WO2019223366A1 - 用于制作显示基板的方法、用于制作掩膜板的方法和显示装置 - Google Patents

用于制作显示基板的方法、用于制作掩膜板的方法和显示装置 Download PDF

Info

Publication number
WO2019223366A1
WO2019223366A1 PCT/CN2019/074123 CN2019074123W WO2019223366A1 WO 2019223366 A1 WO2019223366 A1 WO 2019223366A1 CN 2019074123 W CN2019074123 W CN 2019074123W WO 2019223366 A1 WO2019223366 A1 WO 2019223366A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
mask plate
mask
conductive
Prior art date
Application number
PCT/CN2019/074123
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
陈小川
王辉
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/493,189 priority Critical patent/US11355708B2/en
Publication of WO2019223366A1 publication Critical patent/WO2019223366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present disclosure relates to the field of manufacturing a display, and particularly to a method for manufacturing a display substrate, a method for manufacturing a mask plate, and a display device.
  • OLED displays are one of the hotspots in the research field of flat panel displays today. Compared with liquid crystal displays, OLED displays have the advantages of low energy consumption, low production costs, self-emission, wide viewing angle, and fast response speed. At present, OLED displays have begun to replace traditional LCD displays in display areas such as mobile phones, personal digital assistants (PDAs), and digital cameras. However, in related technologies, OLED display screens (for example, OLED display screens with an in-cell touch function) have problems such as high process difficulty, and thus hinder the promotion and application of related products.
  • a method for manufacturing a display substrate includes the steps of: providing a first substrate; providing a mask plate opposite to the first substrate, wherein the mask plate includes one or more light transmitting regions, and the mask plate faces all the A conductive material is provided on a surface of the first substrate; and a surface of the mask plate away from the first substrate is irradiated with light, so that the conductive material is transferred to a surface of the first substrate facing the mask plate.
  • a conductive layer having one or more conductive portions is formed, wherein a projection of each of the one or more conductive portions on the mask plate coincides with a corresponding light transmitting region.
  • the step of providing the mask plate includes: providing a base substrate; and facing the base substrate on the base substrate.
  • a light-shielding layer including one or more openings is formed on the surface of the first substrate, and each of the one or more openings coincides with a corresponding light-transmitting area; and
  • a planarization layer is formed on the surface.
  • the light shielding layer includes a metal material configured to reflect the light.
  • the light shielding layer includes at least one of silver, molybdenum, tungsten, and nickel.
  • the planarization layer is configured to conduct heat in a direction perpendicular to the base substrate.
  • the method for manufacturing a display substrate further includes the following steps: forming a metal line in the planarization layer in a direction perpendicular to the substrate substrate; Or thermally conductive particles.
  • the method for manufacturing a display substrate further includes the following steps: before irradiating the surface of the mask plate away from the first substrate with light, the first A substrate and the mask are placed in a vacuum environment.
  • the light is configured to vertically illuminate a surface of the mask plate away from the first substrate.
  • the display substrate includes an OLED touch display substrate, and the conductive layer includes the OLED touch display substrate.
  • Cathode touch conductive layer in a method for manufacturing a display substrate provided by an embodiment of the present disclosure, the display substrate includes an OLED touch display substrate, and the conductive layer includes the OLED touch display substrate. Cathode touch conductive layer.
  • a method for making a mask includes: providing a base substrate; and forming a light-shielding layer including one or more openings on the base substrate, each of the one or more openings corresponding to one And the light-transmitting regions overlap; and a planarization layer is formed on a surface of the light-shielding layer away from the base substrate.
  • a display device is also provided.
  • the display device includes a display substrate manufactured by the method according to any one of the preceding embodiments.
  • FIG. 1 schematically illustrates a flowchart of a method for manufacturing a display substrate according to an embodiment of the present disclosure
  • FIG. 4 schematically illustrates a flowchart of a method for making a mask plate according to an embodiment of the present disclosure
  • FIG. 5 schematically illustrates a configuration diagram of a display device according to an embodiment of the present disclosure.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections. Moreover, such connections can also be direct or indirect.
  • FIG. 1 schematically illustrates a flowchart of a method for manufacturing a display substrate according to an embodiment of the present disclosure.
  • a method for manufacturing a display substrate includes the following steps: Step 101: Fabricate a first substrate; S102: Provide a mask plate opposite to the first substrate, wherein the mask plate includes one or more A light-transmitting area, and a conductive material is provided on a surface of the mask plate facing the first substrate; and step 103, irradiating the surface of the mask plate away from the first substrate with light, so that the conductive material Material is transferred onto the surface of the first substrate facing the mask, thereby forming a conductive layer having one or more conductive portions.
  • the conductive material may be a transparent conductive material. Specifically, any one of indium tin oxide, indium zinc oxide, indium gallium zinc oxide, and indium tin zinc oxide, or a magnesium-silver composite metal material may be used.
  • the display substrate may be a substrate structure including a conductive layer in any display device, for example, a display panel, an active matrix substrate, a touch panel, and a display touch panel. Panels, Array Substrates, Color Filters, or any of the above intermediate products in the production process (for example, product motherboards that can obtain multiple products by cutting).
