WO2019223488A1 - 电池极片及其制备方法、电池管理方法及相关装置 - Google Patents

电池极片及其制备方法、电池管理方法及相关装置 Download PDF

Info

Publication number
WO2019223488A1
WO2019223488A1 PCT/CN2019/084104 CN2019084104W WO2019223488A1 WO 2019223488 A1 WO2019223488 A1 WO 2019223488A1 CN 2019084104 W CN2019084104 W CN 2019084104W WO 2019223488 A1 WO2019223488 A1 WO 2019223488A1
Authority
WO
WIPO (PCT)
Prior art keywords
rechargeable battery
battery
induction coil
wireless rechargeable
wireless
Prior art date
Application number
PCT/CN2019/084104
Other languages
English (en)
French (fr)
Inventor
程刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19807348.8A priority Critical patent/EP3793016B1/en
Publication of WO2019223488A1 publication Critical patent/WO2019223488A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of secondary batteries, in particular to a battery pole piece and a preparation method thereof, a wireless rechargeable battery, a battery management method, a system, and a controller.
  • a wireless rechargeable battery is a rechargeable battery that uses wireless charging technologies such as electromagnetic induction charging technology.
  • the principle of electromagnetic induction charging technology There is a coil at the transmitting end and a receiving end.
  • the transmitting end coil is connected to a wired power source and generates electromagnetic energy through electromagnetic phenomena.
  • the receiving end coil induces electromagnetic energy generated at the transmitting end and generates magnetic energy through electromagnetic induction The electricity generates electricity to charge the rechargeable battery.
  • Rechargeable batteries such as lithium-ion batteries
  • lithium-ion batteries due to the inherent properties of lithium-ion batteries, when used in low-temperature scenarios, due to the decline in the dynamic performance of the positive and negative electrodes, lithium-ion batteries exhibit a large polarization phenomenon during charging and discharging. Forced charging will lead to the phenomenon of lithium evolution and even the puncture of the separator, which in turn will cause the battery to catch fire and explode due to the short circuit between the positive and negative electrodes.
  • a coil for inducing magnetic field energy is usually disposed outside a casing of a wireless rechargeable battery or between the casing and a pole piece of a wireless rechargeable battery.
  • a heating element in the rechargeable battery is disposed between a positive electrode and a negative electrode of the rechargeable battery. Increased the thickness of wireless rechargeable batteries.
  • the technical problem to be solved by the embodiments of the present invention is to provide a battery pole piece and a preparation method thereof, a wireless rechargeable battery, a battery management method, a system, and a controller.
  • the induction coil is arranged inside the battery pole piece to make the induction coil Both wireless charging and heating of the wireless rechargeable battery where the battery pole pieces are located can be achieved, and the thickness of the wireless rechargeable battery can be greatly reduced.
  • an embodiment of the present invention provides a battery pole piece, including: a current collector and an induction coil, wherein the induction coil is a planar coil formed by winding a first wire wrapped by an insulating film, and at least a part of the induction coil is embedded In the current collector, a first surface of the induction coil is exposed on a second surface of the current collector, and the first surface is a surface of the induction coil that is parallel to a plane on which the induction coil is located.
  • the induction coil is disposed inside the battery pole piece, and the first surface of the induction coil for wireless charging is exposed on the surface of the current collector, so that the induction coil can realize wireless charging.
  • the wireless rechargeable battery where the battery pole piece is located can be heated, and the thickness of the wireless rechargeable battery is greatly reduced.
  • the induction coil is configured to receive external electromagnetic energy, generate an induced electromotive force, and charge a wireless rechargeable battery in which the battery pole piece is located.
  • the induction coil is further configured to: when a current is passed to the induction coil, heating the wireless charging battery pole piece.
  • the induction coil is a flat spiral coil to increase the receiving power of the induction coil and achieve uniform heating of the battery pole pieces .
  • the current collector is a planar spiral coil formed by spirally winding the second wire on a plane, and the first wire and the second wire are on the same plane Inside and around.
  • the current collector includes a gap penetrating the second surface and the third surface, and the induction coil is embedded in the gap
  • the third surface is a surface of the current collector opposite to the second surface.
  • the battery pole piece is a positive pole piece, and the battery pole piece further includes a first piece coated on the current collector.
  • the third surface is a surface of the current collector opposite to the second surface.
  • an embodiment of the present invention further provides a method for preparing a battery pole piece, including:
  • At least a part of an induction coil is embedded in a current collector, the induction coil is a planar coil formed by winding a first wire wrapped by an insulating film, and a first surface of the induction coil is exposed on a second surface of the current collector The first surface is a surface of the induction coil that is parallel to a plane on which the induction coil is located;
  • An active slurry is coated on a third surface of the current collector to form a battery pole piece, and the third surface is a surface of the current collector opposite to the first surface.
  • the battery pole piece prepared in the embodiment of the present invention will be provided with the induction coil inside the battery pole piece, and the first surface of the induction coil for wireless charging will be exposed on the surface of the current collector, so that the induction coil Both wireless charging and heating of the wireless rechargeable battery where the battery pole pieces are located can be achieved, and the thickness of the wireless rechargeable battery can be greatly reduced.
  • an embodiment in which at least a part of the induction coil is embedded in the current collector may be: spiraling and winding the first wire and the second wire in the same plane A first planar spiral coil and a second planar spiral coil are formed, wherein the first planar spiral coil is an induction coil and the second planar spiral coil is a current collector.
  • another embodiment of embedding at least a part of the induction coil in the current collector may be: forming a current penetrating through the second surface and the third surface on the current collector. A gap, the second surface and the third surface are two opposite surfaces on the current collector;
  • An induction coil is embedded in the gap, so that a first surface of the induction coil is exposed on the second surface of the current collector.
  • an embodiment of the present invention further provides a wireless rechargeable battery, including a positive pole piece, a negative pole piece, and a separator and an electrolyte solution disposed between the positive pole piece and the negative pole piece; wherein
  • the positive pole piece or the negative pole piece is any one of the battery pole pieces described in the first aspect and the first to fifth implementations of the first aspect.
  • an embodiment of the present invention further provides a battery management method, including:
  • the controller When the controller receives the charging signal, the controller inputs the induced electromotive force generated by the induction coil according to receiving electromagnetic energy emitted from the outside to the wireless rechargeable battery to charge the wireless rechargeable battery.
  • the induction coil is provided inside the wireless rechargeable battery. ; And in the process of discharging the wireless rechargeable battery, when the first temperature obtained by the temperature sensor is less than the first temperature threshold, controlling the wireless rechargeable battery to output current to the induction coil to heat the wireless rechargeable battery.
  • the induction coil of the wireless rechargeable battery in the embodiments of the present invention can be reused as a heating element, which can realize wireless charging and also heat the wireless rechargeable battery, improving the charging and discharging performance of the wireless rechargeable battery at low temperature .
  • the controller controls the wireless when the first temperature obtained by the temperature sensor is less than the first temperature threshold.
  • An embodiment in which the rechargeable battery outputs current to the inductive coil to heat the wireless rechargeable battery may be: during the discharge of the wireless rechargeable battery, when the first temperature obtained by the temperature sensor is lower than the first temperature, When the threshold value and the remaining power of the rechargeable battery is greater than a preset power threshold, the controller may control the wireless rechargeable battery to output current to the induction coil to heat the wireless rechargeable battery.
  • the wireless rechargeable battery can be connected to the induction coil, that is, the two ends of the induction coil are connected to the positive and negative electrodes of the wireless rechargeable battery through a load (such as a resistor) to form a circuit loop, which generates a current. heat.
  • an embodiment of charging the wireless rechargeable battery may be: in the case of receiving a charging signal, when the second temperature obtained by the temperature sensor is less than the second temperature threshold, the controller may turn on the inductive coil.
  • the externally-received electromagnetic energy received by the induction coil heats the wireless rechargeable battery where the induction coil is located; further, when the third temperature obtained by the temperature sensor is not less than the second temperature threshold, the induction The coil receives an induced electromotive force generated by receiving electromagnetic energy emitted from the outside, and inputs the wireless rechargeable battery to charge the wireless rechargeable battery.
  • the induction coil can be turned on, that is, the two ends of the induction coil are connected through a load (such as a resistor) to form a circuit loop, and a current is generated, and the current flows through the induction coil to cause the induction coil to generate heat.
  • a load such as a resistor
  • the circuit loop of the induction coil and the load is disconnected, and both ends of the induction coil are connected to the positive and negative electrodes of the wireless rechargeable battery through a rectification and voltage stabilization module, and the wireless rechargeable battery is Charge it.
  • the embodiments of the present invention can improve the charging performance of wireless rechargeable batteries at low temperatures.
  • the wireless rechargeable battery includes a positive pole piece, a negative pole piece, and the positive pole piece and the The separator and electrolyte between the negative electrode pieces; wherein the positive electrode piece or the negative electrode piece is any one of the battery electrode pieces described in the first aspect and the first to fifth implementations of the first aspect.
  • an embodiment of the present invention further provides a controller, which is characterized in that it includes:
  • a charging unit configured to: when a charging signal is received, input a induced electromotive force generated by an induction coil according to receiving externally emitted electromagnetic energy to a wireless rechargeable battery to charge the wireless rechargeable battery; wherein the induction The coil is located inside the wireless rechargeable battery;
  • a discharging unit configured to control the wireless charging battery to output a current to the inductive coil when the first temperature obtained by the temperature sensor is less than a preset temperature threshold during the wireless charging battery discharging; The wireless rechargeable battery is heated.
  • the discharge unit is specifically configured to:
  • the wireless rechargeable battery is controlled to output current to the The induction coil heats the wireless rechargeable battery.
  • the charging unit is specifically configured to:
  • the inductive coil is turned on, and the externally transmitted electromagnetic energy received by the inductive coil affects the wireless where the inductive coil is located.
  • the wireless rechargeable battery includes a positive electrode piece, a negative electrode piece, and the positive electrode piece and The separator and the electrolyte between the negative electrode pieces, wherein the positive electrode piece or the negative electrode piece is any one of the battery electrodes described in the first aspect and the first to fifth implementations of the first aspect. sheet.
  • an embodiment of the present invention further provides a controller, including a processor and a memory.
  • the processor is coupled to the memory, calls data and instructions stored in the memory, and executes any of the operations described in the fourth aspect.
  • a battery management method is provided.
  • an embodiment of the present invention further provides a battery management system, including: a wireless rechargeable battery, a temperature sensor, and a control, wherein the wireless rechargeable battery includes an induction coil disposed inside the wireless rechargeable battery; wherein,
  • the induction coil is used for receiving electromagnetic energy emitted from the outside to generate an induced electromotive force
  • Wireless rechargeable batteries are used to supply power to external circuits and store electrical energy
  • the controller is configured to: when the charging signal is received, input the induced electromotive force to the wireless rechargeable battery to charge the wireless rechargeable battery; and, during the discharging of the wireless rechargeable battery, And when the first temperature obtained by the temperature sensor is less than a first temperature threshold, controlling the wireless rechargeable battery to output current to the inductive coil to heat the wireless rechargeable battery.
  • the battery management system further includes a rectification and voltage stabilization module connected to the induction coil for rectifying the induced electromotive force And / or voltage stabilization processing, and inputting the processed induced electromotive force to the wireless rechargeable battery to charge the wireless rechargeable battery.
  • the controller is configured to control the wireless when the first temperature is less than a first temperature threshold during the discharging of the wireless rechargeable battery.
  • the rechargeable battery outputs current to the induction coil to heat the wireless rechargeable battery, and is specifically used to:
  • the wireless rechargeable battery when the first temperature is less than a first temperature threshold and the remaining power of the rechargeable battery is greater than a preset power threshold, controlling the wireless rechargeable battery to output current to the inductor coil , Heating the wireless rechargeable battery.
  • the controller is configured to, when a charging signal is received, input the induced electromotive force to the wireless rechargeable battery, and To charge, specifically for:
  • the induction coil In the case of receiving a charging signal, when the second temperature obtained by the temperature sensor is less than a second temperature threshold, the induction coil is turned on, and the wireless energy transmitted through the induction coil to the wireless Rechargeable battery for heating;
  • the induced electromotive force is input to the wireless rechargeable battery to charge the wireless rechargeable battery.
  • the wireless charging battery includes a positive pole piece, a negative pole piece, and the positive pole piece and The separator and the electrolyte between the negative electrode pieces, wherein the positive electrode piece or the negative electrode piece is any one of the battery electrodes described in the first aspect and the first to fifth implementations of the first aspect. sheet.
  • FIG. 1 is a schematic structural diagram of a battery pole piece provided by the present invention
  • FIG. 2 is a partial cross-sectional view of a battery pole piece provided by the present invention.
  • FIG. 3 is a partial cross-sectional view of another battery pole piece provided by the present invention.
  • FIG. 4 is a schematic structural diagram of another wireless rechargeable battery provided by an embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view of another battery pole piece provided by the present invention.
  • FIG. 6 is a schematic flowchart of a method for preparing a battery pole piece according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a wireless rechargeable battery according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a battery management system according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a battery management method according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a controller according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another controller provided by an embodiment of the present invention.
  • Rechargeable batteries also known as secondary batteries, refer to batteries that can be activated by charging to activate the active material after the battery is discharged.
  • the secondary battery may be a lithium-ion battery, a nickel complex battery, a nickel-hydrogen battery, a lead-acid battery, or the like.
  • the lithium ion battery may include a liquid lithium ion battery, a polymer lithium ion battery, and the like.
  • a lithium ion wireless rechargeable battery is taken as an example to introduce the wireless rechargeable battery, the positive pole piece of the wireless rechargeable battery, the negative pole piece of the wireless rechargeable battery, and the charging and discharging control method of the wireless rechargeable battery.
  • the wireless rechargeable battery is provided with an induction coil and a controller on the rechargeable battery.
