WO2018188223A1 - 电池、电池系统及电池使用方法 - Google Patents

电池、电池系统及电池使用方法 Download PDF

Info

Publication number
WO2018188223A1
WO2018188223A1 PCT/CN2017/093196 CN2017093196W WO2018188223A1 WO 2018188223 A1 WO2018188223 A1 WO 2018188223A1 CN 2017093196 W CN2017093196 W CN 2017093196W WO 2018188223 A1 WO2018188223 A1 WO 2018188223A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrolyte cell
solid electrolyte
liquid electrolyte
cell
Prior art date
Application number
PCT/CN2017/093196
Other languages
English (en)
French (fr)
Inventor
金海族
吴小英
陈宁
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018188223A1 publication Critical patent/WO2018188223A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technologies, and in particular, to a battery, a battery system, and a battery using method.
  • lithium-ion batteries have been attracting attention since they were put into the market in 1991. They have been widely used in terminals, power tools, electric bicycles, electric vehicles, etc. An indispensable product in the economy.
  • the lithium ion battery in the prior art is mostly composed of a positive electrode piece, a negative electrode piece, a separator and a liquid electrolyte, wherein the positive electrode piece is made of a material such as graphite, and the negative electrode piece is made of a material such as lithium cobaltate.
  • the liquid electrolyte is prepared by mixing materials such as dimethyl carbonate, propylene carbonate, and lithium hexafluorophosphate. After the lithium ion battery is fabricated, the battery is packaged.
  • the battery composed of the lithium ion battery has a fixed capacity, the energy density of the battery is also fixed.
  • a liquid state is used.
  • the lithium ion battery of the electrolyte has a relatively low energy density, which affects battery life.
  • Embodiments of the present application provide a battery, a battery system, and a battery using method to improve energy density of a battery of the same volume.
  • Embodiments of the present application provide a battery including: a liquid electrolyte battery core and a solid electrolyte battery core; the liquid electrolyte battery core can be thermally conducted with the solid electrolyte battery core.
  • an implementation is further provided in which the liquid electrolyte cell is in contact with the solid electrolyte cell.
  • an implementation is further provided in which the liquid electrolyte cell and the solid electrolyte cell are connected by a heat pipe.
  • the liquid electrolyte cell has N, N is an integer greater than or equal to 2; the solid electrolyte cell has N, and the N is an integer greater than or equal to 2;
  • a specified number of the liquid electrolyte cells are spaced from a specified number of the solid electrolyte cells.
  • liquid electrolyte cell has N, N is an integer greater than or equal to 2; and the solid electrolyte cell has one;
  • the solid electrolyte cell is wound around a sidewall of the liquid electrolyte cell.
  • liquid electrolyte cell has N, N is an integer greater than or equal to 2; and the solid electrolyte cell has one;
  • the solid electrolyte cells are wound in a "snake" shape on the side walls of the liquid electrolyte cells, and the liquid electrolyte cells are spaced apart by a specified number.
  • liquid electrolyte battery is a lithium cobaltate battery, a lithium nickelate battery, a lithium manganate battery, and a lithium iron phosphate battery. And one of lithium nickel cobalt manganate batteries.
  • the solid electrolyte battery cell is a polymer solid state lithium ion battery core
  • the polymer solid state lithium ion battery core is assembled One or more constituent substrates of an ether system, a polyacrylonitrile system, a polymethacrylate, a polyvinylidene fluoride, a polycarbonate, a polysilane, a polystyrene, and a block polymer thereof.
  • the embodiment of the present application further provides a battery system, including: any one of the above batteries, a temperature sensor, and a changeover switch;
  • the transfer switch is respectively connected to the liquid electrolyte battery core and the solid electrolyte battery core in the battery;
  • the temperature sensor is connected to the solid electrolyte cell and the transfer switch, respectively.
  • the battery system further comprising: a battery management unit;
  • the battery management unit is coupled to the battery.
  • the battery system further comprising: a temperature management unit;
  • the temperature management unit is coupled to the battery.
  • the battery system further comprising: a power unit;
  • the power unit is coupled to the transfer switch.
  • the embodiment of the present application further provides a battery using method, which is applied to a battery including a solid electrolyte battery core and a liquid electrolyte battery core, including:
  • the transfer switch turns on the liquid electrolyte cell and uses the liquid electrolyte cell to supply power;
  • the transfer switch turns on the solid electrolyte cell and the liquid electrolyte cell, using the solid electrolyte cell and The liquid electrolyte cell is simultaneously powered;
  • the transfer switch disconnects from the liquid electrolyte cell and is powered by the solid electrolyte cell;
  • the fourth temperature threshold is greater than the third temperature threshold, the third temperature threshold is greater than the second temperature threshold, and the second temperature threshold is greater than the first temperature threshold.
  • the method further includes:
  • the detected temperature of the solid electrolyte cell is sent to the battery management unit.
  • the transfer switch turns on the liquid electrolyte cell according to the first instruction.
  • the implementation further provides an implementation manner, wherein the transfer switch turns on the solid electrolyte battery cell and the liquid electrolyte battery cell, including:
  • the transfer switch turns on the liquid electrolyte cell and the liquid electrolyte cell according to the second instruction.
  • the transfer switch disconnects the liquid electrolyte cell according to the third command.
  • the first temperature threshold is between -45 ° C and -35 ° C;
  • the second temperature threshold is between 35 ° C and 45 ° C;
  • the third temperature threshold is between 55 ° C and 65 ° C;
  • the fourth temperature threshold is between 115 ° C and 125 ° C.
  • the battery, the battery system and the battery using method provided by the embodiments of the present application by providing two batteries of batteries in the battery, one of which is a liquid electrolyte battery core, the other is a solid electrolyte battery core, and two kinds of The cell of the material can directly conduct heat conduction, and the liquid electrolyte cell generates heat during the discharge process, and the heat is used to heat the solid electrolyte cell, thereby improving the ionic conductivity of the solid electrolyte cell so that the solid electrolyte cell can satisfy the output power.
  • the demand enables a battery having the above two types of cells to have a higher energy density than a battery having only one liquid electrolyte cell, and solves the problem of using a single liquid electrolyte lithium ion in the prior art.
  • the battery has a low energy density.
  • FIG. 1 is a schematic structural view of a battery provided by an embodiment of the present application.
  • FIG. 2A is a first top view of a battery provided by an embodiment of the present application.
  • 2B is a second top view of the battery provided by the embodiment of the present application.
  • 2C is a third top view of the battery provided by the embodiment of the present application.
  • 3A is a fourth top view of a battery according to an embodiment of the present application.
  • 3B is a fifth top view of the battery provided by the embodiment of the present application.
  • 3C is a sixth top view of the battery provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an embodiment of a battery system according to an embodiment of the present application.
  • FIG. 5 is another schematic structural diagram of an embodiment of a battery system according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of an embodiment of a battery using method according to an embodiment of the present application.
  • FIG. 7 is another flow chart of an embodiment of a battery usage method according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a battery provided by an embodiment of the present invention.