  • the conductive layer may be, for example, a touch electrode layer in a touch panel, an anode conductive layer and / or a cathode conductive layer in an OLED display panel, or an OLED cathode and a touch electrode that are reused in an OLED display touch panel. The cathode touches the conductive layer.
  • first substrate refers to a display substrate that is in an unfinished state when a conductive layer is to be manufactured during the manufacturing process of the display substrate, and the lower surface of the first substrate (that is, the surface facing the mask plate) ) Is a surface on which a conductive layer is to be formed.
  • the surface of the first substrate on which the conductive layer is to be formed is placed facing down, that is, facing the mask plate.
  • the mask plate is located below the first substrate, and a conductive material is provided on an upper surface of the mask plate (that is, a surface facing the first substrate).
  • the above-mentioned light refers to light capable of converting its own energy into the internal energy of the irradiated conductive material to increase its temperature.
  • a suitable light may be selected in the infrared band in which the thermal effect is more significant according to the material type of the conductive material.
  • the irradiated conductive material when being in a vacuum environment, is transferred (specifically, vapor-deposited) in a vertical direction after being heated to a certain temperature onto the lower surface of the first substrate above.
  • unirradiated conductive materials can remain unchanged at low temperatures.
  • a patterned conductive layer may be formed on the lower surface of the first substrate, for example, including one or more conductive portions. It can be understood that the heated portion of the conductive material will correspond to the conductive portion of the conductive layer. Therefore, by designing the area where the conductive material is illuminated by light, a specific pattern of the required conductive layer, that is, a specific distribution of one or more conductive portions can be obtained.
  • the lateral conduction of heat in the conductive material i.e., the conduction in the extension plane of the mask
  • the lateral conduction of heat in the conductive material can be suppressed, so that the distribution of the conductive portion in the conductive layer can be controlled more accurately and easily.
  • collisions between gas molecules in a low-vacuum environment or an air environment will adversely change the movement path of gaseous conductive material molecules, thereby causing undesirable changes in the distribution of the conductive portions in the conductive layer.
  • an appropriate vacuum degree of the environment may be selected according to a desired distribution accuracy of the conductive portion.
  • the mask is configured to be able to transmit the light, at least in a region where the conductive material is expected to be irradiated.
  • the mask is transparent to the entire light.
  • the light may be vertically irradiated onto the lower surface of the mask only in the area where the conductive material is expected to be irradiated, so that the light vertically passes through the area of the mask where the conductive material is desired to be irradiated.
  • the mask is provided with a patterned light-shielding layer (ie, including one or more openings) capable of blocking light from passing through.
  • the light can be vertically irradiated onto the lower surface of the mask in the form of parallel light beams, so that only in the opening area of the light shielding layer, the light can vertically pass through the mask and be irradiated onto the conductive material.
  • any suitable irradiation realization manner may be selected, and the present disclosure may not be limited to the above examples.
  • a combination of the above two examples may also be selected to irradiate the conductive material.
  • the conductive layer in particular, one or more of the conductive portions, is formed by thermally evaporating the conductive material onto the surface of the substrate. Therefore, compared with the high-precision metal mask (FMM) used in the related art, the process difficulty is greatly reduced.
  • the thermal evaporation method is also beneficial to improve the formation accuracy of the patterned conductive layer, and it is not necessary to use a structure such as a retaining wall to separate different parts of the conductive layer.
  • the mask may include a base substrate 21, a light-shielding layer 22, and a planarization layer 23, wherein the light-shielding layer 22 including one or more openings 220 is located on the base substrate 21 and is planarized.
  • the layer 23 covers the light shielding layer 22 and the base substrate 21, and the entire surface of the conductive material 30 covers the planarization layer 23.
  • the light shielding layer 22 may be formed of a metal material (for example, at least one of silver, molybdenum, tungsten, and nickel). Accordingly, the light shielding layer 22 can achieve light shielding by reflecting light.
  • the base substrate 21 and the planarization layer 23 may be formed of a transparent material having a high transmittance to light and a low absorbance to light.
  • a transparent material having a high transmittance to light and a low absorbance to light.
  • an inorganic glass or an organic polymer material may be selected to form the base substrate 21 and the planarization layer 23.
  • the planarization layer 23 may be configured to conduct heat in a thickness direction (that is, a direction perpendicular to the mask plate).
  • a heat conduction channel may be formed in the thickness direction of the planarization layer 23 by a metal wire or thermally conductive particles.
  • the heat absorbed by the base substrate 21 and the planarization layer 23 will be able to be conducted to the conductive material 30 in the thickness direction.
  • the heating efficiency for the conductive material 30 is too low, or that heat is accumulated in the base substrate 21 and the planarization layer 23, thereby causing local overheating.
  • the first substrate 10 is placed opposite to the mask plate. Specifically, in the first substrate 10, a surface for forming a conductive layer thereon faces downward, and a mask plate is horizontally placed below the first substrate 10. At this time, optionally, the surrounding environment is a vacuum environment. Under such conditions, light rays (shown by solid-line arrows in FIGS. 2 and 3) vertically irradiate the lower surface of the base substrate 21 in the mask.