  • the primary coil ie, the coil in the wireless charging transmitter
  • the secondary coil ie, the induction coil of the wireless charging battery
  • FIG. 1 is a schematic structural diagram of a battery pole piece provided by the present invention.
  • a partial cross-sectional view of the battery pole piece shown in FIG. 2 is a portion shown by a dotted line in FIG. 1.
  • the battery pole piece may include a current collector 1, an induction coil 2, and an active paste 3.
  • the induction coil 2 is a planar coil formed by winding a first wire 22 wrapped by an insulating film 21. At least a part of the induction coil 2 is embedded in the current collector 1. The first surface of the induction coil 2 is exposed on the first of the current collector 1. Two surfaces. The first surface is a surface of the induction coil 2 that is parallel to the plane where the induction coil 2 is located.
  • the active slurry 3 can be coated on a third surface of the current collector 1 opposite to the second surface. It can be understood that the active slurry 3 can also be coated on the second surface of the current collector 1 to cover the second surface of the current collector 1 and the first surface of the induction coil 2.
  • the induction coil 2 is used to receive external electromagnetic energy, and an induced electromotive force is generated inside the induction coil 2 to charge the wireless rechargeable battery where the battery pole piece is located.
  • the induction coil 2 can also be reused as a heating element. When a current is passed to the induction coil 2, the battery pole piece is heated, and then the wireless rechargeable battery where the battery pole piece is located is heated.
  • the battery pole piece may be a positive pole piece or a negative pole piece of a rechargeable battery.
  • the battery pole piece is a positive pole piece, and the battery pole piece further includes a positive electrode slurry coated on the third surface of the current collector 1.
  • the positive electrode slurry may include a positive electrode active material and a first conductive material. Agent, first binder.
  • the battery pole piece is a negative pole piece, and the battery pole piece further includes a negative electrode slurry coated on the third surface of the current collector 1.
  • the negative electrode slurry may include a negative electrode active material and a second conductive material. Agent, second binder.
  • the third surface is a surface of the current collector 1 opposite to the second surface.
  • the material of the current collector of the positive electrode sheet may be a conventional material for a positive current collector in a rechargeable battery
  • the material of the current collector of the negative electrode sheet may be a conventional material for a negative current collector in a rechargeable battery.
  • the embodiments of the present invention are not limited.
  • the current collector 1 may be an aluminum sheet, a planar coil made of aluminum wire, and the like.
  • the current collector 1 may be a copper plate, a planar coil made of copper wire, and the like.
  • the current collector 1 may be a metal sheet, and the metal sheet includes two opposite surfaces parallel to the plane where the metal sheet is located, that is, the second surface and the third surface in the embodiment of the present invention; the current collector 1 may also be It can be understood that a planar coil formed by winding a metal wire on a plane includes two opposite surfaces parallel to a plane on which the planar coil is located, that is, the second surface and the third surface in the embodiment of the present invention.
  • the current collector 1 may have other forms, and the present invention is not limited in implementation.
  • the first wire may be a metal wire included in the insulation layer, and the metal used in the first wire may be a metal such as copper, iron, silver, aluminum, or an alloy of metals.
  • the second surface in the current collector 1 is a side facing away from the negative pole piece in the wireless rechargeable battery.
  • the wireless rechargeable battery pole piece is a negative pole piece
  • the second surface of the current collector 1 is a side facing away from the positive pole piece in the wireless rechargeable battery, so that the positive pole piece or the negative pole piece does not generate the induction coil 2 Electromagnetic shielding.
  • the induction coil 2 is disposed outside the casing of the wireless rechargeable battery, or between the casing of the wireless rechargeable battery and the pole piece.
  • the induction coil 2 is embedded in the current collector 1, and the current collector 1 does not cover the induction coil 2, and the current collector 1 does not generate electromagnetic shielding to the induction coil 2.
  • the arrangement of the induction coil 2 according to the embodiment of the present invention can greatly reduce the thickness of the wireless rechargeable battery.
  • lithium-ion batteries Due to the inherent properties of lithium-ion batteries, when used in low-temperature scenarios, due to the decline in the dynamic performance of the positive and negative electrodes, the lithium-ion batteries show a large polarization phenomenon during charging and discharging. If forced charging will cause lithium evolution, Even the puncture of the separator, which in turn caused the battery to catch fire and explode due to the short circuit between the positive and negative electrodes. In addition, it is difficult to discharge the battery with a large current at low temperatures, which affects the output power of the lithium-ion battery.
  • the induction coil 2 can also be reused as a heating element for heating the battery pole piece when current is applied to the induction coil 2, and then heating the wireless rechargeable battery where the battery pole piece is located.
  • the controller can control the wireless rechargeable battery to pass current to the induction coil 2 so that the induction coil 2 generates heat, thereby improving the charging and discharging performance of the wireless rechargeable battery in a low temperature scene.
  • the induction coil 2 may be a planar spiral coil, and the first wire 22 wrapped by the insulating film 21 is spirally wound in a plane, as shown in FIG. 1. Both ends of the induction coil 2 are led out through a lead wire for connecting an external circuit.
  • the two ends of the induction coil 2 are connected to the controller of the wireless rechargeable battery through a lead wire.
  • the induction coil 2 senses external electromagnetic energy, an induced electromotive force is generated inside the induction coil 2. Under the control of the controller, the Rechargeable wireless battery.
  • the current collector 1 may be a planar spiral coil, and is formed by spirally winding a second wire 11 on a plane.
  • the first conducting wire 22 and the second conducting wire 11 are spirally wound around the same plane.
  • the active slurry 3 is not shown in FIG. 1. It can be understood that the active slurry 3 may be coated on the second surface and / or the third surface of the current collector 1 and may cover the induction coil 2.
  • the current collector 1 is in direct electrical contact with the active paste 3 attached to it, so that the wireless rechargeable battery including the pole piece can achieve an electrochemical reaction.
  • planar spiral coil made by winding the first conductive wire 22 and the second conductive wire 11 may be circular, rectangular, triangular, trapezoidal, or other regular or irregular shapes, which are not limited in the embodiment of the present invention.
  • FIG. 1 illustrates only the case where the planar spiral coil is rectangular.
  • first wire 22 and the second wire 11 can be closely wound, that is, the distance between the first wire 22 and the second wire 11 is equal to the sum of the radius of the first wire 22 and the radius of the second wire 11; 22 and the second conducting wire 11 can also be wound at a certain interval, that is, the distance between the first conducting wire 22 and the second conducting wire 11 is greater than the sum of the radius of the first conducting wire 11 and the radius of the second conducting wire 11.
  • the present invention is implemented Examples are not limited.
  • the active slurry 3 is coated on the second surface and the third surface of the current collector 1 to fill the gap between the current collector 1 and the induction coil 2.
  • a partial cross-sectional view of the battery pole piece shown in FIG. 3 is another cross-sectional view corresponding to a portion shown by a dotted line in FIG. 1.
  • the active paste 3 may also be coated on the third surface of the current collector 1, and the active paste 3 may fill a gap between the first conductive wire 22 and the second conductive wire 11.
  • the second lead 11 When the wireless rechargeable battery is a positive pole piece, the second lead 11 may be an aluminum wire; when the wireless rechargeable battery is a negative pole piece, the second lead 11 may be a copper wire. It can be understood that the second lead wire 11 as the current collector 1 of the positive electrode sheet or the current collector 1 of the negative electrode sheet may also be other metal wires, which is not limited in the present invention.
  • the battery pole piece may further include a tab 4 that is used as a positive electrode or a negative electrode of the wireless rechargeable battery, and is a contact point for charging and discharging the wireless rechargeable battery.
  • the constituent material of the tab 4 usually includes a conductive metal.
  • the composition material of the tab 4 may be the same as that of the current collector 1, for example, aluminum; for the tabs of the negative electrode tab, the composition material of the tab 4 may be nickel, copper, or copper plating Nickel, etc.
  • FIG. 2 or FIG. 3 takes the cross section of the first conductive wire 22 and the cross section of the second conductive wire 11 as circular for illustration. It should be understood that the cross section of the first conductive wire 22 Or the cross section of the second conducting wire 11 may also be a square, a triangle, a trapezoid, or the like, which is not limited in the present invention.
  • the current collector 1 may be a metal sheet. Please refer to FIGS. 4 and 5.
  • FIG. 4 is a schematic structural diagram of another wireless rechargeable battery provided by an embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view of the battery pole piece shown in FIG. 4, which is a cross-sectional view corresponding to a portion shown by a dotted line in FIG. 4.
  • the current collector 1 includes a gap penetrating the second surface and the third surface of the current collector 1, and the induction coil 2 is embedded in the gap.
  • the third surface is a surface of the current collector 1 opposite to the second surface.
  • the active slurry 3 may be coated on the third surface of the current collector 1.
  • the induction coil may also be another planar coil, which is not limited in the embodiment of the present invention.
  • the positive electrode active material may be a lithium metal oxide, such as lithium cobalt oxide (LiCoO2), lithium nickel oxide (LiNiO2), lithium manganese oxide (LiMn2O4), etc., or a lithium salt such as iron phosphate Lithium (LiFePO4) and the like are not limited in the embodiment of the present invention.
  • a lithium metal oxide such as lithium cobalt oxide (LiCoO2), lithium nickel oxide (LiNiO2), lithium manganese oxide (LiMn2O4), etc.
  • a lithium salt such as iron phosphate Lithium (LiFePO4) and the like are not limited in the embodiment of the present invention.
  • the first conductive agent may be a conventional positive electrode conductive agent, such as one or more of graphite, carbon black, acetylene black, and the like, which are not limited in the embodiment of the present invention.
  • the negative electrode active material may use a carbon material, and the carbon material may be one or more of graphite, coke, activated carbon, and the like.
  • the second conductive agent may be a conventional negative electrode conductive agent in the art, such as one or more of carbon black, nickel powder, copper powder, and the like, which are not limited in the embodiment of the present invention.
  • the first or second adhesive may include, but is not limited to, a fluorine-containing resin, a polyolefin compound such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyethylene One or more of alcohol, hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, hydroxyethyl cellulose, and the like.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • polyethylene One or more of alcohol, hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, hydroxyethyl cellulose, and the like.
  • FIG. 6 is a schematic flowchart of a method for preparing a battery pole piece according to an embodiment of the present invention.
  • the manufacturing method includes all or part of the following steps:
  • Step S1 At least a part of an induction coil is embedded in a current collector.
  • the induction coil is a planar coil formed by winding a first wire wrapped by an insulating film. A first surface of the induction coil is exposed on a second surface of the current collector. The first surface is a surface on the induction coil that is parallel to a plane on which the induction coil is located.
  • the induction coil can be used to receive external battery energy, generate induced electromotive force, and charge the wireless rechargeable battery where the battery pole piece is located.
  • the induction coil can also be reused as a heating element, which is used to heat the poles of the wireless rechargeable battery when a current is passed into the induction coil.
  • Step S2 The active slurry is coated on a third surface of the current collector to form a battery pole piece, and the third surface is a surface of the current collector opposite to the second surface.
  • the active slurry may also be coated on the second surface of the current collector.
  • the first implementation manner of step S1 may be: spiraling and winding the first conducting wire and the second conducting wire in the same plane to form a first planar spiral coil and a second planar spiral coil, wherein the first The planar spiral coil is an induction coil, and the second planar spiral coil is a current collector. Refer to FIG. 1 for the battery pole pieces formed in this way.
  • the second implementation manner of step S1 may be: forming a gap on the current collector penetrating the second surface and the third surface, and the second surface and the third surface are two opposite sides of the current collector. Further, the induction coil is embedded in the gap, and the first surface of the induction coil is exposed on the second surface of the current collector. Refer to FIG. 4 for the battery pole pieces formed in this way.
  • step S1 may further include other implementation manners, and battery pole pieces as shown in FIG. 6 may also be formed, which is not described in the embodiment of the present invention.
  • step S2 may include the following steps:
  • Step S21 mixing the positive electrode active material, the first conductive agent, and the first binder into a solvent according to a preset ratio to form a positive electrode active slurry;
  • Step S22 The positive electrode active material is coated on the third surface of the current collector, and dried, cold pressed, and trimmed to form a positive electrode sheet.
  • a lithium ion positive electrode active material, conductive carbon powder, and polyvinylidene fluoride are mixed in a certain weight ratio, added to N-methylpyrrolidone (NMP), and stirred to obtain a positive electrode active slurry having a certain fluidity.
  • NMP N-methylpyrrolidone
  • the positive electrode active slurry is coated on a second surface and a third surface composed of a current collector and an induction coil as shown in FIG. 1.
  • the coating weight of the positive electrode active material may be 0.01-0.05 g / cm 2 , for example, 0.03 g / cm 2 , which is not limited in the present invention.
  • a positive electrode sheet to be assembled is prepared through processes such as drying, cold pressing, and precision trimming.
  • step S2 may include the following steps:
  • Step S23 mixing the negative electrode active material, the second conductive agent, and the second binder into a solvent according to a preset ratio to form a negative electrode active slurry;
  • Step S24 The negative electrode active material is coated on the third surface of the current collector, and dried, cold pressed, and trimmed to form a negative electrode sheet.
  • the negative electrode active slurry is coated on a second surface and a third surface composed of a current collector and an induction coil as shown in FIG. 1.
  • the coating weight of the negative electrode active material may be 0.01-0.05 g / cm 2 , for example, 0.03 g / cm 2 , which is not limited in the present invention.
  • the negative electrode pieces to be assembled are prepared through processes such as drying, cold pressing, and precision cutting.
  • the solvent in step S22 or step S24 may be N-methylpyrrolidone (NMP), dimethylformamide (DMF), diethylformamide (DEF), dimethylsulfoxide (DMSO), tetrahydrofuran (THF ) And the like.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DEF diethylformamide
  • DMSO dimethylsulfoxide
  • THF tetrahydrofuran
  • the structure of the induction coil, the structure of the current collector, the positional relationship between the induction coil and the current collector, the active slurry, the positive active material, the first conductive agent, the first binder, the negative active material, and the second conductive Agents, second binders, etc. can refer to the relevant descriptions in the above embodiments of the device for battery pole pieces, which are not repeated in the embodiments of the present invention.
  • the induction coil is disposed outside the casing of the wireless rechargeable battery, or between the casing of the wireless rechargeable battery and the pole piece.
  • the induction coil is embedded on at least one surface of the current collector, The induction coil is not covered, and the current collector does not generate electromagnetic shielding to the induction coil.
  • the arrangement of the induction coil in the embodiment of the present invention can greatly reduce the thickness of the wireless rechargeable battery.
