WO2019221444A1 - 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2019221444A1
WO2019221444A1 PCT/KR2019/005552 KR2019005552W WO2019221444A1 WO 2019221444 A1 WO2019221444 A1 WO 2019221444A1 KR 2019005552 W KR2019005552 W KR 2019005552W WO 2019221444 A1 WO2019221444 A1 WO 2019221444A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
group
layer
same
Prior art date
Application number
PCT/KR2019/005552
Other languages
English (en)
French (fr)
Inventor
박종호
김서연
서상덕
이동훈
박태윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980010672.1A priority Critical patent/CN111655707B/zh
Publication of WO2019221444A1 publication Critical patent/WO2019221444A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention provides a compound represented by Formula 1 and an organic light emitting device including the same.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer has a multi-layered structure composed of different materials in order to increase efficiency and stability of the organic light emitting device.
  • the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • the present specification is to provide an organic light emitting device having a high luminous efficiency or good life characteristics by including the compound represented by the formula (1) in the organic light emitting device.
  • An exemplary embodiment of the present specification provides a compound represented by the following formula (1).
  • L1 and L2 are the same as or different from each other, and each independently a linear or branched chain alkylene group,
  • Y1 and Y2 are the same as or different from each other, and each independently a cycloalkyl group; Heterocyclic ketone group; Carbocyclic ketone group; Monocyclic or polycyclic aliphatic hydrocarbon ring groups; Monocyclic or polycyclic aryl groups; Monocyclic or polycyclic aliphatic heterocyclic groups; Or monocyclic or polycyclic aromatic heterocyclic group,
  • R1, R2, Rx, Ry and Rz are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; A silyl group unsubstituted or substituted with an alkyl group or an aryl group; An alkyl group; Alkenyl groups; Alkynyl group; Aryl group; Or a heterocyclic group,
  • n1 is an integer of 0 to 6, and when n1 is 2 or more, a plurality of-(L1-Y1) are the same as or different from each other,
  • n2 is an integer of 0 to 4, when n2 is 2 or more, a plurality of-(L2-Y2) are the same as or different from each other,
  • n1 and n2 are 1 or more
  • a is an integer of 0 to 6, and when a is 2 or more, a plurality of R1 are the same as or different from each other,
  • b is an integer of 0-4, and when b is two or more, some R ⁇ 2> is the same or different from each other.
  • An exemplary embodiment of the present specification is an organic light emitting device including a first electrode, a second electrode and one or more organic material layers provided between the first electrode and the second electrode, wherein the compound represented by Chemical Formula 1 is 1 It provides an organic light emitting device that is included in at least one layer of the organic material layer of the layer or more.
  • the organic material layer of the organic light emitting device when the organic material layer of the organic light emitting device, in particular, the light emitting layer includes a compound represented by the formula (1) may improve the efficiency of the device or the life characteristics of the device.
  • FIG. 1 illustrates an example of an organic light emitting device including a substrate 1, an anode 2, an organic material layer 3, and a cathode 4.
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a first hole transport layer 6, a second hole transport layer 7, a light emitting layer 8, an electron transport layer 9, an electron injection layer.
  • An example of an organic light emitting element consisting of 10 and a cathode 4 is shown.
  • FIG. 3 shows a substrate 1, an anode 2, a hole injection layer 5, a first hole transport layer 6, a second hole transport layer 7, a light emitting layer 8, an electron injection and transport layer 11 and a cathode.
  • the example of the organic light emitting element which consists of (4) is shown.
  • substituted means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent.
  • the position at which the substituent is substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, the position at which the substituent is substituted.
  • substituents are two or more, two or more substituents may be the same or different from each other.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • a chain alkylene group means a straight chain or branched divalent chain saturated hydrocarbon.
  • the linear chain alkylene group may be methylene, ethylene, propylene, or the like, but is not limited thereto.
  • the branched chain alkylene group may be dimethylmethylene, 1-methylethylene, 2-methylethylene, 1,1-dimethylethylene, or the like, but is not limited thereto.
  • an alkyl group means a straight or branched chain saturated hydrocarbon. Although carbon number of the said alkyl group is not specifically limited, It is preferable that it is 1-20. According to an exemplary embodiment, the alkyl group has 1 to 15 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. The alkyl group may be chain or cyclic.
  • chain alkyl group examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methylbutyl, 1-ethylbutyl, n-pentyl and isopentyl Neopentyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methylpentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 1-ethylpropyl, 1,1-dimethylpropyl, isohexyl, 4-methylhexyl, 5-methylhexyl, and the like. It
  • carbon number of the said cyclic alkyl group is not specifically limited, It is preferable that it is 3-20.
  • the cycloalkyl group has 3 to 16 carbon atoms.
  • the cycloalkyl group has 3 to 12 carbon atoms.
  • the cycloalkyl group has 3 to 8 carbon atoms.
  • Specific examples of the cycloalkyl group include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
  • the alkenyl group represents a hydrocarbon group having a carbon-carbon double bond, and the carbon number is not particularly limited, but is preferably 2 to 30. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. Specific examples of alkenyl groups include, but are not limited to, ethenyl, vinyl, propenyl, allyl, isopropenyl, butenyl, isobutenyl, n-pentenyl and n-hexenyl.
  • the alkynyl group represents a hydrocarbon group having a carbon-carbon triple bond, and the carbon number is not particularly limited, but is preferably 2 to 30. According to an exemplary embodiment, the alkynyl group has 2 to 20 carbon atoms. Specific examples of the alkynyl group include metainyl, ethynyl, 2-propynyl, 2-butynyl, 1-methyl-2-butynyl, 2-pentynyl, and the like, but are not limited thereto.
  • the silyl group may be represented by a chemical formula of -SiR 11 R 12 R 13 , wherein R 11 to R 13 are each independently hydrogen; An alkyl group; Or an aryl group.
  • the alkylsilyl group means a silyl group substituted with an alkyl group
  • the arylsilyl group means a silyl group substituted with an aryl group.
  • the silyl group may be trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, vinyldimethylsilyl, propyldimethylsilyl, triphenylsilyl, diphenylsilyl, phenylsilyl, and the like, but is not limited thereto.
  • the aliphatic hydrocarbon ring means a monovalent aliphatic hydrocarbon ring.
  • the aliphatic hydrocarbon ring means a ring composed of only carbon and hydrogen atoms as a non-aromatic ring.
  • Examples of aliphatic hydrocarbon rings include cyclopropane, cyclobutane, cyclobutene, cyclopentane, cyclopentene, cyclohexane, cyclohexene, 1,4-cyclohexadiene, cycloheptane, cycloheptene, cyclooctane, cyclooctene, etc. It is not limited to this.
  • an aryl group means a monocyclic or polycyclic aromatic hydrocarbon ring composed of only carbon and hydrogen atoms. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms.
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group.
  • the monocyclic aryl groups include, but are not limited to, phenyl, biphenyl, terphenyl, and the like.
  • polycyclic aryl group examples include naphthyl, anthracenyl, phenanthrenyl, perrylenyl, fluoranthenyl, triphenylenyl, penalenyl, pyrenyl, tetrasenyl, chrysenyl, pentansenyl, fluorenyl, indenyl, Acenaphthyl, benzofluorenyl, spirofluorenyl, and the like.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • substituted fluorenyl group , , , , , , And Etc., but is not limited thereto.
  • the heterocyclic group is a ring having two or more elements constituting the ring.
  • the heterocyclic group includes an aliphatic heterocyclic group and an aromatic heterocyclic group.
  • an aliphatic heterocyclic group means a monovalent aliphatic heterocyclic ring.
  • the aliphatic heterocycle means an aliphatic ring containing one or more of the heteroatoms in the atoms constituting the ring.
  • Examples of aliphatic heterocycles include oxirane, tetrahydrofuran, 1,4-dioxane, pyrrolidine, pyrrolidine-2,5-dione, piperidine, Morpholine, oxepan, azocaine, thiocaine and the like, but are not limited thereto.
  • the aromatic heterocyclic group means a monovalent aromatic heterocyclic ring.
  • the aromatic heterocycle means an aromatic ring including one or more of the heteroatoms in the atoms constituting the ring.
  • aromatic heterocycles include pyridine, pyrrole, pyrimidine, pyridazine, furan, thiophene, imidazole, parasol, oxazole, isoxazole, thiazole, isothiazole, triazole, oxadiazole, thia Diazoles, dithiazoles, tetrazole, pyrans, thiopyrans, diazines, oxazines, thiazines, dioxins, triazines, tetraazines, isoquinolines, quinolines, quinols, quinazolines, quinoxalines, naphthyridines, Acridine, phenanthridine, diazanaphthalene, driazainden
  • the heterocyclic ketone group means a monovalent heterocyclic ketone.
  • the heterocyclic ketone means a cyclic ketone in which at least two different atoms are present in the atoms constituting the ring.
  • the heterocyclic ketone is, for example, pyrrolidone, pyrrolidin-2,5-dione, benzofuran-2 [3H] -one, 3a, 6,7,7a-tetrahydrobenzofuran-2 [ 3H] -one, 1H-isochromen-1-one, 5-pentanolide, and the like, but is not limited thereto.
  • a carbocyclic ketone group means monovalent carbocyclic ketone.
  • the carbocyclic ketone means a cyclic ketone in which the ring constituent atoms are composed only of carbon atoms.
  • the carbocyclic ketone may be, for example, cyclopentanone, cyclohexanone, or the like, but is not limited thereto.
  • An exemplary embodiment of the present specification provides a compound represented by Chemical Formula 1.
  • L1 and L2 are the same as or different from each other, and each independently a linear or branched chain alkylene group having 1 to 10 carbon atoms.
  • L1 and L2 are the same as or different from each other, and each independently a linear or branched chain alkylene group having 1 to 8 carbon atoms.
  • L1 and L2 are the same as or different from each other, and each independently a linear or branched chain alkylene group having 1 to 6 carbon atoms.
  • L1 and L2 are the same as or different from each other, and each independently a linear or branched chain alkylene group having 1 to 5 carbon atoms.
  • L1 and L2 are the same as or different from each other, and are each independently a straight chain alkylene group having 1 to 10 carbon atoms.
  • L1 and L2 are the same as or different from each other, and are each independently a straight chain alkylene group having 1 to 5 carbon atoms.
  • L1 and L2 are each methylene.
  • Y1 and Y2 are the same as or different from each other, and each independently a cycloalkyl group; Heterocyclic ketone group; Carbocyclic ketone group; Monocyclic or polycyclic aliphatic hydrocarbon ring groups; Monocyclic or polycyclic aryl groups; Monocyclic or polycyclic aliphatic heterocyclic groups including one or more of O, N, and S; Or a monocyclic or polycyclic aromatic heterocyclic group including one or more of O, N, and S.
  • Y1 and Y2 are the same as or different from each other, and each independently a cycloalkyl group; Heterocyclic ketone group containing N; Carbocyclic ketone group; Monocyclic or polycyclic aliphatic hydrocarbon ring groups; Monocyclic or polycyclic aryl groups; Monocyclic or polycyclic aliphatic heterocyclic groups including O or S; Or a monocyclic or polycyclic aromatic heterocyclic group containing O or S.
