサイズを小さくすることによる上記した効果を最大限に引出せる。その結果、溶接部4の終端Eへの過剰な応力集中を防ぎ、溶接割れの発生を防止することができる。これにより、溶接部4の全長Lの最小値が15.0mmと短い場合であっても溶接部終端での溶接欠陥の発生を防止することができる。
 なお、本発明の重ねレーザ溶接継手1は、以上の構成により本発明で目的とする特性を得ることができるが、上記の構成に加えて、必要に応じて下記の構成を加えることができる。
 (複数の鋼板の総板厚T(mm)に対する鋼板の間の隙間(mm)の大きさの合計:0%以上15%以下)
 本発明では、複数の鋼板を重ね合わせた重ね合わせ部における、鋼板の間の隙間の大きさの合計G(以下、総板隙と称する場合もある)が、複数の鋼板の総板厚T(mm)に対して0%以上15%以下とすることができる。図4(B)に示した例では、鋼板の間の隙間(板隙)は鋼板2、3の間のみであるため、総板隙をGmmとし、複数の鋼板の総板厚Tを(t2+t3)mmとしたとき、0%≦G/(t2+t3)≦15%と表される。複数の鋼板の総板厚T(mm)に対する総板隙G(mm)は、上記した範囲に調整することにより、アンダーフィルの量を抑え、重ね面に形成された溶接部への応力集中を抑えることとなり、溶接割れを抑制し、剥離強度をさらに向上させることが可能となる。より好ましくは、複数の鋼板の総板厚T(mm)に対する総板隙G(mm)は、5%以上とする。より好ましくは10%以下とする。
 (鋼板の成分組成)
 本発明の重ねレーザ溶接継手1に用いる鋼板の成分組成は、特に限定されないが、重ね合わせる複数の鋼板のうち少なくとも1つの鋼板の成分組成が、例えば、質量%で、C:0.07%超え0.25%以下、P+S:0.03%未満、Mn:1.8%以上3.0%以下、Si:1.2%超え2.5%以下を含有し、残部Feおよび不可避不純物からなる成分組成を有するものとすることができる。以下、各成分組成における%とは、質量%のことを指す。
 (C:0.07%超え0.25%以下)
 C含有量が0.07%を超える場合、析出強化の効果を得ることが可能となる。一方、C含有量が0.25%以下の場合、粗大な炭化物の析出を招くことがなく、所望の高強度、および加工性を確保することが可能となる。そのため、C含有量は0.07%超え0.25%以下とすることが好ましい。より好ましくは、C含有量は、0.10%以上であり、0.21%以下である。
 (P+S:0.03%未満)
 P含有量とS含有量の合計量(P+S)が0.03%未満の場合、延靱性が低下せず、所望の高強度および加工性を確保することが可能となる。そのため、P含有量とS含有量の合計量(P+S)は0.03%未満とすることが好ましい。
 (Mn:1.8%以上3.0%以下)
 Mn含有量が1.8%以上の場合、十分な焼入れ性が確保可能となるため、粗大な炭化物が析出し難くなる。一方、Mn含有量が3.0%以下の場合、粒界脆化感受性が増加し、靱性および耐低温割れ性が劣化し難くなる。そのため、Mn含有量は1.8%以上3.0%以下とすることが好ましい。より好ましくは、Mn含有量は、1.9%以上とする。Mn含有量は、より好ましくは2.7%以下とし、さらに好ましくは2.5%以下とする。
 (Si:1.2%超え2.5%以下)
 Si含有量が1.2%超えの場合、固溶して鋼の強度を増加させる効果を十分に得ることが可能となる。一方、Si含有量が2.5%以下の場合、溶接熱影響部の硬化が大きくなり難く、溶接熱影響部の靱性および耐低温割れ性が劣化し難い。そのため、Si含有量は1.2%超え2.5%以下とすることが好ましい。より好ましくは、Si含有量は、1.3%以上とし、1.5%以下とする。
 (残部Feおよび不可避的不純物)
 上記成分組成以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、Al:0.015~0.050%、N:0.002~0.005%等が挙げられる。
 その他、鋼板強度や剥離強度をより向上させるため、上記した成分組成に加えて、さらに、必要に応じて以下のA群およびB群から選択される1つまたは2つを含有することができる。
 (A群:質量%で、Ti:0.005%以上0.01%以下、およびNb:0.005%以上0.050%未満のうちから選択される1種または2種)
 TiやNbは、炭化物または窒化物として析出し、焼鈍中のオーステナイトの粗大化を抑制する作用を有する。したがって、Ti、Nbを含有させる場合には、少なくとも1種を含有させることが好ましい。この効果を得るためにTi、Nbを含有させる場合には、それぞれ、Tiは0.005%以上、Nbは0.005%以上を含有させることが好ましい。しかし、これらの元素を過剰に含有させても上記作用による効果が飽和して不経済となる恐れがある。また、焼鈍時の再結晶温度が上昇し、焼鈍後の金属組織が不均一となり、伸びフランジ性も損なわれる恐れがある。さらには、炭化物または窒化物の析出量が増し、降伏比が上昇し、形状凍結性も劣化する恐れがある。したがって、Ti、Nbを含有させる場合には、それぞれ、Ti含有量は0.01%以下、Nb含有量は0.050%未満とすることが好ましい。より好ましくは、Ti含有量は0.0080%未満とする。より好ましくは、Nb含有量は0.040%未満とする。