  • the induction coil is multiplexed into a heating element, and the heating function of the wireless rechargeable battery is realized without increasing the heating element, and the charging and discharging performance of the wireless rechargeable battery at low temperature is improved.
  • FIG. 7 is a schematic structural diagram of a wireless rechargeable battery according to an embodiment of the present invention.
  • the wireless rechargeable battery may include a positive pole piece 71, a negative pole piece 72, and the positive pole piece 71.
  • the positive electrode piece 71 may be the battery electrode piece used as the positive electrode piece in the foregoing embodiments, and the negative electrode piece 71 may be the negative electrode piece in the prior art.
  • Embodiment 2 The negative electrode piece 72 may be the battery electrode piece used as the negative electrode piece in the foregoing embodiments, and the positive electrode piece 71 may be the positive electrode piece in the prior art.
  • the positive electrode piece 71 may be the battery electrode piece used as the positive electrode piece in each of the above embodiments
  • the negative electrode piece 72 may be the battery electrode piece used as the negative electrode piece in each of the above embodiments.
  • the battery pole piece as the positive pole piece can refer to the related description in the foregoing embodiment of the battery pole piece, which is not repeated in the embodiment of the present invention.
  • the method for preparing the wireless rechargeable battery may include: forming positive pole pieces 71 through steps S1, S21, and S22; They are laminated one after another to form a laminate.
  • the first surface 711 in which the induction coil is embedded on the positive pole piece faces away from the separator 73 and the negative pole piece 72.
  • the laminate is subjected to a packaging process and an electrolytic solution 74 is injected to form a wireless rechargeable battery.
  • processes such as transfer welding and bagging can be included.
  • the packaging process of the laminate before the packaging process of the laminate is completed, the connection wires of the upper pole of the current collector and the induction coil need to be drawn out at the same time for subsequent connection with other devices or modules in the battery management system.
  • the method for preparing the wireless rechargeable battery may include: forming the negative pole piece 72 through steps S1, S23, and S24; and forming the positive pole piece 71, the separation film 73, and the negative pole
  • the pole pieces 72 are sequentially stacked to form a laminate.
  • the first surface of the negative electrode piece 72 embedded with the induction coil faces away from the separator 73 and the positive electrode piece 71.
  • the laminate is subjected to a packaging process and an electrolytic solution 74 is injected to form a wireless rechargeable battery.
  • processes such as transfer welding and bagging can be included.
  • the packaging process of the laminate is completed, the connection wires of the upper pole of the current collector and the induction coil need to be drawn out at the same time for subsequent connection with other devices or modules in the battery management system.
  • the method for preparing the wireless rechargeable battery may include: forming a positive pole piece 71 through steps S1, S21, and S22; forming a negative pole piece 72 through steps S1, S23, and S24;
  • the positive electrode sheet 71, the separator 73, and the negative electrode sheet 72 are sequentially stacked to form a laminate.
  • the first surface of the induction coil embedded on the positive pole piece 71 faces away from the separator 73 and the negative pole piece 72; the first surface of the induction coil embedded on the negative pole piece 72 faces away from the separator 73 and the positive pole piece 71;
  • the laminate is subjected to a packaging process and an electrolytic solution 74 is injected to form a wireless rechargeable battery.
  • connection wires of the upper pole of the current collector and the induction coil need to be drawn out at the same time for subsequent connection with other devices or modules in the battery management system.
  • steps S1, S21, S22, S23, and S24 reference may be made to the related description of the method for preparing the battery pole piece in FIG. 7 described above, which is not repeated in the embodiment of the present invention.
  • the shell of the wireless rechargeable battery can be made of non-metallic materials to avoid electromagnetic shielding of the induction coil.
  • the wireless rechargeable battery 81 further includes an induction coil 811 provided in the wireless rechargeable battery 81.
  • the induction coil 811 is represented separately. The functions of each device or module are as follows:
  • the temperature sensor 82 may be provided inside the wireless rechargeable battery 81 to obtain the temperature inside the wireless rechargeable battery 81; or, the temperature sensor 82 may be provided outside the wireless rechargeable battery 81 to obtain the environment in which the wireless rechargeable battery 81 is located or wirelessly charged. The temperature of the surface of the battery 81.
  • the wireless rechargeable battery 81 may be a rechargeable battery with a built-in induction coil 811.
  • the wireless rechargeable battery 81 can be used to power external circuits and store electrical energy.
  • the induction coil 811 is configured to receive electromagnetic energy emitted from the outside and generate an induced electromotive force. It can be understood that the induced electromotive force can be used as a power source to charge the wireless rechargeable battery 81 through the rectification and voltage stabilization module 83. Optionally, the induction coil 811 is further configured to heat the wireless rechargeable battery 81 when a current is passed to the induction coil 811.
  • the wireless rechargeable battery 81 includes at least four interfaces, which are a positive electrode, a negative electrode, and two leads connected to two ends of the induction coil 811, respectively.
  • the positive electrode may be a positive electrode tab or a tab connected to the positive electrode tab.
  • the negative electrode may be a negative electrode tab or a tab connected to the negative electrode tab.
  • the positive and negative electrodes are used to charge or discharge a wireless rechargeable battery.
  • the leads at both ends of the induction coil 811 are used to connect to the rectification and voltage stabilization module 83, the positive and negative poles of the wireless charging battery 81, or a load, etc., so as to realize the function of the induction coil 812.
  • the rectifying and stabilizing module 83 is used for rectifying and stabilizing the induced electromotive force generated by the induction coil 811, and outputting the induced electromotive force after the rectification and voltage stabilization to the positive and negative electrodes of the wireless rechargeable battery 81, Charging.
  • the controller is configured to: when the charging signal is received, input the induced electromotive force generated by the induction coil 811 according to receiving electromagnetic energy emitted from the outside to the wireless rechargeable battery 81 to charge the wireless rechargeable battery 81; and In the process of discharging, if the first temperature obtained by the temperature sensor 82 is less than the first temperature threshold, the wireless rechargeable battery 81 is controlled to output a current to the inductor coil 811 to heat the wireless rechargeable battery 81.
  • controller 84 For the implementation of the specific functions of the controller 84, reference may be made to related descriptions in the following battery management method, which are not repeated in the embodiment of the present invention.
  • the following describes a battery management method according to an embodiment of the present invention. Please refer to a flowchart of the battery management method shown in FIG. 9.
  • the battery management method may be implemented by software or hardware. The method includes but is not limited to the following parts. Or all steps:
  • Step S91 In the case of receiving the charging signal, the induced electromotive force generated by the induction coil according to the electromagnetic energy received from the outside is input to the wireless charging battery to charge the wireless charging battery.
  • the induction coil is disposed inside the wireless rechargeable battery.
  • the wireless rechargeable battery can be used to power external circuits and store electrical energy.
  • the charging signal may be a voltage jump signal, a high-level signal, or other signals triggered by the induced electromotive force generated by the lead of the induction coil, which is not limited in the embodiment of the present invention.
  • Step S92 In the process of discharging the wireless rechargeable battery, when the first temperature obtained by the temperature sensor is less than the first temperature threshold, control the wireless rechargeable battery to output current to the induction coil to heat the wireless rechargeable battery.
  • the first temperature threshold may be 8 ° C, 5 ° C, 0 ° C, -10 ° C, or other temperature values, which may be determined according to the charge and discharge performance of the wireless rechargeable battery at various temperatures, which is not limited in the embodiment of the present invention.
  • the induction coil of the wireless rechargeable battery can be reused as a heating element to heat the wireless rechargeable battery to improve the charging and discharging performance of the wireless rechargeable battery at low temperature.
  • an implementation manner of step S91 may be: when the controller receives the charging signal, when the second temperature obtained by the temperature sensor is less than the second temperature threshold, the inductor is turned on, and The externally-received electromagnetic energy received by the induction coil heats the wireless rechargeable battery where the induction coil is located; further, when the third temperature obtained by the temperature sensor is not less than the second temperature threshold, the induction coil receives the electromagnetic energy emitted from the outside according to the The generated induced electromotive force is input to a wireless rechargeable battery, and the wireless rechargeable battery is charged.
  • the induction coil can be turned on, that is, the two ends of the induction coil are connected through a load (such as a resistor) to form a circuit loop, and a current is generated, and the current flows through the induction coil to cause the induction coil to generate heat.
  • a load such as a resistor
  • the circuit loop of the induction coil and the load is disconnected, and both ends of the induction coil are connected to the positive and negative electrodes of the wireless rechargeable battery through a rectification and voltage stabilization module, and the wireless rechargeable battery is Charge it.
  • the embodiments of the present invention can improve the charging performance of wireless rechargeable batteries at low temperatures.
  • the second temperature may be a temperature value obtained by the controller through the temperature sensor when the controller receives the charging signal.
  • the second temperature threshold may be 8 ° C, 5 ° C, 0 ° C, -10 ° C, or other temperature values, and may be determined according to the charge and discharge performance of the wireless rechargeable battery at each temperature, which is not limited in the embodiment of the present invention.
  • the wireless charging battery may not be heated and may be directly charged, which is not limited in the embodiment of the present invention.
  • steps S91 and S92 can be performed in any order, which is not limited in the embodiment of the present invention.
  • an implementation manner of step S91 may be: The controller may, during the process of discharging the wireless rechargeable battery, when the first temperature obtained by the temperature sensor is less than the first temperature threshold and the remaining power of the rechargeable battery is greater than When the power threshold is preset, the wireless rechargeable battery is controlled to output current to the induction coil to heat the wireless rechargeable battery.
  • the wireless rechargeable battery can be connected to the induction coil, that is, the two ends of the induction coil are connected to the positive and negative electrodes of the wireless rechargeable battery through a load (such as a resistor) to form a circuit loop, which generates a current. heat.
  • the controller may disconnect the wireless rechargeable battery and the induction coil to form a circuit loop to avoid excessive heating and save the electrical energy of the wireless rechargeable battery.
  • the embodiments of the present invention can improve the discharge performance of the wireless rechargeable battery at low temperatures, and avoid the phenomenon that the device freezes and automatically shuts down at low temperatures.
  • FIG. 10 is a schematic structural diagram of a controller provided by an embodiment of the present invention.
  • the controller 10 may include:
  • a charging unit 101 is configured to: when receiving a charging signal, input an induced electromotive force generated by an induction coil according to receiving electromagnetic energy emitted from the outside into a wireless charging battery to charge the wireless charging battery;
  • the induction coil is located inside the wireless rechargeable battery;
  • the discharging unit 102 is configured to control the wireless charging battery to output current to the inductive coil when the first temperature obtained by the temperature sensor is less than a preset temperature threshold during the wireless charging battery discharging.
  • the wireless rechargeable battery is heated.
  • the discharging unit 102 is specifically configured to: during the discharging process of the wireless charging battery, when the first temperature obtained by the temperature sensor is less than the first temperature threshold and the remaining power of the rechargeable battery is greater than a preset power At the threshold, controlling the wireless rechargeable battery to output current to the inductive coil to heat the wireless rechargeable battery.
  • the charging unit 101 is specifically configured to:
  • the inductive coil is turned on, and the externally transmitted electromagnetic energy received by the inductive coil affects the wireless where the inductive coil is located.
  • FIG. 11 is a schematic structural diagram of another controller provided by an embodiment of the present invention.
  • the controller 11 may include a processor 111 and a memory 112, and the processor 111 may be connected to the memory through the communication bus 113. 112. Temperature sensor and so on.
  • the processor 111 is the control center of the controller 11, and uses various interfaces and lines to connect the various parts of the entire controller 11 and external devices.
  • the processor 111 runs or executes the program code stored in the memory 112, and calls the stored code in the memory 112. Data to perform various functions of the controller.
  • the processor 111 may be a central processing unit (CPU), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), and a digital signal processor (Digital Signal Processor (DSP) or other programmable logic device, transistor logic device, hardware component or any combination thereof, etc., the present invention is not limited.
  • the memory 112 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • a non-volatile memory such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 111 is configured to call data stored in the memory 112 and execute program code:
  • an induced electromotive force generated by an induction coil according to receiving externally transmitted electromagnetic energy is input to a wireless rechargeable battery to charge the wireless rechargeable battery; wherein the induction coil is provided on the wireless rechargeable battery internal;
  • the wireless rechargeable battery In the process of discharging the wireless rechargeable battery, if the first temperature obtained by the temperature sensor is less than the first temperature threshold, controlling the wireless rechargeable battery to output current to the induction coil to heat the wireless rechargeable battery .
  • the processor 111 executes, when the first temperature obtained by the temperature sensor during the discharging process of the wireless rechargeable battery is less than a first temperature threshold, controlling the wireless rechargeable battery to output current to the inductor.
  • a coil for heating the wireless rechargeable battery which specifically includes performing:
  • the wireless rechargeable battery is controlled to output current to the The induction coil heats the wireless rechargeable battery.
  • the processor 111 when the processor 111 receives the charging signal, the processor 111 inputs the induced electromotive force generated by the induction coil according to receiving externally emitted electromagnetic energy to the wireless charging battery, and charges the wireless charging battery.
  • the processor 111 inputs the induced electromotive force generated by the induction coil according to receiving externally emitted electromagnetic energy to the wireless charging battery, and charges the wireless charging battery.
  • the inductive coil is turned on, and the externally transmitted electromagnetic energy received by the inductive coil affects the wireless where the inductive coil is located.
  • the embodiment of the present invention also provides a device to which the controller and the battery management system are applied.
  • the device may be a mobile phone, a tablet computer, a personal computer, a desktop computer, or other devices, and the embodiment of the present invention is not limited.
  • the processes may be completed by a computer program instructing related hardware.
  • the program may be stored in a computer-readable storage medium. It may include the processes of the method embodiments described above.
  • the foregoing storage media include: ROM or random storage memory RAM, magnetic disks, or optical discs, which can store various program code media.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明实施例公开了一种电池极片及其制备方法,无线充电池,电池管理方法、系统及控制器。该电池极片包括:集流体和感应线圈,其中,感应线圈为被绝缘膜包裹的第一导线绕制形成的平面线圈,该感应线圈的至少一部分嵌入所述集流体中,感应线圈的第一表面裸露于集流体的第二表面,该第一表面为感应线圈上与该感应线圈所在平面平行的表面。本发明实施例将感应线圈设置于电池极片内部,该感应线圈既可以实现无线充电,又可以实现对电池极片所在无线充电电池进行加热,且大大减小无线充电电池的厚度。