  • Y1 and Y2 are the same as or different from each other, and each independently a cycloalkyl group having 3 to 8 carbon atoms; Heterocyclic ketone groups having 2 to 12 carbon atoms; Carbocyclic ketone groups having 4 to 14 carbon atoms; Monocyclic or polycyclic aliphatic hydrocarbon ring groups having 3 to 15 carbon atoms; Monocyclic or polycyclic aryl group having 6 to 25 carbon atoms; Monocyclic or polycyclic aliphatic heterocyclic groups having 2 to 20 carbon atoms; Or a monocyclic or polycyclic aromatic heterocyclic group having 2 to 20 carbon atoms.
  • Y1 and Y2 are the same as or different from each other, and each independently a cycloalkyl group having 3 to 6 carbon atoms; Heterocyclic ketone groups having 2 to 10 carbon atoms; Carbocyclic ketone groups having 4 to 12 carbon atoms; Monocyclic or polycyclic aliphatic hydrocarbon ring groups having 3 to 12 carbon atoms; Monocyclic or polycyclic aryl group having 6 to 18 carbon atoms; Monocyclic or polycyclic aliphatic heterocyclic groups having 2 to 16 carbon atoms; Or a monocyclic or polycyclic aromatic heterocyclic group having 2 to 16 carbon atoms.
  • Y1 and Y2 are the same as or different from each other, and each independently a cycloalkyl group having 3 to 6 carbon atoms; Heterocyclic ketone groups having 2 to 8 carbon atoms; Carbocyclic ketone groups having 4 to 9 carbon atoms; Monocyclic or polycyclic aliphatic hydrocarbon ring groups having 3 to 8 carbon atoms; Monocyclic or polycyclic aryl group having 6 to 15 carbon atoms; Monocyclic or polycyclic aliphatic heterocyclic groups having 2 to 12 carbon atoms; Or a monocyclic or polycyclic aromatic heterocyclic group having 2 to 12 carbon atoms.
  • Y1 and Y2 are the same as or different from each other, and each independently an aliphatic or aromatic ring group consisting of elements selected from the group consisting of N, O, S and C and having 5 or 6 members; Or a 5-membered cycloketone group consisting of elements selected from the group consisting of N and C.
  • Y1 and Y2 are the same as or different from each other, and each independently an aliphatic or aromatic ring group consisting of elements selected from the group consisting of N, O, S and C and having 5 or 6 members. .
  • Y1 and Y2 are the same as or different from each other, and each independently cyclopentyl; Cyclohexyl; Phenyl; Oxacyclopentyl; Oxacyclohexyl; Furanyl; Thiophenyl; Pyrrole-2,5-dionyl; Or pyrrolidine-2,5-dionyl.
  • R1 and R2 are the same as or different from each other, and each independently deuterium; Or an alkyl group having 1 to 10 carbon atoms.
  • R1 and R2 are the same as or different from each other, and each independently deuterium; Or an alkyl group having 1 to 6 carbon atoms.
  • R1 and R2 are the same as or different from each other, and each independently deuterium; Or an alkyl group having 1 to 3 carbon atoms.
  • R1 is hydrogen
  • R2 is hydrogen
  • R2 is methyl
  • Rx and Rz are the same as or different from each other, and are each independently an alkyl group having 1 to 10 carbon atoms.
  • Rx and Rz are the same as or different from each other, and each independently an alkyl group having 1 to 8 carbon atoms.
  • Rx and Rz are the same as or different from each other, and are each independently an alkyl group having 1 to 6 carbon atoms.
  • Rx and Rz are the same as or different from each other, and each independently methyl; Isopropyl; Or 1-ethylpropyl.
  • Ry is hydrogen
  • n1 is 1.
  • n2 is 1.
  • the sum of n1 and n2 is 1.
  • Chemical Formula 1 is represented by any one of the following Chemical Formulas 1-1 to 1-3.
  • L1, L2, Y1, Y2, R1, R2, Rx, Ry, Rx, a and b are the same as those defined in Chemical Formula 1.
  • Chemical Formula 1 is represented by any one of the following Chemical Formulas 2-1 to 2-6.
  • a is an integer of 0 to 5, and when a is 2 or more, R1 is the same as or different from each other.
  • Chemical Formula 1 is represented by any one of the following Chemical Formulas 2-1 and 2-3.
  • Chemical Formula 1 is represented by any one of the following Chemical Formulas 2-7 to 2-10.
  • L2, Y2, R1, R2, Rx, Ry, Rz, a and b are the same as defined in the formula (1).
  • Chemical Formula 1 is represented by the following Chemical Formula 3.
  • L2, Y2, R1, R2, Rx, Ry, Rz and a are the same as those defined in Chemical Formula 1,
  • b is an integer of 0 to 3, when b is 2 or more, R2 is the same as or different from each other,
  • n1 and m2 are integers of 1-10, respectively.
  • m1 is 1.
  • m2 is 1.
  • Y1 is a heterocyclic ketone group; Carbocyclic ketone group; Monocyclic or polycyclic aryl groups; Monocyclic or polycyclic aliphatic heterocyclic groups; Or a monocyclic or polycyclic aromatic heterocyclic group, or (2) Formula 1 is represented by the following Formula 5.
  • Y 1 is a cycloalkyl group; Or a monocyclic or polycyclic aliphatic hydrocarbon ring group,
  • e1 is an integer of 0 to 5, when e1 is 2 or more, R1 is the same as or different from each other,
  • e2 is an integer from 0 to 2, when e2 is 2, R2 is the same as or different from each other,
  • G1 and G2 are the same as or different from each other, and each independently an alkyl group,
  • L1, R1, R2, Rx, Ry and Rz are as defined in Chemical Formula 1.
  • Y1 is a heterocyclic ketone group; Carbocyclic ketone groups; Monocyclic or polycyclic aryl groups; Or a monocyclic or polycyclic aromatic heterocyclic group, or (2) Formula 1 is represented by the following Formula 6.
  • Y 1 is a cycloalkyl group; Monocyclic or polycyclic aliphatic hydrocarbon ring groups; Or a monocyclic or polycyclic aliphatic heterocyclic group,
  • c1 is an integer of 0 to 5, when c1 is 2 or more, R1 is the same as or different from each other,
  • c2 is an integer of 0 to 2, when c2 is 2, R2 is the same as or different from each other,
  • G1 and G2 are the same as or different from each other, and each independently an alkyl group,
  • L1, R1, R2, Rx, Ry and Rz are as defined in Chemical Formula 1.
  • the Y1 is a heterocyclic ketone group; Carbocyclic ketone group; Monocyclic or polycyclic aryl groups; Monocyclic or polycyclic aliphatic heterocyclic groups; Or a monocyclic or polycyclic aromatic heterocyclic group.
  • the Y1 is a heterocyclic ketone group; Carbocyclic ketone group; Monocyclic or polycyclic aryl groups; Or a monocyclic or polycyclic aromatic heterocyclic group.
  • Formula 1 when n1 is 1 and n2 is 0, Formula 1 is represented by the following Formula 7.
  • d1 is an integer of 0 to 5, when d1 is 2 or more, R1 is the same as or different from each other,
  • d2 is an integer of 0 to 2, when d2 is 2, R2 is the same as or different from each other,
  • G3 and G4 are the same as or different from each other, and each independently an alkyl group,
  • L1, Y1, R1, R2, Rx, Ry and Rz are as defined in Chemical Formula 1.
  • Formula 1 is represented by Formula 7, wherein in Formula 7, Y1 is a heterocyclic ketone group; Carbocyclic ketone group; Monocyclic or polycyclic aryl groups; Monocyclic or polycyclic aliphatic heterocyclic groups; Or a monocyclic or polycyclic aromatic heterocyclic group.
  • Formula 1 is represented by Formula 7, wherein in Formula 7, Y1 is a heterocyclic ketone group; Carbocyclic ketone group; Monocyclic or polycyclic aryl groups; Or a monocyclic or polycyclic aromatic heterocyclic group.
  • G1 and G2 are the same as or different from each other, and each independently deuterium; Or an alkyl group having 1 to 10 carbon atoms.
  • G1 and G2 are the same as or different from each other, and each independently deuterium; Or an alkyl group having 1 to 6 carbon atoms.
  • G1 and G2 are the same as or different from each other, and each independently deuterium; Or an alkyl group having 1 to 3 carbon atoms.
  • G1 and G2 are each methyl.
  • G3 and G4 are the same as or different from each other, and each independently deuterium; Or an alkyl group having 1 to 10 carbon atoms.
  • G3 and G4 are the same as or different from each other, and each independently deuterium; Or an alkyl group having 1 to 6 carbon atoms.
  • G3 and G4 are the same as or different from each other, and each independently deuterium; Or an alkyl group having 1 to 3 carbon atoms.
  • G3 and G4 are each methyl.
  • the compound represented by Formula 1 is any one selected from the following compounds.
  • the compound represented by Chemical Formula 1 may be prepared by the method of the following Formula 1.
  • Formula 1 is an example of a method for forming a compound represented by Formula 1, the synthesis method of the compound represented by Formula 1 is not limited to the general formula 1, some synthetic steps are known in the art It can be by method.
  • the present specification provides an organic light emitting device including the compound represented by Chemical Formula 1.
  • An exemplary embodiment of the present specification provides an organic light emitting device including a first electrode, a second electrode, and one or more organic material layers provided between the first electrode and the second electrode, wherein the compound represented by Chemical Formula 1 is Provided is an organic light emitting device included in at least one layer of at least one organic material layer.
  • the organic light emitting diode of the present specification may include a single layer or a multilayer organic material layer between the first electrode and the second electrode.
  • the organic material layer included in the organic light emitting device of the present invention may be a hole injection layer, a hole transport layer, a layer for simultaneously transporting and injecting holes, a hole control layer, a light emitting layer, an electron control layer, an electron transport layer, an electron injection layer, and an electron transport layer. It may be at least one of the layers to be injected at the same time.
  • the compound represented by Formula 1 is included in one or more layers of one or more light emitting layers.
  • the light emitting layer including the compound represented by Formula 1 is a red light emitting layer.
  • each light emitting layer may have a different color.
  • the organic light emitting device including the compound represented by Formula 1 is a red organic light emitting device.
  • the compound represented by Chemical Formula 1 is included in an amount of 1 part by weight to 10 parts by weight or less based on 100 parts by weight of the total amount of the light emitting layer including the compound.
  • the light emitting layer including the compound represented by Formula 1 further includes a host material.
  • the host material included in the emission layer including the compound represented by Chemical Formula 1 is a carbazole derivative compound or an aromatic polycyclic compound including N.
  • the light emitting layer including the compound represented by Chemical Formula 1 further includes a host compound represented by the following Chemical Formula H.
