WO2019224945A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019224945A1
WO2019224945A1 PCT/JP2018/019845 JP2018019845W WO2019224945A1 WO 2019224945 A1 WO2019224945 A1 WO 2019224945A1 JP 2018019845 W JP2018019845 W JP 2018019845W WO 2019224945 A1 WO2019224945 A1 WO 2019224945A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor heat
heating
refrigerant
defrosting
Prior art date
Application number
PCT/JP2018/019845
Other languages
English (en)
French (fr)
Inventor
雄亮 田代
早丸 靖英
近藤 雅一
雅一 佐藤
中川 直紀
惇 川島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020520933A priority Critical patent/JP6987234B2/ja
Priority to CN201880092513.6A priority patent/CN112119273B/zh
Priority to PCT/JP2018/019845 priority patent/WO2019224945A1/ja
Priority to EP18919812.0A priority patent/EP3798539A4/en
Priority to US17/043,135 priority patent/US11585579B2/en
Publication of WO2019224945A1 publication Critical patent/WO2019224945A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/009Compression machines, plants or systems with reversible cycle not otherwise provided for indoor unit in circulation with outdoor unit in first operation mode, indoor unit in circulation with an other heat exchanger in second operation mode or outdoor unit in circulation with an other heat exchanger in third operation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator

Definitions

  • the present invention relates to a refrigeration cycle apparatus capable of performing heating and defrosting simultaneous operation.
  • Patent Document 1 describes an air conditioner having a refrigeration cycle.
  • the outdoor heat exchanger of the refrigeration cycle is divided into a lower heat exchanger and an upper heat exchanger that is larger than the lower heat exchanger.
  • the discharge side of the compressor and each of the lower heat exchanger and the upper heat exchanger are connected by a hot gas bypass circuit.
  • the hot gas bypass circuit is provided with a bypass on-off valve corresponding to each of the lower heat exchanger and the upper heat exchanger.
  • the present invention has been made to solve the above-described problems, and provides a refrigeration cycle apparatus capable of adjusting the ratio between the heating capacity and the defrosting capacity according to the load during the simultaneous operation of heating and defrosting.
  • the purpose is to do.
  • a refrigeration cycle apparatus includes a compressor, an indoor heat exchanger, a first outdoor heat exchanger, and a second outdoor heat exchanger, a refrigerant circuit that circulates refrigerant, and a control device that controls the refrigerant circuit.
  • the refrigerant circuit includes a bypass channel that communicates the discharge side of the compressor with the first outdoor heat exchanger or the second outdoor heat exchanger, and a flow rate provided in the bypass channel A control valve, wherein the indoor heat exchanger exchanges heat between the refrigerant and a heating target, and the refrigerant circuit is a part of the refrigerant discharged from the compressor Is supplied to one of the first outdoor heat exchanger or the second outdoor heat exchanger via the bypass flow path, and the other of the first outdoor heat exchanger or the second outdoor heat exchanger is used as an evaporator.
  • the frost simultaneous operation is configured to be executable, and the control device is configured to control the opening degree of the flow control valve based on the temperature of the heating target during the heating defrosting simultaneous operation. It is what.
  • the opening degree of the flow rate control valve is controlled based on the temperature of the heating target during the simultaneous heating and defrosting operation, the excess heating capacity can be directed to the defrosting capacity. Therefore, according to the present invention, the ratio between the heating capacity and the defrosting capacity can be adjusted according to the load during the simultaneous execution of the heating and defrosting simultaneous operation.
  • FIG. 1 is a refrigerant circuit diagram showing the configuration of the refrigeration cycle apparatus according to the present embodiment.
  • an air conditioner is illustrated as the refrigeration cycle apparatus.
  • the refrigeration cycle apparatus has a refrigerant circuit 10 that circulates refrigerant.
  • the refrigerant circuit 10 includes a compressor 11, a first flow switching device 12, an indoor heat exchanger 13, an expansion valve 14, a first outdoor heat exchanger 15a, a second outdoor heat exchanger 15b, and a second flow switching device 16. have.
  • the refrigerant circuit 10 is configured to perform heating operation, reverse cycle defrosting operation (hereinafter simply referred to as “defrosting operation”), heating defrosting simultaneous operation, and cooling operation.
  • defrosting operation reverse cycle defrosting operation
  • the refrigeration cycle apparatus has an outdoor unit installed outside and an indoor unit installed indoors.
  • the compressor 11, the first flow path switching device 12, the expansion valve 14, the first outdoor heat exchanger 15a, the second outdoor heat exchanger 15b, and the second flow path switching device 16 are accommodated in the outdoor unit, and the indoor heat The exchanger 13 is accommodated in the indoor unit.
  • the refrigeration cycle apparatus has a control device 50 that controls the refrigerant circuit 10.
  • Compressor 11 is a fluid machine that sucks and compresses low-pressure gas refrigerant and discharges it as high-pressure gas refrigerant.
  • the first flow path switching device 12 switches the flow direction of the refrigerant in the refrigerant circuit 10.
  • a four-way valve having four ports E, F, G, and H is used.
  • the first flow path switching device 12 has a first state in which the port E and the port F communicate with each other as shown by a solid line in FIG. 1 and the port G and the port H communicate with each other, and a port as shown by a broken line in FIG.
  • a second state in which E and port H communicate with each other and port F and port G communicate with each other can be established.
  • the first flow path switching device 12 is set to the first state during the heating operation and the simultaneous heating and defrosting operation, and is set to the second state during the defrosting operation and the cooling operation, under the control of the control device 50.
  • a combination of a plurality of valves such as a two-way valve or a three-way valve can be used.
  • the indoor heat exchanger 13 is a heat exchanger that performs heat exchange between the refrigerant circulating in the interior and the indoor air blown by an indoor fan (not shown) housed in the indoor unit.
  • the indoor heat exchanger 13 functions as a condenser during the heating operation, and functions as an evaporator during the cooling operation.
  • the conditioned air that has passed through the indoor heat exchanger 13 is supplied to the indoor space.
  • the air in the indoor space becomes a heating target of the air conditioner during the heating operation, and becomes a cooling target of the air conditioner during the cooling operation.
  • the expansion valve 14 is a valve that depressurizes the refrigerant.
  • an electronic expansion valve whose opening degree can be adjusted by the control of the control device 50 is used.
  • Each of the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b exchanges heat between the refrigerant circulating inside and the air blown by an outdoor fan (not shown) housed in the outdoor unit. It is a heat exchanger to perform.
  • the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b function as an evaporator during the heating operation and function as a condenser during the cooling operation.
  • the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b are connected to each other in parallel in the refrigerant circuit 10.
  • the 1st outdoor heat exchanger 15a and the 2nd outdoor heat exchanger 15b are mutually arrange
  • the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b may be configured by dividing a horizontal flow type heat exchanger into two vertically.
  • the 1st outdoor heat exchanger 15a and the 2nd outdoor heat exchanger 15b are mutually arrange
  • the second flow path switching device 16 switches the refrigerant flow between the heating operation, the defrosting operation and the cooling operation, and the heating and defrosting simultaneous operation.
  • a four-way valve having four ports A, B1, B2, and C is used.
  • the second flow path switching device 16 can take the first state, the second state, and the third state. In the first state, as shown by the solid line in FIG. 1, port C communicates with both port B1 and port B2, and port A does not communicate with either port B1 or port B2. In the second state, port A and port B1 communicate with each other, and port C and port B2 communicate with each other. In the third state, port A and port B2 communicate with each other, and port C and port B1 communicate with each other.
  • the second flow path switching device 16 is set to the first state during the heating operation, the defrosting operation, and the cooling operation under the control of the control device 50, and set to the second state or the third state during the heating defrosting simultaneous operation. Is done.
  • a flow path switching valve described in International Publication No. 2017/094148 is used as the second flow path switching device 16.
  • the compressor 11, the first flow path switching device 12, the indoor heat exchanger 13, the expansion valve 14, the first outdoor heat exchanger 15a, the second outdoor heat exchanger 15b, and the second flow path switching device 16 are pipes 30 to 30. It is connected via a refrigerant pipe such as 37.
  • the pipe 30 connects the discharge port of the compressor 11 and the port G of the first flow path switching device 12.
  • the pipe 31 connects the port H of the first flow path switching device 12 and the indoor heat exchanger 13.
  • the pipe 32 connects the indoor heat exchanger 13 and the expansion valve 14.
  • the pipe 33 is branched into pipes 33a and 33b on the way, and connects the expansion valve 14 to each of the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b.
  • the tubes 33a and 33b are provided with capillary tubes 17a and 17b, respectively.