Description

电池极片及其制备方法、电池管理方法及相关装置
本申请要求于2018年05月22日提交中国国家知识产权局、申请号为201810498321.7、申请名称为“电池极片及其制备方法、电池管理方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及二次电池技术领域,尤其涉及一种电池极片及其制备方法,无线充电池,电池管理方法、系统及控制器。
背景技术
无线充电电池,是一种采用了无线充电技术例如电磁感应式充电技术的充电电池。电磁感应充电技术的原理:在发送端和接收端各有一个线圈,发送端线圈连接有线电源,并通过电磁现象产生电磁能量,接收端线圈感应发送端产生的电磁能量,并通过电磁感应磁生电产生的电流给充电电池充电。
充电电池,例如锂离子电池,由于锂离子电池的固有属性,在低温场景下使用时,由于正负极动力学性能下降,锂离子电池在充放电时均表现出较大的极化现象,如果强制充电会导致析锂现象,甚至隔离膜的刺穿,进而导致正负极短路引发电池起火、爆炸等。另外,低温下电池也很难以较大的电流放电,影响锂离子电池的输出功率。
现有技术中,感应磁场能量的线圈通常设置在无线充电电池的外壳外部或者设置在无线充电电池外壳与极片之间,充电电池中的加热件设置在充电电池的正极和负极之间,大大增加了无线充电电池的厚度。
发明内容
本发明实施例所要解决的技术问题在于,提供一种电池极片及其制备方法,无线充电池,电池管理方法、系统及控制器,通过将感应线圈设置于电池极片内部,使得该感应线圈既可以实现无线充电,又可以实现对电池极片所在无线充电电池进行加热,且大大减小无线充电电池的厚度。
第一方面,本发明实施例提供了一种电池极片,包括:集流体和感应线圈,其中,感应线圈为被绝缘膜包裹的第一导线绕制形成的平面线圈,感应线圈的至少一部分嵌入集流体中,感应线圈的第一表面裸露于集流体的第二表面,第一表面为所述感应线圈上与该感应线圈所在平面平行的表面。
相对于现有技术,本发明实施例将通过将感应线圈设置于电池极片内部,并将感应线圈的实现无线充电的第一表面裸露于集流体的表面,使得该感应线圈既可以实现无线充电,又可以实现对电池极片所在无线充电电池进行加热,且大大减小无线充电电池的厚度。
结合第一方面,在第一方面的第一种实现中,感应线圈用于接收外部电磁能量,产生 感生电动势,对所述电池极片所在的无线充电电池进行充电。
结合第一方面,在第一方面的第二种实现中,感应线圈还用于:在向感应线圈通入电流时,对无线充电电池极片进行加热。
结合第一方面,第一方面的第一、二种实现中,在第一方面的第三种实现中,感应线圈为平面螺旋线圈,以增加感应线圈接收功率,并且实现电池极片的均匀加热。
结合第一方面的第三种实现中,在第一方面的第四种实现中,集流体由第二导线在平面上螺旋绕制形成的平面螺旋线圈,第一导线和第二导线在同一平面内并绕。
结合第一方面,第一方面的第一至三种实现中,在第一方面的第五种实现中,集流体包括贯穿第二表面和第三表面的空隙,感应线圈嵌入在所述空隙内,第三表面为所述集流体上与第二表面相对的表面。
结合第一方面,第一方面的第一至五种实现中,在第一方面的第五种实现中,电池极片为正极极片,电池极片还包括涂布在所述集流体的第三表面上的正极活性物质、第一导电剂、第一粘结剂;或,电池极片为负极极片,电池极片还包括涂布在所述集流体的第三表面上的负极活性物质、第二导电剂、第二粘结剂;
其中,第三表面为所述集流体上与第二表面相对的表面。
第二方面,本发明实施例还提供了一种电池极片的制备方法,包括:
将感应线圈的至少一部分嵌入在集流体中,所述感应线圈为被绝缘膜包裹的第一导线绕制形成的平面线圈,所述感应线圈的第一表面裸露于所述集流体的第二表面,所述第一表面为所述感应线圈上与所述感应线圈所在平面平行的表面;
在所述集流体的第三表面上涂布活性浆料,以形成电池极片,所述第三表面为所述集流体上与所述第一表面相对的表面。
相对于现有技术,本发明实施例制备的电池极片将通过将感应线圈设置于电池极片内部,并将感应线圈的实现无线充电的第一表面裸露于集流体的表面,使得该感应线圈既可以实现无线充电,又可以实现对电池极片所在无线充电电池进行加热,且大大减小无线充电电池的厚度。
结合第二方面,在第二方面的第一种实现中,将感应线圈的至少一部分嵌入在集流体中的一种实施方式可以是:将第一导线和第二导线在同一平面内螺旋并绕形成第一平面螺旋线圈和第二平面螺旋线圈,其中,所述第一平面螺旋线圈为感应线圈,所述第二平面螺旋线圈为集流体。
结合第二方面,在第二方面的第一种实现中,将感应线圈的至少一部分嵌入在集流体中的另一种实施方式可以是:在集流体上形成贯穿第二表面和第三表面的空隙,所述第二表面和所述第三表面为所述集流体上相对的两个表面;
将感应线圈嵌入在所述空隙内,以使所述感应线圈的第一表面裸露于所述集流体的所述第二表面。
第三方面,本发明实施例还提供了一种无线充电电池,包括正极极片、负极极片,以及设置于所述正极极片和所述负极极片之间的隔离膜、电解液;其中,所述正极极片或负 极极片为上述第一方面以及第一方面的第一至五种实现中所述的任意一种电池极片。
第四方面,本发明实施例还提供了一种电池管理方法,包括:
控制器在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对无线充电电池进行充电,其中,该感应线圈设于无线充电电池内部;以及,在无线充电电池放电的过程中,通过温度传感器获取的第一温度小于第一温度阈值的情况下,控制无线充电电池输出电流到电感线圈,对无线充电电池进行加热。
相对于现有技术,本发明实施例中无线充电电池的感应线圈可以复用为加热件,既可以实现无线充电,又可以实现对无线充电电池加热,提高无线充电电池在低温下的充放电性能。
结合第四方面,在第四方面的第一种实现中,控制器在所述无线充电电池放电的过程中,通过温度传感器获取的第一温度小于第一温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热的一种实施方式可以是:在所述无线充电电池放电的过程中,当通过温度传感器获取到第一温度小于第一温度阈值且所述充电电池的剩余电量大于预设电量阈值时,控制器可以控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
本发明实施例中,在当前获取的第一温度小于第一温度阈值时,无线充电电池的放电性能差,无线充电电池难以实现放电,可能导致设备死机、或自动关机等现象。此时,无线充电电池可以连接到感应线圈,即感应线圈的两端通过一负载(比如电阻)连接到无线充电电池的正负极,构成电路回路,产生电流,电流流经感应线圈使得感应线圈发热。
结合第四方面,在第四方面的第二种实现中,控制器在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对所述无线充电电池进行充电的一种实施方式可以是:在接收到充电信号的情况下,当通过温度传感器获取到第二温度小于第二温度阈值时,控制器可以导通电感线圈,通过所述感应线圈接收的外部发射的电磁能量对所述感应线圈所在的无线充电电池进行加热;进而,当通过所述温度传感器获取到的第三温度不小于所述第二温度阈值时,将所述感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
本发明实施例中,在当前获取的第二温度小于第二温度阈值时,无线充电电池的充电性能差,无线充电电池难以实现充电。此时,可以导通感应线圈,即感应线圈的两端通过一负载(比如电阻)连接,构成电路回路,产生电流,电流流经感应线圈使得感应线圈发热。在当前获取的第三温度不小于第二温度阈值时,断开感应线圈与负载的电路回路,将感应线圈的两端通过整流稳压模块连接到无线充电电池的正负极,对无线充电电池进行充电。本发明实施例可以提高低温下无线充电电池充电性能。
结合第四方面或第四方面的第一、二种实现,在第四方面的第三种实现中,无线充电电池包括正极极片、负极极片,以及设置于所述正极极片和所述负极极片之间的隔离膜、电解液;其中,所述正极极片或负极极片为上述第一方面以及第一方面的第一至五种实现 中所述的任意一种电池极片。
第五方面,本发明实施例还提供了一种控制器,其特征在于,包括:
充电单元,用于:在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对所述无线充电电池进行充电;其中,所述感应线圈设于无线充电电池内部;
放电单元,用于:在所述无线充电电池放电的过程中,通过温度传感器获取的第一温度小于预设温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
结合第五方面,在第五方面的第一种实现中,所述放电单元具体用于:
在所述无线充电电池放电的过程中,当通过温度传感器获取到第一温度小于第一温度阈值且所述充电电池的剩余电量大于预设电量阈值时,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
结合第五方面,在第五方面的第二种实现中,所述充电单元具体用于:
在接收到充电信号的情况下,当通过温度传感器获取到第二温度小于第二温度阈值时,导通电感线圈,通过所述感应线圈接收的外部发射的电磁能量对所述感应线圈所在的无线充电电池进行加热;
当通过所述温度传感器获取到的第三温度不小于所述第二温度阈值时,将所述感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
结合第五方面或第五方面的第一、二种实现,在第五方面的第三种实现中,所述无线充电电池包括正极极片、负极极片,以及设置于所述正极极片和所述负极极片之间的隔离膜、电解液;其中,所述正极极片或负极极片为上述第一方面以及第一方面的第一至五种实现中所述的任意一种电池极片。
第六方面,本发明实施例还提供了一种控制器,包括处理器、存储器,所述处理器耦合所述存储器,调用所述存储器存储的数据和指令,执行如第四方面所述的任意一种电池管理方法。
第七方面,本发明实施例还提供了一种电池管理系统,包括:无线充电电池、温度传感器器以及控制,所述无线充电电池包括设置于所述无线充电电池内部的感应线圈;其中,
所述感应线圈用于接收外部发射的电磁能量,生成感生电动势;
无线充电电池用于对外电路进行供电以及存储电能;
所述控制器用于:在接收到充电信号的情况下,将所述感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电;以及,在所述无线充电电池放电的过程中,通过所述温度传感器获取的第一温度小于第一温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
结合第七方面,在第七方面的第一种实现中,所述电池管理系统还包括整流稳压模块,所述整流稳压模块连接所述感应线圈,用于对所述感生电动势进行整流和/或稳压处理,以及将处理后的感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
结合第八方面,在第八方面的第二种实现中,所述控制器用于在所述无线充电电池放电的过程中,所述第一温度小于第一温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热,具体用于:
在所述无线充电电池放电的过程中,当所述第一温度小于第一温度阈值且所述充电电池的剩余电量大于预设电量阈值时,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
结合第八方面,在第八方面的第三种实现中,所述控制器用于在接收到充电信号的情况下,将所述感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电,具体用于:
在接收到充电信号的情况下,当通过所述温度传感器获取到第二温度小于第二温度阈值时,导通所述电感线圈,通过所述感应线圈接收的外部发射的电磁能量对所述无线充电电池进行加热;
当通过所述温度传感器获取到的第三温度不小于所述第二温度阈值时,将所述感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
结合第八方面或第八方面的第一至三种实现,在第八方面的第四种实现中,所述无线充电电池包括正极极片、负极极片,以及设置于所述正极极片和所述负极极片之间的隔离膜、电解液;其中,所述正极极片或负极极片为上述第一方面以及第一方面的第一至五种实现中所述的任意一种电池极片。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施了提供的一种电池极片的示意性结构图;
图2是本发明实施了提供的一种电池极片的部分截面图;
图3是本发明实施了提供的另一种电池极片的部分截面图;
图4是本发明实施例提供的另一种无线充电电池的示意性结构图;
图5是本发明实施了提供的又一种电池极片的部分截面图;
图6是本发明实施例提供的一种电池极片的制备方法的流程示意图;
图7是本发明实施例提供的一种无线充电电池的示意性结构图;
图8是本发明实施例提供的一种电池管理系统的架构示意图;
图9是本发明实施例提供的一种电池管理方法的流程示意图;