  • G1 and G2 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Cyano group; An alkyl group; Cycloalkyl group; Silyl groups; Aryl group; Or a heterocyclic group or combine with an adjacent group to form a substituted or unsubstituted ring,
  • G3 and G4 are the same as or different from each other, and each independently an aryl group unsubstituted or substituted with an alkyl group, an aryl group or a heterocyclic group; Or a heterocyclic group which is unsubstituted or substituted with an alkyl group, an aryl group or a heterocyclic group,
  • b1 is an integer of 0 to 7, and when b1 is 2 or more, a plurality of G1s are the same as or different from each other,
  • b2 is an integer of 0-7, and when b2 is 2 or more, some G2 is same or different from each other.
  • G1 combines with an adjacent group to form a benzene ring.
  • G4 is a heterocyclic group which is unsubstituted or substituted with an alkyl group, an aryl group, or a heterocyclic group, and includes N.
  • G4 is a heterocyclic group which is unsubstituted or substituted with an alkyl group, an aryl group or a heterocyclic group, and includes a 6-membered ring including N.
  • Chemical Formula H is represented by the following Chemical Formula H-1.
  • G1 to G4 and b2 are the same as those defined in Formula H,
  • b3 is an integer of 0-9, and when b3 is two or more, some G1 is the same or different from each other.
  • the compound represented by Formula H is the following compound.
  • the compound represented by Chemical Formula 1 is included in at least one layer of a hole injection layer, a hole transport layer, a hole injection layer and a hole control layer at the same time.
  • the compound represented by Chemical Formula 1 is included in at least one layer of an electron injection layer, an electron transport layer, a layer simultaneously performing electron injection and transport, and an electron control layer.
  • the organic light emitting device may be an organic light emitting device having a normal structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting diode may be an organic light emitting diode having an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode.
  • FIGS. 1 to 3 The structure of the organic light emitting device according to the exemplary embodiment of the present specification is illustrated in FIGS. 1 to 3.
  • an organic light emitting diode may include a substrate 1, an anode 2, an organic material layer 3, and a cathode 4.
  • the compound represented by Formula 1 is included in the organic material layer (3).
  • the organic light emitting diode includes a substrate 1, an anode 2, a hole injection layer 5, a first hole transport layer 6, and a second hole transport layer 7. ), A light emitting layer 8, an electron transport layer 9, an electron injection layer 10, and a cathode 4.
  • the compound represented by Formula 1 is included in the light emitting layer (8).
  • FIG. 3 shows a substrate 1, an anode 2, a hole injection layer 5, a first hole transport layer 6, a second hole transport layer 7, a light emitting layer 8, an electron injection and transport layer 11 and a cathode.
  • the example of the organic light emitting element which consists of (4) is shown.
  • the compound represented by Formula 1 is included in the light emitting layer (8).
  • the structure of the organic light emitting device according to the exemplary embodiment of the present specification is not limited to FIGS. 1 to 3, and may be any one of the following structures.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present specification may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a physical vapor deposition (PVD, physical vapor deposition) such as sputtering (e-beam evaporation), by depositing a metal or conductive metal oxide or an alloy thereof on the substrate It can be prepared by forming an anode, forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • PVD physical vapor deposition
  • sputtering e-beam evaporation
  • the compound represented by Chemical Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method in manufacturing the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, etc., but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (International Patent Application Publication No. 2003/012890).
  • the manufacturing method is not limited thereto.
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes received from the electrode into the light emitting layer or an adjacent layer provided toward the light emitting layer.
  • the hole injection material has a capability of transporting holes, has an effect of hole injection at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and transfers excitons generated from the light emitting layer to the electron injection layer or the electron injection material. It is preferable to use the compound which prevents and is excellent in thin film formation ability.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene Organic, anthraquinone, and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • the hole transporting material a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • Specific examples of the hole transport material include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a nonconjugated portion together.
  • the hole control layer is a layer for preventing the flow of the electrons to the anode to the light emitting layer and to control the flow of holes flowing into the light emitting layer to control the performance of the entire device.
  • the hole control material a compound having the ability to prevent the inflow of electrons from the light emitting layer to the anode and to control the flow of holes injected to the light emitting layer or the light emitting material is preferable.
  • an arylamine-based organic material may be used as the hole control layer, but is not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzothiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the light emitting layer may include a host material and a dopant material.
  • the host material examples include a condensed aromatic ring derivative or a hetero ring-containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • the heterocyclic containing compounds include dibenzofuran derivatives, ladder type furan compounds, Pyrimidine derivatives, and the like.
  • the dopant material of the light emitting layer includes an aromatic amine derivative, a styrylamine compound, a boron complex, a fluoranthene compound, a metal complex, and the like.
  • aromatic amine derivative pyrene, anthracene, chrysene, periplanthene and the like having an arylamine group may be used as a condensed aromatic ring derivative having a substituted or unsubstituted arylamine group.
  • the styrylamine compound a compound in which at least one arylvinyl group is substituted with a substituted or unsubstituted arylamine may be used.
  • styrylamine compound examples include, but are not limited to, styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like.
  • the metal complex may be an iridium complex, a platinum complex, or the like, but is not limited thereto.
  • the electron control layer is a layer that blocks the flow of holes from the light emitting layer to the cathode and controls the performance of the entire device by adjusting the electrons flowing into the light emitting layer.
  • the electron adjusting material a compound having the ability to prevent the inflow of holes from the light emitting layer to the cathode and to control the electrons injected into the light emitting layer or the light emitting material is preferable.
  • the electron control material an appropriate material may be used according to the configuration of the organic material layer used in the device.
  • the electron control layer is positioned between the light emitting layer and the cathode, preferably provided in direct contact with the light emitting layer.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports the electrons to the light emitting layer.
  • the electron transporting material is a material capable of injecting electrons well from the cathode and transferring the electrons to the light emitting layer.
  • a material having high mobility to electrons is suitable.
  • Examples of the electron transporting material include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired negative electrode material, as used according to the prior art.
  • the negative electrode material includes a material having a low work function; And aluminum layers or silver layers. Examples of the material having a low work function include cesium, barium, calcium, ytterbium and samarium, and after forming a layer from the material, an aluminum layer or a silver layer may be formed on the layer.
  • the electron injection layer is a layer for injecting electrons received from the electrode into the light emitting layer.
  • the electron injecting material has an ability to transport electrons, has an electron injection effect from a cathode, an excellent electron injection effect on a light emitting layer or a light emitting material, and transfers excitons generated in the light emitting layer to a hole injection layer or a hole injection material. It is preferable to use a compound which prevents the addition and has excellent thin film forming ability.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, benzimidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the like Derivatives thereof, metal complex compounds and nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtolato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtolato) gallium, It is not limited to this.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type according to a material used.
  • HAT-CN Hexanitrile hexaazatriphenylene
  • the following HT1 compound for transporting holes was vacuum-deposited thereon, followed by the deposition of the following HT2 compound to form a first (700 kV) and a second hole transport layer (200 kPa).
  • the following H1 compound and compound 1 were vacuum-deposited to form a light emitting layer (300 ⁇ ) on the second hole transport layer so that Compound 1 contained 3 parts by weight based on 100 parts by weight of the total weight of the following H1 compound and Compound 1.
  • the following E0 compound was thermally vacuum deposited (300 kPa) sequentially with an electron injection and transport layer.
  • an organic light emitting device was manufactured.
  • the deposition rate of the organic material was maintained at 1 ⁇ / sec
  • the deposition rate of LiF was 0.2 ⁇ / sec
  • the deposition rate of aluminum was maintained at 3 ⁇ / sec to 7 ⁇ / sec.
  • the organic light emitting diodes of Examples 2 to 10 were prepared in the same manner as in Example 1, except that the compounds shown in Table 1 were used instead of Compound 1 as phosphorescent dopants, respectively.
  • the organic light emitting diodes of Comparative Examples 1 to 7 were prepared in the same manner as in Example 1, except that the compounds shown in Table 1 were used instead of Compound 1 as phosphorescent dopants, respectively.
  • Table 1 shows the results of the organic light emitting devices manufactured according to Examples 1 to 10 and Comparative Examples 1 to 7. Voltage, efficiency and emission color are data at 5000 nit luminance. Life is the time when the initial photocurrent value is 100% and the photocurrent value is 98%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.

Description

화합물 및 이를 포함하는 유기 발광 소자
본 발명은 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.
본 출원은 2018년 5월 14일 한국특허청에 제출된 한국 특허 출원 제10-2018-0054968호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어지며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 난다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.
<선행기술문헌>
한국 공개특허공보 제10-2004-0049038호
본 명세서는 화학식 1로 표시되는 화합물을 유기 발광 소자에 포함시킴으로써, 발광 효율이 높거나, 수명 특성이 좋은 유기 발광 소자를 제공하고자 한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2019005552-appb-I000001
상기 화학식 1에 있어서,
L1 및 L2는 서로 동일하거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 사슬형 알킬렌기이고,
Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 사이클로알킬기; 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 지방족 탄화수소고리기; 단환 또는 다환의 아릴기; 단환 또는 다환의 지방족 헤테로고리기; 또는 단환 또는 다환의 방향족 헤테로고리기이며,
R1, R2, Rx, Ry 및 Rz는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기 또는 아릴기로 치환 또는 비치환된 실릴기; 알킬기; 알케닐기; 알카이닐기; 아릴기; 또는 헤테로고리기이고,
n1은 0 내지 6의 정수이고, n1이 2 이상인 경우 복수의 -(L1-Y1)은 서로 동일하거나 상이하고,
n2는 0 내지 4의 정수이고, n2가 2 이상인 경우 복수의 -(L2-Y2)는 서로 동일하거나 상이하고,
n1과 n2의 합은 1 이상이며,
a는 0 내지 6의 정수이고, a가 2 이상인 경우 복수의 R1은 서로 동일하거나 상이하고,
b는 0 내지 4의 정수이고, b가 2 이상인 경우 복수의 R2는 서로 동일하거나 상이하다.
본 명세서의 일 실시상태는 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 화학식 1으로 표시되는 화합물은 상기 1층 이상의 유기물층 중 1층 이상에 포함되는 것인 유기 발광 소자를 제공한다.
본 발명의 일 실시상태에 있어서, 유기 발광 소자의 유기물층, 특히 발광층이 화학식 1로 표시되는 화합물을 포함하는 경우 소자의 효율이 향상되거나 소자의 수명 특성이 향상될 수 있다.