 (B群:質量%で、Cr:1.0%以下、Mo:0.50%以下、およびB:0.10%以下のうちから選択される1種または2種以上)
 Cr、MoおよびBは、鋼の焼入性を向上させる作用を有する元素である。したがってこれらの元素の1種類以上を含有させてもよい。しかしながら、これらの元素を過剰に含有させても上記した効果が飽和して不経済となる恐れがある。したがって、Cr、MoおよびBを含有させる場合には、それぞれ、Cr含有量は1.0%以下、Mo含有量は0.50%以下、B含有量は0.10%以下とする。より好ましくは、Cr含有量は0.50%以下とする。より好ましくは、Mo含有量は0.10%以下とする。より好ましくは、B含有量は0.03%以下、さらに好ましくは、B含有量は0.0030%以下とする。また、好ましくは、Cr含有量は0.01%以上とする。好ましくは、Mo含有量は0.004%以上とする。好ましくは、B含有量は、0.0001%以上とする。
 (鋼板の引張強さ)
 本発明の重ねレーザ溶接継手1に用いる複数の鋼板のうち、少なくとも1つの鋼板の引張強さTSが、980MPa以上の高張力鋼板とすることができる。少なくとも1つの鋼板が上記した高張力鋼板であっても、重ねレーザ溶接継手1は、高接合強度を得ることができると共に、溶接欠陥の発生を防止することができる。例えば、複数の鋼板のうち少なくとも1つの鋼板は、上記した成分組成を有し、引張強さTSが980MPa以上とすることが好ましい。なお、複数の鋼板は、同種、同形状の鋼板であってもよいし、異種、異形状の鋼板であってもよい。
 (鋼板の板厚)
 本発明では、重ねレーザ溶接の対象である複数枚の鋼板の板厚tは、特に限定されないが、例えば0.5mm≦t≦3.2mmの範囲内であることが好ましい。板厚がこの範囲内である鋼板は、自動車用外板および自動車用骨格部材として好適に使用することができる。なお、複数の鋼板の板厚は、全て同じであってもよいし、異なっていてもよい。
 具体的には、図1等に示した重ねレーザ溶接継手1の場合には、上側の鋼板2の板厚t2が0.6mm≦t2≦1.2mmを満たし、下側の鋼板3の板厚t3が1.0mm≦t3≦2.5mmとすることが好ましい。あるいは、上側の鋼板2の板厚t2および下側の鋼板3の板厚t3は、いずれも0.5mm≦t2≦3.2mm、0.5mm≦t3≦3.2mmの範囲を満たすことが好ましい。
 なお、本発明における「溶接割れ」とは、溶接部4の溶接終端部分で発生し、溶接終端Eから溶接始端Sまで伝播する低温割れをさす。溶接割れの発生の有無は、溶接後の溶接部4を切断し、割れの有無を確認することで判別できる。割れの有無の確認は、目視で確認することも可能である。より明瞭に判別する観点から、例えば溶接部の切断面を光学顕微鏡で10倍程度に拡大して確認するとよい。溶接部の断面写真を撮影する場合には、精密切断機にて溶接終端部から5mm離れた箇所を溶接方向と垂直に切出す。なお、溶接割れは、溶接部4の表面から裏面まで貫通して観察される。
 <重ねレーザ溶接継手の製造方法>
 まず、図5を用いて、上述した本発明の重ねレーザ溶接継手1の製造方法について説明する。図5は、本発明の重ねレーザ溶接継手1の溶接方法の一例を説明するための図である。
 本発明の重ねレーザ溶接継手1の製造方法は、上記した重ねレーザ溶接継手1の製造方法であって、複数の鋼板を上下方向に重ね合わせ、その後、重ね合わせた複数の鋼板の重ね合わせ部のうち、最上層の鋼板表面にレーザを照射する重ねレーザ溶接を行い、重ね合わせ部に溶接部4を形成し、接合する。
 本発明では、積層した複数の鋼板に対して片側溶接を行う。片側溶接を行うことにより、自動車車体部品組み立てラインの省スペース化を実現できる。片側溶接は、積層した複数の鋼板のうち、板厚がより大きい方の鋼板側から重ねレーザ溶接を行うことが好ましい。これにより、溶落ちを防ぐことができる。鋼板の板厚が同一の場合には、いずれか一方側から順に重ねレーザ溶接を行なえばよい。
 図5に示す例では、本発明の重ねレーザ溶接継手1は、複数の鋼板2、3を重ね合わせ、鋼板2、3に溶接部4を形成するように、最外層の鋼板2の表面に直線状にレーザビーム7を照射する重ねレーザ溶接を行うことで得ることができる。
 上記した重ねレーザ溶接は、レーザビーム7を、直線状に走査しながら連続照射する。例えば、図5に示したように、本溶接部4aおよび終期溶接部4bの形成を連続して行い、溶接部4を形成する。この場合、本溶接部4aを形成する本溶接工程と終期溶接部4bを形成する終期溶接工程を連続して行うことにより、クレータ5のサイズを小さくする効果を最大限に引出せる。そのため、溶接部4の終端E(図2(B)および図3(B)を参照)への過剰な応力集中を防ぎ、割れの発生を防止できるため、好ましい。
 本発明の重ねレーザ溶接は、本溶接部4aを形成する本溶接工程と、クレータ5を有する終期溶接部4bを形成する終期溶接工程とを有する。本溶接工程とは、溶接前半の重ね合わせ部の鋼板の全てを貫通する本溶接である。終期溶接工程とは、本溶接工程に続いて、溶接部4の終端Eまで後述する溶接条件を調整しながら、溶接部4の終端Eに形成されるクレータ5のサイズを小さくすることを目的とした終期溶接である。本溶接部4aおよびクレータ5を有する終期溶接部4bが、上記(1)式~上記(4)式を満たす溶接部4を形成するように、終期溶接工程のレーザ出力、溶接速度、焦点位置およびビーム径のうち少なくとも1つを制御することが好ましい。なお、本溶接工程は一定の条件で溶接を行う。