  • the battery provided by the present application includes: a liquid electrolyte battery core 1 and a solid electrolyte battery core 2 .
  • the liquid electrolyte cell 1 generates heat during the discharge process, and the ionic conductivity of the solid electrolyte cell 2 is affected by the temperature, which can be reflected in the solid electrolyte cell 2 at normal temperature, and the ionic conductivity is very low, which seriously affects The output power of the solid electrolyte cell 2.
  • the heat generated by the liquid electrolyte cell 1 is transferred to the solid electrolyte cell 2 by means of heat conduction between the liquid electrolyte cell 1 and the solid electrolyte cell 2, so that the solid electrolyte is electrically
  • the temperature of the core 2 is increased, thereby achieving an effect of improving the ionic conductivity of the solid electrolyte cell 2.
  • the liquid electrolyte cell 1 is in contact with the solid electrolyte cell 2, and the cells of the two electrolyte materials are directly contacted, so that the heat of the liquid electrolyte cell 1 can be directly transferred to the solid electrolyte cell 2, for example,
  • the solid electrolyte cell 2 can be placed around the side wall of a liquid electrolyte cell 1, it being understood that the solid electrolyte cell 2 has four pieces.
  • a solid electrolyte cell 2 is in close contact with the side wall of a rectangular liquid electrolyte cell 1.
  • the liquid electrolyte cell 1 and the solid electrolyte cell 2 are connected by a heat pipe.
  • One end of the heat pipe is connected to the liquid electrolyte cell 1, and the other end of the heat pipe is connected to the solid electrolyte cell 1, so that the heat generated by the liquid electrolyte cell 1 during the discharge can be transferred to the solid electrolyte cell 2 through the heat pipe.
  • the solid electrolyte cell 2 is heated.
  • the liquid electrolyte cell 1 may have N, N is an integer greater than or equal to 2, and the solid electrolyte cell 2 has N, N is an integer greater than or equal to 2, and the specified amount of liquid The electrolyte cell 1 is spaced apart from a specified number of solid electrolyte cells 2.
  • FIG. 2A is a first top view of the battery provided by the embodiment of the present application
  • FIG. 2B is a second battery of the embodiment of the present application
  • FIG. 2C is a third top view of the battery provided by the embodiment of the present application.
  • FIG. 2A there are three liquid electrolyte cells 1 and four solid electrolyte cells 2, one solid electrolyte cell 2 and 1.
  • the liquid electrolyte cells 1 are spaced apart.
  • FIG. 2B there are four liquid electrolyte cells 1 and three solid electrolyte cells 2, and one solid electrolyte cell 2 is spaced apart from two liquid electrolyte cells 1.
  • Fig. 2C there are six liquid electrolyte cells 1 and three solid electrolyte cells 2, and one solid electrolyte cell 2 is spaced apart from the three liquid electrolyte cells 1.
  • FIG. 2A, FIG. 2B, and FIG. 2C are merely schematic illustrations in the embodiment of the present application, and the number and arrangement of the two types of battery cells are not limited in practical applications.
  • the liquid electrolyte cell 1 has N, and N is greater than or equal to An integer of 2, one solid-state electrolyte cell 2, and a solid electrolyte cell 2 is wound around the side wall of the liquid electrolyte cell 1. It can be understood that the solid electrolyte battery cell 2 at this time forms a "mouth shape" from a plan view. Alternatively, the solid electrolyte battery cell 2 is wound in a "snake shape" on the side wall of the liquid electrolyte cell 1, and the liquid electrolyte cells 1 are spaced apart by a prescribed number.
  • FIG. 3A is a fourth top view of the battery provided by the embodiment of the present application
  • FIG. 3C is a sixth top view of the battery provided by the embodiment of the present application.
  • FIG. 3A there are six liquid electrolyte cells 1 and one solid electrolyte cell 2, and the solid electrolyte cells 2 are adjacent to each other. The two liquid electrolyte cells 1 are separated.
  • Fig. 3B there are six liquid electrolyte cells 1 and one solid electrolyte cell 2, and the solid electrolyte cells 2 space the liquid electrolyte cells 1 two by two.
  • Fig. 3C there are six liquid electrolyte cells 1 and one solid electrolyte cell 2, and the solid electrolyte cells 2 space the liquid electrolyte cells 1 in units of three.
  • the liquid electrolyte cell 1 in the same battery is lithium cobaltate.
  • the solid electrolyte battery cell 2 in the same battery is a polymer solid lithium ion battery
  • the polymer solid lithium ion battery cell is composed of polyoxyethylene, polyoxyethylene derivative, polysiloxane, and One or more of the constituents of the derivative.
  • the solid electrolyte cell 2 in the same battery is a polymer solid lithium ion battery
  • the polymer solid lithium ion battery is made of a polyether, a polyacrylonitrile, a polymethacrylate, One or more constituent substrates of polyvinylidene fluoride, polycarbonate, polysilane, polystyrene and its block polymers.
  • the ratio of the rated power of the liquid electrolyte cell 1 in the same battery to the rated power of the solid electrolyte cell 2 is greater than or equal to two.
  • the battery provided by the embodiment of the present application is provided with a battery core of two materials in the battery, one of which is a liquid electrolyte battery core 1 and the other is a solid electrolyte battery core 2, and the batteries of the two materials are directly Heat conduction can be performed, and the liquid electrolyte cell 1 generates heat during discharge, and the heat is used to heat the solid electrolyte cell 2, thereby improving the ionic conductivity of the solid electrolyte cell 2 so that the solid electrolyte cell 2 can meet the output power requirement. Therefore, the battery having the above two types of cells can have a higher energy density than the battery having only one liquid electrolyte cell 1, and solves the problem of using a single liquid electrolyte lithium in the prior art. The problem of low energy density of the battery of the ion battery.
  • the solid electrolyte cell 2 is a non-volatile, non-flammable and explosive solid polymer due to its electrolyte, when the solid electrolyte cell 2 is deformed and collided, short-circuiting and other side reactions are less likely to occur, and safety performance is high. Therefore, the solid electrolyte cell 2 is disposed outside the liquid electrolyte cell 1, and the safety of the battery can be improved.
  • FIG. 4 is a schematic structural diagram of an embodiment of a battery system according to an embodiment of the present invention.
  • the battery system provided in the embodiment of the present application may include the battery 11 , the temperature sensor 12 , and the changeover switch 13 in the first embodiment.
  • the changeover switch 13 is connected to the liquid electrolyte cell 1 and the solid electrolyte cell 2 in the battery 11, respectively, and the temperature sensor 12 is connected to the solid electrolyte cell 2 and the changeover switch 13, respectively.
  • the temperature sensor 12 is for detecting the temperature of the solid electrolyte cell 2, when the temperature of the solid electrolyte cell 2 is low, the transfer switch 13 turns on the liquid electrolyte cell 1, disconnects the solid electrolyte cell 2, and uses the liquid electrolyte cell 1
  • the stored energy outputs electrical energy to the outside. As the liquid electrolyte cell 1 outputs electrical energy, the heat generated by it can heat the solid electrolyte cell 2, causing the temperature of the solid electrolyte cell 2 to rise.
  • the solid state electrolyte cell 2 When the temperature sensor 12 detects that the temperature of the solid electrolyte cell 2 reaches the temperature threshold, the solid state electrolyte cell 2 is turned on using the transfer switch 13, and the energy stored by the liquid electrolyte cell 1 and the energy stored by the solid electrolyte cell 2 are simultaneously directed. External output power. As the temperature of the solid electrolyte cell 2 continues to rise, when the temperature is higher than the temperature of the liquid electrolyte cell 1, the liquid electrolyte cell 1 is prone to safety problems such as spontaneous combustion or explosion, etc. The connection of the liquid electrolyte cell 1 uses only the energy stored in the solid electrolyte cell 2 to output electric energy to the outside.