도 1은 기판(1), 양극(2), 유기물층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공 주입층(5), 제1 정공 수송층(6), 제2 정공 수송층(7), 발광층(8), 전자 수송층(9), 전자 주입층(10) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 3은 기판(1), 양극(2), 정공 주입층(5), 제1 정공 수송층(6), 제2 정공 수송층(7), 발광층(8), 전자 주입 및 수송층(11) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
<부호의 설명>
1: 기판
2: 양극
3: 유기물층
4: 음극
5: 정공 주입층
6: 제1 정공 수송층
7: 제2 정공 수송층
8: 발광층
9: 전자 수송층
10: 전자 주입층
11: 전자 주입 및 수송층
이하 본 발명을 더욱 상세히 설명한다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서,
Figure PCTKR2019005552-appb-I000002
는 다른 치환기 또는 결합부에 결합되는 부위를 의미한다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미한다. 상기 치환기가 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않는다. 상기 치환기가 2 이상인 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 사슬형 알킬렌기는 직쇄 또는 분지쇄의 2가의 사슬형 포화 탄화수소를 의미한다. 상기 직쇄의 사슬형 알킬렌기는 메틸렌, 에틸렌, 프로필렌 등일 수 있으나, 이에 한정되지 않는다. 상기 분지쇄의 사슬형 알킬렌기는 디메틸메틸렌, 1-메틸에틸렌, 2-메틸에틸렌, 1,1-디메틸에틸렌 등일 수 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄의 포화 탄화수소를 의미한다. 상기 알킬기의 탄소수는 특별히 한정되지 않으나 1 내지 20인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 15이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 상기 알킬기는 사슬형 또는 고리형일 수 있다.
상기 사슬형 알킬기의 구체적인 예로는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸부틸, 1-에틸부틸, n-펜틸, 이소펜틸, 네오펜틸, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸프로필, 1,1-디메틸프로필, 이소헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되지 않는다.
상기 고리형 알킬기(사이클로알킬기)의 탄소수는 특별히 한정되지 않으나 3 내지 20인 것이 바람직하다. 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 16이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 12이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 8이다. 상기 사이클로알킬기의 구체적인 예로는 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 알케닐기는 탄소-탄소 이중결합을 가지는 탄화수소기를 나타내며, 탄소수는 특별히 한정되지 않으나 2 내지 30인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 알케닐기의 구체적인 예로는 에테닐, 비닐, 프로페닐, 알릴, 이소프로페닐, 부테닐, 이소부테닐, n-펜테닐 및 n-헥세닐이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 알카이닐기는 탄소-탄소 삼중결합을 가지는 탄화수소기를 나타내며, 탄소수는 특별히 한정되지 않으나 2 내지 30인 것이 바람직하다. 일 실시상태에 따르면, 상기 알카이닐기의 탄소수는 2 내지 20이다. 상기 알카이닐기의 구체적인 예로는 메타이닐, 에타이닐, 2-프로파이닐, 2-부타이닐, 1-메틸-2-부타이닐, 2-펜타이닐 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 실릴기는 -SiR11R12R13의 화학식으로 표시될 수 있고, 상기 R11 내지 R13은 각각 독립적으로 수소; 알킬기; 또는 아릴기일 수 있다. 본 명세서에 있어서, 알킬실릴기는 알킬기로 치환된 실릴기를 의미하고, 아릴실릴기는 아릴기로 치환된 실릴기를 의미한다. 상기 실릴기는 구체적으로 트리메틸실릴, 트리에틸실릴, t-부틸디메틸실릴, 비닐디메틸실릴, 프로필디메틸실릴, 트리페닐실릴, 디페닐실릴, 페닐실릴 등일 수 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 지방족 탄화수소고리기란 1가의 지방족 탄화수소고리를 의미한다. 상기 지방족 탄화수소고리란 방향족이 아닌 고리로서 탄소와 수소 원자로만 이루어진 고리를 의미한다. 지방족 탄화수소고리의 예로는 사이클로프로판, 사이클로부탄, 사이클로부텐, 사이클로펜탄, 사이클로펜텐, 사이클로헥산, 사이클로헥센, 1,4-사이클로헥사디엔, 사이클로헵탄, 사이클로헵텐, 사이클로옥탄, 사이클로옥텐 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 탄소와 수소 원자로만 이루어진 단환 또는 다환의 방향족 탄화수소 고리를 의미한다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 상기 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 상기 단환식 아릴기로는 페닐, 바이페닐, 터페닐 등이 있으나, 이에 한정되지 않는다. 상기 다환식 아릴기로는 나프틸, 안트라세닐, 페난트레닐, 페릴레닐, 플루오란테닐, 트리페닐레닐, 페날레닐, 파이레닐, 테트라세닐, 크라이세닐, 펜타세닐, 플루오레닐, 인데닐, 아세나프틸, 벤조플루오레닐, 스피로플루오레닐 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다.
상기 치환된 플루오레닐기로는
Figure PCTKR2019005552-appb-I000003
,
Figure PCTKR2019005552-appb-I000004
,
Figure PCTKR2019005552-appb-I000005
,
Figure PCTKR2019005552-appb-I000006
,
Figure PCTKR2019005552-appb-I000007
,
Figure PCTKR2019005552-appb-I000008
,
Figure PCTKR2019005552-appb-I000009
Figure PCTKR2019005552-appb-I000010
등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 헤테로고리기는 고리를 구성하는 원소가 2종 이상인 고리이다. 상기 헤테로고리기는 지방족 헤테로고리기와 방향족 헤테로고리기를 포함한다.
본 명세서에 있어서, 지방족 헤테로고리기란 1가의 지방족 헤테로고리를 의미한다. 상기 지방족 헤테로고리란 고리를 구성하는 원자에 헤테로원자 중 1개 이상이 포함되는 지방족 고리를 의미한다. 지방족 헤테로고리의 예로는, 옥시레인(oxirane), 테트라하이드로퓨란, 1,4-디옥세인(1,4-dioxane), 피롤리딘, 피롤리딘-2,5-다이온, 피페리딘, 모르폴린(morpholine), 옥세판, 아조케인, 티오케인 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 방향족 헤테로고리기란 1가의 방향족 헤테로고리를 의미한다. 상기 방향족 헤테로고리란 고리를 구성하는 원자에 헤테로원자 중 1개 이상이 포함되는 방향족 고리를 의미한다. 방향족 헤테로고리의 예로는, 피리딘, 피롤, 피리미딘, 피리다진, 퓨란, 티오펜, 이미다졸, 파라졸, 옥사졸, 이소옥사졸, 티아졸, 이소티아졸, 트리아졸, 옥사디아졸, 티아디아졸, 디티아졸, 테트라졸, 피란(pyran), 티오피란, 디아진, 옥사진, 티아진, 다이옥신, 트리아진, 테트라진, 이소퀴놀린, 퀴놀린, 퀴놀, 퀴나졸린, 퀴녹살린, 나프티리딘, 아크리딘, 페난트리딘, 디아자나프탈렌, 드리아자인덴, 인돌, 인돌리진, 벤조티아졸, 벤즈옥사졸, 벤즈이미다졸, 벤조티오펜, 벤조퓨란, 디벤조티오펜, 디벤조퓨란, 카바졸, 벤조카바졸, 디벤조카바졸, 페나진, 이미다조피리딘, 페녹사진, 페난트리딘, 인돌로카바졸, 인데노카바졸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 헤테로사이클릭케톤기란 1가의 헤테로사이클릭케톤을 의미한다. 상기 헤테로사이클릭케톤이란 고리를 구성하는 원자에 적어도 2개 이상의 상이한 원자가 존재하는 고리형 케톤을 의미한다. 상기 헤테로사이클릭케톤은 예를 들어, 피롤리돈, 피롤리딘-2,5-다이온, 벤조퓨란-2[3H]-온, 3a,6,7,7a-테트라하이드로벤조퓨란-2[3H]-온, 1H-아이소크로멘-1-온, 5-펜탄올라이드 등일 수 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 카보사이클릭케톤기란 1가의 카보사이클릭케톤을 의미한다. 상기 카보사이클릭케톤이란 고리 구성 원자가 탄소 원자로만 이루어진 고리형 케톤을 의미한다. 상기 카보사이클릭케톤은 예를 들어, 사이클로펜타논, 사이클로헥사논 등일 수 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태는 상기 화학식 1로 표시되는 화합물을 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 직쇄 또는 분지쇄의 사슬형 알킬렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 8의 직쇄 또는 분지쇄의 사슬형 알킬렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 6의 직쇄 또는 분지쇄의 사슬형 알킬렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 5의 직쇄 또는 분지쇄의 사슬형 알킬렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 직쇄의 사슬형 알킬렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 5의 직쇄의 사슬형 알킬렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 각각 메틸렌이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 사이클로알킬기; 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 지방족 탄화수소고리기; 단환 또는 다환의 아릴기; O, N 및 S 중 1 이상을 포함하는 단환 또는 다환의 지방족 헤테로고리기; 또는 O, N 및 S 중 1 이상을 포함하는 단환 또는 다환의 방향족 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 사이클로알킬기; N을 포함하는 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 지방족 탄화수소고리기; 단환 또는 다환의 아릴기; O 또는 S를 포함하는 단환 또는 다환의 지방족 헤테로고리기; 또는 O 또는 S를 포함하는 단환 또는 다환의 방향족 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 3 내지 8의 사이클로알킬기; 탄소수 2 내지 12의 헤테로사이클릭케톤기; 탄소수 4 내지 14의 카보사이클릭케톤기; 단환 또는 다환의 탄소수 3 내지 15의 지방족 탄화수소고리기; 단환 또는 다환의 탄소수 6 내지 25의 아릴기; 단환 또는 다환의 탄소수 2 내지 20의 지방족 헤테로고리기; 또는 단환 또는 다환의 탄소수 2 내지 20의 방향족 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 3 내지 6의 사이클로알킬기; 탄소수 2 내지 10의 헤테로사이클릭케톤기; 탄소수 4 내지 12의 카보사이클릭케톤기; 단환 또는 다환의 탄소수 3 내지 12의 지방족 탄화수소고리기; 단환 또는 다환의 탄소수 6 내지 18의 아릴기; 단환 또는 다환의 탄소수 2 내지 16의 지방족 헤테로고리기; 또는 단환 또는 다환의 탄소수 2 내지 16의 방향족 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 3 내지 6의 사이클로알킬기; 탄소수 2 내지 8의 헤테로사이클릭케톤기; 탄소수 4 내지 9의 카보사이클릭케톤기; 단환 또는 다환의 탄소수 3 내지 8의 지방족 탄화수소고리기; 단환 또는 다환의 탄소수 6 내지 15의 아릴기; 단환 또는 다환의 탄소수 2 내지 12의 지방족 헤테로고리기; 또는 단환 또는 다환의 탄소수 2 내지 12의 방향족 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 N, O, S 및 C로 이루어진 군에서 선택된 원소로 이루어지고 5원 또는 6원인 지방족 또는 방향족 고리기; 또는 N 및 C로 이루어진 군에서 선택된 원소로 이루어진 5원의 사이클로케톤기이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 N, O, S 및 C로 이루어진 군에서 선택된 원소로 이루어지고 5원 또는 6원인 지방족 또는 방향족 고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 사이클로펜틸; 사이클로헥실; 페닐; 옥사사이클로펜틸; 옥사사이클로헥실; 퓨라닐; 티오페닐; 피롤-2,5-다이오닐; 또는 피롤리딘-2,5-다이오닐이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 서로 동일하거나 상이하고 각각 독립적으로 중수소; 또는 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 중수소; 또는 탄소수 1 내지 6의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 중수소; 또는 탄소수 1 내지 3의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1은 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 R2는 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 R2는 메틸이다.