 例えば、レーザビームとしては、ファイバーレーザ、ディスクレーザ等を用いることができる。また、ビーム径:0.3~0.8mm、レーザ出力:2.0~5.0kW、焦点位置:鋼板最外層表面上から、鋼板最外層表面から0~20mm上方までの範囲、溶接速度:2.0~5.0m/minとすることが好ましい。
 さらに好ましくは、本溶接部4aの形成にあたり、ビーム径:0.5~0.8mm、レーザ出力:2.5~4.5kW、焦点位置:鋼板最外層表面上から、鋼板最外層表面から20mm上方までの範囲、溶接速度:2.5~4.5m/minの範囲で制御することが好ましい。
また、終期溶接部4bの形成にあたり、ビーム径:0.2~0.6mm、レーザ出力:0.5~3.0kW、焦点位置:鋼板最外層表面上から、鋼板最外層表面から30mm上方までの範囲、溶接速度:2.0~4.0m/minの範囲で制御することが好ましい。
 より好ましくは、本溶接工程のレーザ出力Pi、溶接速度viおよび焦点位置fiと、終期溶接工程のレーザ出力Pf、溶接速度vfおよび焦点位置ffとの関係が、図8(A)~図8(C)の各グラフに示す関係となるように、レーザ出力、溶接速度および焦点位置を制御することが好ましい。具体的には、(5)式~(7)式を満たす条件で、終期溶接工程のレーザ出力、溶接速度、焦点位置およびビーム径のうち少なくとも1つを制御することができる。
≧P≧(1/4)P ・・・(5)
≧v≧(1/4)v ・・・(6)
≦f≦20.0  ・・(7)
 ここで、Pは本溶接工程のレーザ出力(単位:kW)、Pは終期溶接工程のレーザ出力(単位:kW)、vは本溶接工程の溶接速度(単位:m/min)、vは終期溶接工程の溶接速度(単位:m/min)、fは本溶接工程の焦点位置(単位:mm)、fは終期溶接工程の焦点位置(単位:mm)である。
 P≧P≧(1/4)P ・・・(5)
 終期溶接工程のレーザ出力P(kW)が、本溶接工程のレーザ出力P(kW)を超える場合、アンダーフィルが多くなり溶落ちが発生する恐れがある。より一層好ましくは、終期溶接工程のレーザ出力Pは(Pi×0.5)以下とする。
 一方、終期溶接工程のレーザ出力Pが、本溶接工程のレーザ出力Pの1/4倍未満の場合、レーザのパワーが足りず鋼板を溶かすことができない。このため、十分な溶接線長を確保できず、はく離強度不足となる恐れがある。より一層好ましくは、終期溶接工程のレーザ出力Pは(Pi×1/3)以上とする。
 v≧v≧(1/4)v ・・・(6)
 終期溶接工程の溶接速度v(m/min)が、本溶接工程の溶接速度v(m/min)を超える場合、終期溶接部4bのクレータ5の深さdは深くなる恐れがある。より一層好ましくは、終期溶接工程の溶接速度vは(v×0.8)以下とする。
 一方、終期溶接工程の溶接速度vが、本溶接工程の溶接速度vの1/4倍未満の場合、終期溶接部4bのクレータ5のサイズが大きくなり、溶落ちが発生する恐れがある。より一層好ましくは、終期溶接工程の溶接速度vは(v×1/2)以上とする。
 f≦f≦20.0  ・・(7)
 終期溶接工程の焦点位置f(mm)が、本溶接工程の焦点位置f(mm)未満の場合、終期溶接部4bのクレータ5の深さdが深くなる恐れがある。より一層好ましくは、終期溶接工程の焦点位置fは(f×1.2)以上とする。
 一方、終期溶接工程の焦点位置fが、20.0mmを超える場合、レーザのパワー密度が足りず鋼板を溶かすことができない。このため、十分な溶接線長を確保できず、はく離強度不足となる恐れがある。より一層好ましくは、終期溶接工程の焦点位置fは15.0mm以下とする。
 また、本発明の溶接方法では、鋼板2、3として、例えば上記した成分組成を有し、引張強さTSが980MPa以上の鋼板を用いることができる。また、複数の鋼板2、3の板厚t2、t3は、それぞれ0.5mm≦t2≦3.2mm、0.5mm≦t3≦3.2mmであり、鋼板2、3の板隙は鋼板2、3の板厚の合計の0%以上15%以下とすることができる。なお、これらの鋼板を適用する理由については上述と同様である。
 次に、図6を用いて、本発明の重ねレーザ溶接継手1における好適な溶接位置の一例について説明する。
 図6は、本発明の重ねレーザ溶接継手1における好適な溶接部(溶融部)4の位置の一例を説明する図である。図6(A)は、2つの鋼板2、3の溶接部4の周辺を示す上面図であり、図6(B)は、図6(A)のC-C線断面図である。なお、図6の説明では、鋼板2をフランジ部2b、鋼板3をフレーム部品とも記す。
 図6(A)および図6(B)に示した例では、上側の鋼板2のフランジ部2bと下側の鋼板3のフレーム部品との接触位置の端部の位置座標を0とする。また、フランジ部2bの外端側を(-)、略ハット形状(図6には、略ハット形状の一部の形状のみを示す。)における縦壁部2a側を(+)とした座標系で表す。略ハット形状のフランジ部2bにおいて、最も板厚の厚い部分の鋼板板厚をt(mm)とする。このとき、下記(8)式で表される溶接位置X(mm)で片側溶接方法を適用し、溶接を行うことが好ましい。これにより、図7に示したような、総板厚Tが2~5mmであり、二枚重ねでフランジ部2bの長さが50mmであるL字引張試験片の剥離強度を1.2kN以上にすることができる。