  • the irradiated portion of the conductive material 30 in the light-transmitting region A1 is evaporated to a gaseous state after being heated to a certain temperature. Then, the gaseous molecules in a vacuum state move in the vertical direction to the lower surface of the first substrate 10 directly above and are deposited there.
  • a patterned conductive layer 11 may be formed on the lower surface of the first substrate 10 and includes, for example, one or more conductive portions 110.
  • the illuminated portion of the conductive material 30 is actually defined by the opening 220 of the light shielding layer 22. Therefore, as shown in FIG. 3, the distribution pattern of the one or more openings 220 in the light shielding layer 22 will remain the same as the distribution pattern of the one or more conductive portions 110 in the conductive layer 11. That is, through the pattern design of the openings 220 in the light-shielding layer 22, the required pattern distribution of the conductive portions 110 in the conductive layer 11 can be obtained.
  • the conductive material 30 is formed on the mask plate as a consumable or a raw material.
  • a whole surface of the conductive material 30 may be formed on the planarization layer 23 of the mask for use in the subsequent manufacturing process of the conductive layer 11.
  • the conductive material 30 formed on the mask is used to form the conductive layer 11 by a vacuum deposition method of thermal deposition. Therefore, the conductive material 30 should have good thermal contact with the mask and be easily separated from the mask when heated. Therefore, the conductive material 30 may be formed on the mask using a vacuum coating method, for example.
  • the remaining conductive material 30 on the planarizing layer 23 of the mask can be removed or recovered by way of example, so that the mask can be used in the next process of manufacturing the conductive layer 11. continue to use.
  • FIG. 4 schematically illustrates a flowchart of a method for manufacturing a mask plate according to an embodiment of the present disclosure.
  • the mask plate is a mask plate used in any one of the methods for manufacturing a display substrate described above.
  • the manufacturing method of the mask plate includes the following steps 201, 202 and 203.
  • Step 201 Provide a base substrate.
  • Step 202 Form a light-shielding layer including one or more openings on the base substrate. Further, each of the one or more openings coincides with a light transmitting region corresponding to one of the mask plates.
  • a physical vapor deposition (PVD) process of a metal material may be used to deposit a metal film layer on the surface of the base substrate. Further, the metal film layer can be selectively etched to form a patterned light-shielding layer in the following manner: a photoresist is applied on the metal film layer by, for example, spin coating, and then ultraviolet light is used.
  • PVD physical vapor deposition
  • Step 203 A planarization layer is formed on a surface of the light shielding layer far from the substrate.
  • a chemical vapor deposition (CVD) process can be used on the light shielding layer and the substrate to form the planarization layer, and further, the upper surface of the deposited planarization layer is flat. Since then, the manufacturing process of the mask itself has been completed.
  • CVD chemical vapor deposition
  • a conductive material may be further formed on the surface of the planarization layer away from the base substrate.
  • the conductive material used to form the conductive layer may be coated on the planarization layer in a vacuum coating manner.
  • the manufacturing process of the mask plate and / or the coating process of the conductive material on the mask plate may be included simultaneously. Therefore, at least one step in the manufacturing method of the mask plate may be included in a process of the manufacturing method of the display panel.
  • an embodiment of the present disclosure also provides a display device.
  • the display device includes a display substrate manufactured by any one of the above-mentioned manufacturing methods of a display substrate.
  • the display device may be a product or component having a display function, such as a display panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device 400 includes sub-pixel units Px arranged in rows and columns in a display area.