  • the pipe 34 connects the first outdoor heat exchanger 15a and the port B1 of the second flow path switching device 16.
  • the pipe 35 connects the second outdoor heat exchanger 15b and the port B2 of the second flow path switching device 16.
  • the pipe 36 connects the port C of the second flow path switching device 16 and the port F of the first flow path switching device 12.
  • the pipe 37 connects the port E of the first flow path switching device 12 and the suction port of the compressor 11.
  • the refrigerant circuit 10 has a bypass flow path 38 that connects the discharge-side pipe 30 of the compressor 11 and the port A of the second flow path switching device 16.
  • the bypass flow path 38 is configured to supply a part of the gas refrigerant discharged from the compressor 11 to the first outdoor heat exchanger 15a or the second outdoor heat exchanger 15b as hot gas.
  • the bypass flow path 38 is provided with a flow rate adjusting valve 18 that adjusts the flow rate of the refrigerant.
  • a valve such as an electronic expansion valve or an electric valve whose opening degree is controlled continuously or in multiple stages by the control device 50 is used.
  • the flow control valve 18 is closed when set to the minimum opening, and is opened when set to an opening larger than the minimum opening.
  • the flow rate control valve 18 can take at least a first opening that is a minimum opening, a second opening that is larger than the first opening, and a third opening that is larger than the second opening. .
  • the flow rate control valve 18 is set to, for example, a closed state during the heating operation, the defrosting operation, and the cooling operation under the control of the control device 50, and is set to an open state at a predetermined opening degree during the heating defrosting simultaneous operation. The opening degree control of the flow rate control valve 18 during the heating defrosting operation will be described later.
  • the bypass channel 38 is further provided with a decompression device such as a capillary tube, if necessary.
  • a temperature sensor 41a is provided between the capillary tube 17a and the first outdoor heat exchanger 15a in the pipe 33a. In the temperature sensor 41a, the temperature of the refrigerant flowing out of the first outdoor heat exchanger 15a is detected in the simultaneous heating and defrosting operation in which the first outdoor heat exchanger 15a is a defrost target.
  • a temperature sensor 41b is provided between the capillary tube 17b and the second outdoor heat exchanger 15b in the pipe 33b. In the temperature sensor 41b, the temperature of the refrigerant flowing out from the second outdoor heat exchanger 15b is detected in the simultaneous heating and defrosting operation in which the second outdoor heat exchanger 15b is a defrost target.
  • each of the temperature sensor 41a and the temperature sensor 41b is provided to acquire the temperature of the heat exchanger to be defrosted in the simultaneous heating and defrosting operation.
  • the temperature sensor 41a and the temperature sensor 41b may be provided in the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b, respectively.
  • the temperature sensors 41a and 41b are configured to output detection signals to the control device 50 described later.
  • the temperature sensor 42 may be provided in the indoor space.
  • the temperature sensor 42 is configured to output a detection signal to the control device 50 described later.
  • the control device 50 has a microcomputer equipped with a CPU, ROM, RAM, I / O port and the like.
  • the control device 50 receives detection signals from various sensors including the temperature sensors 41a, 41b, and 42 and an operation signal from an operation unit that receives an operation by a user. Based on the input signal, the control device 50 includes a compressor 11, a first flow path switching device 12, an expansion valve 14, a second flow path switching device 16, a flow rate control valve 18, a refrigeration cycle including an indoor fan and an outdoor fan. Control the operation of the entire device.
  • FIG. 2 is a diagram illustrating an operation during heating operation of the refrigeration cycle apparatus according to the present embodiment.
  • the first flow path switching device 12 is set to the first state in which the port E and the port F communicate with each other and the port G and the port H communicate with each other.
  • the second flow path switching device 16 is set to the first state in which the port C communicates with both the port B1 and the port B2.
  • the flow rate control valve 18 is set to a closed state, for example.
  • the high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 13 via the first flow path switching device 12.
  • the indoor heat exchanger 13 functions as a condenser. That is, in the indoor heat exchanger 13, heat exchange between the refrigerant circulating in the interior and the indoor air blown by the indoor fan is performed, and the heat of condensation of the refrigerant is radiated to the indoor air. As a result, the gas refrigerant flowing into the indoor heat exchanger 13 is condensed and becomes a high-pressure liquid refrigerant. In addition, the indoor air blown by the indoor fan is heated by heat dissipation from the refrigerant.
  • the liquid refrigerant flowing out of the indoor heat exchanger 13 is decompressed by the expansion valve 14 and becomes a low-pressure two-phase refrigerant.
  • the two-phase refrigerant that has flowed out of the expansion valve 14 is divided into the pipe 33a and the pipe 33b.
  • the two-phase refrigerant that has flowed into the tube 33a is further depressurized by the capillary tube 17a and flows into the first outdoor heat exchanger 15a.
  • the two-phase refrigerant that has flowed into the pipe 33b is further depressurized by the capillary tube 17b and flows into the second outdoor heat exchanger 15b.
  • both the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b function as an evaporator. That is, in each of the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b, heat exchange is performed between the refrigerant circulating inside and the outdoor air blown by the outdoor fan, and the evaporation heat of the refrigerant is Heat is absorbed from the air. Thereby, the two-phase refrigerant that has flowed into each of the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b evaporates to become a low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of each of the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b merges in the second flow path switching device 16, and passes through the first flow path switching device 12 to the compressor 11. Inhaled.
  • the gas refrigerant sucked into the compressor 11 is compressed into a high-pressure gas refrigerant. During the heating operation, the above cycle is continuously repeated.
  • the defrosting operation or the heating defrosting simultaneous operation is periodically performed.
  • a high-temperature and high-pressure gas refrigerant is supplied to both the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b, and the first outdoor heat exchanger 15a and the second outdoor heat exchange are performed by heat radiation from the refrigerant.
  • the heating and defrosting simultaneous operation is performed by supplying a high-temperature and high-pressure gas refrigerant to one of the first outdoor heat exchanger 15a or the second outdoor heat exchanger 15b and performing the defrosting of the first outdoor heat exchanger 15a.
  • FIG. 3 is a diagram illustrating an operation during the defrosting operation of the refrigeration cycle apparatus according to the present embodiment.
  • the first flow path switching device 12 is set to the second state in which the port E and the port H communicate with each other and the port F and the port G communicate with each other.
  • the second flow path switching device 16 is set to the first state in which the port C communicates with both the port B1 and the port B2.
  • the flow rate control valve 18 is set to a closed state, for example.
  • the settings of the first flow path switching device 12, the second flow path switching device 16, and the flow rate control valve 18 during the defrosting operation are the same as these settings during the cooling operation.
  • the high-pressure gas refrigerant discharged from the compressor 11 is diverted by the second flow path switching device 16 via the first flow path switching device 12, and the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b. Flows into each of the.
  • both the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b function as a condenser. That is, in each of the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b, it adheres to each of the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b by heat radiation from the refrigerant flowing through the inside. Frost that melts. Thereby, defrosting of the 1st outdoor heat exchanger 15a and the 2nd outdoor heat exchanger 15b is performed. Further, the gas refrigerant that has flowed into each of the first outdoor heat exchanger 15a and the second outdoor heat exchanger 15b is condensed into a liquid refrigerant.
  • the liquid refrigerant that has flowed out of the first outdoor heat exchanger 15a is decompressed by the capillary tube 17a.
  • the liquid refrigerant flowing out of the second outdoor heat exchanger 15b is decompressed by the capillary tube 17b.
  • These liquid refrigerants merge and are further decompressed by the expansion valve 14 to become a low-pressure two-phase refrigerant.
  • the two-phase refrigerant that has flowed out of the expansion valve 14 flows into the indoor heat exchanger 13.
  • the indoor heat exchanger 13 functions as an evaporator. That is, in the indoor heat exchanger 13, the evaporation heat of the refrigerant flowing through the interior is absorbed from the indoor air.
  • the two-phase refrigerant that has flowed into the indoor heat exchanger 13 evaporates and becomes a low-pressure gas refrigerant.
  • the gas refrigerant flowing out of the indoor heat exchanger 13 is sucked into the compressor 11 via the first flow path switching device 12.
  • the gas refrigerant sucked into the compressor 11 is compressed into a high-pressure gas refrigerant.
  • the above cycle is continuously repeated.
  • FIG. 4 is a diagram illustrating an operation during simultaneous heating and defrosting operation of the refrigeration cycle apparatus according to the present embodiment.
  • the heating and defrosting simultaneous operation includes a first operation and a second operation.
  • the first operation is an operation in which the first outdoor heat exchanger 15a is to be defrosted and heating is performed while the first outdoor heat exchanger 15a is defrosted.