-2t≧X≧-4t ・・・(8)
 ここで、Xを上記(8)式のように設定した理由を説明する。
 溶接位置Xは、-2tよりもフランジ部2bの接触端部に近づけると、引張試験の際に溶接金属部より破断しやすくなり、剥離強度も低くなる場合がある。一方、溶接位置Xは、-4tよりもフランジ部2bの接触端部から遠ざけると、溶接部4にかかるモーメントが大きくなりやすく、剥離強度が低くなる場合がある。そのため、溶接位置Xは、上記(8)式のように設定することが好ましい。
 <自動車用骨格部品>
 本発明の重ねレーザ溶接継手1を好適に用いることができる部品の一例として、自動車用骨格部品がある。上記の図1に示した自動車用骨格部品の場合には、断面形状が略ハット形状のフレーム部品である鋼板2と、パネル部品の鋼板3とが用いられる。自動車用骨格部品は、フレーム部品(図1に示す鋼板2)のフランジ部2bと、このフランジ部2bに対向して配置されるパネル部品(図1に示す鋼板3)とが上記した溶接方法により溶接されて上記した溶接部4を形成することにより、閉断面を構成する。
 本発明の自動車用骨格部品は、例えば、センターピラー、ルーフレールなどに適用することが好ましい。これらの部品では、衝突安全性の観点から剥離強度を確保することが重要である。本発明の自動車骨格部品を適用したセンターピラーは、上述のように、十分な剥離強度を有する。
 以上説明したとおり、本発明によれば、少なくとも1枚の高張力鋼板を含む複数枚の鋼板を重ね合わせ、溶接部4を形成して溶接接合することにより、鋼板の表裏面に溶接欠陥が発生することのない重ねレーザ溶接継手1を得ることができる。
 本発明の溶接部4は、溶融部終端のクレータのサイズを小さくできるため、最終凝固部の中心部における引張応力の集中が小さくなる。これにより、溶融部終端側での割れの発生および伝播が抑制できるため、剥離強度が高く耐久性に優れた重ねレーザ溶接継手1を製造することができる。
 また、従来の重ねレーザ溶接に比べて短い溶融部長(15mm)であっても、溶接割れを抑制できる。このため、部材設計の自由度の向上や、より剥離強度が必要な部分を数多く溶接することによる強度向上も期待できる。
 さらに、本発明の重ねレーザ溶接継手1は、外観に優れているため、自動車の構造部材に好適に用いることができる。例えば、接合する鋼板として高強度鋼板を用いることにより自動車用骨格部品とすることができる。このような重ねレーザ溶接継手1を用いることにより、剥離強度の高い自動車用骨格部品等を得ることができる。
 以下、本発明の作用および効果について、実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。
 本実施例では、供試材として表1に示す成分組成の鋼板を用いた。
 鋼板の板厚は、1.2mm、1.6mmおよび2.0mmのいずれかであり、板幅は50mmである。これらの鋼板を用いて、図7に示すように、L字の断面形状に曲げ加工を施した。L字鋼板8は、長辺8aと短辺8bを有する。なお、長辺8aが、上記した図1に示した重ねレーザ溶接継手1の鋼板2の縦壁部2aに相当し、短辺8bがフランジ部2bに相当する。
 そして、同じ鋼種および同じ板厚のL字鋼板8を2枚用い、各短辺8b同士を重ね合わせた。その後、重ね合わせた部分(図7に示す平坦な部分)を長手方向に複数箇所断続的に重ねレーザ溶接を行って溶接ビード(溶接部4)を形成し、L字試験片(以下、試験片と称する)を作製した。ここでは、試験片サイズは、長辺8a(縦壁長さ)が120mm、短辺8b(試験片幅)が50mm、重ね合わせた部分(フランジ幅)が30mmとした。上下のL字鋼板8間の隙間(板隙)Gは、板厚に合わせて0~20%の範囲内で適宜調整した。
 重ねレーザ溶接により形成する溶接部4の条件を、表2-1および表2-2に示す。
図7に示すように、溶接位置を示す座標は、2つのL字鋼板8を重ね合わせた部分で縦壁に近い方の接触位置を0とし、試験片の重ね合わせた部分の外側を(-)、試験片における縦壁側を(+)とした座標系で表す。この時の溶接位置をX、溶融部(溶接部)4の全長をL、溶接部4の終端(終期溶接部4b)の長さをL2、終期溶接部4bのクレータ5の長さをl、終期溶接部4bのクレータ5の深さをd、終期溶接部4bのクレータ5の幅をwとし、それぞれの値を種々変えて試験を行った。
 レーザ溶接には、焦点位置のビーム直径が0.6mmφのファイバーレーザを用いた。終期溶接部4bのクレータ5のサイズは、レーザ出力、溶接速度、および焦点位置が図8(A)~図8(C)の各グラフに示した関係となるように、本溶接工程と終期溶接工程で調整した。加工点距離は、鋼板最外層表面上とした。なお、重ねレーザ溶接の焦点位置は、重ね合わせた鋼板の一番上側の鋼板表面(図7に示す例では、上側のL字鋼板8の表面)を0とし、L字鋼板8に対して鉛直上向き方向を正とした。溶接は大気中で行った。