  • FIG. 5 is another schematic structural diagram of an embodiment of a battery system according to an embodiment of the present disclosure.
  • the battery system provided by the embodiment of the present application may further include a battery management unit 14 and a temperature according to the foregoing content.
  • the battery management unit 14 may include two components, a memory for storing data and instructions, and a microprocessor for signal receiving, processing, and controlling the battery 11 and the changeover switch 13, thus, the battery management unit 14 and the battery 11 connections.
  • the battery management unit 14 can monitor the operating states of the terminal voltage, the charging and discharging current, and the like of the liquid electrolyte cell 1 and the solid electrolyte cell 2 in the battery 11, and accurately estimate the state of charge of the battery 11, and ensure the battery 11
  • the state of charge of the liquid electrolyte cell 1 and the solid electrolyte cell 2 can be within a reasonable range to prevent damage to the battery 11 due to overcharge or overdischarge.
  • the battery management unit 11 may separately control the liquid electrolyte cell 1 and the solid electrolyte cell 2, or may perform control at the same time.
  • the temperature management unit 15 may include two components, a memory and a microprocessor, and the temperature management unit 15 is connected to the battery 11. Specifically, the temperature management unit 15 can be respectively connected to the liquid electrolyte cell 1 and the solid electrolyte cell 2, and the temperature management unit 15 can control the temperature of the liquid electrolyte cell 1 and the temperature of the solid electrolyte cell 2, respectively. The method may be to heat or cool the liquid electrolyte cell 1 and the solid electrolyte cell 2 such that the temperature of the liquid electrolyte cell 1 and the temperature of the solid electrolyte cell 2 are kept adjusted to a certain temperature range as needed. In a specific implementation process, the temperature management unit 15 may include an active liquid cooling system or an active resistance heating system that can adjust the temperature of the battery.
  • the power unit 16 may be an engine or a drive motor, and the power unit 16 is coupled to the changeover switch 13.
  • the power unit is used to power other devices using the electrical energy provided by the battery 11.
  • the battery system provided by the embodiment of the present application detects the temperature of the solid electrolyte cell 2 by the temperature sensor 12, and adjusts the manner in which the battery system outputs electric energy to the outside by using the changeover switch 13 according to the temperature of the solid electrolyte cell 2, thereby achieving the above
  • the battery of the two cells can have a higher energy density than the battery system with only one liquid electrolyte cell 1, and at the same time, the flexibility of the battery system is enhanced, and the safety performance of the battery system is enhanced.
  • the use of the heat for heating the solid electrolyte improves the energy utilization rate and solves the problem of low energy density of the battery using the single liquid electrolyte lithium ion battery in the prior art.
  • the battery system provided by the embodiment of the present application can be applied to an electric vehicle, but is not limited to application in an electric vehicle.
  • FIG. 6 is a flowchart of a method for using a battery according to an embodiment of the present disclosure. As shown in FIG. 6 , the battery usage method provided in the embodiment of the present application may be applied to the battery system in the second embodiment, and may specifically include the following. step:
  • step 502. Determine a temperature interval of the solid electrolyte cell. If the temperature of the solid electrolyte cell is greater than or equal to the first temperature threshold and less than or equal to the second temperature threshold, perform step 503, if the temperature of the solid electrolyte cell is greater than the second temperature threshold. And step 504 is performed, and if the temperature of the solid electrolyte battery cell is greater than the third temperature threshold and less than or equal to the fourth temperature threshold, step 505 is performed.
  • the fourth temperature threshold is greater than the third temperature threshold
  • the third temperature threshold is greater than the second temperature threshold
  • the second temperature threshold is greater than the first temperature threshold
  • the first threshold, the second threshold, the third threshold and the fourth threshold are determined according to the battery cells.
  • the characteristics are set.
  • the first temperature threshold is -40 ° C ⁇ 5
  • the second temperature threshold is 40 ° C ⁇ 5
  • the third temperature threshold is 60 ° C ⁇ 5
  • the fourth temperature threshold is 120 ° C ⁇ 10.
  • the transfer switch turns on the liquid electrolyte battery and is powered by the liquid electrolyte battery.
  • the transfer switch turns on the solid electrolyte battery core and the liquid electrolyte battery core, and simultaneously supplies the solid electrolyte battery core and the liquid electrolyte battery core.
  • the transfer switch is disconnected from the liquid electrolyte cell and is powered by a solid electrolyte cell.
  • FIG. 7 is another flowchart of an embodiment of a battery usage method according to an embodiment of the present disclosure. As shown in FIG. 7 , the battery usage method provided by the embodiment of the present application may further include the following steps on the basis of the foregoing content:
  • the temperature interval of the solid electrolyte cell can be determined by the battery management unit, and then different commands are sent to the change switch according to different temperature intervals in which the solid electrolyte cell is located. Specifically, if the temperature of the solid electrolyte cell is greater than or equal to the first temperature threshold and less than or equal to the second temperature threshold, step 507 is performed, if the temperature of the solid electrolyte cell is greater than the second temperature threshold, and is less than or equal to the first The third temperature threshold is performed. If the temperature of the solid electrolyte battery cell is greater than the third temperature threshold and less than or equal to the fourth temperature threshold, step 509 is performed.
  • the transfer switch is caused to conduct the liquid electrolyte battery according to the first command sent by the battery management unit, and is powered by the liquid electrolyte battery.
  • the transfer switch is caused to turn on the solid electrolyte cell and the liquid electrolyte cell according to the second instruction sent by the battery management unit, and simultaneously supply the power using the solid electrolyte cell and the liquid electrolyte cell.
  • the transfer switch is caused to disconnect from the liquid electrolyte cell according to the third command sent by the battery management unit, and is powered by the solid electrolyte battery.
  • the battery use method provided by the embodiment of the present application detects the temperature of the solid electrolyte cell by the temperature sensor, and adjusts the manner in which the battery system outputs electric energy to the outside according to the temperature of the solid electrolyte cell, thereby realizing the above two types of electricity.
  • the core battery can have a higher energy density than a battery system having only one liquid electrolyte cell 1, and in addition, the liquid electrolyte cell generates heat during discharge, and the heat is utilized.
  • the solid electrolyte core heating improves the energy utilization rate and solves the problem of low energy density of the battery using the single liquid electrolyte lithium ion battery in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一种电池、电池系统及电池使用方法。所述的电池,包括:液态电解质电芯(1)和固态电解质电芯(2);所述液态电解质电芯(1)能够与所述固态电解质电芯(2)进行热传导。该技术方案实现了提高电池的能量密度的效果,此外,液态电解质电芯(1)在放电过程中会产生热量,利用该热量为固态电解质加热,提高了能量利用率。