본 명세서의 일 실시상태에 있어서, 상기 Rx 및 Rz는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 Rx 및 Rz는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 8의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 Rx 및 Rz는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 6의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 Rx 및 Rz는 서로 동일하거나 상이하고, 각각 독립적으로 메틸; 아이소프로필; 또는 1-에틸프로필이다.
본 명세서의 일 실시상태에 있어서. 상기 Ry는 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 n1은 1이다.
본 명세서의 일 실시상태에 있어서, 상기 n2는 1이다.
본 명세서의 일 실시상태에 있어서, 상기 n1과 n2의 합은 1이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-3 중 어느 하나로 표시된다.
[화학식 1-1]
Figure PCTKR2019005552-appb-I000011
[화학식 1-2]
Figure PCTKR2019005552-appb-I000012
[화학식 1-3]
Figure PCTKR2019005552-appb-I000013
상기 화학식 1-1 내지 화학식 1-3에 있어서,
L1, L2, Y1, Y2, R1, R2, Rx, Ry, Rx, a 및 b의 정의는 화학식 1에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 2-1 내지 화학식 2-6 중 어느 하나로 표시된다.
[화학식 2-1]
Figure PCTKR2019005552-appb-I000014
[화학식 2-2]
Figure PCTKR2019005552-appb-I000015
[화학식 2-3]
Figure PCTKR2019005552-appb-I000016
[화학식 2-4]
Figure PCTKR2019005552-appb-I000017
[화학식 2-5]
Figure PCTKR2019005552-appb-I000018
[화학식 2-6]
Figure PCTKR2019005552-appb-I000019
상기 화학식 2-1 내지 화학식 2-6에 있어서,
L1, Y1, R1, R2, Rx, Ry, Rz 및 b의 정의는 화학식 1에서 정의한 바와 동일하고,
a는 0 내지 5의 정수이며, a가 2 이상인 경우 R1은 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 2-1 및 화학식 2-3 내지 화학식 2-6 중 어느 하나로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 2-7 내지 화학식 2-10 중 어느 하나로 표시된다.
[화학식 2-7]
Figure PCTKR2019005552-appb-I000020
[화학식 2-8]
Figure PCTKR2019005552-appb-I000021
[화학식 2-9]
Figure PCTKR2019005552-appb-I000022
[화학식 2-10]
Figure PCTKR2019005552-appb-I000023
상기 화학식 2-7 내지 화학식 2-10에 있어서,
L2, Y2, R1, R2, Rx, Ry, Rz, a 및 b의 정의는 화학식 1에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 3으로 표시된다.
[화학식 3]
Figure PCTKR2019005552-appb-I000024
상기 화학식 3에 있어서,
L2, Y2, R1, R2, Rx, Ry, Rz 및 a의 정의는 화학식 1에서 정의한 바와 동일하고,
b는 0 내지 3의 정수이고, b가 2 이상인 경우 R2는 서로 동일하거나 상이하고,
m1 및 m2는 각각 1 내지 10의 정수이다.
본 명세서의 일 실시상태에 있어서, 상기 m1은 1이다.
본 명세서의 일 실시상태에 있어서, 상기 m2는 1이다.
본 명세서의 일 실시상태에 있어서, 상기 n1이 1이고, n2가 0인 경우, (1) 상기 Y1은 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 아릴기; 단환 또는 다환의 지방족 헤테로고리기; 또는 단환 또는 다환의 방향족 헤테로고리기이거나, (2) 상기 화학식 1은 하기 화학식 5로 표시된다.
[화학식 5]
Figure PCTKR2019005552-appb-I000025
상기 화학식 5에 있어서,
Y1은 사이클로알킬기; 또는 단환 또는 다환의 지방족 탄화수소고리기이고,
e1은 0 내지 5의 정수이고, e1이 2 이상인 경우 R1은 서로 같거나 상이하고,
e2는 0 내지 2의 정수이고, e2가 2인 경우 R2는 서로 같거나 상이하고,
G1 및 G2는 서로 같거나 상이하고, 각각 독립적으로 알킬기이며,
L1, R1, R2, Rx, Ry 및 Rz의 정의는 화학식 1에서 정의한 바와 같다.
본 명세서의 일 실시상태에 있어서, 상기 n1이 1이고, n2가 0인 경우, (1) 상기 Y1은 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 아릴기; 또는 단환 또는 다환의 방향족 헤테로고리기이거나, (2) 상기 화학식 1은 하기 화학식 6으로 표시된다.
[화학식 6]
Figure PCTKR2019005552-appb-I000026
상기 화학식 6에 있어서,
Y1은 사이클로알킬기; 단환 또는 다환의 지방족 탄화수소고리기; 또는 단환 또는 다환의 지방족 헤테로고리기이고,
c1은 0 내지 5의 정수이고, c1이 2 이상인 경우 R1은 서로 같거나 상이하고,
c2는 0 내지 2의 정수이고, c2가 2인 경우 R2는 서로 같거나 상이하고,
G1 및 G2는 서로 같거나 상이하고, 각각 독립적으로 알킬기이며,
L1, R1, R2, Rx, Ry 및 Rz의 정의는 화학식 1에서 정의한 바와 같다.
본 명세서의 일 실시상태에 있어서, 상기 n1이 1 이상인 경우, 상기 Y1은 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 아릴기; 단환 또는 다환의 지방족 헤테로고리기; 또는 단환 또는 다환의 방향족 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 n1이 1 이상인 경우, 상기 Y1은 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 아릴기; 또는 단환 또는 다환의 방향족 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 n1이 1이고, n2가 0이면, 상기 화학식 1은 하기 화학식 7로 표시된다.
[화학식 7]
Figure PCTKR2019005552-appb-I000027
상기 화학식 7에 있어서,
d1은 0 내지 5의 정수이고, d1이 2 이상인 경우 R1은 서로 같거나 상이하고,
d2는 0 내지 2의 정수이고, d2가 2인 경우 R2는 서로 같거나 상이하고,
G3 및 G4는 서로 같거나 상이하고, 각각 독립적으로 알킬기이며,
L1, Y1, R1, R2, Rx, Ry 및 Rz의 정의는 화학식 1에서 정의한 바와 같다.
본 명세서의 일 실시상태에 있어서, 상기 n1이 1이고, n2가 0인 경우, 상기 화학식 1은 상기 화학식 7로 표시되며, 상기 화학식 7에서 Y1은 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 아릴기; 단환 또는 다환의 지방족 헤테로고리기; 또는 단환 또는 다환의 방향족 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 n1이 1이고, n2가 0인 경우, 상기 화학식 1은 상기 화학식 7로 표시되며, 상기 화학식 7에서 Y1은 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 아릴기; 또는 단환 또는 다환의 방향족 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 G1 및 G2는 서로 동일하거나 상이하고 각각 독립적으로 중수소; 또는 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 G1 및 G2는 서로 동일하거나 상이하고, 각각 독립적으로 중수소; 또는 탄소수 1 내지 6의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 G1 및 G2는 서로 동일하거나 상이하고, 각각 독립적으로 중수소; 또는 탄소수 1 내지 3의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 G1 및 G2는 각각 메틸이다.
본 명세서의 일 실시상태에 있어서, 상기 G3 및 G4는 서로 동일하거나 상이하고 각각 독립적으로 중수소; 또는 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 G3 및 G4는 서로 동일하거나 상이하고, 각각 독립적으로 중수소; 또는 탄소수 1 내지 6의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 G3 및 G4는 서로 동일하거나 상이하고, 각각 독립적으로 중수소; 또는 탄소수 1 내지 3의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 G3 및 G4는 각각 메틸이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화합물들 중에서 선택된 어느 하나이다.
Figure PCTKR2019005552-appb-I000028
Figure PCTKR2019005552-appb-I000029
Figure PCTKR2019005552-appb-I000030
Figure PCTKR2019005552-appb-I000031
Figure PCTKR2019005552-appb-I000032
Figure PCTKR2019005552-appb-I000033
Figure PCTKR2019005552-appb-I000034
Figure PCTKR2019005552-appb-I000035
Figure PCTKR2019005552-appb-I000036
Figure PCTKR2019005552-appb-I000037
Figure PCTKR2019005552-appb-I000038
Figure PCTKR2019005552-appb-I000039
Figure PCTKR2019005552-appb-I000040
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 일반식 1의 방법에 따라 제조될 수 있다.
[일반식 1]
Figure PCTKR2019005552-appb-I000041
상기 일반식 1에 있어서, L1, L2, Y1, Y2, R1, R2, Rx, Ry, Rz, a, b, n1 및 n2의 정의는 상기 화학식 1에서 정의한 바와 동일하다.
상기 일반식 1은 화학식 1로 표시되는 화합물을 형성하는 방법의 하나의 예시로서, 화학식 1로 표시되는 화합물의 합성 방법은 상기 일반식 1에 한정되지 않으며, 일부 합성 단계는 당 기술분야에 알려져 있는 방법에 의할 수 있다.
본 명세서는 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태는, 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 화학식 1으로 표시되는 화합물은 상기 1층 이상의 유기물층 중 1층 이상에 포함되는 것인 유기 발광 소자를 제공한다.
본 명세서의 유기 발광 소자는 제1 전극 및 제2 전극 사이에 단층 또는 다층의 유기물층을 포함할 수 있다. 예컨대, 본 발명의 유기 발광 소자에 포함되는 상기 유기물층은 정공 주입층, 정공 수송층, 정공 수송 및 주입을 동시에 하는 층, 정공 조절층, 발광층, 전자 조절층, 전자 수송층, 전자 주입층 및 전자 수송 및 주입을 동시에 하는 층 중 1층 이상일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 1층 이상의 발광층 중 1층 이상의 층에 포함된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 발광층은 적색 발광층이다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자에 1층 이상의 발광층이 포함되는 경우, 각각의 발광층은 서로 다른 색을 나타낼 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자는 적색 유기 발광 소자이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 화합물을 포함하는 발광층 총 100 중량부 기준으로 1 중량부 이상 10 중량부 이하로 포함된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 발광층은 호스트 물질을 더 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 발광층에 포함되는 호스트 물질은 카바졸 유도체 화합물 또는 N을 포함하는 방향족 다환 화합물이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 발광층은 하기 화학식 H로 표시되는 호스트 화합물을 더 포함한다.
[화학식 H]
Figure PCTKR2019005552-appb-I000042
상기 화학식 H에 있어서,
G1 및 G2는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 알킬기; 사이클로알킬기; 실릴기; 아릴기; 또는 헤테로고리기거나, 인접하는 기와 서로 결합하여 치환 또는 비치환된 고리를 형성하며,
G3 및 G4는 서로 동일하거나 상이하고, 각각 독립적으로 알킬기, 아릴기 또는 헤테로고리기로 치환 또는 비치환된 아릴기; 또는 알킬기, 아릴기 또는 헤테로고리기로 치환 또는 비치환된 헤테로고리기이며,
b1은 0 내지 7의 정수이고, b1이 2 이상인 경우 복수의 G1은 서로 동일하거나 상이하고,
b2는 0 내지 7의 정수이고, b2가 2 이상인 경우 복수의 G2는 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 G1은 인접하는 기와 서로 결합하여 벤젠고리를 형성한다.