 なお、剥離強度は、L字に曲げた鋼板8同士を図7のように重ね合わせて重ねレーザ溶接を行い、溶接された鋼板の両側から引張荷重を負荷するL字引張試験で測定した。引張試験はJIS Z3136に基づき、10mm/minの速度で行った。剥離強度の評価は、剥離強度が1.2kN以上の場合に、高接合強度を有するものとして「合格」と評価した。
 また、割れ発生の判定は、目視および浸透探傷試験により判定できる。本実施例では、上述したように、目視で割れ発生の判定を行った。具体的には、得られた試験片より、終期溶接部4bのクレータ5の中心から5mm溶接開始側に離れた位置を溶接方向と垂直になる方向に切断した。切断面は光学顕微鏡で10倍に拡大して確認した。各条件で1本ずつ観察を行った。溶接部4の表面から裏面まで貫通していた場合に、溶接割れが有りと判定した。
 得られた溶接割れおよび剥離強度の判定結果を、表2-1および表2-2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2-1および表2-2に示すように、本発明例の試験片は、剥離強度が1.2kN以上であり、溶接欠陥は発生しなかった。
 一方、比較例の試験片のうち、No.2、No.10、No.18、No.26、No.34、No.42は、総板隙Gが総板厚Tの15%より大きく、さらに溶接部4の終端Eのクレータ5の深さdが深い(値が大きい)ため、溶接割れが発生した。
 また、No.4、No.12、No.20、No.28、No.36、No.44は、溶接部4の全長Lが15.0mmより短いため、溶接割れが発生した。
 また、No.5、No.13、No.21、No.29、No.37、No.45は、終期溶接部4bの長さL2が小さいため、溶接割れが発生した。
 また、No.6、No.14、No.22、No.30、No.38、No.46は、溶接部4の終端Eのクレータ5の深さdが深い(値が大きい)ため、溶接割れが発生した。
 また、No.7、No.15、No.23、No.31、No.39、No.47は、溶接部4の終端Eのクレータ5の長さlが大きいため、溶接割れが発生した。
 また、No.8、No.16、No.24、No.32、No.40、No.48は、溶接部4の終端Eのクレータ5の幅wが小さいため、溶接割れが発生した。
 以上のとおり、上記した本発明に従い重ねレーザ溶接を行った本発明例では、本発明で目的とする特性を有する良好な重ねレーザ溶接継手が得られた。これに対し、本発明の上記した溶接条件を外れる比較例では、良好な重ねレーザ溶接継手が得られなかったことが分かる。
 1   重ねレーザ溶接継手
 2   鋼板
 3   鋼板
 4   溶接部
 4a  本溶接部
 4b  終期溶接部
 5   クレータ
 7   レーザビーム
 8   鋼板
 14  溶接部
 15  クレータ
 16  割れ
 L   溶接部の全長
 L2  終期溶接部の長さ
 l   クレータの長さ
 d   クレータの深さ
 w   クレータの幅
 W    溶接部の幅
 G    板隙

Claims (8)

  1.  複数の鋼板を重ね合わせた重ね合わせ部に、レーザ溶接により接合された溶接部を有する重ねレーザ溶接継手であって、
     前記溶接部は、前記重ね合わせ部の鋼板を貫通する本溶接部と、該本溶接部の一端に形成されたクレータを有する終期溶接部とからなり、
     前記溶接部は、(1)式~(4)式を満たす重ねレーザ溶接継手。
    L≧15.0   ・・・(1)
    10.0≧L2≧2l    ・・・(2)
    t1≧2d    ・・・(3)
    >d     ・・・(4)
     ここで、Lは溶接部の全長(単位:mm)、L2は終期溶接部の長さ(単位:mm)、lは終期溶接部のクレータの長さ(単位:mm)、t1は重ね合わせ部のうち最上層の鋼板の板厚(単位:mm)、dは終期溶接部のクレータの深さ(単位:mm)、wは終期溶接部のクレータの幅(単位:mm)である。
  2.  前記重ね合わせ部における、鋼板間の隙間の大きさの合計が、前記複数の鋼板の合計板厚に対して0%以上15%以下である請求項1に記載の重ねレーザ溶接継手。
  3.  前記複数の鋼板のうち少なくとも1つの鋼板は、質量%で、
    C:0.07%超え0.25%以下、
    P+S:0.03%未満、
    Mn:1.8%以上3.0%以下、
    Si:1.2%超え2.5%以下
    を含有し、残部Feおよび不可避的不純物からなる成分組成を有する請求項1または2に記載の重ねレーザ溶接継手。
  4.  前記成分組成に加えて、さらに、以下のA群およびB群から選択される1つまたは2つを含有する請求項1~3のいずれか1項に記載の重ねレーザ溶接継手。
    A群:質量%で、Ti:0.005%以上0.01%以下、およびNb:0.005%以上0.050%未満のうちから選択される1種または2種
    B群:質量%で、Cr:1.0%以下、Mo:0.50%以下、およびB:0.10%以下のうちから選択される1種または2種以上
  5.  前記複数の鋼板のうち少なくとも1つの鋼板が、引張強さ980MPa以上の高張力鋼板である請求項1~4のいずれか1項に記載の重ねレーザ溶接継手。
  6.  請求項1~5のいずれか1項に記載の重ねレーザ溶接継手の製造方法であって、
     複数の鋼板を上下方向に重ね合わせ、