  • the first outdoor heat exchanger 15a and the indoor heat exchanger 13 function as a condenser
  • the second outdoor heat exchanger 15b functions as an evaporator.
  • the second operation is an operation in which heating is performed while the second outdoor heat exchanger 15b is to be defrosted and the second outdoor heat exchanger 15b is defrosted.
  • the second outdoor heat exchanger 15b and the indoor heat exchanger 13 function as a condenser
  • the first outdoor heat exchanger 15a functions as an evaporator.
  • the execution period of one heating defrosting simultaneous operation it is desirable that the first operation and the second operation are alternately executed at least once.
  • operation is shown among heating defrosting simultaneous driving
  • the first flow path switching device 12 is in a first state where the port E and the port F communicate with each other and the port G and the port H communicate with each other.
  • the second flow path switching device 16 is set to the second state in which the port A and the port B1 communicate with each other and the port C and the port B2 communicate with each other.
  • the flow rate control valve 18 is set to an open state at a predetermined opening when the first operation is started. Thereafter, the opening degree of the flow control valve 18 is controlled as will be described later.
  • a part of the high-pressure gas refrigerant discharged from the compressor 11 is diverted from the pipe 30 to the bypass flow path 38.
  • the flow rate of the refrigerant divided into the bypass flow path 38 varies according to the opening degree of the flow rate control valve 18.
  • the gas refrigerant divided into the bypass flow path 38 is reduced to an intermediate pressure by the flow rate control valve 18 and flows into the first outdoor heat exchanger 15a via the second flow path switching device 16.
  • the intermediate pressure is a pressure that is higher than the suction pressure of the compressor 11 and lower than the discharge pressure of the compressor 11.
  • the gas refrigerant that has flowed into the first outdoor heat exchanger 15a condenses, becomes an intermediate-pressure liquid refrigerant or a two-phase refrigerant, flows out of the first outdoor heat exchanger 15a, and is depressurized by the capillary tube 17a.
  • gas refrigerant other than a part of the high-pressure gas refrigerant that has been diverted to the bypass flow path 38 flows into the indoor heat exchanger 13 via the first flow path switching device 12.
  • the indoor heat exchanger 13 heat exchange between the refrigerant circulating in the interior and the indoor air blown by the indoor fan is performed, and the heat of condensation of the refrigerant is radiated to the indoor air.
  • the gas refrigerant flowing into the indoor heat exchanger 13 is condensed and becomes a high-pressure liquid refrigerant.
  • the indoor air blown by the indoor fan is heated by heat dissipation from the refrigerant.
  • the liquid refrigerant flowing out of the indoor heat exchanger 13 is decompressed by the expansion valve 14 and becomes a low-pressure two-phase refrigerant.
  • the two-phase refrigerant flowing out from the expansion valve 14 merges with the liquid refrigerant or the two-phase refrigerant decompressed by the capillary tube 17a and flows into the second outdoor heat exchanger 15b via the capillary tube 17b.
  • the second outdoor heat exchanger 15b heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by the outdoor fan, and the heat of evaporation of the refrigerant is absorbed from the outdoor air.
  • the two-phase refrigerant that has flowed into the second outdoor heat exchanger 15b evaporates into a low-pressure gas refrigerant.
  • the gas refrigerant flowing out from the second outdoor heat exchanger 15b is sucked into the compressor 11 via the second flow path switching device 16 and the first flow path switching device 12.
  • the gas refrigerant sucked into the compressor 11 is compressed into a high-pressure gas refrigerant.
  • the first flow path switching device 12 is set to the first state in the same manner as at the time of the first operation.
  • the second flow path switching device 16 is set to the third state in which the port A and the port B2 communicate with each other and the port C and the port B1 communicate with each other.
  • FIG. 5 is a flowchart showing a flow of processing executed by the control device 50 of the refrigeration cycle apparatus according to the present embodiment.
  • the process shown in FIG. 5 is executed when a preset execution condition for heating and defrosting simultaneous operation is satisfied.
  • the control apparatus 50 performs the process which starts heating defrost simultaneous operation.
  • the first flow path switching device 12 is set to the first state
  • the second flow path switching device 16 is set to the second state or the third state
  • the flow rate control valve 18 is set to the open state at a predetermined opening. Is set.
  • the control device 50 may perform control to increase the operating frequency of the compressor 11 to the maximum operating frequency when performing the heating and defrosting simultaneous operation.
  • step S2 the control device 50 compares the execution time after the heating and defrosting simultaneous operation is started with a predetermined time stored in the ROM in advance, and the execution time is less than the predetermined time. It is determined whether or not there is. If it is determined that the execution time is less than the predetermined time, the process proceeds to step S3. If it is determined that the execution time is equal to or longer than the predetermined time, the process proceeds to step S7.
  • step S3 the control device 50 compares the room temperature acquired based on the detection signal from the temperature sensor 42 with the set temperature stored in the ROM as the target value of the room temperature, and whether the room temperature is higher than the set temperature. Determine whether or not. If it is determined that the room temperature is higher than the set temperature, the process proceeds to step S4. If it is determined that the room temperature is equal to or lower than the set temperature, the process proceeds to step S5.
  • step S4 the control device 50 performs a process of increasing the opening degree of the flow control valve 18. This process increases the amount of refrigerant supplied to the heat exchanger to be defrosted, so that the defrosting capacity of the refrigeration cycle apparatus is increased. On the other hand, since the amount of refrigerant supplied to the indoor heat exchanger 13 decreases, the heating capacity of the refrigeration cycle apparatus decreases.
  • the process of step S4 is executed when the room temperature is higher than the set temperature and the heating capacity is excessive. For this reason, by allocating a part of the surplus heating capacity to the defrosting capacity, it is possible to promote melting of frost in the heat exchanger to be defrosted while maintaining the room temperature. Therefore, defrosting can be completed within a predetermined time set in advance, and it is possible to prevent frost from remaining unmelted in the heat exchanger. After the process of step S4 is completed, the process returns to step S2.
  • step S5 the control device 50 determines whether or not the heat exchanger temperature to be defrosted based on the detection signal from the temperature sensor 41a or the temperature sensor 41b is higher than 0 ° C. When it is determined that the heat exchanger temperature to be defrosted is higher than 0 ° C., the process proceeds to step S6, and when it is determined that the heat exchanger temperature to be defrosted is 0 ° C. or lower, the process returns to step S2.
  • step S6 the control device 50 performs a process of reducing the opening degree of the flow control valve 18.
  • the amount of refrigerant supplied to the heat exchanger to be defrosted is reduced, so that the defrosting ability of the refrigeration cycle apparatus is lowered.
  • the heating capacity of the refrigeration cycle apparatus increases.
  • the process of step S6 is executed when the room temperature is equal to or lower than the set temperature and the heat exchanger temperature to be defrosted is higher than 0 ° C. That is, the process of step S6 is executed when the heating capacity is insufficient and the defrosting capacity is excessive. For this reason, room temperature can be raised, preventing that the frost remains unmelted in a heat exchanger by using a part of surplus defrosting capacity for heating capacity.
  • step S7 the control device 50 performs a process of ending the heating and defrosting simultaneous operation and shifting to the heating operation.
  • FIG. 6 is a refrigerant circuit diagram showing a modification of the configuration of the refrigeration cycle apparatus according to the present embodiment.
  • the refrigerant circuit 10 of the present modification has two four-way valves 21 a and 21 b and a check valve 22 instead of the second flow path switching device 16. .
  • the four-way valves 21a and 21b are controlled by the control device 50.
  • the refrigerant circuit 10 of this modification is more complicated in configuration than the refrigerant circuit 10 shown in FIG. 1, it is configured so that at least the heating and defrosting simultaneous operation can be executed in the same manner as the refrigerant circuit 10 shown in FIG. 1. Has been.
  • the present embodiment can also be applied to a refrigeration cycle apparatus including the refrigerant circuit 10 of the present modification. Further, the present embodiment is also applicable to a refrigeration cycle apparatus including a refrigerant circuit other than the refrigerant circuit 10 of the present modification as long as the heating and defrosting simultaneous operation can be executed.
  • the refrigeration cycle apparatus includes the compressor 11, the indoor heat exchanger 13, the first outdoor heat exchanger 15a, and the second outdoor heat exchanger 15b, and circulates the refrigerant.
  • a refrigerant circuit 10 and a control device 50 that controls the refrigerant circuit 10 are provided.
  • the refrigerant circuit 10 includes a bypass channel 38 that allows the discharge side of the compressor 11 to communicate with the first outdoor heat exchanger 15a or the second outdoor heat exchanger 15b, and a flow rate control valve 18 that is provided in the bypass channel 38.