본 명세서의 일 실시상태에 있어서, 상기 G4는 알킬기, 아릴기 또는 헤테로고리기로 치환 또는 비치환되고 N을 포함하는 헤테로고리기다.
본 명세서의 일 실시상태에 있어서, 상기 G4는 알킬기, 아릴기 또는 헤테로고리기로 치환 또는 비치환되고, N을 포함하는 6원 고리를 포함하는 헤테로고리기다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 H는 하기 화학식 H-1으로 표시된다.
[화학식 H-1]
Figure PCTKR2019005552-appb-I000043
상기 화학식 H-1에 있어서,
G1 내지 G4 및 b2의 정의는 화학식 H에서 정의한 바와 동일하고,
b3는 0 내지 9의 정수이고, b3가 2 이상인 경우 복수의 G1은 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 H로 표시되는 화합물은 하기 화합물이다.
Figure PCTKR2019005552-appb-I000044
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 정공 주입층, 정공 수송층, 정공 주입 및 수송을 동시에 하는 층 및 정공 조절층 중 1층 이상에 포함된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 전자 주입층, 전자 수송층, 전자 주입 및 수송을 동시에 하는 층 및 전자 조절층 중 1층 이상에 포함된다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 노말 구조(normal type)의 유기 발광 소자일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다.
또 하나의 실시상태에 있어서, 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1 내지 3에 예시되어 있다.
본 발명의 일 실시상태에 따른 유기 발광소자는 도 1에 도시한 바와 같이, 기판(1), 양극(2), 유기물층(3) 및 음극(4)으로 이루어질 수 있다. 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 유기물층(3)에 포함된다.
본 발명의 일 실시상태에 따른 유기 발광 소자는 도 2에 도시된 바와 같이 기판(1), 양극(2), 정공 주입층(5), 제1 정공 수송층(6), 제2 정공 수송층(7), 발광층(8), 전자 수송층(9), 전자 주입층(10) 및 음극(4)으로 이루어질 수 있다. 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층(8)에 포함된다.
도 3은 기판(1), 양극(2), 정공 주입층(5), 제1 정공 수송층(6), 제2 정공 수송층(7), 발광층(8), 전자 주입 및 수송층(11) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층(8)에 포함된다.
그러나, 본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1 내지 도 3에 한정되지 않고, 하기의 구조 중 어느 하나일 수 있다.
(1) 양극/정공수송층/발광층/음극
(2) 양극/정공주입층/정공수송층/발광층/음극
(3) 양극/정공수송층/발광층/전자수송층/음극
(4) 양극/정공수송층/발광층/전자수송층/전자주입층/음극
(5) 양극/정공주입층/정공수송층/발광층/전자수송층/음극
(6) 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극
(7) 양극/정공수송층/정공조절층/발광층/전자수송층/음극
(8) 양극/정공수송층/정공조절층/발광층/전자수송층/전자주입층/음극
(9) 양극/정공주입층/정공수송층/정공조절층/발광층/전자수송층/음극
(10) 양극/정공주입층/정공수송층/정공조절층/발광층/전자수송층/전자주입층/음극
(11) 양극/정공수송층/발광층/전자조절층/전자수송층/음극
(12) 양극/정공수송층/발광층/전자조절층/전자수송층/전자주입층/음극
(13) 양극/정공주입층/정공수송층/발광층/전자조절층/전자수송층/음극
(14) 양극/정공주입층/정공수송층/발광층/전자조절층/전자수송층/전자주입층/음극
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 서로 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 물리적 증착 방법(PVD, physical Vapor Deposition)을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다 (국제 특허 출원 공개 제 2003/012890호). 다만, 제조 방법이 이에 한정되는 것은 아니다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입층은 전극으로부터 수취받은 정공을 발광층 또는 발광층쪽으로 구비된 인접한 층에 주입하는 층이다. 상기 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 엑시톤의 전자 주입층 또는 전자 주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물을 사용하는 것이 바람직하다. 상기 정공 주입 물질의 HOMO(highest occupied molecular orbital)는 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 상기 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 수송층은 정공 주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층이다. 상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 상기 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 조절층은 발광층으로주터 전자가 양극으로 유입되는 것을 방지하고 발광층으로 유입되는 정공의 흐름을 조절하여 소자 전체의 성능을 조절하는 층이다. 상기 정공 조절 물질로는 발광층으로부터 양극으로의 전자의 유입을 방지하고, 발광층 또는 발광 재료에 대하여 주입되는 정공의 흐름을 조절하는 능력을 갖는 화합물이 바람직하다. 일 실시상태에 있어서, 정공 조절층으로는 아릴아민 계열의 유기물이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-하이드록시퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-하이드록시벤조퀴놀린-금속 화합물; 벤즈옥사졸, 벤조티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도판트 재료를 포함할 수 있다.
상기 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 파이렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
상기 발광층의 도판트 재료로는 방향족 아민 유도체, 스티릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 상기 방향족 아민 유도체로는 치환 또는 비치환된 아릴아민기를 갖는 축합 방향족환 유도체로서, 아릴아민기를 갖는 파이렌, 안트라센, 크라이센, 페리플란텐 등을 사용할 수 있다. 상기 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환된 화합물을 사용할 수 있다. 상기 스티릴아민 화합물의 예로는 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체로는 이리듐 착체, 백금 착체 등을 사용할 수 있으나, 이에 한정되지 않는다.
상기 전자 조절층은 발광층으로부터 정공이 음극으로 유입되는 것을 차단하고 발광층으로 유입되는 전자를 조절하여 소자 전체의 성능을 조절하는 층이다. 전자 조절 물질로는 발광층으로부터 음극으로의 정공의 유입을 방지하고, 발광층 또는 발광 재료에 대하여 주입되는 전자를 조절하는 능력을 갖는 화합물이 바람직하다. 전자 조절 물질로는 소자 내 사용되는 유기물층의 구성에 따라 적절한 물질을 사용할 수 있다. 상기 전자 조절층은 발광층과 음극 사이에 위치하며, 바람직하게는 발광층에 직접 접하여 구비된다.
상기 전자 수송층은 전자 주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층이다. 상기 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 상기 전자 수송 물질의 예로는 8-하이드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 하이드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 음극 물질과 함께 사용할 수 있다. 일 실시상태에 있어서, 상기 음극 물질로는 낮은 일함수를 가지는 물질; 및 알루미늄층 또는 실버층을 사용할 수 있다. 상기 낮은 일함수를 가지는 물질의 예로는 세슘, 바륨, 칼슘, 이테르븀 및 사마륨 등이 있으며, 상기 물질로 층을 형성한 후 알루미늄층 또는 실버층을 상기 층 위에 형성할 수 있다.
상기 전자 주입층은 전극으로부터 수취받은 전자를 발광층에 주입하는 층이다. 상기 전자 주입 물질로는 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자 주입 효과를 가지며, 발광층에서 생성된 엑시톤의 정공 주입층 또는 정공 주입 재료에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물을 사용하는 것이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 벤즈이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하에서, 본 발명의 상세한 이해를 위하여 본 발명 화합물 및 이를 포함하는 유기 발광 소자의 제조방법과 특성을 설명한다.
제조예 1: 화합물 1의 합성
Figure PCTKR2019005552-appb-I000045
(1) 중간체 2-A의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-A(18.9g, 60mmol), IrCl3 (6.847g,22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-A를 제조하였다. (9.8g, 수율 49%)
(2) 화합물 1의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-A(9g, 5.25mmol), 탄산칼슘(potassium carbonate)(7.26g, 52.53mmol), 펜탄-2,4-다이온(Pentane-2,4-dione)(5.26g, 52.53mmol) 및 2-에톡시에탄올(2-ethoxyethanol) 300ml를 넣고, 상온에서 48시간동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다. 컬럼크로마토그래피를 통해 분리하여 화합물 1을 제조하였다.(4g, 수율 41%, MS:[M+H]+=921)
제조예 2: 화합물 2의 합성
Figure PCTKR2019005552-appb-I000046
(1) 중간체 2-B의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-B(18.9g,60mmol), IrCl3(6.847g, 22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-B를 제조하였다. (9.1g, 수율 46%)
(2) 화합물 2의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-B(9g, 5.25mmol), 탄산칼슘(potassium carbonate)(7.26g, 52.53mmol), 펜탄-2,4-다이온(Pentane-2,4-dione)(5.26g, 52.53mmol) 및 2-에톡시에탄올(2-ethoxyethanol) 300ml를 넣고, 상온에서 48시간동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다. 컬럼크로마토그래피를 통해 분리하여 화합물 2를 제조하였다. (3.8g, 수율 39%, MS:[M+H]+=921)
제조예 3: 화합물 3의 합성
Figure PCTKR2019005552-appb-I000047
(1) 중간체 2-C의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-C(18.9g, 60mmol), IrCl3(6.847g, 22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-C를 제조하였다. (9.4g, 수율 47%)
(2) 화합물 3의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-C(9g, 5.25mmol), 탄산칼슘(potassium carbonate)(7.26g, 52.53mmol), 펜탄-2,4-다이온(Pentane-2,4-dione)(5.26g, 52.53mmol) 및 2-에톡시에탄올(2-ethoxyethanol) 300ml를 넣고, 상온에서 48시간동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다. 컬럼크로마토그래피를 통해 분리하여 화합물 3을 제조하였다.(4.1g, 수율 42%, MS:[M+H]+=921)
제조예 4: 화합물 4의 합성
Figure PCTKR2019005552-appb-I000048
(1) 중간체 2-D의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-D(20.65g, 60mmol), IrCl3 (6.847g,22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-D를 제조하였다. (8.7g, 수율 41%)
(2) 화합물 4의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-D(8g, 4.37mmol), 탄산칼슘(potassium carbonate)(6.045g, 43.74mmol), 펜탄-2,4-다이온(Pentane-2,4-dione)(4.38g, 43.74mmol), 2-에톡시에탄올(2-ethoxyethanol) 300ml을 넣고, 상온에서 48시간동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다. 컬럼크로마토그래피를 통해 분리하여 화합물 4를 제조하였다. (3.7g, 수율 43%, MS:[M+H]+=979)
제조예 5: 화합물 5의 합성
Figure PCTKR2019005552-appb-I000049
(1) 중간체 2-E의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-E(20.65g, 60mmol), IrCl3(6.847g, 22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-E를 제조하였다. (9g, 수율 43%)