     重ね合わせた前記複数の鋼板の重ね合わせ部のうち、最上層の鋼板表面にレーザを照射するレーザ溶接を行い、前記重ね合わせ部に溶接部を形成し、接合する重ねレーザ溶接継手の製造方法。
  7.  前記レーザ溶接は、本溶接部を形成する本溶接工程と、クレータを有する終期溶接部を形成する終期溶接工程とを有し、
    (1)式~(4)式を満たす前記溶接部を形成するように、
    (5)式~(7)式を満たす条件で、前記終期溶接工程のレーザ出力、溶接速度、焦点位置およびビーム径のうち少なくとも1つを制御する請求項6に記載の重ねレーザ溶接継手の製造方法。
    L≧15.0     ・・・(1)
    10.0≧L2≧2l   ・・・(2)
    t1≧2d     ・・・(3)
    >d       ・・・(4)
    ≧P≧(1/4)P ・・・(5)
    ≧v≧(1/4)v ・・・(6)
    ≦f≦20.0  ・・(7)
     ここで、Lは溶接部の全長(単位:mm)、L2は終期溶接部の長さ(単位:mm)、lは終期溶接部のクレータの長さ(単位:mm)、t1は重ね合わせ部のうち最上層の鋼板の板厚(単位:mm)、dは終期溶接部のクレータの深さ(単位:mm)、wは終期溶接部のクレータの幅(単位:mm)、Pは本溶接工程のレーザ出力(単位:kW)、Pは終期溶接工程のレーザ出力(単位:kW)、vは本溶接工程の溶接速度(単位:m/min)、vは終期溶接工程の溶接速度(単位:m/min)、fは本溶接工程の焦点位置(単位:mm)、fは終期溶接工程の焦点位置(単位:mm)である。
  8.  請求項1~5のいずれか1項に記載の重ねレーザ溶接継手を有する自動車用骨格部品。
PCT/JP2019/019837 2018-05-21 2019-05-20 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品 WO2019225527A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/055,739 US11648626B2 (en) 2018-05-21 2019-05-20 Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component
JP2019543129A JP6635235B1 (ja) 2018-05-21 2019-05-20 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
EP19808427.9A EP3797922A4 (en) 2018-05-21 2019-05-20 LASER WELDED COVER SEAL, LASER WELDED COVER SEAL PRODUCTION PROCESS AND VEHICLE STRUCTURAL ELEMENT
MX2020012533A MX2020012533A (es) 2018-05-21 2019-05-20 Junta superpuesta soldada con laser, metodo para producir la junta superpuesta soldada con laser y componente de bastidor de automovil.
CN201980032610.0A CN112135706B (zh) 2018-05-21 2019-05-20 搭接激光焊接接头、搭接激光焊接接头的制造方法和汽车用骨架部件
KR1020207033333A KR102398807B1 (ko) 2018-05-21 2019-05-20 겹침 레이저 용접 조인트, 겹침 레이저 용접 조인트의 제조 방법 및 자동차용 골격 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018096825 2018-05-21
JP2018-096825 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019225527A1 true WO2019225527A1 (ja) 2019-11-28

Family

ID=68616735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019837 WO2019225527A1 (ja) 2018-05-21 2019-05-20 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品

Country Status (7)

Country Link
US (1) US11648626B2 (ja)
EP (1) EP3797922A4 (ja)
JP (1) JP6635235B1 (ja)
KR (1) KR102398807B1 (ja)
CN (1) CN112135706B (ja)
MX (1) MX2020012533A (ja)