  • each cathode touch pattern in the conductive layer may respectively cover a plurality of rows and columns of sub-pixel units Px, and each sub-pixel unit Px is located under the coverage of one cathode touch pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

用于制作显示基板的方法、用于制作掩膜板的方法和显示装置。用于制作显示基板的方法包括以下步骤:提供第一基板(101);提供与第一基板相对的掩膜板,其中,掩膜板包括一个或多个透光区域,并且在掩膜板面向第一基板的表面上提供有导电材料(102);以及采用光线照射掩膜板远离第一基板的表面,使得导电材料被转移到第一基板面向掩膜板的表面上,从而形成具有一个或多个导电部分的导电层(103),其中,一个或多个导电部分中的每一个在掩膜板上的投影与一个对应的透光区域重合。

Description

用于制作显示基板的方法、用于制作掩膜板的方法和显示装置
对相关申请的交叉引用
本申请要求2018年5月23日提交的中国专利申请号201810503120.1的优先权,该中国专利申请以其整体通过引用并入本文。
技术领域
本公开涉及显示器的制造领域,特别地涉及用于制作显示基板的方法、用于制作掩膜板的方法和显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器是当今平板显示器的研究领域中的热点之一。与液晶显示器相比,OLED显示器具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点。目前,OLED显示屏已经开始在手机、掌上电脑(Personal Digital Assistant,PDA)、数码相机等显示领域中取代传统的液晶显示屏。但是,在相关技术中,OLED显示屏(例如,具有内嵌触控功能的OLED显示屏)存在着工艺难度高等问题,并且因此为相关产品的推广和应用造成了阻碍。
发明内容
根据本公开的一方面,提供了一种用于制作显示基板的方法。所述方法包括以下步骤:提供第一基板;提供与所述第一基板相对的掩膜板,其中,所述掩膜板包括一个或多个透光区域,并且在所述掩膜板面向所述第一基板的表面上提供有导电材料;以及采用光线照射所述掩膜板远离所述第一基板的表面,使得所述导电材料被转移到所述第一基板面向所述掩膜板的表面上,从而形成具有一个或多个导电部分的导电层,其中,所述一个或多个导电部分中的每一个在所述掩膜板上的投影与一个对应的透光区域重合。
根据一种可能的实现方式,在由本公开的实施例提供的用于制作显示基板的方法中,提供所述掩膜板的步骤包括:提供衬底基板;在 所述衬底基板上面向所述第一基板的表面上形成包括一个或多个开口的遮光层,所述一个或多个开口中的每一个与一个对应的透光区域重合;以及在所述遮光层远离所述衬底基板的表面之上形成平坦化层。
根据一种可能的实现方式,在由本公开的实施例提供的用于制作显示基板的方法中,所述遮光层包括金属材料,所述金属材料配置为反射所述光线。
根据一种可能的实现方式,在由本公开的实施例提供的用于制作显示基板的方法中,所述遮光层包括银、钼、钨和镍中的至少一种。
根据一种可能的实现方式,在由本公开的实施例提供的用于制作显示基板的方法中,所述平坦化层配置为在垂直于所述衬底基板的方向上导热。
根据一种可能的实现方式,由本公开的实施例提供的用于制作显示基板的方法还包括以下步骤:沿着垂直于所述衬底基板的方向,在所述平坦化层中形成包括金属线或导热微粒的导热通道。
根据一种可能的实现方式,由本公开的实施例提供的用于制作显示基板的方法还包括以下步骤:在采用光线照射所述掩膜板远离所述第一基板的表面之前,将所述第一基板与所述掩模板放置于真空环境中。
根据一种可能的实现方式,在由本公开的实施例提供的用于制作显示基板的方法中,所述光线配置为垂直地照射所述掩膜板远离所述第一基板的表面。
根据一种可能的实现方式,在由本公开的实施例提供的用于制作显示基板的方法中,所述显示基板包括OLED触控显示基板,并且所述导电层包括所述OLED触控显示基板中的阴极触控导电层。
根据本公开的另一方面,还提供了一种用于制作掩膜板的方法,其中,所述掩膜板配置为在根据前面任一个实施例所述的方法中使用。具体地,用于制作掩膜板的方法包括:提供衬底基板;在所述衬底基板上形成包括一个或多个开口的遮光层,所述一个或多个开口中的每一个与一个对应的透光区域重合;以及在所述遮光层远离所述衬底基板的表面之上形成平坦化层。
根据本公开的又一方面,还提供了一种显示装置。所述显示装置包括通过前面任一个实施例所述的方法制作的显示基板。
附图说明
为了更清楚地说明本公开的实施例中的技术方案,下面将对实施例的描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例。这些附图的合理变型也应当涵盖在本公开的保护范围中。
图1示意性示出了根据本公开的一个实施例的用于制作显示基板的方法的流程图;
图2和图3分别示意性示出了根据本公开的另一个实施例的用于制作显示基板的方法的过程图;
图4示意性示出了根据本公开的一个实施例的用于制作掩膜板的方法的流程图;以及
图5示意性示出了根据本公开的一个实施例的显示装置的结构图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开的实施方式作进一步地详细描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都落入本公开的保护范围内。除非另外定义,否则在本公开中使用的技术术语或者科学术语应当为本公开所属技术领域内的一般技术人士所理解的通常意义。在本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同个体。“包括”或者类似的词语意指出现在该词前面的元件或者物件涵盖在该词后面列举的元件或者物件及其等同物,而同时不排除其它元件或者物件。“连接”或者“相连”等类似的词语并不限于物理的或者机械的连接,而是可以包括电性的连接。而且,这样的连接还可以是直接的或间接的。