(2) 화합물 5의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-E(9g, 4.92mmol), 탄산칼슘(potassium carbonate)(6.8g, 49.21mmol), 펜탄-2,4-다이온(Pentane-2,4-dione)(4.93g, 49.21mmol) 및 2-에톡시에탄올(2-ethoxyethanol) 300ml를 넣고, 상온에서 48시간동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다. 컬럼크로마토그래피를 통해 분리하여 화합물 5를 제조하였다.(4.1g, 수율 43%, MS:[M+H]+=979)
제조예 6: 화합물 6의 합성
Figure PCTKR2019005552-appb-I000050
(1)중간체 2-F의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-F(20g, 58mmol), IrCl3(6.847g, 22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-F를 제조하였다. (8.2g, 수율 39%)
(2)화합물 6의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-F(8g, 4.4mmol), 탄산칼슘(potassium carbonate)(6.07g, 43.93mmol), 펜탄-2,4-다이온(Pentane-2,4-dione)(4.4g, 43.93mmol) 및 2-에톡시에탄올(2-ethoxyethanol) 300ml을 넣고, 상온에서 48시간동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다. 컬럼크로마토그래피를 통해 분리하여 화합물 6을 제조하였다.(3.4g, 수율 39%, MS:[M+H]+=975)
제조예 7: 화합물 7의 합성
Figure PCTKR2019005552-appb-I000051
(1) 중간체 2-G의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-G(20g, 69mmol), IrCl3 (6.847g, 22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-G를 제조하였다. (5.4g, 수율 46%)
(2) 화합물 7의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-G(5g, 4.86mmol), 탄산칼슘(potassium carbonate)(6.72g, 48.63mmol), 펜탄-2,4-다이온(Pentane-2,4-dione)(4.86g, 48.63mmol), 2-에톡시에탄올(2-ethoxyethanol) 300ml을 넣고, 상온에서 48시간동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다. 컬럼크로마토그래피를 통해 분리하여 화합물 7을 제조하였다.(3.2g, 수율 38%, MS:[M+H]+=865)
제조예 8: 화합물 8의 합성
Figure PCTKR2019005552-appb-I000052
(1) 중간체 2-H의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-H(20g, 63.2mmol), IrCl3 (6.847g, 22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-H를 제조하였다. (8.1g, 수율 41%)
(2) 화합물 8의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-H(8g, 4.71mmol), 탄산칼슘(potassium carbonate)(4.03g, 29.12mmol), 펜탄-2,4-다이온(pentane-2,4-dione)(2.92g, 29.12mmol), 2-에톡시에탄올(2-ethoxyethanol) 300ml을 넣고, 상온에서 48시간동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다.컬럼크로마토그래피를 통해 분리하여 화합물 8를 제조하였다.(1.9g, 수율 35%, MS:[M+H]+=923)
제조예 9: 화합물 9의 합성
Figure PCTKR2019005552-appb-I000053
제조예 1에서 아세틸아세톤 대신 2,6-디메틸헵탄-3,5-다이온(2,6-dimethylheptane-3,5-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 9를 합성하였다. (MS:[M+H]+=977)
제조예 10: 화합물 10의 합성
Figure PCTKR2019005552-appb-I000054
제조예 2에서 아세틸아세톤 대신 2,6-디메틸헵탄-3,5-다이온(2,6-dimethylheptane-3,5-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 10을 합성하였다. (MS:[M+H]+=977)
제조예 11: 화합물 11의 합성
Figure PCTKR2019005552-appb-I000055
제조예 3에서 아세틸아세톤 대신 2,6-디메틸헵탄-3,5-다이온(2,6-dimethylheptane-3,5-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 11을 합성하였다. (MS:[M+H]+=977)
제조예 12: 화합물 12의 합성
Figure PCTKR2019005552-appb-I000056
제조예 4에서 아세틸아세톤 대신 2,6-디메틸헵탄-3,5-다이온(2,6-dimethylheptane-3,5-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 12를 합성하였다. (MS:[M+H]+=1035)
제조예 13: 화합물 13의 합성
Figure PCTKR2019005552-appb-I000057
제조예 5에서 아세틸아세톤 대신 2,6-디메틸헵탄-3,5-다이온(2,6-dimethylheptane-3,5-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 13을 합성하였다. (MS:[M+H]+=1035)
제조예 14: 화합물 14의 합성
Figure PCTKR2019005552-appb-I000058
제조예 6에서 아세틸아세톤 대신 2,6-디메틸헵탄-3,5-다이온(2,6-dimethylheptane-3,5-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 14를 합성하였다. (MS:[M+H]+=1031)
제조예 15: 화합물 15의 합성
Figure PCTKR2019005552-appb-I000059
제조예 7에서 아세틸아세톤 대신 2,6-디메틸헵탄-3,5-다이온(2,6-dimethylheptane-3,5-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 15를 합성하였다. (MS:[M+H]+=921)
제조예 16: 화합물 16의 합성
Figure PCTKR2019005552-appb-I000060
제조예 8에서 아세틸아세톤 대신 2,6-디메틸헵탄-3,5-다이온(2,6-dimethylheptane-3,5-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 16을 합성하였다. (MS:[M+H]+=979)
제조예 17: 화합물 17의 합성
Figure PCTKR2019005552-appb-I000061
제조예 1에서 아세틸아세톤 대신 3,7-디에틸노난-4,6-다이온(3,7-Diethylnonane-4,6-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 17을 합성하였다.(MS:[M+H]+=1033)
제조예 18: 화합물 18의 합성
Figure PCTKR2019005552-appb-I000062
제조예 2에서 아세틸아세톤 대신 3,7-디에틸노난-4,6-다이온(3,7-Diethylnonane-4,6-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 18을 합성하였다. (MS:[M+H]+=1033)
제조예 19: 화합물 19의 합성
Figure PCTKR2019005552-appb-I000063
제조예 3에서 아세틸아세톤 대신 3,7-디에틸노난-4,6-다이온(3,7-Diethylnonane-4,6-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 19를 합성하였다. (MS:[M+H]+=1033)
제조예 20: 화합물 20의 합성
Figure PCTKR2019005552-appb-I000064
제조예 4에서 아세틸아세톤 대신 3,7-디에틸노난-4,6-다이온(3,7-Diethylnonane-4,6-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 20을 합성하였다. (MS:[M+H]+=1091)
제조예 21: 화합물 21의 합성
Figure PCTKR2019005552-appb-I000065
제조예 5에서 아세틸아세톤 대신 3,7-디에틸노난-4,6-다이온(3,7-Diethylnonane-4,6-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 21을 합성하였다. (MS:[M+H]+=1091)
제조예 22: 화합물 22의 합성
Figure PCTKR2019005552-appb-I000066
제조예 6에서 아세틸아세톤 대신 3,7-디에틸노난-4,6-다이온(3,7-Diethylnonane-4,6-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 22를 합성하였다. (MS:[M+H]+=1087)
제조예 23: 화합물 23의 합성
Figure PCTKR2019005552-appb-I000067
제조예 7에서 아세틸아세톤 대신 3,7-디에틸노난-4,6-다이온(3,7-Diethylnonane-4,6-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 23을 합성하였다. (MS:[M+H]+=977)
제조예 24: 화합물 24의 합성
Figure PCTKR2019005552-appb-I000068
제조예 8에서 아세틸아세톤 대신 3,7-디에틸노난-4,6-다이온(3,7-Diethylnonane-4,6-dione)을 사용한 것을 제외하고 동일한 방법으로 화합물 24를 합성하였다. (MS:[M+H]+=1035)
제조예 25: 화합물 25의 합성
Figure PCTKR2019005552-appb-I000069
(1) 중간체 2-I의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-I(18.5g, 63.9mmol), IrCl3(6.847g, 22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-I를 제조하였다. (7.9g, 수율 42.7%)
(2) 화합물 25의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-I(7g, 4.35mmol), 탄산칼슘(potassium carbonate)(6.01g, 43.5mmol), 펜탄-2,4-다이온(Pentane-2,4-dione)(4.56g, 43.51mmol) 및 2-에톡시에탄올(2-ethoxyethanol) 300ml을 넣고, 상온에서 48시간 동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다. 컬럼크로마토그래피를 통해 분리하여 화합물 25를 제조하였다.(3g, 수율 39.7%, MS:[M+H]+=869)
제조예 26: 화합물 26의 합성
Figure PCTKR2019005552-appb-I000070
(1) 중간체 2-J의 합성
질소하에서 둥근 바닥 플라스크에 화합물 1-J(20.3g, 63.9mmol), IrCl3(6.847g, 22.95mmol), 2-에톡시에탄올(2-ethoxyethanol) 225ml 및 DI-Water 75ml를 넣고 하루동안 환류시켰다. 반응 종료 후 온도를 낮추고 감압하에서 여과 및 메탄올로 수세하여 화합물 2-J를 제조하였다. (13.2g, 수율 48 %)
(2) 화합물 26의 합성
질소하에서 둥근 바닥 플라스크에 화합물 2-J(7.48g, 4.35mmol), 탄산칼슘(potassium carbonate)(6.01g, 43.5mmol), 펜탄-2,4-다이온(Pentane-2,4-dione)(4.56g, 43.51mmol) 및 2-에톡시에탄올(2-ethoxyethanol) 300ml을 넣고, 상온에서 48시간 동안 교반시켰다. 생성된 석출물을 감압하에서 여과시키고 메탄올로 수세하였다. 컬럼크로마토그래피를 통해 분리하여 화합물 26을 제조하였다.(1.4g, 수율 35.4%, MS:[M+H]+=924)
실시예 1
Fischer Co.의 제품을 사용하였으며, 증류수는 Millipore Co. 제품의 필터(Filter)로 2차 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후, 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후 이소프로필알콜, 아세톤, 메탄올 용제 순서로 초음파 세척을 하고 건조시켰다. 이렇게 준비된 ITO 투명 전극 위에 헥사니트릴 헥사아자트리페닐렌(HAT-CN)을 50Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 그 위에 정공을 수송하는 하기 HT1 화합물을 진공 증착하고 연이어 하기 HT2 화합물을 증착하여 제1(700Å) 및 제2 정공 수송층(200Å)을 형성하였다. 다음으로 상기 제2 정공 수송층 위에 화합물 1이 하기 H1 화합물과 화합물 1의 중량의 합 100 중량부 기준으로 3 중량부 포함되도록, 하기 H1 화합물과 화합물 1을 진공 증착하여 발광층(300Å)을 형성하였다. 그 다음에 하기 E0 화합물을 전자 주입 및 수송층으로 순차적으로 열진공 증착(300Å)하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께의 리튬 플루오라이드(LiF)와 2,000Å 두께의 알루미늄을 증착하여 음극을 형성한 후, 유기 발광 소자를 제조하였다. 상기의 과정에서 유기물의 증착속도는 1Å/sec를 유지하였고, LiF의 증착속도는 0.2Å/sec, 알루미늄의 증착속도는 3Å/sec 내지 7Å/sec를 유지하였다.
Figure PCTKR2019005552-appb-I000071
실시예 2 내지 10
발광층 형성시 인광 도판트로서 화합물 1 대신 하기 표 1에 기재된 화합물을 각각 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 실시예 2 내지 10의 유기 발광 소자를 각각 제작하였다.
비교예 1 내지 7
발광층 형성시 인광 도판트로서 화합물 1 대신 하기 표 1에 기재된 화합물을 각각 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 비교예 1 내지 7의 유기 발광 소자를 각각 제작하였다.