  • the indoor heat exchanger 13 performs heat exchange between the refrigerant and the air supplied to the indoor space.
  • the refrigerant circuit 10 is configured to be able to execute the heating and defrosting simultaneous operation.
  • the control device 50 is configured to control the opening degree of the flow rate control valve 18 based on the room temperature during the simultaneous heating and defrosting operation.
  • the air supplied to the indoor space is an example of a heating target.
  • Room temperature is an example of a temperature to be heated.
  • the opening degree of the flow rate control valve 18 is controlled based on the room temperature during the execution of the simultaneous heating and defrosting operation, the excess heating capacity can be directed to the defrosting capacity. Thereby, defrosting can be accelerated
  • the heating capacity when the heating capacity is excessive with respect to the load during the simultaneous heating and defrosting operation, the heating capacity can also be reduced by reducing the rotation speed of the compressor 11.
  • the defrosting since not only the heating capacity but also the defrosting capacity is lowered, the defrosting cannot be completed within a predetermined defrosting time, and the frost is not melted in the heat exchanger to be defrosted. It may occur.
  • the excess heating capability since the excess heating capability is turned to defrosting capability, it can prevent more reliably that the frost remains unmelted.
  • the controller 50 opens the flow rate control valve 18 when the room temperature is higher than the set temperature that is the target value of the room temperature during the simultaneous heating and defrosting operation. Is configured to increase. When the room temperature is higher than the set temperature, it can be determined that the heating capacity is excessive. Therefore, according to this configuration, since it is possible to more reliably determine the presence or absence of the excess heating capacity, it is possible to prevent the heating capacity from becoming insufficient after a part of the heating capacity is directed to the defrosting capacity. Can do.
  • the control device 50 is also based on the other temperature of the first outdoor heat exchanger 15a or the second outdoor heat exchanger 15b during the execution of the simultaneous heating and defrosting operation.
  • the flow control valve 18 is configured to control the opening degree. According to this configuration, since the opening degree of the flow rate control valve 18 is controlled based on the temperature of the heat exchanger to be defrosted during the simultaneous heating and defrosting operation, the surplus defrosting capacity is directed to the heating capacity. Can. Thereby, heating capability can be improved, preventing that the frost remains unmelted in the heat exchanger to be defrosted.
  • the control device 50 is configured so that the other temperature of the first outdoor heat exchanger 15a or the second outdoor heat exchanger 15b is higher than 0 ° C. during the simultaneous operation of heating and defrosting. Is higher, the opening degree of the flow control valve 18 is reduced.
  • the temperature of the heat exchanger to be defrosted is higher than 0 ° C., it can be determined that the defrosting capacity is excessive. Therefore, according to this configuration, since it is possible to more reliably determine the presence or absence of excess defrosting capacity, the defrosting capacity is insufficient after part of the defrosting capacity is directed to the heating capacity. Can be prevented.
  • 10 refrigerant circuit 11 compressor, 12 first flow switching device, 13 indoor heat exchanger, 14 expansion valve, 15a first outdoor heat exchanger, 15b second outdoor heat exchanger, 16 second flow switching device, 17a, 17b capillary tube, 18 flow control valve, 21a, 21b four-way valve, 22 check valve, 30, 31, 32, 33, 33a, 33b, 34, 35, 36, 37 pipe, 38 bypass flow path, 41a, 41b, 42 Temperature sensor, 50 control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍サイクル装置は、冷媒回路と、冷媒回路を制御する制御装置と、を備え、冷媒回路は、圧縮機の吐出側と第1室外熱交換器又は第2室外熱交換器とを連通させるバイパス流路と、バイパス流路に設けられた流量調節弁と、をさらに有しており、冷媒回路は、圧縮機から吐出された冷媒の一部をバイパス流路を介して第1室外熱交換器又は第2室外熱交換器の一方に供給し、第1室外熱交換器又は第2室外熱交換器の他方を蒸発器として機能させ、室内熱交換器を凝縮器として機能させる暖房除霜同時運転を実行可能に構成されており、制御装置は、暖房除霜同時運転の実行中、加熱対象の温度に基づいて流量調節弁の開度を制御するように構成されている。

Description

冷凍サイクル装置
 本発明は、暖房除霜同時運転を実行可能な冷凍サイクル装置に関するものである。
 特許文献1には、冷凍サイクルを有する空気調和機が記載されている。冷凍サイクルの室外熱交換器は、下側熱交換器と、下側熱交換器より大きい上側熱交換器と、に分けられている。圧縮機の吐出側と下側熱交換器及び上側熱交換器のそれぞれとは、ホットガスバイパス回路により連結されている。ホットガスバイパス回路には、下側熱交換器及び上側熱交換器のそれぞれに対応してバイパス開閉弁が設けられている。空気調和機の制御装置は、暖房運転中に除霜を開始する場合に、上側熱交換器を除霜しつつ下側熱交換器で暖房する運転を行った後に、下側熱交換器を除霜しつつ上側熱交換器で暖房する運転を行い、この運転の終了後に暖房運転に復帰するように構成されている。同文献には、上記の空気調和機によれば、除霜を暖房と同時に行って室内の快適性を確保しつつ除霜時間を短縮できることが記載されている。
特開2008-64381号公報
 しかしながら、特許文献1の空気調和機では、暖房と除霜とが同時に行われる場合、2つのバイパス開閉弁の一方が単に開となるに過ぎない。したがって、特許文献1の空気調和機では、暖房能力と除霜能力との比率が一定となるため、暖房能力又は除霜能力の一方が負荷に対して過剰となってしまう場合があるという課題があった。
 本発明は、上述のような課題を解決するためになされたものであり、暖房除霜同時運転の実行中において暖房能力と除霜能力との比率を負荷に応じて調整できる冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機、室内熱交換器、第1室外熱交換器及び第2室外熱交換器を有し、冷媒を循環させる冷媒回路と、前記冷媒回路を制御する制御装置と、を備え、前記冷媒回路は、前記圧縮機の吐出側と前記第1室外熱交換器又は前記第2室外熱交換器とを連通させるバイパス流路と、前記バイパス流路に設けられた流量調節弁と、をさらに有しており、前記室内熱交換器は、前記冷媒と加熱対象との熱交換を行うものであり、前記冷媒回路は、前記圧縮機から吐出された前記冷媒の一部を前記バイパス流路を介して前記第1室外熱交換器又は前記第2室外熱交換器の一方に供給し、前記第1室外熱交換器又は前記第2室外熱交換器の他方を蒸発器として機能させ、前記室内熱交換器を凝縮器として機能させる暖房除霜同時運転を実行可能に構成されており、前記制御装置は、前記暖房除霜同時運転の実行中、前記加熱対象の温度に基づいて前記流量調節弁の開度を制御するように構成されているものである。
 本発明によれば、暖房除霜同時運転の実行中、流量調節弁の開度が加熱対象の温度に基づいて制御されるため、余剰の暖房能力を除霜能力に振り向けることができる。したがって、本発明によれば、暖房除霜同時運転の実行中において、暖房能力と除霜能力との比率を負荷に応じて調整することができる。
本発明の実施の形態1に係る冷凍サイクル装置の構成を示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の暖房運転時の動作を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置の除霜運転時の動作を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置の暖房除霜同時運転時の動作を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置の制御装置50で実行される処理の流れを示すフローチャートである。 本発明の実施の形態1に係る冷凍サイクル装置の構成の変形例を示す冷媒回路図である。
実施の形態1.