Description

电池、电池系统及电池使用方法 技术领域
本申请涉及电池技术领域,尤其涉及一种电池、电池系统及电池使用方法。
背景技术
当前储能电能的产品中,锂离子电池因其具有使用寿命长的特点,自1991年投入市场以来一直备受瞩目,在终端、电动工具、电动自行车、电动汽车等领域应用广泛,已经成为能源经济中的一个不可或缺的产品。
现有技术中的锂离子电芯,多由正极极片、负极极片、隔离膜以及液态的电解质共同组成,其中,正极极片由石墨等材料制成,负极极片由钴酸锂等材料制成,液态的电解质由碳酸二甲酯、碳酸丙烯酯、六氟磷酸锂等材料混合制成。锂离子电芯制作完成后经过封装形成电池。
然而,因为由锂离子电芯组成的电池其额定容量是固定的,所以电池的能量密度也是固定的,当该电池应用在对能量密度要求较高的场景中时,例如,电动汽车,使用液态电解质的锂离子电芯的电池能量密度相对较低,影响续航。
申请内容
本申请实施例提供一种电池、电池系统及电池使用方法,以实现了提高相同体积电池的能量密度。
本申请实施例提供一种电池,包括:液态电解质电芯和固态电解质电芯;所述液态电解质电芯能够与所述固态电解质电芯进行热传导。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述液态电解质电芯与所述固态电解质电芯接触。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述液态电解质电芯与所述固态电解质电芯之间通过导热管连接。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所 述液态电解质电芯有N个,N为大于或者等于2的整数;所述固态电解质电芯有N个,所述N为大于或者等于2的整数;
指定数量的所述液态电解质电芯与指定数量的所述固态电解质电芯间隔设置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述液态电解质电芯有N个,N为大于或者等于2的整数;所述固态电解质电芯有1个;
所述固态电解质电芯缠绕在所述液态电解质电芯的侧壁。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述液态电解质电芯有N个,N为大于或者等于2的整数;所述固态电解质电芯有1个;
所述固态电解质电芯以“蛇形”缠绕在所述液态电解质电芯的侧壁,将所述液态电解质电芯按照指定数量间隔开。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,其特征在于,所述液态电解质电芯为钴酸锂电芯、镍酸锂电芯、锰酸锂电芯、磷酸铁锂电芯以及镍钴锰酸锂电芯中的一种。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,其特征在于,所述固态电解质电芯为聚合物固态锂离子电芯,所述聚合物固态锂离子电芯由聚醚系、聚丙烯腈系、聚甲基丙烯酸酯、聚偏二氟乙烯、聚碳酸酯、聚硅烷、聚苯乙烯及其嵌段聚合物中一种或几种组成基体。
本申请实施例还提供一种电池系统,包括:上述任意一种电池、温度传感器以及转换开关;
所述转换开关分别与所述电池中的液态电解质电芯和固态电解质电芯连接;
所述温度传感器分别与所述固态电解质电芯以及转换开关连接。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述电池系统还包括:电池管理单元;
所述电池管理单元与所述电池连接。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述电池系统还包括:温度管理单元;
所述温度管理单元与所述电池连接。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述电池系统还包括:动力单元;
所述动力单元与所述转换开关连接。
本申请实施例还提供一种电池使用方法,应用于包括固态电解质电芯和液态电解质电芯的电池,包括:
使用温度传感器检测固态电解质电芯的温度;
若所述固态电解质电芯的温度大于或者等于第一温度阈值且小于或者等于第二温度阈值,转换开关导通所述液态电解质电芯,使用所述液态电解质电芯供电;
若所述固态电解质电芯的温度大于第二温度阈值,且小于或者等于第三温度阈值,转换开关导通所述固态电解质电芯以及所述液态电解质电芯,使用所述固态电解质电芯和所述液体电解质电芯同时供电;
若所述固态电解质电芯的温度大于第三温度阈值,且小于或者等于第四温度阈值,转换开关断开与所述液态电解质电芯的连接,使用所述固态电解质电芯供电;
所述第四温度阈值大于所述第三温度阈值,所述第三温度阈值大于所述第二温度阈值,所述第二温度阈值大于所述第一温度阈值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,在使用温度传感器检测固态电解质电芯的温度之后,所述方法还包括:
将检测到的所述固态电解质电芯的温度发送至电池管理单元。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述转换开关导通所述液态电解质电芯,包括:
接收所述电池管理单元发送的第一指令;
所述转换开关根据所述第一指令导通所述液态电解质电芯。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述转换开关导通所述固态电解质电芯以及所述液态电解质电芯,包括:
接收所述电池管理单元发送的第二指令;
所述转换开关根据所述第二指令导通所述液态电解质电芯以及所述液态电解质电芯。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,转换开关断开与所述液态电解质电芯的连接,包括:
接收所述电池管理单元发送的第三指令;
所述转换开关根据所述第三指令断开与所述液态电解质电芯的连接。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第一温度阈值位于-45℃到-35℃之间;