图1示意性示出了根据本公开的一个实施例的用于制作显示基板的方法的流程图。参见图1,用于制作显示基板的方法包括以下步骤:步骤101、制作第一基板;S102、提供与所述第一基板相对的掩膜板,其中,所述掩膜板包括一个或多个透光区域,并且在所述掩膜板面向 所述第一基板的表面上提供有导电材料;以及步骤103、采用光线照射所述掩膜板远离所述第一基板的表面,使得所述导电材料被转移到所述第一基板面向所述掩膜板的表面上,从而形成具有一个或多个导电部分的导电层。进一步地,所述一个或多个导电部分中的每一个在所述掩膜板上的投影与一个对应的透光区域重合。其中,导电材料可以为透明导电材料,具体地,可以氧化铟锡、氧化铟锌、氧化铟镓锌和氧化铟锡锌任意一种,或者包括镁银复合金属材料。
需要说明的是,所述显示基板可以是任意一种显示装置中、包含导电层的基板结构,例如,显示面板、有源矩阵(Active Matrix)基板、触控面板(Touch Panel)、显示触控面板、阵列基板(Array Substrate)、彩膜基板(Color Filter),或者以上任一个在生产过程中的中间产品(比如,通过切割可以得到多个产品的产品母板)。所述导电层可以例如是触控面板中的触控电极层、OLED显示面板中的阳极导电层和/或阴极导电层、或者OLED显示触控面板中被复用为OLED阴极和触控电极的阴极触控导电层。
应理解的是,上述第一基板指的是在显示基板的制作过程中将要制作导电层时处于未完成状态的显示基板,并且所述第一基板的下表面(即,面向掩膜板的表面)为将要在其上形成导电层的表面。
还应理解的是,在导电层的形成过程中,第一基板的、用于在其上形成导电层的表面朝下放置,即,面向掩膜板。此时,掩膜板位于第一基板下方,并且掩膜板的上表面(即,面向第一基板的表面)上设置有导电材料。上述光线指的是能够将自身能量转化为所照射的导电材料的内能以使其温度升高的光线。作为示例,可以依照导电材料的材料类型在其中热效应比较显著的红外波段中选取适合的光线。示例性地,当处于真空环境中时,被照射的导电材料会在加热到一定温度之后沿竖直方向转移(具体地,蒸镀)到处于上方的第一基板的下表面上。与此同时,未被照射的导电材料则可以在低温下保持不变。如此,可以在第一基板的下表面上形成图案化的导电层,例如,包括一个或多个导电部分。可以理解的是,导电材料中被加热的部分将对应于导电层的导电部分。因此,通过设计导电材料被光线照射的区域,可以获得所需要的导电层的特定图案,即,一个或多个导电部分的特定分布。应理解的是,热量在导电材料中的横向传导(即,在掩膜板 的延伸平面中的传导)会不利地使导电材料实际被蒸镀的区域略大于被光线照射的区域。因此,通过导电材料的选取和/或阻热结构的设置,可以抑制热量在导电材料中的横向传导,使得更精确地和更容易地控制导电层中的导电部分的分布。而且,低真空环境或者空气环境中的气体分子之间的碰撞将会不利地改变气态导电材料分子的移动路径,从而使得导电层中的导电部分的分布发生不合期望的变化。鉴于此,根据本公开的实施例,可以依照所期望的导电部分的分布精度来选择环境的合适真空度。
关于上述掩膜板,应当理解的是,至少在期望导电材料被照射到的区域内,所述掩膜板配置为能够透过上述光线。在一个示例中,所述掩膜板整面对所述光线透明。此时,光线可以仅在期望导电材料被照射到的区域内垂直地照射到掩膜板的下表面上,使得光线垂直地透过掩膜板中期望导电材料被照射到的区域。在又一个示例中,所述掩膜板中设置有能够阻止光线透过的图案化遮光层(即,包括一个或多个开口)。此时,光线可以以平行光束的形式整面垂直地照射到掩膜板的下表面上,使得只有在遮光层的开口区域内才有光线垂直地透过掩膜板并照射到导电材料上。当然,按照所期望的方式,可以选择任何适合的照射实现方式,并且本公开可以不仅限于以上示例。作为示例,在本公开的其它实施例中,还可以选用上述两个示例的结合来对导电材料进行照射。
可以看出,在本公开的实施例中,导电层,特别地,其中的一个或多个导电部分,是通过将导电材料热蒸发到基板表面上而形成的。因此,相比于相关技术中使用的高精细金属掩膜(Fine Metal Mask,FMM)而言,工艺难度大大降低。而且,热蒸发方式还有利于提升图案化导电层的形成精度,并且无需利用挡墙之类的结构来分隔导电层的不同部分。因而,通过本公开的实施例,还能够省去用于分隔导电层中的不同电极之间的结构的设置和制作。因此,根据本公开的实施例,用于导电层的制作工艺能够得以简化,从而有利于简化触控OLED显示屏的制作工艺并且提升OLED显示屏的产品性能。
图2和图3示意性示出了根据本公开的实施例的用于制作显示基板的方法的过程图。如图2和图3所示,掩膜板可以包括衬底基板21、遮光层22和平坦化层23,其中,包括一个或多个开口220的遮光层 22位于衬底基板21上,平坦化层23覆盖于遮光层22和衬底基板21之上,并且整面的导电材料30覆盖于平坦化层23上。在一个示例中,遮光层22可以由金属材料(例如,银、钼、钨、镍中的至少一种)形成。由此,遮光层22可以通过反射光线而实现遮光。衬底基板21和平坦化层23可以采用对光线的透射率高并且对光线的吸收率小的透明材料形成。例如,可以选择无机玻璃或者有机高分子材料来形成衬底基板21和平坦化层23。此外,在衬底基板21和平坦化层23对光线的吸收率均比较高的情况下,还可以将平坦化层23配置为在厚度方向(即,垂直于掩膜板的方向)上导热。例如,在期望导电材料30被照射从而蒸发的区域A1(即,掩膜板的透光区域)内,可以通过金属线或导热微粒在平坦化层23的厚度方向上形成导热通道。在这样的情况下,被衬底基板21和平坦化层23吸收的热量将能够沿厚度方向传导到导电材料30。由此,可以避免针对导电材料30的加热效率过低,或者热量在衬底基板21和平坦化层23内累积从而导致局部过热。