图10是本发明实施例提供的一种控制器的结构示意图;
图11是本发明实施例提供的另一种控制器的结构示意图。
具体实施方式
下面对本发明各个实施例涉及的相关概念进行简要介绍。
充电电池,又称二次电池,是指在电池放电后可通过充电的方式使活性物质激活而继续使用的电池。二次电池可以是锂离子电池、镍络电池、镍氢电池、铅酸电池等。其中,锂离子电池可以包括液态锂离子电池、聚合物锂离子电池等。本发明实施例以锂离子无线充电电池为例介绍本发明涉及的无线充电电池、无线充电电池的正极极片、无线充电电池的负极极片,无线充电电池的充放电控制方法等。
无线充电电池,在充电电池上设置有感应线圈以及控制器。当给初级线圈(即无线充电发射器内的线圈)一定频率的交流电,通过电磁感应在次级线圈(即无线充电电池的感应线圈)产生一定的电流,进而对充电电池进行充电。
下面结合本发明实施例中的附图对本发明实施例进行描述。
请一并参阅图1、图2,图1是本发明实施了提供的一种电池极片的示意性结构图,图2所示电池极片的部分截面图是图1中虚线所示部分的电池极片的截面图。电池极片可以包括:集流体1、感应线圈2以及活性浆料3。
其中,感应线圈2为被绝缘膜21包裹的第一导线22绕制形成的平面线圈,感应线圈2的至少一部分嵌入在集流体1中;感应线圈2的第一表面裸露于集流体1的第二表面,第一表面为感应线圈2上与感应线圈2所在平面平行的表面。
其中,活性浆料3可以涂布该集流体1上与第二表面相对的第三表面。可以理解,活性浆料3还可以涂布该集流体1的第二表面上,覆盖集流体1的第二表面和感应线圈2的第一表面。
可以理解,该感应线圈2用于接收外部电磁能量,在所述感应线圈2内部产生感应电动势,对该电池极片所在的无线充电电池进行充电。
感应线圈2还可以复用为加热件,在向感应线圈2通入电流时,对电池极片进行加热,进而对该电池极片所在的无线充电电池进行加热。
可以理解,电池极片可以是充电电池的正极极片或负极极片。
本发明一实施例中,电池极片为正极极片,该电池极片还包括涂布在集流体1的第三表面上的正极浆料,该正极浆料可以包括正极活性物质、第一导电剂、第一粘结剂。
本发明另一实施例中,电池极片为负极极片,电池极片还包括涂布在集流体1的第三表面上的负极浆料,该负极浆料可以包括负极活性物质、第二导电剂、第二粘结剂。
其中,第三表面为集流体1上与第二表面相对的表面。
需要说明的是,正极极片的集流体的材质可以是充电电池中常规的用于正极集流体的材料,负极极片的集流体的材质可以是充电电池中常规的用于负极集流体的材料,本发明实施例不作限定。
例如,对于锂离子电池的正极极片来说,该集流体1可以是铝片、铝导线绕制成的平面线圈等。
对于锂离子电池的负极极片来说,该集流体1可以是铜片、铜导线绕制成的平面线圈等
本发明实施例中,集流体1可以是金属片,金属片包括平行于金属片所在平面的两个 相对的表面,即本发明实施例中第二表面和第三表面;集流体1也可以是由金属线在平面上绕制形成的平面线圈,可以理解,该平面线圈包括平行于该平面线圈所在平面的两个相对的表面,即本发明实施例中第二表面和第三表面。集流体1还可以是其他的形态,本发明实施了不做限定。
可选地,第一导线可以是绝缘层包括的金属线,该第一导线采用的金属可以是铜、铁、银、铝等金属或金属的合金。
需要说明的是,对于无线充电电池来说,当该无线充电电池极片为正极极片时,集流体1中第二表面为背离无线充电电池中负极极片的一面。同理,当该无线充电电池极片为负极极片时,集流体1的第二表面为背离无线充电电池中正极极片的一面,以实现正极极片或负极极片对感应线圈2不产生电磁屏蔽。
相对于现有技术中,将感应线圈2设置在无线充电电池的外壳外部,或者设置在无线充电电池外壳与极片之间,本发明实施例将感应线圈2嵌入在集流体1中,集流体1并不覆盖感应线圈2,集流体1对感应线圈2不产生电磁屏蔽,本发明实施例所述的感应线圈2设置方式可以大大减小无线充电电池的厚度。
由于锂离子电池的固有属性,在低温场景下使用时,由于正负极动力学性能下降,锂离子电池在充放电时均表现出较大的极化现象,如果强制充电会导致析锂现象,甚至隔离膜的刺穿,进而导致正负极短路引发电池起火、爆炸等。另外,低温下电池也很难以较大的电流放电,影响锂离子电池的输出功率。
基于上述技术问题,感应线圈2还可以复用为加热件,用于:在向感应线圈2通入电流时,对该电池极片进行加热,进而对该电池极片所在的无线充电电池进行加热。可以理解,控制器可以控制无线充电电池可以向感应线圈2通入电流,使得感应线圈2发热,进而提高无线充电电池在低温场景下的充放电性能。
本发明一实施例中,如图2所示,感应线圈2可以是平面螺旋线圈,由被绝缘膜21包裹的第一导线22在平面内螺旋环绕形成,如图1所示。感应线圈2的两端通过引线引出,用于连接外电路。例如,感应线圈2的两端通过引线连接到无线充电电池的控制器,当感应线圈2感应到外部电磁能量,感应线圈2内部产生感应电动势,在控制器的控制下,对该极片所在的无线充电电池进行充电。
如图1所示,集流体1为也可以是平面螺旋线圈,由第二导线11在平面上螺旋绕制形成。第一导线22和第二导线11在同一平面内螺旋并绕。为便于清楚的看到集流体1和感应线圈2的位置关系,图1中未示出活性浆料3。可以理解,活性浆料3可以涂布在集流体1的第二表面和/或第三表面上,可以以覆盖感应线圈2。集流体1直接和附着在其上的活性浆料3电接触,使得包括该极片的无线充电电池可实现电化学反应。
可以理解,第一导线22和第二导线11绕制成的平面螺旋线圈可以呈圆形、长方形、三角形、梯形或其他规则或不规则形状,本发明实施例不作限定。图1仅以平面螺旋线圈呈长方形为例来说明。
可以理解,第一导线22和第二导线11可以密绕,即第一导线22和第二导线11之间的距离等于第一导线22的半径与第二导线11的半径之和;第一导线22和第二导线11也可以保持一定的间隔进行绕制,即第一导线22和第二导线11之间的距离大于第一导线11 的半径与第二导线11的半径之和,本发明实施例不做限定。图2所示的电池极片的部分截面图中,活性浆料3涂布在集流体1的第二表面和第三表面,填充集流体1与感应线圈2之间的间隙。
可选地,如图3所示的电池极片的部分截面图,该截面图为另一种对应于图1中虚线所示部分的截面图。活性浆料3也可以涂布在集流体1的第三表面,活性浆料3可以填充第一导线22和第二导线11之间的空隙。
当无线充电电池为正极极片时,第二导线11可以是铝线;当无线充电电池为负极极片时,第二导线11可以是铜线。可以理解,作为正极极片的集流体1或负极极片的集流体1的第二导线11还可以是其他金属线,本发明不作限定。
电池极片还可以包括极耳4,用于作为无线充电电池的正极或负极,为无线充电电池进行充放电的接触点。极耳4的组成材料通常包括导电的金属。其中,对于正极极片的极耳,极耳4的组成材料可以与集流体1相同,例如为铝;对于负极极片的极耳,极耳4的组成材料可以是镍、铜、或铜镀镍等。
需要说明的是,图2或图3所示的实施例以第一导线22的横截面、第二导线11的横截面都为圆形为例来说明,应理解,第一导线22的横截面或第二导线11的横截面还可以是方形、三角形、梯形等,本发明不做限定。
本发明一实施例中,集流体1可以是金属片,请参阅图4和图5,图4是本发明实施例提供的另一种无线充电电池的示意性结构图。图5是图4所示电池极片的部分截面图,该截面图为对应于图4中虚线所示部分的截面图。集流体1包括贯穿该集流体1的第二表面和第三表面的空隙,感应线圈2嵌入在该空隙内。第三表面为集流体1上与第二表面相对的表面。其中,如图5所示,活性浆料3可以涂布在集流体1的第三表面。
可以理解,感应线圈还可以是其他平面线圈,本发明实施例不作限定。
可以理解,对于锂离子电池,正极活性物质可以是锂金属氧化物,如锂钴氧(LiCoO2)、锂镍氧(LiNiO2)、锂锰氧(LiMn2O4)等,也可以是锂盐,如磷酸铁锂(LiFePO4)等,本发明实施例不做限定。
第一导电剂可以为本领域常规的正极导电剂,例如石墨、炭黑、乙炔黑等中的一种或多种,本发明实施例不作限定。
负极活性物质可以使用碳材料,该碳材料可以是石墨、焦炭、活性炭等中的一种或几种。
第二导电剂可以为本领域常规的负极导电剂,比如炭黑、镍粉、铜粉等中的一种或多种,本发明实施例不作限定。
第一粘合剂或第二粘合剂可以包括但不限于含氟树脂、聚烯烃化合物如聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、丁苯橡胶(SBR)、聚乙烯醇、羟丙基甲基纤维素、羧甲基纤维素钠、羟乙基纤维素等中的一种或几种。
请参阅图6,图6是本发明实施例提供的一种电池极片的制备方法的流程示意图,该制备方法包括以下全部或部分步骤:
步骤S1:将感应线圈的至少一部分嵌入在集流体中,该感应线圈为被绝缘膜包裹的第 一导线绕制形成的平面线圈,感应线圈的第一表面裸露于集流体的第二表面,该第一表面为感应线圈上与感应线圈所在平面平行的表面。
可以理解,该感应线圈可以用于接收外部电池能量,产生感生电动势,对所述电池极片所在的无线充电电池进行充电。
该感应线圈还可以复用为加热件,用于在向感应线圈通入电流时,对无线充电电池极片进行加热。
步骤S2:在集流体的第三表面上涂布活性浆料,以形成电池极片,第三表面为集流体上与第二表面相对的表面。
可选地,当感应线圈贯穿集流体的第二表面和第三表面时,活性浆料还可以涂布在集流体的第二表面。
本发明一实施例中,步骤S1的第一种实现方式可以是:将第一导线和第二导线在同一平面内螺旋并绕形成第一平面螺旋线圈和第二平面螺旋线圈,其中,第一平面螺旋线圈为感应线圈,第二平面螺旋线圈为集流体。通过该方式形成的电池极片的可以参阅图1。
本发明一实施例中,步骤S1的第二种实现方式可以是:在集流体上形成贯穿第二表面和第三表面的空隙,第二表面和第三表面为所述集流体上相对的两个表面;进而,将感应线圈嵌入在该空隙内,并使得感应线圈的第一表面裸露于集流体的所述第二表面。通过该方式形成的电池极片的可以参阅图4。
需要说明的是,步骤S1的还可以包括其他的实现方式,还可以形成如图6所示的电池极片等,本发明实施例不再赘述。
当电池极片为正极极片时,活性浆料为正极活性浆料,该正极活性浆料可以包括正极活性物质、第一导电剂、第一粘结剂。步骤S2的一种实施方式可以包括如下步骤:
步骤S21:将正极活性物质、第一导电剂、第一粘结剂按照预设比例混合加入到溶剂中形成正极活性浆料;
步骤S22:将正极活性物质涂布在集流体的第三表面,经烘干、冷压、精切边工艺,形成正极极片。
例如,锂离子正极活性物质、导电碳粉、聚偏氟乙烯按照一定的重量比混合,加入到N-甲基吡咯烷酮(NMP)中,搅拌均匀得到具有一定流动性的正极活性浆料。将该正极活性浆料涂布在如图1所示集流体和感应线圈共同组成的第二表面和第三表面上。可选地,正极活性物质的涂布重量可以是0.01-0.05g/cm 2,例如,0.03g/cm 2,本发明不作限定。进而,经过烘干、冷压、精切边等工艺制备成待组装的正极极片。
当电池极片为正极极片时,活性浆料为负极活性浆料,该负极活性浆料可以包括负极活性物质、第二导电剂、第二粘结剂。步骤S2的一种实施方式可以包括如下步骤:
步骤S23:将负极活性物质、第二导电剂、第二粘结剂按照预设比例混合加入到溶剂中形成负极活性浆料;
步骤S24:将负极活性物质涂布在集流体的第三表面,经烘干、冷压、精切边工艺,形成负极极片。
例如,石墨、导电碳粉、聚偏氟乙烯按照重量比97.5:1:0.5混合,加入到N-甲基吡咯烷酮(NMP)中,搅拌均匀得到具有一定流动性的负极活性浆料。将该负极活性浆料涂布 在如图1所示集流体和感应线圈共同组成的第二表面和第三表面上。可选地,负极活性物质的涂布重量可以是0.01-0.05g/cm 2,例如,0.03g/cm 2,本发明不作限定。进而,经过烘干、冷压、精切边等工艺制备成待组装的负极极片。
其中,步骤S22或步骤S24中溶剂可以是N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、二乙基甲酰胺(DEF)、二甲基亚砜(DMSO)、四氢呋喃(THF)等中的一种或多种的组合。烘干的目的是去除活性浆料中的溶剂。
需要说明的是,感应线圈的结构、集流体的结构、感应线圈和集流体的位置关系、活性浆料、正极活性物质、第一导电剂、第一粘结剂、负极活性物质、第二导电剂、第二粘结剂等可以参见上述关于电池极片的装置实施例中相关描述,本发明实施例不再赘述。
相对于现有技术,将感应线圈设置在无线充电电池的外壳外部,或者设置在无线充电电池外壳与极片之间,本发明实施例将感应线圈嵌入在集流体的至少一个表面,集流体并不覆盖感应线圈,集流体对感应线圈不产生电磁屏蔽,本发明实施例的感应线圈设置方式可以大大减小无线充电电池的厚度。
而且,将感应线圈复用为加热件,在不增加加热件的前提下,实现了无线充电电池的加热功能,提高了无线充电电池的在低温下的充放电性能。
请参阅图7,图7是本发明实施例提供的一种无线充电电池的示意性结构图,该无线充电电池可以包括正极极片71、负极极片72,以及设置于所述正极极片71和所述负极极片72之间的隔离膜73、电解液74。
实施例一:正极极片71可以是上述各个实施例中作为正极极片的电池极片,负极极片71可以是现有技术中的负极极片。