所述第二温度阈值位于35℃到45℃之间;
所述第三温度阈值位于55℃到65℃之间;
所述第四温度阈值位于115℃到125℃之间。
本申请实施例提供的电池、电池系统及电池使用方法,通过在电池内设置有两种材料的电芯,其中一种为液态电解质电芯,另一种为固态电解质电芯,并使得两种材料的电芯直接可以进行热传导,液态电解质电芯在放电过程中会产生热量,利用该热量为固态电解质电芯加热,提高了固态电解质电芯的离子电导率使得固态电解质电芯可以满足输出功率需求,使得具有以上两种电芯的电池能够相比于只有一种液态电解质电芯的电池来说,具有更高的能量密度的效果,解决了现有技术中的使用单一的液态电解质锂离子电芯的电池能量密度较低的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电池的结构示意图;
图2A为本申请实施例提供的电池的第一俯视图;
图2B为本申请实施例提供的电池的第二俯视图;
图2C为本申请实施例提供的电池的第三俯视图;
图3A为本申请实施例提供的电池的第四俯视图;
图3B为本申请实施例提供的电池的第五俯视图;
图3C为本申请实施例提供的电池的第六俯视图;
图4为本申请实施例提供的电池系统实施例的结构示意图;
图5为本申请实施例提供的电池系统实施例的另一结构示意图;
图6为本申请实施例提供的电池使用方法实施例的流程图;
图7为本申请实施例提供的电池使用方法实施例的另一流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
图1为本申请实施例提供的电池的结构示意图,如图1所示,本申请提供的电池,包括:液态电解质电芯1和固态电解质电芯2。其中,液态电解质电芯1的放电过程中会产生热量,而固态电解质电芯2的离子电导率受温度的影响,其可以体现在常温下的固态电解质电芯2离子电导率非常低,严重影响固态电解质电芯2的输出功率。因此,在本申请实施例中,利用液态电解质电芯1与固态电解质电芯2之间能够进行热传导的方式,将液态电解质电芯1产生的热量传递至固态电解质电芯2,使得固态电解质电芯2的温度升高,进而实现提高了固态电解质电芯2的离子电导率的效果。
在一个具体的实现过程中,液态电解质电芯1与固态电解质电芯2接触,通过两种材料的电芯直接接触,使得液态电解质电芯1的热量可以直接传递至固态电解质电芯2,例如,固态电解质电芯2可以围绕在一个液态电解质电芯1的侧壁放置,可以理解的是,固态电解质电芯2有4块。又例如,一个固态电解质电芯2紧贴一个长方形液态电解质电芯1的侧壁。
在一个具体的实现过程中,液态电解质电芯1与固态电解质电芯2之间通过导热管连接。导热管的一端连接液态电解质电芯1,导热管的另一端连接固态电解质电芯1,使得液态电解质电芯1在放电过程中产生的热量,可以通过导热管传递至固态电解质电芯2,为固态电解质电芯2加热。
由于单独一个电芯的额定容量是有限的,当电池应用在需要较大的能量 密度的场景时,例如,电池使用电动汽车中,通常在电池中设置多个电芯,多个电芯之间采用并联或者串联的形式连接,以提高电池的额定容量。因此,在本申请实施例中,液态电解质电芯1可以有N个,N为大于或者等于2的整数,固态电解质电芯2有N个,N为大于或者等于2的整数,指定数量的液态电解质电芯1与指定数量的固态电解质电芯2间隔设置。
在本申请实施例中,其具体实现方式可以如下面三幅图为例进行说明,图2A为本申请实施例提供的电池的第一俯视图,图2B为本申请实施例提供的电池的第二俯视图,图2C为本申请实施例提供的电池的第三俯视图,如图2A所示,液态电解质电芯1有3个,固态电解质电芯2有4个,1个固态电解质电芯2与1个液态电解质电芯1间隔设置。如图2B所示,液态电解质电芯1有4个,固态电解质电芯2有3个,1个固态电解质电芯2与2个液态电解质电芯1间隔设置。如图2C所示,液态电解质电芯1有6个,固态电解质电芯2有3个,1个固态电解质电芯2与3个液态电解质电芯1间隔设置。
可以理解的是,本申请实施例中图2A、图2B、图2C仅为示意性说明,在实际应用中并不限制与两种材料电芯的数量以及排列方式。
在本申请实施例中,由于固态电解质电芯2是柔性的,其可以进行弯折成为其他形状,因此,在一个具体的实现过程中,液态电解质电芯1有N个,N为大于或者等于2的整数,固态电解质电芯2有1个,固态电解质电芯2缠绕在液态电解质电芯1的侧壁。可以理解的是,此时的固态电解质电芯2从俯视角度看形成一个“口字型”。或者,固态电解质电芯2以“蛇形”缠绕在液态电解质电芯1的侧壁,将液态电解质电芯1按照指定数量间隔开。
在本申请实施例中,其具体实现方式可以如下面三幅图为例进行说明,图3A为本申请实施例提供的电池的第四俯视图,图3B为本申请实施例提供的电池的第五俯视图,图3C为本申请实施例提供的电池的第六俯视图,如图3A所示,液态电解质电芯1有6个,固态电解质电芯2有1个,固态电解质电芯2将任意相邻的两个液态电解质电芯1隔开。如图3B所示,液态电解质电芯1有6个,固态电解质电芯2有1个,固态电解质电芯2将液态电解质电芯1两两间隔开。如图3C所示,液态电解质电芯1有6个,固态电解质电芯2有1个,固态电解质电芯2将液态电解质电芯1以3为单位间隔开。
在一个具体的实现过程中,同一个电池中的液态电解质电芯1为钴酸锂 电芯、镍酸锂电芯、锰酸锂电芯、磷酸铁锂电芯以及镍钴锰酸锂电芯中的一种。
在一个具体的实现过程中,同一个电池中的固态电解质电芯2为聚合物固态锂离子电芯,聚合物固态锂离子电芯由聚氧乙烯、聚氧乙烯衍生物、聚硅氧烷以及其衍生物中一种或几种组成基体。
在一个具体的实现过程中,同一个电池中的固态电解质电芯2为聚合物固态锂离子电芯,聚合物固态锂离子电芯由聚醚系、聚丙烯腈系、聚甲基丙烯酸酯、聚偏二氟乙烯、聚碳酸酯、聚硅烷、聚苯乙烯及其嵌段聚合物中一种或几种组成基体。
在一个具体的实现过程中,同一个电池中的液态电解质电芯1的额定功率与固态电解质电芯2的额定功率的比值大于或者等于2。