 本発明の実施の形態1に係る冷凍サイクル装置について説明する。図1は、本実施の形態に係る冷凍サイクル装置の構成を示す冷媒回路図である。本実施の形態では、冷凍サイクル装置として空気調和機を例示している。図1に示すように、冷凍サイクル装置は、冷媒を循環させる冷媒回路10を有している。冷媒回路10は、圧縮機11、第1流路切替装置12、室内熱交換器13、膨張弁14、第1室外熱交換器15a、第2室外熱交換器15b及び第2流路切替装置16を有している。後述するように、冷媒回路10は、暖房運転、逆サイクル除霜運転(以下、単に「除霜運転」という。)、暖房除霜同時運転及び冷房運転を実行できるように構成されている。
 また、冷凍サイクル装置は、室外に設置される室外機と、室内に設置される室内機と、を有している。圧縮機11、第1流路切替装置12、膨張弁14、第1室外熱交換器15a、第2室外熱交換器15b及び第2流路切替装置16は室外機に収容されており、室内熱交換器13は室内機に収容されている。さらに、冷凍サイクル装置は、冷媒回路10を制御する制御装置50を有している。
 圧縮機11は、低圧のガス冷媒を吸入して圧縮し、高圧のガス冷媒として吐出する流体機械である。圧縮機11としては、運転周波数を調整可能なインバータ駆動の圧縮機を用いることができる。
 第1流路切替装置12は、冷媒回路10内の冷媒の流れ方向を切り替えるものである。第1流路切替装置12としては、4つのポートE、F、G、Hを備える四方弁が用いられている。第1流路切替装置12は、図1に実線で示すようにポートEとポートFとが連通するとともにポートGとポートHとが連通する第1状態と、図1に破線で示すようにポートEとポートHとが連通するとともにポートFとポートGとが連通する第2状態と、をとり得る。第1流路切替装置12は、制御装置50の制御により、暖房運転時及び暖房除霜同時運転時には第1状態に設定され、除霜運転時及び冷房運転時には第2状態に設定される。第1流路切替装置12としては、二方弁又は三方弁などの複数の弁の組合せを用いることもできる。
 室内熱交換器13は、内部を流通する冷媒と、室内機に収容された室内ファン(図示せず)により送風される室内空気と、の熱交換を行う熱交換器である。室内熱交換器13は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。室内熱交換器13を通過した調和空気は、室内空間に供給される。室内空間の空気は、暖房運転時には空気調和機の加熱対象となり、冷房運転時には空気調和機の冷却対象となる。
 膨張弁14は、冷媒を減圧させる弁である。膨張弁14としては、制御装置50の制御により開度を調整可能な電子膨張弁が用いられている。
 第1室外熱交換器15a及び第2室外熱交換器15bはいずれも、内部を流通する冷媒と、室外機に収容された室外ファン(図示せず)により送風される空気と、の熱交換を行う熱交換器である。第1室外熱交換器15a及び第2室外熱交換器15bは、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。第1室外熱交換器15a及び第2室外熱交換器15bは、冷媒回路10において互いに並列に接続されている。また、第1室外熱交換器15a及び第2室外熱交換器15bは、空気の流れに対して互いに並列又は直列に配置されている。第1室外熱交換器15a及び第2室外熱交換器15bは、水平流れ式の1つの熱交換器が上下に2分割されることにより構成されていてもよい。この場合、第1室外熱交換器15a及び第2室外熱交換器15bは、空気の流れに対して互いに並列に配置される。
 第2流路切替装置16は、暖房運転時、除霜運転時及び冷房運転時と、暖房除霜同時運転時とで冷媒の流れを切り替えるものである。第2流路切替装置16としては、4つのポートA、B1、B2、Cを備える四方弁が用いられている。第2流路切替装置16は、第1状態、第2状態及び第3状態をとり得る。第1状態では、図1に実線で示すようにポートCとポートB1及びポートB2の双方とが連通し、ポートAはポートB1及びポートB2のいずれとも連通しない。第2状態では、ポートAとポートB1とが連通するとともにポートCとポートB2とが連通する。第3状態では、ポートAとポートB2とが連通するとともにポートCとポートB1とが連通する。第2流路切替装置16は、制御装置50の制御により、暖房運転時、除霜運転時及び冷房運転時には第1状態に設定され、暖房除霜同時運転時には第2状態又は第3状態に設定される。第2流路切替装置16としては、例えば、国際公開第2017/094148号に記載の流路切替弁が用いられる。
 圧縮機11、第1流路切替装置12、室内熱交換器13、膨張弁14、第1室外熱交換器15a、第2室外熱交換器15b及び第2流路切替装置16は、管30~37等の冷媒配管を介して接続されている。管30は、圧縮機11の吐出口と第1流路切替装置12のポートGとを接続している。管31は、第1流路切替装置12のポートHと室内熱交換器13とを接続している。管32は、室内熱交換器13と膨張弁14とを接続している。管33は、途中で管33a、33bに分岐しており、膨張弁14と第1室外熱交換器15a及び第2室外熱交換器15bのそれぞれとを接続している。管33a、33bには、キャピラリチューブ17a、17bがそれぞれ設けられている。管34は、第1室外熱交換器15aと第2流路切替装置16のポートB1とを接続している。管35は、第2室外熱交換器15bと第2流路切替装置16のポートB2とを接続している。管36は、第2流路切替装置16のポートCと第1流路切替装置12のポートFとを接続している。管37は、第1流路切替装置12のポートEと圧縮機11の吸入口とを接続している。
 また、冷媒回路10は、圧縮機11の吐出側の管30と第2流路切替装置16のポートAとを接続するバイパス流路38を有している。バイパス流路38は、圧縮機11から吐出されたガス冷媒の一部をホットガスとして第1室外熱交換器15a又は第2室外熱交換器15bに供給するように構成されている。バイパス流路38には、冷媒の流量を調節する流量調節弁18が設けられている。流量調節弁18としては、制御装置50により連続的に又は多段階で開度が制御される、電子膨張弁又は電動弁などの弁が用いられる。流量調節弁18は、最小開度に設定されると閉状態となり、最小開度よりも大きい開度に設定されると開状態となる。流量調節弁18は、最小開度である第1開度と、第1開度よりも大きい第2開度と、第2開度よりも大きい第3開度と、を少なくともとり得るのが望ましい。流量調節弁18は、制御装置50の制御により、暖房運転時、除霜運転時及び冷房運転時には例えば閉状態に設定され、暖房除霜同時運転時には所定開度での開状態に設定される。暖房除霜運転時における流量調節弁18の開度制御については後述する。バイパス流路38には、必要に応じて、キャピラリチューブなどの減圧装置がさらに設けられる。
 管33aのうちキャピラリチューブ17aと第1室外熱交換器15aとの間には、温度センサ41aが設けられている。温度センサ41aでは、第1室外熱交換器15aを除霜対象とする暖房除霜同時運転において、第1室外熱交換器15aから流出する冷媒の温度が検知される。管33bのうちキャピラリチューブ17bと第2室外熱交換器15bとの間には、温度センサ41bが設けられている。温度センサ41bでは、第2室外熱交換器15bを除霜対象とする暖房除霜同時運転において、第2室外熱交換器15bから流出する冷媒の温度が検知される。ここで、温度センサ41a及び温度センサ41bのそれぞれは、暖房除霜同時運転において除霜対象の熱交換器の温度を取得するために設けられている。このため、温度センサ41a及び温度センサ41bは、それぞれ第1室外熱交換器15a及び第2室外熱交換器15bに設けられていてもよい。温度センサ41a、41bは、後述する制御装置50に検出信号を出力するように構成されている。
 室内機に形成された風路のうち室内熱交換器13の上流側には、室温すなわち室内空間の空気の温度を検出する温度センサ42が設けられている。温度センサ42は、室内空間に設けられていてもよい。温度センサ42は、後述する制御装置50に検出信号を出力するように構成されている。
 制御装置50は、CPU、ROM、RAM、I/Oポート等を備えたマイクロコンピュータを有している。制御装置50には、温度センサ41a、41b、42を含む各種センサからの検出信号と、ユーザによる操作を受け付ける操作部からの操作信号とが入力される。制御装置50は、入力された信号に基づき、圧縮機11、第1流路切替装置12、膨張弁14、第2流路切替装置16、流量調節弁18、室内ファン及び室外ファンを含む冷凍サイクル装置全体の動作を制御する。
 次に、冷凍サイクル装置の暖房運転時の動作について説明する。図2は、本実施の形態に係る冷凍サイクル装置の暖房運転時の動作を示す図である。図2に示すように、暖房運転時には、第1流路切替装置12は、ポートEとポートFとが連通するとともにポートGとポートHとが連通する第1状態に設定される。第2流路切替装置16は、ポートCとポートB1及びポートB2の双方とが連通する第1状態に設定される。流量調節弁18は、例えば閉状態に設定される。
 圧縮機11から吐出された高圧のガス冷媒は、第1流路切替装置12を経由し、室内熱交換器13に流入する。暖房運転時には、室内熱交換器13は凝縮器として機能する。すなわち、室内熱交換器13では、内部を流通する冷媒と、室内ファンにより送風される室内空気との熱交換が行われ、冷媒の凝縮熱が室内空気に放熱される。これにより、室内熱交換器13に流入したガス冷媒は、凝縮して高圧の液冷媒となる。また、室内ファンにより送風される室内空気は、冷媒からの放熱によって加熱される。