实施例二:负极极片72可以是上述各个实施例中作为负极极片的电池极片,正极极片71可以是现有技术中的正极极片。
实施例三:正极极片71可以是上述各个实施例中作为正极极片的电池极片,负极极片72可以是上述各个实施例中作为负极极片的电池极片。
关于作为正极极片的电池极片,作为负极极片的电池极片可以参见上述电池极片实施例中的相关描述,本发明实施例不再赘述。
对于实施例一所述的无线充电电池来说,该无线充电电池的制备方法可以包括:通过步骤S1、S21、S22形成正极极片71;将正极极片71、隔离膜73、负极极片72依次层叠,形成层叠件。其中,该层叠件中,正极极片上嵌入感应线圈的第一表面711背对隔离膜73和负极极片72。将层叠件经过封装工艺、注入电解液74,形成无线充电电池。其中,封装工艺之前,可以包括转接焊、入袋等工艺。其中,在层叠件封装工艺完成之前,需要将集流体上极耳和感应线圈的连接线同时引出,以便后续与电池管理系统中的其他器件或模块进行连接。
同理,对于实施例二所述的无线充电电池来说,该无线充电电池的制备方法可以包括:通过步骤S1、S23、S24形成负极极片72;将正极极片71、隔离膜73、负极极片72依次层叠,形成层叠件。其中,层叠件中,负极极片72上嵌入感应线圈的第一表面背对隔离膜73和正极极片71。将层叠件经过封装工艺、注入电解液74,形成无线充电电池。其中, 封装工艺之前,可以包括转接焊、入袋等工艺。其中,在层叠件封装工艺完成之前,需要将集流体上极耳和感应线圈的连接线同时引出,以便后续与电池管理系统中的其他器件或模块进行连接。
对于实施例三所述的无线充电电池来说,该无线充电电池的制备方法可以包括:通过步骤S1、S21、S22形成正极极片71;通过步骤S1、S23、S24形成负极极片72;将正极极片71、隔离膜73、负极极片72依次层叠,形成层叠件。其中,层叠件中,正极极片71上嵌入感应线圈的第一表面背对隔离膜73和负极极片72;负极极片72上嵌入感应线圈的第一表面背对隔离膜73和正极极片71;将层叠件经过封装工艺、注入电解液74,形成无线充电电池。其中,封装工艺之前,可以包括转接焊、入袋等工艺。其中,在层叠件封装工艺完成之前,需要将集流体上极耳和感应线圈的连接线同时引出,以便后续与电池管理系统中的其他器件或模块进行连接。
需要说明的是,步骤S1、S21、S22、S23、S24的具体实现方式可以参见上述图7中电池极片的制备方法相关描述,本发明实施例不再赘述。
还需要说明的是,无线充电电池的外壳可以由非金属材料,以避免对感应线圈产生电磁屏蔽。
下面介绍本发明实施例涉及的电池管理系统,请参阅图8所示的电池管理系统的架构示意图,该电池管理系统可以包括无线充电电池81、温度传感器82、整流稳压模块83、控制器84等。其中,无线充电电池81还包括设置于该无线充电电池81内的感应线圈811。为更好的说明上述各个器件或模块的连接关系,将感应线圈811单独表示。各个器件或模块的功能如下:
温度传感器82可以设置于无线充电电池81内部,用于获取无线充电电池81内的温度;或,温度传感器82设置于无线充电电池81的外部,用于获取无线充电电池81所处环境或无线充电电池81表面的温度。
无线充电电池81可以是内置感应线圈811的充电电池。该无线充电电池81的结构可以参见上述图7描述的无线充电电池中相关描述,本发明实施例不再赘述。该无线充电电池81可用于对外电路进行供电以及存储电能。
感应线圈811,用于接收外部发射的电磁能量,产生感生电动势。可以理解,该感生电动势经过整流稳压模块83可以作为电源向无线充电电池81充电。可选地,该感应线圈811还用于在向感应线圈811通入电流时,对无线充电电池81进行加热。
可以理解,无线充电电池81至少包括四个接口,分别为正极、负极、感应线圈811的两端分别连接的两个引线,其中,正极可以是正极极片或连接该正极极片的极耳,负极可以是负极极片或连接该负极极片的极耳。正极和负极用于实现无线充电电池的充电或放电。感应线圈811两端的引线用于连接到整流稳压模块83、无线充电电池81的正负极或负载等,以实现感应线圈812的功能。
整流稳压模块83,用于对感应线圈811产生的感生电动势进行整流和稳压,并将整流稳压后的感生电动势输出到无线充电电池81的正负极,对无线充电电池81进行充电。
控制器用于:在接收到充电信号的情况下,将感应线圈811根据接收外部发射的电磁 能量生成的感生电动势输入到无线充电电池81,对无线充电电池81进行充电;以及,在无线充电电池放电的过程中,通过温度传感器82获取的第一温度小于第一温度阈值的情况下,控制无线充电电池81输出电流到电感线圈811,对无线充电电池81进行加热。
控制器84具体功能的实现可以参见下述电池管理方法中相关描述,本发明实施例不再赘述。
下面介绍本发明实施例涉及的一种电池管理方法,请参阅图9所示的电池管理方法的流程示意图,该电池管理方法可以通过软件或硬件的方法来实现,该方法包括但不限于以下部分或全部步骤:
步骤S91:在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对无线充电电池进行充电。
其中,感应线圈设于无线充电电池内部。该无线充电电池的结构可以参见上述图8描述的无线充电电池中相关描述,本发明实施例不再赘述。该无线充电电池可用于对外电路进行供电以及存储电能。
可以理解,当感应线圈感应到外部的电磁能量后,生成感生电动势。充电信号可以是该感应线圈的引线产生的电压跳变信号、高电平信号或其他由该感生电动势触发的信号,本发明实施例不作限定。
步骤S92:在无线充电电池放电的过程中,通过温度传感器获取的第一温度小于第一温度阈值的情况下,控制无线充电电池输出电流到电感线圈,对无线充电电池进行加热。
可选地,第一温度阈值可以是8℃、5℃、0℃、-10℃或其他温度值,可根据无线充电电池在各个温度下的充放电性能决定,本发明实施例不作限定。
可以理解,本发明实施例中,无线充电电池的感应线圈既可以复用为加热件,对无线充电电池进行加热,提高无线充电电池在低温下的充放电性能。
本发明一实施例中,步骤S91的一种实现方式可以是:控制器在接收到充电信号的情况下,当通过温度传感器获取到第二温度小于第二温度阈值时,导通电感线圈,通过感应线圈接收的外部发射的电磁能量对感应线圈所在的无线充电电池进行加热;进而,当通过温度传感器获取到的第三温度不小于第二温度阈值时,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对无线充电电池进行充电。
可见,在当前获取的第二温度小于第二温度阈值时,无线充电电池的充电性能差,无线充电电池难以实现充电。此时,可以导通感应线圈,即感应线圈的两端通过一负载(比如电阻)连接,构成电路回路,产生电流,电流流经感应线圈使得感应线圈发热。在当前获取的第三温度不小于第二温度阈值时,断开感应线圈与负载的电路回路,将感应线圈的两端通过整流稳压模块连接到无线充电电池的正负极,对无线充电电池进行充电。本发明实施例可以提高低温下无线充电电池充电性能。
可以理解,第二温度可以是控制器在接收到充电信号时,通过温度传感器获取到的温度值。第二温度阈值可以是8℃、5℃、0℃、-10℃或其他温度值,可根据无线充电电池在各个温度下的充放电性能决定,本发明实施例不作限定。
需要说明的是,感应线圈接收的外部发射的电磁能量后,也可以不进行无线充电电池 的加热过程,直接充电,本发明实施例不作限定。
还需要说明的是,步骤S91和步骤S92可以以任意次序执行,本发明实施例不作限定。
本发明一实施例中,步骤S91的一种实现方式可以是:控制器可以在无线充电电池放电的过程中,当通过温度传感器获取到第一温度小于第一温度阈值且充电电池的剩余电量大于预设电量阈值时,控制无线充电电池输出电流到电感线圈,对无线充电电池进行加热。
可见,在当前获取的第一温度小于第一温度阈值时,无线充电电池的放电性能差,无线充电电池难以实现放电,可能导致设备死机、或自动关机等现象。此时,无线充电电池可以连接到感应线圈,即感应线圈的两端通过一负载(比如电阻)连接到无线充电电池的正负极,构成电路回路,产生电流,电流流经感应线圈使得感应线圈发热。
可选地,在当前获取的温度不小于第一温度阈值时,控制器可以断开无线充电电池与感应线圈形成电路回路,以避免过度发热、节约无线充电电池的电能。本发明实施例可以提高低温下无线充电电池放电性能,避免设备低温下死机、自动关机等现象。
请参阅图10,图10是本发明实施例提供的一种控制器的结构示意图,该控制器10可以包括:
充电单元101,用于:在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对所述无线充电电池进行充电;其中,所述感应线圈设于无线充电电池内部;
放电单元102,用于:在所述无线充电电池放电的过程中,通过温度传感器获取的第一温度小于预设温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
可选地,所述放电单元102具体用于:在所述无线充电电池放电的过程中,当通过温度传感器获取到第一温度小于第一温度阈值且所述充电电池的剩余电量大于预设电量阈值时,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
可选地,所述充电单元101具体用于:
在接收到充电信号的情况下,当通过温度传感器获取到第二温度小于第二温度阈值时,导通电感线圈,通过所述感应线圈接收的外部发射的电磁能量对所述感应线圈所在的无线充电电池进行加热;
当通过所述温度传感器获取到的第三温度不小于所述第二温度阈值时,将所述感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
需要说明的是,控制器中各个单元的具体实现可以参阅上述电池管理方法实施例中相关描述,本发明实施例不再赘述。
请参阅图11,图11是本发明实施例提供的另一种控制器的结构示意图,该控制器11可以包括:处理器111和存储器112,所述处理器111可以通过通信总线113连接到存储器112、温度传感器等。
处理器111是控制器11的控制中心,利用各种接口和线路连接整个控制器11的各个 部分和外部器件,通过运行或执行存储在存储器112内的程序代码,以及调用存储在存储器112内的数据,执行控制器的各种功能。处理器111可以是是中央处理器((Central Processing Unit,CPU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Intergrated Circuits,ASIC)和数字信号处理器(Digital Signal Processor,DSP)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合等,本发明不作限定。
存储器112可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器111用于调用存储器112存储的数据和程序代码执行:
在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对所述无线充电电池进行充电;其中,所述感应线圈设于无线充电电池内部;
在所述无线充电电池放电的过程中,通过温度传感器获取的第一温度小于第一温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
可选的,处理器111执行所述在所述无线充电电池放电的过程中,通过温度传感器获取的第一温度小于第一温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热,具体包括执行:
在所述无线充电电池放电的过程中,当通过温度传感器获取到第一温度小于第一温度阈值且所述充电电池的剩余电量大于预设电量阈值时,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
可选的,处理器111执行所述在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对所述无线充电电池进行充电,具体包括执行:
在接收到充电信号的情况下,当通过温度传感器获取到第二温度小于第二温度阈值时,导通电感线圈,通过所述感应线圈接收的外部发射的电磁能量对所述感应线圈所在的无线充电电池进行加热;
当通过所述温度传感器获取到的第三温度不小于所述第二温度阈值时,将所述感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
需要说明的是,控制器111中各个器件的具体实现可以参阅上述电池管理方法实施例中相关描述,本发明实施例不再赘述。
本发明实施例还提供了一种应用上述控制器、电池管理系统的设备,该设备可以是手机、平板电脑、个人计算机、台式计算机或其他设备等,本发明实施例不作限定。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、 元件和/或构件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (24)