本申请实施例提供的电池,通过在电池内设置有两种材料的电芯,其中一种为液态电解质电芯1,另一种为固态电解质电芯2,并使得两种材料的电芯直接可以进行热传导,液态电解质电芯1在放电过程中会产生热量,利用该热量为固态电解质电芯2加热,提高了固态电解质电芯2的离子电导率使得固态电解质电芯2可以满足输出功率需求,使得具有以上两种电芯的电池能够,相比于只有一种液态电解质电芯1的电池来说,具有更高的能量密度的效果,解决了现有技术中的使用单一的液态电解质锂离子电芯的电池能量密度较低的问题。
此外,由于固态电解质电芯2因其电解质是不易挥发不易燃易爆的固态聚合物,所以当固态电解质电芯2发生形变以及碰撞时,不容易发生短路以及其他副反应,安全性能较高,因此,将固态电解质电芯2设置在液态电解质电芯1的外侧,可以提高电池的安全性。
实施例二
图4为本申请实施例提供的电池系统实施例的结构示意图,如图4所示,本申请实施例提供的电池系统,可以包括实施例一中的电池11、温度传感器12以及转换开关13。
其中,转换开关13分别与电池11中的液态电解质电芯1和固态电解质电芯2连接,温度传感器12分别与固态电解质电芯2以及转换开关13连接。 温度传感器12用于检测固态电解质电芯2的温度,当固态电解质电芯2的温度较低时,转换开关13导通液态电解质电芯1,断开固态电解质电芯2,使用液态电解质电芯1存储的能量向外部输出电能。随着液态电解质电芯1输出电能,其产生的热量可以为固态电解质电芯2加热,使固态电解质电芯2温度升高。当温度传感器12检测到固态电解质电芯2的温度达到温度阈值时,使用转换开关13导通固态电解质电芯2,使用液态电解质电芯1存储的能量和固态电解质电芯2存储的能量同时向外部输出电能。随着固态电解质电芯2的温度不断升高,当其温度高于液态电解质电芯1的温度时,液态电解质电芯1容易发生安全性问题,例如,自燃或者爆炸等,转换开关断开与液态电解质电芯1的连接,仅使用固态电解质电芯2存储的能量向外部输出电能。
图5为本申请实施例提供的电池系统实施例的另一结构示意图,如图4所示,本申请实施例提供的电池系统,在前述内容的基础上,还可以包括电池管理单元14、温度管理单元15以及动力单元16。
其中,电池管理单元14可以包括两个部件,用于存储数据和指令的存储器和用于信号接收、处理并对电池11以及转换开关13进行控制的微处理器,因此,电池管理单元14与电池11连接。具体地,电池管理单元14可以监控电池11中的液态电解质电芯1和固态电解质电芯2的端电压、充放电电流等工作状态,以及准确估测电池11的荷电状态,保障电池11中的液态电解质电芯1和固态电解质电芯2的荷电状态均可以在合理范围内,防止由于过充电或过放电对电池11的损伤。此外,在本申请实施例中,电池管理单元11对液态电解质电芯1和固态电解质电芯2可以单独进行控制,也可以同时进行控制。
温度管理单元15可以包括两个部件,分别为存储器和微处理器,温度管理单元15与电池11连接。具体地,温度管理单元15可以分别与液态电解质电芯1和固态电解质电芯2连接,温度管理单元15可以分别为液态电解质电芯1的温度和固态电解质电芯2的温度进行控制,控制的方式可以是为液态电解质电芯1和固态电解质电芯2进行加热或者冷却,使得液态电解质电芯1的温度和固态电解质电芯2的温度保持根据需要调整至一定的温度范围内。在一个具体的实现过程中,温度管理单元15可以包括主动式液冷系统或者主动式电阻加热系统等可以对电池的温度进行调整的系统。
在一个具体的实现过程中,动力单元16可以是发动机或者驱动电机,动力单元16与转换开关13连接。动力单元用于使用电池11提供的电能向其他设备提供动力。
本申请实施例提供的电池系统,通过温度传感器12检测固态电解质电芯2的温度,并根据固态电解质电芯2的温度利用转换开关13调整电池系统向外部输出电能的方式,实现了使得具有以上两种电芯的电池能够相比于只有一种液态电解质电芯1的电池系统来说,具有更高的能量密度的效果,同时提高了电池系统的灵活性,加强了电池系统的安全性能的效果,此外,利用该热量为固态电解质加热,提高了能量利用率,解决了现有技术中的使用单一的液态电解质锂离子电芯的电池能量密度较低的问题。
本申请实施例提供的电池系统可以应用于电动汽车中,但不局限于应用在电动汽车中。
实施例三
图6为本申请实施例提供的电池使用方法实施例的流程图,如图6所示,本申请实施例提供的电池使用方法,可以应用在实施例二中的电池系统中,具体可以包括如下步骤:
501、使用温度传感器检测固态电解质电芯的温度。
502、确定固态电解质电芯的温度区间,若固态电解质电芯的温度大于或者等于第一温度阈值且小于或者等于第二温度阈值,执行步骤503,若固态电解质电芯的温度大于第二温度阈值,且小于或者等于第三温度阈值,执行步骤504,若固态电解质电芯的温度大于第三温度阈值,且小于或者等于第四温度阈值,执行步骤505。
需要说明的是,在本申请实施例中,第四温度阈值大于第三温度阈值,第三温度阈值大于第二温度阈值,第二温度阈值大于第一温度阈值。
应用于不同场合的电芯,会根据相应的需求调整电芯其组成成分以及构造,因此,对于不同的电芯,其第一阈值、第二阈值、第三阈值以及第四阈值,根据电芯的特性来进行设定。在一个具体的实现过程中,第一温度阈值为-40℃±5、第二温度阈值为40℃±5、第三温度阈值为60℃±5、第四温度阈值为120℃±10。
503、转换开关导通液态电解质电芯,使用液态电解质电芯供电。
504、转换开关导通固态电解质电芯以及液态电解质电芯,使用固态电解质电芯和液体电解质电芯同时供电。
505、转换开关断开与液态电解质电芯的连接,使用固态电解质电芯供电。
图7为本申请实施例提供的电池使用方法实施例的另一流程图,如图7所示,本申请实施例提供的电池使用方法,在前述内容的基础上,还可以包括如下步骤:
506、将检测到的所述固态电解质电芯的温度发送至电池管理单元。
可以理解的是,在本申请实施例中,通过电池管理单元可以对固态电解质电芯的温度区间进行判断,然后根据固态电解质电芯所在的不同的温度区间,向转换开关发送不同的指令。具体地,若固态电解质电芯的温度大于或者等于第一温度阈值且小于或者等于第二温度阈值,执行步骤507,若所述固态电解质电芯的温度大于第二温度阈值,且小于或者等于第三温度阈值,执行步骤508,若所述固态电解质电芯的温度大于第三温度阈值,且小于或者等于第四温度阈值,执行步骤509。