如图2所示,在形成导电层11时,第一基板10与掩膜板相对放置。具体地,在第一基板10中,用于在其上形成导电层的表面朝下,并且掩膜板水平放置在第一基板10下方。此时,可选地,周围环境为真空环境。在这样的条件下,光线(在图2和图3中以实线箭头示出)垂直地照射到掩膜板中的衬底基板21的下表面。在此之后的传播过程中,照射到遮光层22的非开口区域中的光线会被反射回去,而照射到遮光层22的开口区域220中的光线会透过衬底基板21和平坦化层23并且最终照射到导电材料30上。由此,如图3所示,被照射的、处于透光区域A1内的导电材料30的部分会在加热到一定温度之后被蒸发为气态。然后,处于真空状态下的气态分子会沿竖直方向移动到正上方的第一基板10的下表面并且在那里沉积。与此不同,在透光区域A1以外的、未被照射到的导电材料30的部分可以在低温下保持不变。如此,可以在第一基板10的下表面上形成图案化的导电层11,其包括例如一个或多个导电部分110。此外,由上述示例还可以看出,导电材料30中被照射的部分实际上由遮光层22的开口220限定。因此,如图3所示,遮光层22中的一个或多个开口220的分布图案将与导电层11中的一个或多个导电部分110的分布图案保持相同。也就是说,通过遮光层22中的开口220的图案设计,可以获得所需要的导电层11 中的导电部分110的图案分布。
应理解的是,在用于显示基板的制作过程中,上述导电材料30是作为耗材或者原料而形成在掩膜板上的。在一个示例中,在每次形成导电层11之前,可以在掩膜板的平坦化层23上形成一整面的导电材料30,以供接下来的导电层11的制作过程中使用。需要说明的是,在本公开的实施例中,形成在掩膜板上的导电材料30是用来以热沉积的真空镀膜方式形成导电层11的。因此,导电材料30应当与掩膜板具有良好的热接触,并且容易在受热时与掩膜板分离。因此,可以使用例如真空涂覆的方式在掩膜板上形成导电材料30。而且,在每次完成导电层11的制作之后,还可以示例性地去除或回收掩膜板的平坦化层23上剩余的导电材料30,使得掩膜板可以在下一次制作导电层11的过程中继续使用。
图4示意性示出了根据本公开的一个实施例的用于制作掩膜板的方法的流程图。所述掩膜板是在上述任意一种显示基板的制作方法中使用的掩膜板。参见图4,所述掩膜板的制作方法包括以下步骤201、202和203。
步骤201、提供衬底基板。
步骤202、在衬底基板上形成包括一个或多个开口的遮光层。进一步地,所述一个或多个开口中的每一个与掩膜板的一个对应的透光区域重合。
在一个示例中,在对衬底基板的表面进行清洗和烘干之后,可以在衬底基板的表面上采用金属材料的物理气相沉积(Physical Vapor Deposition,PVD)过程来沉积一个金属膜层。进一步地,还可以采用下述方式对该金属膜层进行选择性刻蚀以形成图案化的遮光层:在金属膜层上采用例如旋涂的方式涂覆一层光刻胶,然后采用紫外光照射待刻蚀区域内的光刻胶以使其充分曝光,再将整个结构置于显影液中以通过显影将待刻蚀区域内的光刻胶全部去除,使用剩余的光刻胶作为掩膜来刻蚀掉待刻蚀区域内的金属膜层部分,并且最后剥离剩余的光刻胶以形成所需要的图案化遮光层。
步骤203、在遮光层远离衬底基板的表面之上形成平坦化层。
在一个示例中,可以在遮光层和衬底基板之上采用化学气相沉积(Chemical Vapor Deposition,CVD)的过程来形成所述平坦化层,并 且进一步地使所沉积的平坦化层的上表面是平面。自此,完成了掩膜板本身的制作过程。
在形成掩膜板本身之后,还可以在平坦化层远离衬底基板的表面上继续形成导电材料。
在一个示例中,可以采用真空涂覆的方式将用于形成导电层的导电材料涂覆在平坦化层之上。
应当理解的是,在执行上述显示面板的制作方法的过程中,可以同时包含掩膜板的制作过程和/或掩膜板上的导电材料的涂敷过程。因此,上述掩膜板的制作方法中的至少一个步骤可以包含在上述显示面板的制作方法的过程中。
基于同样的构思,本公开的实施例还提供了一种显示装置。该显示装置包括通过上述任意一种显示基板的制造方法制得的显示基板。根据本公开的实施例,显示装置可以为诸如显示面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等具有显示功能的产品或部件。在一个示例中,如图5所示,显示装置400包括在显示区域内行列设置的子像素单元Px。在该显示装置的内部,导电层中的每个阴极触控图形可以各自覆盖多行多列的子像素单元Px,并且每个子像素单元Px均位于一个阴极触控图形的覆盖之下。由于所包括的显示基板的制作工艺的简化和性能的提升,该显示装置的制作工艺也可以得到简化,并且相关产品的性能也可以得到提升。
以上所述仅为本公开的实施例,并不用以限制本公开。凡在本公开的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种用于制作显示基板的方法,包括以下步骤:
    提供第一基板;
    提供与所述第一基板相对的掩膜板,其中,所述掩膜板包括一个或多个透光区域,并且在所述掩膜板面向所述第一基板的表面上提供有导电材料;以及
    采用光线照射所述掩膜板远离所述第一基板的表面,使得所述导电材料被转移到所述第一基板面向所述掩膜板的表面上,从而形成具有一个或多个导电部分的导电层,
    其中,所述一个或多个导电部分中的每一个在所述掩膜板上的投影与一个对应的透光区域重合。
  2. 根据权利要求1所述的方法,其中,提供所述掩膜板的步骤包括:
    提供衬底基板;
    在所述衬底基板上面向所述第一基板的表面上形成包括一个或多个开口的遮光层,所述一个或多个开口中的每一个与一个对应的透光区域重合;以及
    在所述遮光层远离所述衬底基板的表面之上形成平坦化层。
  3. 根据权利要求2所述的方法,其中,
    所述遮光层包括金属材料,所述金属材料配置为反射所述光线。
  4. 根据权利要求2所述的方法,其中,
    所述遮光层包括银、钼、钨和镍中的至少一种。
  5. 根据权利要求2所述的方法,其中,
    所述平坦化层配置为在垂直于所述衬底基板的方向上导热。
  6. 根据权利要求5所述的方法,还包括以下步骤:
    沿着垂直于所述衬底基板的方向,在所述平坦化层中形成包括金属线或导热微粒的导热通道。
  7. 根据权利要求1所述的方法,还包括以下步骤:
    在采用光线照射所述掩膜板远离所述第一基板的表面之前,将所述第一基板与所述掩模板放置于真空环境中。
  8. 根据权利要求1所述的方法,其中,
    所述光线配置为垂直地照射所述掩膜板远离所述第一基板的表面。
  9. 根据权利要求1至8中任一项所述的方法,其中,
    所述显示基板包括OLED触控显示基板,并且
    所述导电层包括所述OLED触控显示基板中的阴极触控导电层。
  10. 一种用于制作在根据权利要求1至9中任一项所述的方法中使用的掩膜板的方法,包括:
    提供衬底基板;
    在所述衬底基板上形成包括一个或多个开口的遮光层,所述一个或多个开口中的每一个与一个对应的透光区域重合;以及
    在所述遮光层远离所述衬底基板的表面之上形成平坦化层。
  11. 一种显示装置,包括:通过根据权利要求1至9中任一项所述的方法制作的显示基板。
PCT/CN2019/074123 2018-05-23 2019-01-31 用于制作显示基板的方法、用于制作掩膜板的方法和显示装置 WO2019223366A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/493,189 US11355708B2 (en) 2018-05-23 2019-01-31 Method for manufacturing display substrate, method for manufacturing mask plate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810503120.1 2018-05-23
CN201810503120.1A CN108598132A (zh) 2018-05-23 2018-05-23 显示基板的制作方法、掩膜板的制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2019223366A1 true WO2019223366A1 (zh) 2019-11-28

Family

ID=63632776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074123 WO2019223366A1 (zh) 2018-05-23 2019-01-31 用于制作显示基板的方法、用于制作掩膜板的方法和显示装置

Country Status (3)

Country Link
US (1) US11355708B2 (zh)
CN (1) CN108598132A (zh)
WO (1) WO2019223366A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598132A (zh) * 2018-05-23 2018-09-28 京东方科技集团股份有限公司 显示基板的制作方法、掩膜板的制作方法、显示装置
CN109976060A (zh) * 2019-04-30 2019-07-05 深圳市华星光电技术有限公司 阵列基板及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060128054A1 (en) * 2004-12-14 2006-06-15 Samsung Electronics Co., Ltd. Mask and manufacturing method of a semiconductor device and a thin film transistor array panel using the mask
CN103451598A (zh) * 2013-09-05 2013-12-18 中山新诺科技有限公司 一种oled显示面板生产用新型精细金属掩膜版及制作方法
CN106702319A (zh) * 2017-03-30 2017-05-24 京东方科技集团股份有限公司 一种蒸镀方法
CN108445711A (zh) * 2018-03-13 2018-08-24 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN108598132A (zh) * 2018-05-23 2018-09-28 京东方科技集团股份有限公司 显示基板的制作方法、掩膜板的制作方法、显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10310394A1 (de) * 2003-03-07 2004-09-23 Wma Airsense Analysentechnik Gmbh Verfahren und Meßsystem zur Erfassung von Gefahrstoffen
KR100793355B1 (ko) 2004-10-05 2008-01-11 삼성에스디아이 주식회사 도너 기판의 제조방법 및 유기전계발광표시장치의 제조방법
US7994021B2 (en) * 2006-07-28 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
WO2008091017A1 (en) * 2007-01-24 2008-07-31 Fuji Electric Holdings Co., Ltd. Method of patterning color conversion layer and method of manufacturing organic el display using the patterning method
JP5416987B2 (ja) * 2008-02-29 2014-02-12 株式会社半導体エネルギー研究所 成膜方法及び発光装置の作製方法
JP5244680B2 (ja) * 2008-04-14 2013-07-24 株式会社半導体エネルギー研究所 発光装置の作製方法