 室内熱交換器13から流出した液冷媒は、膨張弁14で減圧されて低圧の二相冷媒となる。膨張弁14から流出した二相冷媒は、管33aと管33bとに分流する。管33aに流入した二相冷媒は、キャピラリチューブ17aでさらに減圧され、第1室外熱交換器15aに流入する。管33bに流入した二相冷媒は、キャピラリチューブ17bでさらに減圧され、第2室外熱交換器15bに流入する。
 暖房運転時には、第1室外熱交換器15a及び第2室外熱交換器15bはいずれも蒸発器として機能する。すなわち、第1室外熱交換器15a及び第2室外熱交換器15bのそれぞれでは、内部を流通する冷媒と、室外ファンにより送風される室外空気との熱交換が行われ、冷媒の蒸発熱が室外空気から吸熱される。これにより、第1室外熱交換器15a及び第2室外熱交換器15bのそれぞれに流入した二相冷媒は、蒸発して低圧のガス冷媒となる。第1室外熱交換器15a及び第2室外熱交換器15bのそれぞれから流出したガス冷媒は、第2流路切替装置16で合流し、第1流路切替装置12を経由して圧縮機11に吸入される。圧縮機11に吸入されたガス冷媒は、圧縮されて高圧のガス冷媒となる。暖房運転時には、以上のサイクルが連続的に繰り返される。
 暖房運転が長時間継続されると、第1室外熱交換器15a及び第2室外熱交換器15bに霜が付着し、第1室外熱交換器15a及び第2室外熱交換器15bの熱交換効率が低下する場合がある。したがって、第1室外熱交換器15a及び第2室外熱交換器15bに付着した霜を融解させるため、除霜運転又は暖房除霜同時運転が定期的に行われる。除霜運転は、第1室外熱交換器15a及び第2室外熱交換器15bの双方に高温高圧のガス冷媒を供給し、冷媒からの放熱によって第1室外熱交換器15a及び第2室外熱交換器15bの双方の除霜を行う運転である。暖房除霜同時運転は、第1室外熱交換器15a又は第2室外熱交換器15bの一方に高温高圧のガス冷媒を供給して当該一方の除霜を行いながら、第1室外熱交換器15a又は第2室外熱交換器15bの他方を蒸発器として機能させて暖房を継続する運転である。
 冷凍サイクル装置の除霜運転時の動作について説明する。図3は、本実施の形態に係る冷凍サイクル装置の除霜運転時の動作を示す図である。図3に示すように、除霜運転時には、第1流路切替装置12は、ポートEとポートHとが連通するとともにポートFとポートGとが連通する第2状態に設定される。第2流路切替装置16は、ポートCとポートB1及びポートB2の双方とが連通する第1状態に設定される。流量調節弁18は、例えば閉状態に設定される。除霜運転時の第1流路切替装置12、第2流路切替装置16及び流量調節弁18の設定は、冷房運転時のこれらの設定と同様である。
 圧縮機11から吐出された高圧のガス冷媒は、第1流路切替装置12を経由して第2流路切替装置16で分流し、第1室外熱交換器15a及び第2室外熱交換器15bのそれぞれに流入する。除霜運転時には、第1室外熱交換器15a及び第2室外熱交換器15bはいずれも凝縮器として機能する。すなわち、第1室外熱交換器15a及び第2室外熱交換器15bのそれぞれでは、内部を流通する冷媒からの放熱によって、第1室外熱交換器15a及び第2室外熱交換器15bのそれぞれに付着した霜が融解する。これにより、第1室外熱交換器15a及び第2室外熱交換器15bの除霜が行われる。また、第1室外熱交換器15a及び第2室外熱交換器15bのそれぞれに流入したガス冷媒は、凝縮して液冷媒となる。
 第1室外熱交換器15aから流出した液冷媒は、キャピラリチューブ17aで減圧される。第2室外熱交換器15bから流出した液冷媒は、キャピラリチューブ17bで減圧される。これらの液冷媒は、合流して膨張弁14でさらに減圧され、低圧の二相冷媒となる。膨張弁14から流出した二相冷媒は、室内熱交換器13に流入する。除霜運転時には、室内熱交換器13は蒸発器として機能する。すなわち、室内熱交換器13では、内部を流通する冷媒の蒸発熱が室内空気から吸熱される。これにより、室内熱交換器13に流入した二相冷媒は、蒸発して低圧のガス冷媒となる。室内熱交換器13から流出したガス冷媒は、第1流路切替装置12を経由して圧縮機11に吸入される。圧縮機11に吸入されたガス冷媒は、圧縮されて高圧のガス冷媒となる。除霜運転時には、以上のサイクルが連続的に繰り返される。
 次に、冷凍サイクル装置の暖房除霜同時運転時の動作について説明する。図4は、本実施の形態に係る冷凍サイクル装置の暖房除霜同時運転時の動作を示す図である。ここで、暖房除霜同時運転には、第1運転と第2運転とが含まれている。第1運転は、第1室外熱交換器15aを除霜対象とし、第1室外熱交換器15aの除霜を行いながら暖房を行う運転である。第1運転では、第1室外熱交換器15a及び室内熱交換器13が凝縮器として機能し、第2室外熱交換器15bが蒸発器として機能する。第2運転は、第2室外熱交換器15bを除霜対象とし、第2室外熱交換器15bの除霜を行いながら暖房を行う運転である。第2運転では、第2室外熱交換器15b及び室内熱交換器13が凝縮器として機能し、第1室外熱交換器15aが蒸発器として機能する。1回の暖房除霜同時運転の実行期間において、第1運転及び第2運転は、少なくとも1回ずつ交互に実行されるのが望ましい。図4では、暖房除霜同時運転のうちの第1運転時の動作を示している。
 図4に示すように、暖房除霜同時運転のうちの第1運転時には、第1流路切替装置12は、ポートEとポートFとが連通するとともにポートGとポートHとが連通する第1状態に設定される。第2流路切替装置16は、ポートAとポートB1とが連通するとともにポートCとポートB2とが連通する第2状態に設定される。流量調節弁18は、第1運転が開始されるときには所定開度での開状態に設定される。その後、流量調節弁18の開度は、後述するように制御される。
 圧縮機11から吐出された高圧のガス冷媒の一部は、管30からバイパス流路38に分流する。バイパス流路38に分流する冷媒の流量は、流量調節弁18の開度に応じて変動する。バイパス流路38に分流したガス冷媒は、流量調節弁18によって中間圧に減圧され、第2流路切替装置16を経由して第1室外熱交換器15aに流入する。ここで、中間圧とは、圧縮機11の吸入圧力よりも高く圧縮機11の吐出圧力よりも低い圧力のことである。第1室外熱交換器15aでは、内部を流通する冷媒からの放熱によって、付着した霜が融解する。これにより、第1室外熱交換器15aの除霜が行われる。また、第1室外熱交換器15aに流入したガス冷媒は、凝縮して中間圧の液冷媒又は二相冷媒となって第1室外熱交換器15aから流出し、キャピラリチューブ17aで減圧される。
 一方、圧縮機11から吐出された高圧のガス冷媒のうち、バイパス流路38に分流した一部以外のガス冷媒は、第1流路切替装置12を経由して室内熱交換器13に流入する。室内熱交換器13では、内部を流通する冷媒と、室内ファンにより送風される室内空気との熱交換が行われ、冷媒の凝縮熱が室内空気に放熱される。これにより、室内熱交換器13に流入したガス冷媒は、凝縮して高圧の液冷媒となる。また、室内ファンにより送風される室内空気は、冷媒からの放熱によって加熱される。
 室内熱交換器13から流出した液冷媒は、膨張弁14で減圧されて低圧の二相冷媒となる。膨張弁14から流出した二相冷媒は、キャピラリチューブ17aで減圧された液冷媒又は二相冷媒と合流し、キャピラリチューブ17bを経由して第2室外熱交換器15bに流入する。第2室外熱交換器15bでは、内部を流通する冷媒と、室外ファンにより送風される室外空気との熱交換が行われ、冷媒の蒸発熱が室外空気から吸熱される。これにより、第2室外熱交換器15bに流入した二相冷媒は、蒸発して低圧のガス冷媒となる。第2室外熱交換器15bから流出したガス冷媒は、第2流路切替装置16及び第1流路切替装置12を経由して圧縮機11に吸入される。圧縮機11に吸入されたガス冷媒は、圧縮されて高圧のガス冷媒となる。暖房除霜同時運転のうちの第1運転時には、以上のサイクルが連続的に繰り返されることにより、第1室外熱交換器15aの除霜が行われるとともに暖房が継続される。
 図示を省略するが、暖房除霜同時運転のうちの第2運転時には、第1流路切替装置12は、第1運転時と同様に第1状態に設定される。第2流路切替装置16は、ポートAとポートB2とが連通するとともにポートCとポートB1とが連通する第3状態に設定される。これにより、第2運転時には、第2室外熱交換器15bの除霜が行われるとともに暖房が継続される。
 図5は、本実施の形態に係る冷凍サイクル装置の制御装置50で実行される処理の流れを示すフローチャートである。図5に示す処理は、あらかじめ設定されている暖房除霜同時運転の実行条件が成立した場合に実行される。なお、説明を簡略化するために、図5に示す処理では、暖房除霜同時運転のうち第1運転又は第2運転の一方のみが実行されるものとする。まず、ステップS1では、制御装置50は、暖房除霜同時運転を開始する処理を行う。これにより、第1流路切替装置12は第1状態に設定され、第2流路切替装置16は第2状態又は第3状態に設定され、流量調節弁18は所定開度での開状態に設定される。制御装置50は、暖房除霜同時運転を実行する際、圧縮機11の運転周波数を最大運転周波数まで上昇させる制御を行ってもよい。
 次に、ステップS2では、制御装置50は、暖房除霜同時運転が開始されてからの実行時間と、あらかじめ設定されROMに記憶されている所定時間とを比較し、実行時間が所定時間未満であるか否かを判定する。実行時間が所定時間未満であると判定した場合にはステップS3に進み、実行時間が所定時間以上であると判定した場合にはステップS7に進む。