507、接收电池管理单元发送的第一指令。
使得转换开关根据电池管理单元发送的第一指令导通液态电解质电芯,使用液态电解质电芯供电。
508、接收电池管理单元发送的第二指令。
使得转换开关根据电池管理单元发送的第二指令导通固态电解质电芯以及液态电解质电芯,使用固态电解质电芯和液体电解质电芯同时供电。
509、接收电池管理单元发送的第三指令。
使得转换开关根据电池管理单元发送的第三指令断开与液态电解质电芯的连接,使用固态电解质电芯供电。本申请实施例提供的电池使用方法,通过温度传感器检测固态电解质电芯的温度,并根据固态电解质电芯的温度利用转换开关调整电池系统向外部输出电能的方式,实现了使得具有以上两种电芯的电池能够,相比于只有一种液态电解质电芯1的电池系统来说,具有更高的能量密度的效果,此外,利用液态电解质电芯在放电过程中会产生热量,利用该热量为固态电解质电芯加热,提高了能量利用率,解决了现有技术中的使用单一的液态电解质锂离子电芯的电池能量密度较低的问题。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种电池,其特征在于,包括:液态电解质电芯和固态电解质电芯;所述液态电解质电芯能够与所述固态电解质电芯进行热传导。
  2. 根据权利要求1所述的电池,其特征在于,所述液态电解质电芯与所述固态电解质电芯接触,或者,所述液态电解质电芯与所述固态电解质电芯之间通过导热管连接。
  3. 根据权利要求1所述的电池,其特征在于,所述液态电解质电芯有N个,N为大于或者等于2的整数;所述固态电解质电芯有N个,所述N为大于或者等于2的整数;
    指定数量的所述液态电解质电芯与指定数量的所述固态电解质电芯间隔设置。
  4. 根据权利要求1所述的电池,其特征在于,所述液态电解质电芯有N个,N为大于或者等于2的整数;所述固态电解质电芯有1个;
    所述固态电解质电芯缠绕在所述液态电解质电芯的侧壁,或者,
    所述固态电解质电芯以“蛇形”缠绕在所述液态电解质电芯的侧壁,将所述液态电解质电芯按照指定数量间隔开。
  5. 根据权利要求1~4中任一项所述的电池,其特征在于,所述液态电解质电芯为钴酸锂电芯、镍酸锂电芯、锰酸锂电芯、磷酸铁锂电芯以及镍钴锰酸锂电芯中的一种。
  6. 根据权利要求1~4中任一项所述的电池,其特征在于,所述固态电解质电芯为聚合物固态锂离子电芯,所述聚合物固态锂离子电芯由聚醚系、聚丙烯腈系、聚甲基丙烯酸酯、聚偏二氟乙烯、聚碳酸酯、聚硅烷、聚苯乙烯及其嵌段聚合物中一种或几种组成基体。
  7. 一种电池系统,其特征在于,包括:温度传感器、转换开关以及如权利要求1~6任一项所述的电池;
    所述转换开关分别与所述电池中的液态电解质电芯和固态电解质电芯连接;
    所述温度传感器分别与所述固态电解质电芯以及转换开关连接。
  8. 根据权利要求7所述的电池系统,其特征在于,所述电池系统还包括:电池管理单元;
    所述电池管理单元与所述电池连接。
  9. 根据权利要求7所述的电池系统,其特征在于,所述电池系统还包括:温度管理单元;
    所述温度管理单元与所述电池连接。
  10. 根据权利要求7~9中任一项所述的系统,其特征在于,所述电池系统还包括:动力单元;
    所述动力单元与所述转换开关连接。
  11. 一种电池使用方法,应用于包括固态电解质电芯和液态电解质电芯的电池,其特征在于,所述方法包括:
    使用温度传感器检测固态电解质电芯的温度;
    若固态电解质电芯的温度大于或者等于第一温度阈值且小于或者等于第二温度阈值,转换开关导通所述液态电解质电芯,使用所述液态电解质电芯供电;
    若所述固态电解质电芯的温度大于第二温度阈值,且小于或者等于第三温度阈值,转换开关导通所述固态电解质电芯以及所述液态电解质电芯,使用所述固态电解质电芯和所述液体电解质电芯同时供电;
    若所述固态电解质电芯的温度大于第三温度阈值,且小于或者等于第四温度阈值,转换开关断开与所述液态电解质电芯的连接,使用所述固态电解质电芯供电;
    所述第四温度阈值大于所述第三温度阈值,所述第三温度阈值大于所述第二温度阈值,所述第二温度阈值大于所述第一温度阈值。
  12. 根据权利要求11所述的方法,其特征在于,在使用温度传感器检测固态电解质电芯的温度之后,所述方法还包括:
    将检测到的所述固态电解质电芯的温度发送至电池管理单元。
  13. 根据权利要求11所述的方法,其特征在于,所述转换开关导通所述液态电解质电芯,包括:
    接收所述电池管理单元发送的第一指令;
    所述转换开关根据所述第一指令导通所述液态电解质电芯。
  14. 根据权利要求11所述的方法,其特征在于,所述转换开关导通所述固态电解质电芯以及所述液态电解质电芯,包括:
    接收所述电池管理单元发送的第二指令;
    所述转换开关根据所述第二指令导通所述液态电解质电芯以及所述液态电解质电芯。
  15. 根据权利要求11所述的方法,其特征在于,转换开关断开与所述液态电解质电芯的连接,包括:
    接收所述电池管理单元发送的第三指令;
    所述转换开关根据所述第三指令断开与所述液态电解质电芯的连接。
  16. 根据权利要求11~15中任一项所述的方法,其特征在于,所述第一温度阈值位于-45℃到-35℃之间;
    所述第二温度阈值位于35℃到45℃之间;
    所述第三温度阈值位于55℃到65℃之间;
    所述第四温度阈值位于115℃到125℃之间。
PCT/CN2017/093196 2017-04-12 2017-07-17 电池、电池系统及电池使用方法 WO2018188223A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710236590.1 2017-04-12
CN201710236590.1A CN108695565A (zh) 2017-04-12 2017-04-12 电池、电池系统及电池使用方法