CN101378107B (zh) * 2008-09-27 2010-08-11 彩虹集团公司 一种oled显示器件有机发光层形成方法
CN101598706A (zh) * 2009-07-23 2009-12-09 上海华质生物技术有限公司 液相色谱和质谱联用时在线浓缩样品的装置
KR20150056112A (ko) * 2013-11-14 2015-05-26 삼성디스플레이 주식회사 막 형성용 마스크, 이를 이용한 막 형성 방법 및 유기 발광 표시 장치의 제조 방법
CN103760204A (zh) * 2014-02-13 2014-04-30 河海大学 一种利用多壁碳纳米管修饰玻碳电极检测水中17α-乙炔基雌二醇的方法
CN103882374B (zh) * 2014-03-03 2016-01-13 京东方科技集团股份有限公司 掩膜版、有机层加工方法、显示基板制备方法
KR20160003363A (ko) * 2014-06-30 2016-01-11 삼성디스플레이 주식회사 도너마스크 및 유기발광 디스플레이 장치 제조방법
KR20160030002A (ko) * 2014-09-05 2016-03-16 삼성디스플레이 주식회사 도너마스크 및 이를 이용한 유기발광 디스플레이 장치 제조방법
KR20160034529A (ko) * 2014-09-19 2016-03-30 삼성디스플레이 주식회사 광학적 패턴 전사 마스크 및 그의 제조 방법
CN107168578B (zh) * 2017-05-12 2019-09-27 京东方科技集团股份有限公司 内嵌式触控显示面板及其制作方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060128054A1 (en) * 2004-12-14 2006-06-15 Samsung Electronics Co., Ltd. Mask and manufacturing method of a semiconductor device and a thin film transistor array panel using the mask
CN103451598A (zh) * 2013-09-05 2013-12-18 中山新诺科技有限公司 一种oled显示面板生产用新型精细金属掩膜版及制作方法
CN106702319A (zh) * 2017-03-30 2017-05-24 京东方科技集团股份有限公司 一种蒸镀方法
CN108445711A (zh) * 2018-03-13 2018-08-24 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN108598132A (zh) * 2018-05-23 2018-09-28 京东方科技集团股份有限公司 显示基板的制作方法、掩膜板的制作方法、显示装置

Also Published As

Publication number Publication date
US11355708B2 (en) 2022-06-07
CN108598132A (zh) 2018-09-28
US20210359211A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US11506948B2 (en) Array substrate and manufacturing method thereof, display panel and display apparatus
CN101325181B (zh) 薄膜晶体管阵列基板及其制作方法
WO2016041280A1 (zh) 有机电致发光器件及其制备方法、显示装置
CN102955612B (zh) 一种触控传感器、其制备方法及显示装置
WO2020228058A1 (zh) Tft阵列基板及显示面板
JP2018525529A (ja) 小開口の蒸着用マスキングプレート
CN105590896A (zh) 阵列基板的制作方法及制得的阵列基板
WO2019223366A1 (zh) 用于制作显示基板的方法、用于制作掩膜板的方法和显示装置
CN101246285A (zh) 制作感光间隙子的方法
CN104678643B (zh) 显示基板及显示面板的制作方法
CN105223741A (zh) 一种半透半反液晶显示面板及其制造方法
CN102736325A (zh) 一种像素结构及其制造方法、显示装置
US9281325B2 (en) Array substrate, manufacturing method thereof and display device
WO2016173258A1 (zh) 触摸显示屏及其制作方法、显示装置
WO2022088948A1 (zh) 显示面板、显示装置和显示面板的制作方法
WO2018076996A1 (zh) 显示面板及其制备方法
US20190384162A1 (en) Photo-mask and method for manufacturing active switch array substrate thereof
WO2017148052A1 (zh) 阵列基板和包括其的显示装置
CN102707575A (zh) 掩模板及制造阵列基板的方法
CN100499082C (zh) 薄膜晶体管基板及其制造方法
CN100353224C (zh) 制造液晶显示装置的方法
JP7051440B2 (ja) Oledデバイスと作製方法、表示パネル及び表示装置
CN205067930U (zh) 一种半透半反液晶显示面板
WO2018228097A1 (zh) 阵列基板及其制作方法、显示面板、显示装置
WO2015010410A1 (zh) 阵列基板及其制作方法和显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806513

Country of ref document: EP

Kind code of ref document: A1