 ステップS3では、制御装置50は、温度センサ42からの検出信号に基づき取得された室温と、室温の目標値としてROMに記憶されている設定温度とを比較し、室温が設定温度よりも高いか否かを判定する。室温が設定温度よりも高いと判定した場合にはステップS4に進み、室温が設定温度以下であると判定した場合にはステップS5に進む。
 ステップS4では、制御装置50は、流量調節弁18の開度を増加させる処理を行う。この処理により、除霜対象の熱交換器に供給される冷媒量が増加するため、冷凍サイクル装置の除霜能力が上昇する。一方で、室内熱交換器13に供給される冷媒量が減少するため、冷凍サイクル装置の暖房能力は低下する。ステップS4の処理は、室温が設定温度よりも高く暖房能力が過剰である場合に実行される。このため、余剰の暖房能力の一部が除霜能力に振り向けられることにより、室温を維持しつつ、除霜対象の熱交換器での霜の融解を促進することができる。したがって、あらかじめ設定されている所定時間内で除霜を完了させることができ、熱交換器に霜の溶け残りが生じるのを防ぐことができる。ステップS4の処理が終了した後には、ステップS2に戻る。
 ステップS5では、制御装置50は、温度センサ41a又は温度センサ41bからの検出信号に基づき取得された除霜対象の熱交換器温度が、0℃よりも高いか否かを判定する。除霜対象の熱交換器温度が0℃よりも高いと判定した場合にはステップS6に進み、除霜対象の熱交換器温度が0℃以下であると判定した場合にはステップS2に戻る。
 ステップS6では、制御装置50は、流量調節弁18の開度を減少させる処理を行う。この処理により、除霜対象の熱交換器に供給される冷媒量が減少するため、冷凍サイクル装置の除霜能力が低下する。一方で、室内熱交換器13に供給される冷媒量が増加するため、冷凍サイクル装置の暖房能力は上昇する。ステップS6の処理は、室温が設定温度以下であり、かつ除霜対象の熱交換器温度が0℃よりも高い場合に実行される。すなわち、ステップS6の処理は、暖房能力が不足しており、かつ除霜能力が過剰であるときに実行される。このため、余剰の除霜能力の一部が暖房能力に振り向けられることにより、熱交換器に霜の溶け残りが生じるのを防ぎつつ、室温を高めることができる。ステップS6の処理が終了した後には、ステップS2に戻る。
 ステップS7では、制御装置50は、暖房除霜同時運転を終了して暖房運転に移行する処理を行う。
 図6は、本実施の形態に係る冷凍サイクル装置の構成の変形例を示す冷媒回路図である。本変形例の冷媒回路10は、図1に示した冷媒回路10と比較すると、第2流路切替装置16に代えて、2つの四方弁21a、21bと逆止弁22とを有している。四方弁21a、21bは、制御装置50により制御される。本変形例の冷媒回路10は、図1に示した冷媒回路10よりも構成が複雑になるものの、図1に示した冷媒回路10と同様に、少なくとも暖房除霜同時運転を実行できるように構成されている。暖房除霜同時運転では、圧縮機11から吐出された冷媒の一部がバイパス流路38を介して第1室外熱交換器15a又は第2室外熱交換器15bの一方に供給される。本実施の形態は、本変形例の冷媒回路10を備えた冷凍サイクル装置にも適用可能である。また、本実施の形態は、暖房除霜同時運転を実行可能に構成されていれば、本変形例の冷媒回路10以外の冷媒回路を備えた冷凍サイクル装置にも適用可能である。
 以上説明したように、本実施の形態に係る冷凍サイクル装置は、圧縮機11、室内熱交換器13、第1室外熱交換器15a及び第2室外熱交換器15bを有し、冷媒を循環させる冷媒回路10と、冷媒回路10を制御する制御装置50と、を備えている。冷媒回路10は、圧縮機11の吐出側と第1室外熱交換器15a又は第2室外熱交換器15bとを連通させるバイパス流路38と、バイパス流路38に設けられた流量調節弁18と、をさらに有している。室内熱交換器13は、冷媒と室内空間に供給される空気との熱交換を行うものである。冷媒回路10は、暖房除霜同時運転を実行可能に構成されている。暖房除霜同時運転は、圧縮機11から吐出された冷媒の一部をバイパス流路38を介して第1室外熱交換器15a又は第2室外熱交換器15bの一方に供給し、第1室外熱交換器15a又は第2室外熱交換器15bの他方を蒸発器として機能させ、室内熱交換器13を凝縮器として機能させる運転である。制御装置50は、暖房除霜同時運転の実行中、室温に基づいて流量調節弁18の開度を制御するように構成されている。ここで、室内空間に供給される空気は、加熱対象の一例である。室温は、加熱対象の温度の一例である。
 この構成によれば、暖房除霜同時運転の実行中、流量調節弁18の開度が室温に基づいて制御されるため、余剰の暖房能力を除霜能力に振り向けることができる。これにより、室温を維持しつつ除霜を促進することができる。したがって、本実施の形態によれば、暖房除霜同時運転の実行中において、暖房能力と除霜能力との比率を暖房負荷に応じて調整することができる。よって、暖房除霜同時運転を安定して実行することができる。
 例えば、暖房除霜同時運転の実行中において、暖房能力が負荷に対して過剰となる場合には、圧縮機11の回転数を低下させることによっても、暖房能力を低下させることができる。しかしながら、この場合、暖房能力だけでなく除霜能力も低下してしまうため、所定の除霜時間内で除霜を完了させることができず、除霜対象の熱交換器に霜の溶け残りが生じてしまう可能性がある。これに対し、本実施の形態では、余剰の暖房能力が除霜能力に振り向けられるため、霜の溶け残りが生じるのをより確実に防ぐことができる。
 また、除霜開始時点での熱交換器の着霜量は運転条件に応じて異なるため、流量調節弁18の開度が固定されていると、熱交換器の着霜量が多い場合には霜の溶け残りが生じてしまう可能性がある。これに対し、本実施の形態では、流量調節弁18の開度制御によって余剰の暖房能力が除霜能力に振り向けられるため、霜の溶け残りが生じるのをより確実に防ぐことができる。
 また、本実施の形態に係る冷凍サイクル装置において、制御装置50は、暖房除霜同時運転の実行中、室温が室温の目標値である設定温度よりも高い場合に、流量調節弁18の開度を増加させるように構成されている。室温が設定温度よりも高い場合には、暖房能力が過剰であると判断することができる。したがって、この構成によれば、余剰の暖房能力の有無をより確実に判断することができるため、暖房能力の一部が除霜能力に振り向けられた後に暖房能力が不足してしまうのを防ぐことができる。
 また、本実施の形態に係る冷凍サイクル装置において、制御装置50は、暖房除霜同時運転の実行中、第1室外熱交換器15a又は第2室外熱交換器15bの他方の温度にも基づいて、流量調節弁18の開度を制御するように構成されている。この構成によれば、暖房除霜同時運転の実行中、除霜対象の熱交換器の温度に基づいて流量調節弁18の開度が制御されるため、余剰の除霜能力を暖房能力に振り向けることができる。これにより、除霜対象の熱交換器に霜の溶け残りが生じるのを防ぎつつ、暖房能力を高めることができる。
 また、本実施の形態に係る冷凍サイクル装置において、制御装置50は、暖房除霜同時運転の実行中、第1室外熱交換器15a又は第2室外熱交換器15bの他方の温度が0℃よりも高い場合に、流量調節弁18の開度を減少させるように構成されている。除霜対象の熱交換器の温度が0℃よりも高い場合には、除霜能力が過剰であると判断することができる。したがって、この構成によれば、余剰の除霜能力の有無をより確実に判断することができるため、除霜能力の一部が暖房能力に振り向けられた後に除霜能力が不足してしまうのを防ぐことができる。
 上記実施の形態では、空気を加熱対象とする空気調和機を例に挙げたが、本発明はこれに限らず、温水を加熱対象とする給湯装置又は温水式床暖房装置等の他の冷凍サイクル装置にも適用できる。
 10 冷媒回路、11 圧縮機、12 第1流路切替装置、13 室内熱交換器、14 膨張弁、15a 第1室外熱交換器、15b 第2室外熱交換器、16 第2流路切替装置、17a、17b キャピラリチューブ、18 流量調節弁、21a、21b 四方弁、22 逆止弁、30、31、32、33、33a、33b、34、35、36、37 管、38 バイパス流路、41a、41b、42 温度センサ、50 制御装置。

Claims (4)

  1.  圧縮機、室内熱交換器、第1室外熱交換器及び第2室外熱交換器を有し、冷媒を循環させる冷媒回路と、
     前記冷媒回路を制御する制御装置と、
     を備え、
     前記冷媒回路は、前記圧縮機の吐出側と前記第1室外熱交換器又は前記第2室外熱交換器とを連通させるバイパス流路と、前記バイパス流路に設けられた流量調節弁と、をさらに有しており、
     前記室内熱交換器は、前記冷媒と加熱対象との熱交換を行うものであり、
     前記冷媒回路は、前記圧縮機から吐出された前記冷媒の一部を前記バイパス流路を介して前記第1室外熱交換器又は前記第2室外熱交換器の一方に供給し、前記第1室外熱交換器又は前記第2室外熱交換器の他方を蒸発器として機能させ、前記室内熱交換器を凝縮器として機能させる暖房除霜同時運転を実行可能に構成されており、
     前記制御装置は、前記暖房除霜同時運転の実行中、前記加熱対象の温度に基づいて前記流量調節弁の開度を制御するように構成されている冷凍サイクル装置。
  2.  前記制御装置は、前記暖房除霜同時運転の実行中、前記加熱対象の温度が前記加熱対象の温度の目標値である設定温度よりも高い場合に、前記流量調節弁の開度を増加させるように構成されている請求項1に記載の冷凍サイクル装置。
  3.  前記制御装置は、前記暖房除霜同時運転の実行中、前記第1室外熱交換器又は前記第2室外熱交換器の前記他方の温度にも基づいて、前記流量調節弁の開度を制御するように構成されている請求項1又は請求項2に記載の冷凍サイクル装置。