WO (1) WO2019225527A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111344104A (zh) * 2017-10-31 2020-06-26 日本制铁株式会社 构造材料
CN112756780A (zh) * 2020-12-25 2021-05-07 宁波旭升汽车技术股份有限公司 一种适用于薄壁铝合金的非填丝s型摆动激光焊接工艺
US11945130B2 (en) * 2021-05-03 2024-04-02 The Gillette Company Llc Methods of forming a razor blade assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229740A (ja) 2006-02-28 2007-09-13 Nippon Steel Corp 重ねレーザ溶接方法
JP2008296236A (ja) 2007-05-30 2008-12-11 Toyota Motor Corp 重ねレーザ溶接方法
JP2012170989A (ja) * 2011-02-22 2012-09-10 Suzuki Motor Corp レーザ重ね溶接方法
JP2012240086A (ja) 2011-05-19 2012-12-10 Nippon Steel Corp 継手強度に優れたレーザ溶接継手及びその製造方法
JP2012240083A (ja) 2011-05-19 2012-12-10 Nippon Steel Corp 耐遅れ破壊特性に優れた鋼板溶接部の製造方法およびその溶接部を有する鋼構造物
JP2013215755A (ja) * 2012-04-05 2013-10-24 Nippon Steel & Sumitomo Metal Corp レーザ溶接方法、重ね溶接継手、及びレーザ溶接装置
JP2017113781A (ja) 2015-12-24 2017-06-29 Jfeスチール株式会社 重ねレーザスポット溶接継手および該溶接継手の製造方法
WO2018003341A1 (ja) * 2016-06-29 2018-01-04 株式会社神戸製鋼所 レーザ溶接継手およびレーザ溶接継手の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2242139A1 (en) * 1998-06-29 1999-12-29 Automated Welding Systems Incorporated Method of laser welding tailored blanks
JP2001198688A (ja) 2000-01-11 2001-07-24 Kobe Steel Ltd アルミニウム材のレーザスポット溶接方法
DE10007496C1 (de) * 2000-02-18 2001-04-26 Dreistern Werk Maschinenbau Gmbh & Co Kg Profilieranlage mit einer Profiliermaschine und mit einer in deren Verlauf angeordneten Schweißvorrichtung zum Herstellen eines aus metallischem Bandmaterial geformten Profils
DE10053789B4 (de) * 2000-10-30 2009-11-26 Volkswagen Ag Laserschweißverfahren
DE10349677B4 (de) 2003-02-28 2009-05-14 Daimler Ag Verfahren zum Laserstrahlschweißen mit reduzierter Bildung von Endkratern
US20050211680A1 (en) 2003-05-23 2005-09-29 Mingwei Li Systems and methods for laser texturing of surfaces of a substrate
JP4753048B2 (ja) * 2007-04-16 2011-08-17 トヨタ自動車株式会社 重ね合わせワークのレーザ溶接方法
JP5000578B2 (ja) * 2008-04-17 2012-08-15 新日本製鐵株式会社 薄鋼板の重ねレーザ溶接方法
CN101905379B (zh) * 2010-08-05 2012-11-21 武汉钢铁(集团)公司 高强耐候冷轧集装箱镀层板激光焊接工艺
JP2012080020A (ja) * 2010-10-06 2012-04-19 Ushio Inc レーザリフトオフ方法及びレーザリフトオフ装置
DE102012007304B4 (de) * 2012-04-13 2014-12-18 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Regeln einer Einschweißtiefe
JP6091971B2 (ja) * 2013-04-16 2017-03-08 日立オートモティブシステムズ株式会社 重ね溶接継手、燃料噴射弁およびレーザ溶接方法