Publications (1)

Publication Number Publication Date
WO2018188223A1 true WO2018188223A1 (zh) 2018-10-18

Family

ID=63792263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093196 WO2018188223A1 (zh) 2017-04-12 2017-07-17 电池、电池系统及电池使用方法

Country Status (2)

Country Link
CN (1) CN108695565A (zh)
WO (1) WO2018188223A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713321A (zh) * 2021-01-08 2021-04-27 华能陇东能源有限责任公司 一种固态电池和液态电池混合的储能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100622A (ja) * 2009-11-06 2011-05-19 Toyota Motor Corp 固体電池システム
CN102610858A (zh) * 2012-03-06 2012-07-25 宁德新能源科技有限公司 一种锂离子电池及其制备方法
CN103531840A (zh) * 2013-11-01 2014-01-22 中国科学院上海硅酸盐研究所 一种双电解质体系锂硫电池及其制备方法
CN103608960A (zh) * 2012-04-20 2014-02-26 Lg化学株式会社 电极组件、以及电池单元和包括其的装置
CN105990609A (zh) * 2015-02-03 2016-10-05 微宏动力系统(湖州)有限公司 电池组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100622A (ja) * 2009-11-06 2011-05-19 Toyota Motor Corp 固体電池システム
CN102610858A (zh) * 2012-03-06 2012-07-25 宁德新能源科技有限公司 一种锂离子电池及其制备方法
CN103608960A (zh) * 2012-04-20 2014-02-26 Lg化学株式会社 电极组件、以及电池单元和包括其的装置
CN103531840A (zh) * 2013-11-01 2014-01-22 中国科学院上海硅酸盐研究所 一种双电解质体系锂硫电池及其制备方法
CN105990609A (zh) * 2015-02-03 2016-10-05 微宏动力系统(湖州)有限公司 电池组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713321A (zh) * 2021-01-08 2021-04-27 华能陇东能源有限责任公司 一种固态电池和液态电池混合的储能系统

Also Published As

Publication number Publication date
CN108695565A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN107768716B (zh) 凝胶电解质及其前驱物
US10847988B2 (en) Secondary battery charging apparatus, temperature information acquisition device, secondary battery charging method, in-situ measurement method of electrochemical impedance spectrum
Horiba Lithium-ion battery systems
JP5210776B2 (ja) リチウムイオン二次電池の充放電制御装置
JP2013081357A (ja) 二次電池の制御装置
CN113782811B (zh) 用电设备及电化学装置的加热方法
JP2016522971A (ja) 複数の抵抗レベルを有する蓄電池
CN114050336A (zh) 电池
US9634350B2 (en) Energy storage device
CN102427123A (zh) 锂离子二次电池及其正极片
JP5705046B2 (ja) 電源システム
JP2012009283A (ja) リチウムイオン二次電池
WO2023029002A1 (zh) 负极集流体、含有其的二次电池、电池模块、电池包及用电装置
WO2024012166A1 (zh) 二次电池及用电装置
WO2018188223A1 (zh) 电池、电池系统及电池使用方法
WO2023142024A1 (zh) 一种长寿命二次电池及电池模块、电池包和用电装置
WO2022000329A1 (zh) 一种电化学装置及电子装置
JPWO2018135668A1 (ja) リチウムイオン組電池
CN113937424A (zh) 电芯组件、电池组件及电子设备
CN216435982U (zh) 电池
WO2023134223A1 (zh) 电池包和用电装置
KR20150023113A (ko) 가스이동파이프를 포함하는 배터리 팩
WO2024077591A1 (zh) 内串联电池及用电装置
CN203536996U (zh) 一种给串联锂电池组中的单体电池充电装置
WO2024007148A1 (zh) 复式极片、电极组件、二次电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905034

Country of ref document: EP

Kind code of ref document: A1