  4.  前記制御装置は、前記暖房除霜同時運転の実行中、前記第1室外熱交換器又は前記第2室外熱交換器の前記他方の温度が0℃よりも高い場合に、前記流量調節弁の開度を減少させるように構成されている請求項3に記載の冷凍サイクル装置。
PCT/JP2018/019845 2018-05-23 2018-05-23 冷凍サイクル装置 WO2019224945A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020520933A JP6987234B2 (ja) 2018-05-23 2018-05-23 冷凍サイクル装置
CN201880092513.6A CN112119273B (zh) 2018-05-23 2018-05-23 制冷循环装置
PCT/JP2018/019845 WO2019224945A1 (ja) 2018-05-23 2018-05-23 冷凍サイクル装置
EP18919812.0A EP3798539A4 (en) 2018-05-23 2018-05-23 REFRIGERATION CIRCUIT DEVICE
US17/043,135 US11585579B2 (en) 2018-05-23 2018-05-23 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019845 WO2019224945A1 (ja) 2018-05-23 2018-05-23 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019224945A1 true WO2019224945A1 (ja) 2019-11-28

Family

ID=68615775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019845 WO2019224945A1 (ja) 2018-05-23 2018-05-23 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US11585579B2 (ja)
EP (1) EP3798539A4 (ja)
JP (1) JP6987234B2 (ja)
CN (1) CN112119273B (ja)
WO (1) WO2019224945A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023372A (zh) * 2019-12-31 2020-04-17 宁波奥克斯电气股份有限公司 一种空调器的热泵系统、空调器及其除霜控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007174T5 (de) * 2019-04-11 2021-12-23 Mitsubishi Electric Corporation Klimaanlage
KR20210096521A (ko) 2020-01-28 2021-08-05 엘지전자 주식회사 공기 조화 장치
JP2021124227A (ja) * 2020-02-03 2021-08-30 東芝ライフスタイル株式会社 空気調和機の室外機および空気調和機
JP7125632B2 (ja) * 2021-01-29 2022-08-25 ダイキン工業株式会社 冷凍サイクル装置
DE102022101710A1 (de) 2021-09-28 2023-03-30 Liebherr-Hausgeräte Lienz Gmbh Kühl- und/oder Gefriergerät
CN114061031A (zh) * 2021-10-28 2022-02-18 青岛海尔空调器有限总公司 一种空调除霜控制方法、控制装置及空调器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064381A (ja) 2006-09-07 2008-03-21 Hitachi Appliances Inc 空気調和機
JP2008157558A (ja) * 2006-12-25 2008-07-10 Daikin Ind Ltd 空気調和装置
JP2010281492A (ja) * 2009-06-04 2010-12-16 Hitachi Appliances Inc 空気調和機
WO2017094148A1 (ja) 2015-12-02 2017-06-08 三菱電機株式会社 空気調和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555017B2 (ja) * 1972-09-27 1980-02-02
US4332137A (en) * 1979-10-22 1982-06-01 Carrier Corporation Heat exchange apparatus and method having two refrigeration circuits
US4565070A (en) * 1983-06-01 1986-01-21 Carrier Corporation Apparatus and method for defrosting a heat exchanger in a refrigeration circuit
US10520233B2 (en) * 2015-01-13 2019-12-31 Mitsubishi Electric Corporation Air-conditioning apparatus for a plurality of parallel outdoor units
CN111201410B (zh) * 2017-10-12 2021-09-24 三菱电机株式会社 空气调节装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064381A (ja) 2006-09-07 2008-03-21 Hitachi Appliances Inc 空気調和機
JP2008157558A (ja) * 2006-12-25 2008-07-10 Daikin Ind Ltd 空気調和装置
JP2010281492A (ja) * 2009-06-04 2010-12-16 Hitachi Appliances Inc 空気調和機
WO2017094148A1 (ja) 2015-12-02 2017-06-08 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3798539A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023372A (zh) * 2019-12-31 2020-04-17 宁波奥克斯电气股份有限公司 一种空调器的热泵系统、空调器及其除霜控制方法

Also Published As

Publication number Publication date
JPWO2019224945A1 (ja) 2021-02-25
US20210095905A1 (en) 2021-04-01
JP6987234B2 (ja) 2021-12-22
CN112119273A (zh) 2020-12-22
CN112119273B (zh) 2022-03-25
EP3798539A4 (en) 2021-06-09
US11585579B2 (en) 2023-02-21
EP3798539A1 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
WO2019224945A1 (ja) 冷凍サイクル装置
US11236934B2 (en) Refrigeration cycle apparatus
EP3062031B1 (en) Air conditioner
US7155928B2 (en) Refrigerating apparatus
WO2014192140A1 (ja) 空気調和装置
WO2018123361A1 (ja) マルチ型空気調和機の制御装置、マルチ型空気調和機、マルチ型空気調和機の制御方法及びマルチ型空気調和機の制御プログラム
EP0514086A2 (en) Air conditioning apparatus
JP5341622B2 (ja) 空気調和機
JP6138711B2 (ja) 空気調和装置
JP2010159926A (ja) 空気調和装置
WO2020121411A1 (ja) 空気調和装置
US10480837B2 (en) Refrigeration apparatus
WO2016170575A1 (ja) 冷凍サイクル装置
JP6733424B2 (ja) 空気調和装置
JP2002372320A (ja) 冷凍装置
WO2019224944A1 (ja) 空気調和機
CN114364933B (zh) 空调机
JP5537906B2 (ja) 空気調和装置
JP2019138486A (ja) 冷媒回路システム及びデフロスト運転の制御方法
JP4774858B2 (ja) 空気調和装置
JP7442689B2 (ja) 空気調和装置
CN114270110B (zh) 空调机
JPH0464849A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018919812

Country of ref document: EP

Effective date: 20201223