Figure PCTKR2019005552-appb-I000072
상기 실시예 1 내지 10과 비교예 1 내지 7에 의해 제작된 유기 발광 소자의 결과를 표 1에 나타냈다. 전압, 효율, 발광색은 5000nit 휘도에서의 데이터이다. 수명은 처음 광전류 값을 100%로 보고, 광전류 값이 이에 대해 98%일 때의 시간을 표시한 것이다.
도판트물질 구동전압(V) 효율(cd/A) 수명(T98, h,)
실시예 1 1 4.6 30.2 52
실시예 2 5 4.5 30.4 56
실시예 3 7 4.7 31.8 50
실시예 4 10 4.5 30.0 58
실시예 5 12 4.6 29.5 50
실시예 6 16 4.7 31.24 48
실시예 7 19 4.6 31.3 52
실시예 8 22 4.5 30.8 49
실시예 9 25 4.6 29.5 56
실시예 10 26 4.6 33.8 56
비교예 1 E1 4.6 25.1 35
비교예 2 E2 4.7 25.1 32
비교예 3 E3 4.8 25.4 40
비교예 4 E4 4.6 24.8 37
비교예 5 E5 4.5 25.3 34
비교예 6 E6 4.6 26.8 42
비교예 7 E7 4.6 24.5 35
상기 표 1 에서 알 수 있듯이, 본 발명의 화합물을 인광 도판트 물질로 사용한 경우, 화합물 E1 내지 E7를 사용한 비교예에 비해 수명 측면에서 우수한 특성을 나타내는 것을 확인하였다. 이를 통해 치환기의 종류에 따라 효율 및 수명에 영향을 미치는 것을 확인할 수 있었다. 특히 화합물간 π-π 결합의 제어를 통해 보다 우수한 성능이 나타났다고 판단된다.

Claims (12)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2019005552-appb-I000073
    상기 화학식 1에 있어서,
    L1 및 L2는 서로 동일하거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 사슬형 알킬렌기이고,
    Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 사이클로알킬기; 헤테로사이클릭케톤기; 카보사이클릭케톤기; 단환 또는 다환의 지방족 탄화수소고리기; 단환 또는 다환의 아릴기; 단환 또는 다환의 지방족 헤테로고리기; 또는 단환 또는 다환의 방향족 헤테로고리기이며,
    R1, R2, Rx, Ry 및 Rz는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기 또는 아릴기로 치환 또는 비치환된 실릴기; 알킬기; 알케닐기; 알카이닐기; 아릴기; 또는 헤테로고리기이고,
    n1은 0 내지 6의 정수이고, n1이 2 이상인 경우 복수의 -(L1-Y1)은 서로 동일하거나 상이하고,
    n2는 0 내지 4의 정수이고, n2가 2 이상인 경우 복수의 -(L2-Y2)는 서로 동일하거나 상이하고,
    n1과 n2의 합은 1 이상이며,
    a는 0 내지 6의 정수이고, a가 2 이상인 경우 복수의 R1은 서로 동일하거나 상이하고,
    b는 0 내지 4의 정수이고, b가 2 이상인 경우 복수의 R2는 서로 동일하거나 상이하다.
  2. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 2-1 내지 화학식 2-6 중 어느 하나로 표시되는 것인 화합물:
    [화학식 2-1]
    Figure PCTKR2019005552-appb-I000074
    [화학식 2-2]
    Figure PCTKR2019005552-appb-I000075
    [화학식 2-3]
    Figure PCTKR2019005552-appb-I000076
    [화학식 2-4]
    Figure PCTKR2019005552-appb-I000077
    [화학식 2-5]
    Figure PCTKR2019005552-appb-I000078
    [화학식 2-6]
    Figure PCTKR2019005552-appb-I000079
    상기 화학식 2-1 내지 화학식 2-6에 있어서,
    L1, Y1, R1, R2, Rx, Ry, Rz 및 b의 정의는 화학식 1에서 정의한 바와 동일하고,
    a는 0 내지 5의 정수이며, a가 2 이상인 경우 R1은 서로 동일하거나 상이하다.
  3. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 2-7 내지 화학식 2-10 중 어느 하나로 표시되는 것인 화합물:
    [화학식 2-7]
    Figure PCTKR2019005552-appb-I000080
    [화학식 2-8]
    Figure PCTKR2019005552-appb-I000081
    [화학식 2-9]
    Figure PCTKR2019005552-appb-I000082
    [화학식 2-10]
    Figure PCTKR2019005552-appb-I000083
    상기 화학식 2-7 내지 화학식 2-10에 있어서,
    L2, Y2, R1, R2, Rx, Ry, Rz 및 a의 정의는 화학식 1에서 정의한 바와 동일하고,
    b는 0 내지 3의 정수이고, b가 2 이상인 경우 R2는 서로 동일하거나 상이하다.
  4. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 3으로 표시되는 것인 화합물:
    [화학식 3]
    Figure PCTKR2019005552-appb-I000084
    상기 화학식 3에 있어서,
    Y1, Y2, R1, R2, Rx, Ry, Rz, a, b, n1 및 n2의 정의는 화학식 1에서 정의한 바와 동일하고,
    m1 및 m2는 각각 독립적으로 1 내지 10의 정수이다.
  5. 청구항 1에 있어서, L1 및 L2는 각각 메틸렌인 것인 화합물.
  6. 청구항 1에 있어서, Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 3 내지 8의 사이클로알킬기; 탄소수 2 내지 12의 헤테로사이클릭케톤기; 탄소수 4 내지 14의 카보사이클릭케톤기; 단환 또는 다환의 탄소수 3 내지 15의 지방족 탄화수소고리기; 단환 또는 다환의 탄소수 6 내지 25의 아릴기; 단환 또는 다환의 탄소수 2 내지 20의 지방족 헤테로고리기; 또는 단환 또는 다환의 탄소수 2 내지 20의 방향족 헤테로고리기인 것인 화합물.
  7. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화합물들 중에서 선택된 어느 하나인 것인 화합물:
    Figure PCTKR2019005552-appb-I000085
    Figure PCTKR2019005552-appb-I000086
    Figure PCTKR2019005552-appb-I000087
    Figure PCTKR2019005552-appb-I000088
    Figure PCTKR2019005552-appb-I000089
    Figure PCTKR2019005552-appb-I000090
    Figure PCTKR2019005552-appb-I000091
    Figure PCTKR2019005552-appb-I000092
    Figure PCTKR2019005552-appb-I000093
    Figure PCTKR2019005552-appb-I000094
    Figure PCTKR2019005552-appb-I000095
    Figure PCTKR2019005552-appb-I000096
    Figure PCTKR2019005552-appb-I000097
    .
  8. 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 청구항 1 내지 7 중 어느 하나의 항에 따른 화합물은 상기 1층 이상의 유기물층 중 1층 이상에 포함되는 것인 유기 발광 소자.
  9. 청구항 8에 있어서, 상기 화학식 1로 표시되는 화합물은 1층 이상의 발광층 중 1층 이상의 층에 포함되는 것인 유기 발광 소자.
  10. 청구항 9에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 발광층은 적색 발광층인 것인 유기 발광 소자.
  11. 청구항 8에 있어서, 상기 화학식 1로 표시되는 화합물은 정공 주입층, 정공 수송층, 정공 주입 및 수송을 동시에 하는 층 및 정공 조절층 중 1층 이상에 포함되는 것인 유기 발광 소자.
  12. 청구항 8에 있어서, 상기 화학식 1로 표시되는 화합물은 전자 주입층, 전자 수송층, 전자 주입 및 수송을 동시에 하는 층 및 전자 조절층 중 1층 이상에 포함되는 것인 유기 발광 소자.
PCT/KR2019/005552 2018-05-14 2019-05-14 화합물 및 이를 포함하는 유기 발광 소자 WO2019221444A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980010672.1A CN111655707B (zh) 2018-05-14 2019-05-14 化合物及包含其的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180054968 2018-05-14
KR10-2018-0054968 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019221444A1 true WO2019221444A1 (ko) 2019-11-21

Family

ID=68540464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005552 WO2019221444A1 (ko) 2018-05-14 2019-05-14 화합물 및 이를 포함하는 유기 발광 소자

Country Status (3)

Country Link
KR (1) KR102184859B1 (ko)
CN (1) CN111655707B (ko)
WO (1) WO2019221444A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230615A (zh) * 2021-12-31 2022-03-25 上海飞凯材料科技股份有限公司 铱配合物及其制备方法、有机发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070278936A1 (en) * 2006-06-02 2007-12-06 Norman Herron Red emitter complexes of IR(III) and devices made with such compounds
WO2008073440A2 (en) * 2006-12-08 2008-06-19 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
JP2012043912A (ja) * 2010-08-17 2012-03-01 Fujifilm Corp 有機電界発光素子用材料、該有機電界発光素子用材料を含む組成物、並びに、該組成物により形成された膜、及び有機電界発光素子
KR20160058874A (ko) * 2013-09-17 2016-05-25 메르크 파텐트 게엠베하 Oled 를 위한 폴리시클릭 페닐피리딘 이리듐 착물 및 그의 유도체
KR20170094510A (ko) * 2016-02-09 2017-08-18 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100520937B1 (ko) 2002-12-03 2005-10-17 엘지전자 주식회사 유기 전계 발광 소자용 페닐피리딘 - 이리듐 금속착체화합물, 그의 제조방법 및 그를 사용한 유기 전계발광 소자
US9512355B2 (en) * 2011-12-09 2016-12-06 Universal Display Corporation Organic light emitting materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070278936A1 (en) * 2006-06-02 2007-12-06 Norman Herron Red emitter complexes of IR(III) and devices made with such compounds
WO2008073440A2 (en) * 2006-12-08 2008-06-19 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
JP2012043912A (ja) * 2010-08-17 2012-03-01 Fujifilm Corp 有機電界発光素子用材料、該有機電界発光素子用材料を含む組成物、並びに、該組成物により形成された膜、及び有機電界発光素子
KR20160058874A (ko) * 2013-09-17 2016-05-25 메르크 파텐트 게엠베하 Oled 를 위한 폴리시클릭 페닐피리딘 이리듐 착물 및 그의 유도체
KR20170094510A (ko) * 2016-02-09 2017-08-18 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스

Also Published As

Publication number Publication date
KR20190130510A (ko) 2019-11-22
CN111655707B (zh) 2023-06-23
KR102184859B1 (ko) 2020-12-01
CN111655707A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2019132506A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019221446A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019225938A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2016105161A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013191428A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2018182297A1 (ko) 벤조카바졸계 화합물 및 이를 포함하는 유기 발광 소자
WO2020159279A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2021125813A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020122671A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019172647A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2015099477A2 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020138964A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2015046982A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020130725A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2016140551A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019132483A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019221444A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021241882A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021167222A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021125814A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246837A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020153652A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020246835A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803707

Country of ref document: EP

Kind code of ref document: A1