  1. 一种电池极片,其特征在于,包括:集流体和感应线圈,其中,所述感应线圈为被绝缘膜包裹的第一导线绕制形成的平面线圈,所述感应线圈的至少一部分嵌入所述集流体中,所述感应线圈的第一表面裸露于所述集流体的第二表面,所述第一表面为所述感应线圈上与所述感应线圈所在平面平行的表面。
  2. 如权利要求1所述的电池极片,其特征在于,所述感应线圈用于接收外部电磁能量,产生感生电动势,对所述电池极片所在的无线充电电池进行充电。
  3. 如权利要求1所述的电池极片,其特征在于,所述感应线圈还用于:在向所述感应线圈通入电流时,对所述无线充电电池极片进行加热。
  4. 如权利要求1-3任意一项权利要求所述的电池极片,其特征在于,所述感应线圈为平面螺旋线圈。
  5. 如权利要求4所述的无线充电电池极片,其特征在于,所述集流体由第二导线在平面上螺旋绕制形成的平面螺旋线圈,所述第一导线和所述第二导线在同一平面内并绕。
  6. 如权利要求1-4任意一项权利要求所述的电池极片,其特征在于,所述集流体包括贯穿所述第二表面和第三表面的空隙,所述感应线圈嵌入在所述空隙内,所述第三表面为所述集流体上与所述第二表面相对的表面。
  7. 如权利要求1-6任意一项权利要求所述的电池极片,其特征在于,
    所述电池极片为正极极片,所述电池极片还包括涂布在所述集流体的第三表面上的正极活性物质、第一导电剂、第一粘结剂;或,所述电池极片为负极极片,所述电池极片还包括涂布在所述集流体的第三表面上的负极活性物质、第二导电剂、第二粘结剂;
    其中,所述第三表面为所述集流体上与所述第二表面相对的表面。
  8. 一种电池极片的制备方法,其特征在于,包括:
    将感应线圈的至少一部分嵌入在集流体中,所述感应线圈为被绝缘膜包裹的第一导线绕制形成的平面线圈,所述感应线圈的第一表面裸露于所述集流体的第二表面,所述第一表面为所述感应线圈上与所述感应线圈所在平面平行的表面;
    在所述集流体的第三表面上涂布活性浆料,以形成电池极片,所述第三表面为所述集流体上与所述第一表面相对的表面。
  9. 如权利要求8所述的电池极片的制备方法,其特征在于,所述将感应线圈的至少一部分嵌入在集流体中包括:
    将第一导线和第二导线在同一平面内螺旋并绕形成第一平面螺旋线圈和第二平面螺旋线圈,其中,所述第一平面螺旋线圈为感应线圈,所述第二平面螺旋线圈为集流体。
  10. 如权利要求8所述的电池极片的制备方法,其特征在于,所述将感应线圈的至少一部分嵌入在集流体中包括:
    在集流体上形成贯穿第二表面和第三表面的空隙,所述第二表面和所述第三表面为所述集流体上相对的两个表面;
    将感应线圈嵌入在所述空隙内,以使所述感应线圈的第一表面裸露于所述集流体的所述第二表面。
  11. 一种无线充电电池,其特征在于,包括正极极片、负极极片,以及设置于所述正极极片和所述负极极片之间的隔离膜、电解液;
    其中,所述正极极片或负极极片为权利要求1至5中任一项所述的电池极片。
  12. 一种电池管理方法,其特征在于,包括:
    在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对所述无线充电电池进行充电;其中,所述感应线圈设于无线充电电池内部;
    在所述无线充电电池放电的过程中,通过温度传感器获取的第一温度小于第一温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
  13. 如权利要求12所述的电池管理方法,其特征在于,所述在所述无线充电电池放电的过程中,通过温度传感器获取的第一温度小于第一温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热包括:
    在所述无线充电电池放电的过程中,当通过温度传感器获取到第一温度小于第一温度阈值且所述充电电池的剩余电量大于预设电量阈值时,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
  14. 如权利要求12所述的电池管理方法,其特征在于,所述在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对所述无线充电电池进行充电包括:
    在接收到充电信号的情况下,当通过温度传感器获取到第二温度小于第二温度阈值时,导通电感线圈,通过所述感应线圈接收的外部发射的电磁能量对所述感应线圈所在的无线充电电池进行加热;
    当通过所述温度传感器获取到的第三温度不小于所述第二温度阈值时,将所述感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
  15. 如权利要求12-14任意一项权利要求所述的电池管理方法,其特征在于,所述无线充电电池包括正极极片、负极极片,以及设置于所述正极极片和所述负极极片之间的隔离膜、电解液;
    其中,所述正极极片或负极极片为权利要求1至5中任一项所述的电池极片。
  16. 一种控制器,其特征在于,包括:
    充电单元,用于:在接收到充电信号的情况下,将感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到无线充电电池,对所述无线充电电池进行充电;其中,所述感应线圈设于无线充电电池内部;
    放电单元,用于:在所述无线充电电池放电的过程中,通过温度传感器获取的第一温度小于预设温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
  17. 如权利要求16所述的控制器,其特征在于,所述放电单元具体用于:
    在所述无线充电电池放电的过程中,当通过温度传感器获取到第一温度小于第一温度阈值且所述充电电池的剩余电量大于预设电量阈值时,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
  18. 如权利要求16所述的控制器,其特征在于,所述充电单元具体用于:
    在接收到充电信号的情况下,当通过温度传感器获取到第二温度小于第二温度阈值时,导通电感线圈,通过所述感应线圈接收的外部发射的电磁能量对所述感应线圈所在的无线充电电池进行加热;
    当通过所述温度传感器获取到的第三温度不小于所述第二温度阈值时,将所述感应线圈根据接收外部发射的电磁能量生成的感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
  19. 如权利要求16-18任意一项权利要求所述的控制器,其特征在于,所述无线充电电池包括正极极片、负极极片,以及设置于所述正极极片和所述负极极片之间的隔离膜、电解液;
    其中,所述正极极片或负极极片为权利要求1至5中任一项所述的电池极片。
  20. 一种电池管理系统,其特征在于,包括:无线充电电池、温度传感器器以及控制,所述无线充电电池包括设置于所述无线充电电池内部的感应线圈;其中,
    所述感应线圈用于接收外部发射的电磁能量,生成感生电动势;
    无线充电电池用于对外电路进行供电以及存储电能;
    所述控制器用于:在接收到充电信号的情况下,将所述感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电;以及,在所述无线充电电池放电的过程中,通过 所述温度传感器获取的第一温度小于第一温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
  21. 如权利要求20所述的电池管理系统,其特征在于,所述电池管理系统还包括整流稳压模块,所述整流稳压模块连接所述感应线圈,用于对所述感生电动势进行整流和/或稳压处理,以及将处理后的感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
  22. 如权利要求20所述的电池管理系统,其特征在于,所述控制器用于在所述无线充电电池放电的过程中,所述第一温度小于第一温度阈值的情况下,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热,具体用于:
    在所述无线充电电池放电的过程中,当所述第一温度小于第一温度阈值且所述充电电池的剩余电量大于预设电量阈值时,控制所述无线充电电池输出电流到所述电感线圈,对所述无线充电电池进行加热。
  23. 如权利要求20所述的电池管理系统,其特征在于,所述控制器用于在接收到充电信号的情况下,将所述感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电,具体用于:
    在接收到充电信号的情况下,当通过所述温度传感器获取到第二温度小于第二温度阈值时,导通所述电感线圈,通过所述感应线圈接收的外部发射的电磁能量对所述无线充电电池进行加热;
    当通过所述温度传感器获取到的第三温度不小于所述第二温度阈值时,将所述感生电动势输入到所述无线充电电池,对所述无线充电电池进行充电。
  24. 如权利要求20-23任意一项权利要求所述的电池管理系统,其特征在于,所述无线充电电池包括正极极片、负极极片,以及设置于所述正极极片和所述负极极片之间的隔离膜、电解液;
    其中,所述正极极片或负极极片为权利要求1至5中任一项所述的电池极片。
PCT/CN2019/084104 2018-05-22 2019-04-24 电池极片及其制备方法、电池管理方法及相关装置 WO2019223488A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19807348.8A EP3793016B1 (en) 2018-05-22 2019-04-24 Battery electrode sheet and preparation method therefor, battery management method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810498321.7A CN108832074B (zh) 2018-05-22 2018-05-22 电池极片及其制备方法、电池管理方法及相关装置
CN201810498321.7 2018-05-22