GB201419809D0 (en) * 2014-11-07 2014-12-24 Element Six Technologies Ltd A method of fabricating plates of super-hard material and cutting techniques suitable for such a method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229740A (ja) 2006-02-28 2007-09-13 Nippon Steel Corp 重ねレーザ溶接方法
JP2008296236A (ja) 2007-05-30 2008-12-11 Toyota Motor Corp 重ねレーザ溶接方法
JP2012170989A (ja) * 2011-02-22 2012-09-10 Suzuki Motor Corp レーザ重ね溶接方法
JP2012240086A (ja) 2011-05-19 2012-12-10 Nippon Steel Corp 継手強度に優れたレーザ溶接継手及びその製造方法
JP2012240083A (ja) 2011-05-19 2012-12-10 Nippon Steel Corp 耐遅れ破壊特性に優れた鋼板溶接部の製造方法およびその溶接部を有する鋼構造物
JP2013215755A (ja) * 2012-04-05 2013-10-24 Nippon Steel & Sumitomo Metal Corp レーザ溶接方法、重ね溶接継手、及びレーザ溶接装置
JP2017113781A (ja) 2015-12-24 2017-06-29 Jfeスチール株式会社 重ねレーザスポット溶接継手および該溶接継手の製造方法
WO2018003341A1 (ja) * 2016-06-29 2018-01-04 株式会社神戸製鋼所 レーザ溶接継手およびレーザ溶接継手の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3797922A4

Also Published As

Publication number Publication date
KR102398807B1 (ko) 2022-05-16
JPWO2019225527A1 (ja) 2020-05-28
KR20200139831A (ko) 2020-12-14
US20210205925A1 (en) 2021-07-08
US11648626B2 (en) 2023-05-16
CN112135706A (zh) 2020-12-25
EP3797922A4 (en) 2021-11-10
EP3797922A1 (en) 2021-03-31
MX2020012533A (es) 2021-01-20
CN112135706B (zh) 2022-05-10
JP6635235B1 (ja) 2020-01-22

Similar Documents

Publication Publication Date Title
JP5967266B2 (ja) 重ね合せ部の溶接方法、重ね溶接部材の製造方法、重ね溶接部材及び自動車用部品
CN108778608B (zh) 搭接激光焊接接头、该焊接接头的制造方法以及汽车用骨架部件
JP6443319B2 (ja) 重ねレーザスポット溶接継手および該溶接継手の製造方法
WO2015016287A1 (ja) アークスポット溶接継手及びその製造方法
CN109641321B (zh) 激光焊接接头的制造方法及激光焊接接头
WO2019225527A1 (ja) 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
JP5693279B2 (ja) 高張力鋼板のレーザ・アークハイブリッド溶接方法及びこれにより得られる高張力鋼板溶接金属
JP7211491B2 (ja) 重ねレーザスポット溶接継手とその製造方法および自動車車体用構造部材
JP5000578B2 (ja) 薄鋼板の重ねレーザ溶接方法
JP6859105B2 (ja) 重ねレーザスポット溶接継手および該溶接継手の製造方法
JP6583657B1 (ja) 重ねレーザ溶接継手とその製造方法および自動車車体用構造部材
JP6852797B2 (ja) 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
JP2019188407A (ja) レーザ溶接継手及びレーザ溶接継手の製造方法
JP6176428B1 (ja) 重ねレーザ溶接継手、該溶接継手の製造方法および自動車用骨格部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019543129

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207033333

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019808427

Country of ref document: EP

Effective date: 20201221