Publications (1)

Publication Number Publication Date
WO2019223488A1 true WO2019223488A1 (zh) 2019-11-28

Family

ID=64149036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084104 WO2019223488A1 (zh) 2018-05-22 2019-04-24 电池极片及其制备方法、电池管理方法及相关装置

Country Status (3)

Country Link
EP (1) EP3793016B1 (zh)
CN (1) CN108832074B (zh)
WO (1) WO2019223488A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832074B (zh) * 2018-05-22 2020-11-10 华为技术有限公司 电池极片及其制备方法、电池管理方法及相关装置
CN114512676A (zh) * 2020-11-16 2022-05-17 Oppo广东移动通信有限公司 复合集流体、复合极片、电池及电子设备
CN114512675A (zh) * 2020-11-16 2022-05-17 Oppo广东移动通信有限公司 电极片、电芯组件、电池组件及电子设备
CN114243122A (zh) * 2021-12-08 2022-03-25 宁德新能源科技有限公司 电化学装置及用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170035A (zh) * 2011-04-06 2011-08-31 富奥汽车零部件股份有限公司 一种无线电池单体加热管理方法及系统
CN102544615A (zh) * 2011-12-14 2012-07-04 李鹏 一种无线充电电池
CN106130117A (zh) * 2016-07-22 2016-11-16 暨南大学 对多节以不同串并联方式连接的电池进行智能无线充放电的系统
CN108832074A (zh) * 2018-05-22 2018-11-16 华为技术有限公司 电池极片及其制备方法、电池管理方法及相关装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223899A (ja) * 2002-01-31 2003-08-08 Matsushita Electric Ind Co Ltd 負極板の製造方法およびこの負極板を用いたリチウム二次電池
KR20090009598A (ko) * 2007-07-20 2009-01-23 경상대학교산학협력단 무선 충전용 선형 전지
JP2014089915A (ja) * 2012-10-31 2014-05-15 Sumitomo Electric Ind Ltd 電源システム及び電動車両
CN103208645B (zh) * 2012-12-31 2015-04-08 深圳宏泰电池科技有限公司 一种锰酸锂和石墨烯组成的纳米动力电池及其制备方法
CN104062919A (zh) * 2014-06-20 2014-09-24 华为技术有限公司 用于控制线圈的电路、用于控制滤光片的装置和摄像机
CN204067495U (zh) * 2014-09-11 2014-12-31 深圳市巨兆数码有限公司 无线充电电池及其电芯
TWI649909B (zh) * 2016-01-19 2019-02-01 沈孟緯 Secondary battery
TWI614932B (zh) * 2016-10-28 2018-02-11 Meng Wei Shen 一種同時具有以圈撓方式和堆疊方式生產之優點的二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170035A (zh) * 2011-04-06 2011-08-31 富奥汽车零部件股份有限公司 一种无线电池单体加热管理方法及系统
CN102544615A (zh) * 2011-12-14 2012-07-04 李鹏 一种无线充电电池
CN106130117A (zh) * 2016-07-22 2016-11-16 暨南大学 对多节以不同串并联方式连接的电池进行智能无线充放电的系统
CN108832074A (zh) * 2018-05-22 2018-11-16 华为技术有限公司 电池极片及其制备方法、电池管理方法及相关装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3793016A4

Also Published As

Publication number Publication date
CN108832074A (zh) 2018-11-16
EP3793016A4 (en) 2021-06-23
EP3793016B1 (en) 2023-03-01
CN108832074B (zh) 2020-11-10
EP3793016A1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2019223488A1 (zh) 电池极片及其制备方法、电池管理方法及相关装置
TWI734628B (zh) 蓄電單元及太陽光發電單元
CN202585660U (zh) 一种卷绕结构的动力电池
CN203800133U (zh) 卷绕式电芯及电化学装置
CN105706288A (zh) 制造非水二次电池的方法
JP6728724B2 (ja) リチウム二次電池の初充電方法
CN206673016U (zh) 适用于大倍率放电的锂离子电池以及极片
WO2022266894A1 (zh) 电化学装置及电子装置
CN103563158A (zh) 非水电解质二次电池
JP6237187B2 (ja) 密閉型電池
JP2011076785A (ja) 角形リチウム二次電池
CN113594464A (zh) 电化学装置和电子装置
JP2013098102A (ja) 円筒捲回型電池
JP2012252951A (ja) 非水電解質二次電池
CN104538668A (zh) 一种具有较高安全性锂离子电池及其制备方法
KR102045258B1 (ko) 이차전지의 제작방법
JPH11307128A (ja) リチウムイオン二次電池
JPH1055825A (ja) 非水電解液二次電池
US20150333364A1 (en) Cylindrical single-piece lithium-ion battery of 400Ah and its preparation method
JP6668876B2 (ja) リチウムイオン二次電池の製造方法
CN113937424B (zh) 电芯组件、电池组件及电子设备
CN106299553A (zh) 一种锂离子电池及其制作方法
WO2020026483A1 (ja) リチウム二次電池
WO2018188223A1 (zh) 电池、电池系统及电池使用方法
JP5775195B2 (ja) 角形リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019807348

Country of ref document: EP

Effective date: 20201210